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Abstract. We study properties of the convex hull of a set S described by quadratic inequalities.
A simple way of generating inequalities valid on S is to take nonnegative linear combinations of the
defining inequalities of S. We call such inequalities aggregations. Special aggregations naturally
contain the convex hull of S, and we give sufficient conditions for intersection of such aggregations
to define the convex hull. We introduce the notion of hidden hyperplane convexity (HHC), which is
related to the classical notion of hidden convexity of quadratic maps. We show that if the quadratic
map associated with S satisfies HHC, then the convex hull of S is defined by special aggregations. To
the best of our knowledge, this result generalizes all known results regarding aggregations defining
convex hulls. Using this sufficient condition, we are able to recognize previously unknown classes of
sets where aggregations lead to convex hull. We show that the condition known as positive definite
linear combination for every triple of inequalities, together with hidden hyperplane convexity is
sufficient for finitely many aggregations to define the convex hull, answering a question raised in [8].
All the above results are for sets defined using open quadratic inequalities. For closed quadratic
inequalities, we prove a new result regarding aggregations giving the convex hull, without topological
assumptions on S, which were needed in [14, 8].

1. Introduction

The well-known Farkas lemma in linear programming states that any implied linear inequality for
a non-empty set defined by finitely many linear inequalities, can be obtained by taking a nonnegative
weighted combination of the original inequalities. We call the procedure of obtaining implied
inequalities for a given set by rescaling the defining constraints by nonnegative weights and then
adding the scaled constraints together as aggregation. Aggregations have also been studied in the
context of integer linear programming (for example, [2]) and mixed-integer nonlinear programming
(for example, [10]) to obtain better cutting-planes or improved dual bounds. In this paper, we
extend the study of aggregation [22, 4, 14, 8] in the context of quadratic constraints. While sets
defined by linear inequalities are always convex, sets defined by quadratic inequalities are usually
not, and we address the question of when the convex hull can be found via aggregation.

Let S ⊆ Rn be a set defined by finitely many quadratic constraints. Since we are interested in
finding the convex hull of S, it makes sense to consider only “good aggregations”, which have at
most one negative eigenvalue, so that the set defined by the aggregated constraint has at most two
connected components that are both convex, and furthermore contains the convex hull in one of its
connected components. It is known that the convex hull of S is always described by intersection of
these “good aggregations” in the case where S is defined by two quadratic constraints [22]. In fact,
the convex hull of a set defined by two quadratic inequalities can be obtained as the intersection of
two good aggregations. Henceforth, for simplicity, if it is clear from context we will drop the term
“good” and refer to good aggregation as aggregation.

The paper [8] extended the result of [22] to the case of a set S defined using three quadratic
constraints, by showing that under an additional condition called positive definite linear combination
(PDLC), the convex hull of S is obtained as the intersection of good aggregations. They also show
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via examples that if PDLC does not hold, then the convex hull of S may not be given by good
aggregations.

A key ingredient of the result in [22] is the S-lemma [15]. The main use of the PDLC condition
in [8] is also to prove a version of the homogeneous S-lemma for three quadratics under PDLC.
The result is an application of Calabi’s convexity theorem [6, 16] which states that under PDLC
the image of Rn by three quadratic forms is a closed convex cone in R3. Convexity of the image of
quadratic maps is a classical mathematical problem in convex geometry and real algebraic geometry,
dating back to Dines’ theorem [9] and Brickman’s theorem [3]. Yakubovich’s S-lemma (also called
S-procedure) [20] connects this problem to the realm of polynomial optimization. Since then the
notion of hidden convexity has become a powerful tool to study quadratic programming [16, 11].
See [19] for a mathematical treatment of convexity of quadratic maps and [15] for a survey of the
S-lemma.

The main goals of this paper are three-fold:

• General sufficient conditions for aggregations to yield convex hull: We establish a new suf-
ficient condition for aggregations to define the convex hull, which we call hidden hyperplane
convexity (HHC). To the best of our knowledge, hidden hyperplane convexity gives the most
general result on convex hull of a region defined by quadratic inequalities being given by
aggregations. In particular, we simultaneously generalize the results of [22] and [8], which
deal with two and three quadratic inequalities respectively. Furthermore, we give new ex-
amples of sets described by more than 3 quadratic inequalities where convex hull is given
by aggregations. We show that hidden hyperplane convexity is a stronger requirement than
hidden convexity, and in order for the convex hull of a set defined by quadratic inequalities
to be given by aggregations, hidden convexity is not sufficient while HHC is not necessary.

• Finiteness of aggregations: While [22] shows that only two good aggregations suffice to
define the convex hull in the case of sets described by two quadratic inequalities, the pa-
per [8] only shows that the intersection of good aggregations yields the convex hull –leaving
the question of whether only a finite number of good aggregations are sufficient to obtain
the convex hull for three quadratic constraints satisfying PDLC, as an open problem. We
answer this question in the affirmative in this paper, and we show that six aggregations
suffice to describe the convex hull for three quadratic constraints satisfying PDLC. Fur-
thermore, we establish a more general sufficient condition for finiteness of aggregations in
Theorem 2.18.

• Closed quadratic inequalities: All of the above results are for the case of open quadratic
inequalities, whereas typically in mathematical programming we are interested in sets de-
fined by closed quadratic inequalities. The situation with closed inequalities is much more
delicate, as we illustrate in Example 2.23. Much of the difficulty comes from the fact that
sets defined by closed inequalities can have low-dimensional connected components. Pre-
viously known results make topological assumptions to avoid this situation. In particular,
it was shown in [14] that if the set defined by closed inequalities has no lower-dimensional
connected components, then the closures of convex hulls of sets defined by closed or open
inequalities are the same; this allows us to transfer results from the open case to the closed
case, under a topological assumption. Unfortunately, this assumption is hard to check
computationally, and it does not hold in some interesting cases. We show that if hidden
hyperplane convexity holds, and the zero matrix is not a non-trivial aggregation, then the
interior of the convex hull of the set given by closed quadratic inequalities is equal to the
interior of the intersection of aggregations (Theorem 2.24). While these are restrictive con-
ditions, they do not make topological assumptions on the set defined by closed inequalities.
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The rest of the papers is organized as follows: In Section 2 we present all our main results. In
particular, in Section 2.1 we establish notation and preliminary results followed by Section 2.2-
Section 2.6 where all the results are stated and explained. Section 3 presents conclusions and open
questions. Proofs of the results presented in Section 2 are given in Sections 4-10.

2. Main Results

2.1. Notations and preliminaries. Given a positive integer n, we let [n] denote the set {1, . . . , n}.
Given a set U ⊆ Rn, we use dim(U), conv(U), int(U), U , and ∂U to represent the dimension of
U , the convex hull of U , the standard topological interior of U , the standard topological closure
of U , and the boundary of the set U respectively. Given a linear subspace L of Rn, we denote its
orthogonal complement by L⊥. For a square matrix M , we use det(M) to denote the determinant
of M . We use In to denote the n× n identity matrix and ei for the i-th standard basis vector.

Our main goal is to study sets defined by multiple open quadratic constraints:

S := {x ∈ Rn : x⊤Aix + 2b⊤i x + ci < 0, i ∈ [m]},(1)

where m ≥ 2 and n ≥ 3. We also use the following notation:

(1) Let fi(x) = x⊤Aix + 2b⊤i x + ci be quadratic functions defining (1) and Qi =

[
Ai bi
b⊤i ci

]
the

corresponding matrices. We define homogenization fh
i of fi to be the quadratic form given

by fh
i (x, xn+1) = (x, xn+1)

⊤Qi(x, xn+1).

(2) The homogenized set Sh:

Sh :=
{

(x, xn+1) ∈ Rn × R1 : x⊤Aix + 2(b⊤i x)xn+1 + cix
2
n+1 < 0, i ∈ [m]

}
.

(3) The aggregation of constraints Sλ and its homogenization (Sλ)h. For λ ∈ Rm
+ , we let

Qλ =

m∑
i=1

λiQi and Fλ =

m∑
i=1

λifi

be the aggregated matrices and quadratic functions. Additionally we define:

Sλ := {x ∈ Rn : Fλ < 0},

(Sλ)h := {(x, xn+1) ∈ Rn+1 : F h
λ (x, xn+1) < 0}.

Observe that S ⊆ Sλ, S
h ⊆ (Sλ)h for any nonzero λ ∈ Rm

+ .

(4) Let

Ω = {λ ∈ Rm
+ \ {0} : conv(S) ⊆ Sλ and Qλ has at most one negative eigenvalue.}

Informally, Ω is the set of “good” aggregations where Sλ consists of one or two convex
connected components, and conv(S) lies entirely in one of them. We will formally state and
prove this equivalence in Lemma 5.2 in Section 5.

(5) Positive definite linear combination (PDLC): Given a set of symmetric matrices Q1, . . .Qm,
we say they satisfy PDLC if

∑m
i=1 θiQi ≻ 0 holds for some θ ∈ Rm.

The cases of m = 2 and m = 3 are studied in [22] and [8] respectively. If S ̸= ∅ and conv(S) ̸= Rn,
then in the case of two quadratic inequalities the convex hull is always given by aggregations in
Ω, and in the case of three quadratic inequalities we need the additional PDLC condition. Notice
that in the case of two quadratic inequalities, by taking Q3 = −I the latter result implies the
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former one1. The author of [22] also proved that for two quadratic inequalities, aggregations also
give certificates when S = ∅ or conv(S) = Rn. Moreover, [22] also showed at most two good
aggregations suffice to define the convex hull.

2.2. Hidden hyperplane convexity. We call a map φ : Rn → Rm a quadratic map, if there exist
m symmetric matrices Q1, . . . Qm such that:

φ(x) =
(
x⊤Q1x, . . . , x

⊤Qmx
)

for all x ∈ Rn.

A quadratic map φ : Rn → Rm satisfies hidden convexity if image (φ) = {φ(x) : x ∈ Rn} ⊆ Rm

is convex. We say that n × n symmetric matrices Q1, . . . , Qm satisfy hidden convexity if the map
x 7→ (x⊤Q1x, . . . , x

⊤Qmx) satisfies hidden convexity.
We now introduce a new notion of hidden hyperplane convexity of quadratic maps, which will

be our key assumption in proving that the convex hull of a set defined by quadratic inequalities is
given by aggregations of these inequalities. We say H ⊆ Rn is a linear hyperplane if H is a linear
subspace of Rn with dim(H) = n− 1.

Definition 2.1 (Hidden hyperplane convexity (HHC)). A quadratic map φ : Rn → Rm satisfies
hidden hyperplane convexity (HHC) if for all linear hyperplanes H ⊆ Rn, image (φ|H) = {φ(x) :
x ∈ H} ⊆ Rm is a convex set. Let Q1, . . . , Qm be n × n symmetric matrices. We say Q1, . . . , Qm

satisfy HHC if the map x 7→ (x⊤Q1x, . . . , x
⊤Qmx) satisfies HHC.

We present some properties of hidden hyperplane convexity.

Remark 2.2. If the matrices Qi are linearly independent, then we must have n ≥ m for hidden
convexity, and n− 1 ≥ m for hidden hyperplane convexity. For hidden convexity, suppose n < m,
and consider the span of the image of the quadratic map φ. Since the image is convex, the span
has the same dimension as the image, and it is at most n. This means for all x ∈ Rn we have
there exist λi, not all zero, such that

∑
λix

⊤Qix =
∑

x⊤λiQix = 0, and therefore Qi are linearly
dependent. Contradiction.

For hidden hyperplane convexity, suppose n − 1 < m, and consider the span of the image of φ
restricted to a hyperplane. For a general hyperplane H the restrictions of Qi to H will be linearly
independent and then the argument is same as for hyperplane convexity.

More generally, we must have dim(span{Q1, . . . , Qm}) ≤ n (resp. n − 1) for hidden convexity
(resp. hyperplane hidden convexity) to hold. The proofs are the same as the ones outlined above.

We now observe that hidden hyperplane convexity implies hidden convexity.

Observation 2.3. Hidden hyperplane convexity implies the usual hidden convexity as long as n ≥ 3.
Given x, y ∈ Rn we may pick some hyperplane H containing both x and y, and the segment between
φ(x) and φ(y) in Rm is then contained in image(φ|H) ⊆ image φ.

On the other hand, HHC is a strictly stronger condition than hidden convexity as the next
example illustrates.

Example 2.4 (Hidden convexity does not imply hidden hyperplane convexity). Consider a diagonal
quadratic map φ : Rn → Rm, φ(x) =

(
x⊤D1x, . . . , x

⊤Dmx
)
, where D1, . . . , Dm are diagonal

matrices; such a map is also sometimes referred to as a separable quadratic map. Any diagonal
quadratic map φ is known to satisfy hidden convexity (see Proposition 3.7 in [16]), and we include
a quick proof here. Given x, y ∈ Rn and λ ∈ [0, 1], let z ∈ Rn be defined as

zj =
√

λx2j + (1 − λ)y2j , j ∈ [n].

1If any aggregation uses a non-zero weight on the quadratic constraint corresponding to −I, then we can obtain a
tighter aggregated constraint by setting the weight on this constraint to zero.
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Then it is straightforward to verify that

λφ(x) + (1 − λ)φ(y) = φ(z),

that is, image (φ) is convex.
On the other hand, we show that a diagonal quadratic map may not satisfy hidden hyper-

plane convexity: Let φ : R4 → R3 be given by f1 = x21, f2 = x22 and f3 = x23. The image
of R4 is the non-negative orthant in R3. Now let’s consider restrictions of φ to a linear hy-
perplane H. It is clear that in this specific example, {φ(x) : x ∈ H} = {φ(x) : x ∈ π(H)},
where π : R4 → R3, π(x1, x2, x3, x4) = (x1, x2, x3, 0) is the linear projection that forgets the
last coordinate. If H does not contain the vector (0, 0, 0, 1), then π(H) = R3, and {φ(x) :
x ∈ H} is the non-negative orthant in R3, and hidden hyperplane convexity on H holds. If
H does contain (0, 0, 0, 1), then the image of H under φ may not be convex. For instance,
let H = span{(1, 1, 0, 0), (1, 0, 1, 0), (0, 0, 0, 1)} = {(s + t, s, t, u) ⊆ R4 : s, t, u ∈ R}. Then
A = image φ|H = {((s + t)2, s2, t2) ⊆ R3 : s, t ∈ R} is not convex, since (4, 1, 1), (0, 1, 1) ∈ A
but (2, 1, 1) /∈ A. Thus we see that φ satisfies hidden convexity, but does not satisfy hidden
hyperplane convexity. This example is interesting in the sense that for a dense subset of linear
hyperplanes, the image of this quadratic map restricted to these hyperplanes is convex, and yet
this convexity does not hold for all linear hyperplanes.

We now show that hidden hyperplane convexity is preserved under the following two different
operations.

Lemma 2.5. Suppose that Q1, . . . , Qm satisfy HHC. Then the following matrices also satisfy HHC:

(1) P⊤Q1P, . . . , P
⊤QmP where P is any invertible matrix.

(2) Q′
1, . . . , Q

′
k where span(Q′

1, . . . , Q
′
k) ⊆ span(Q1, . . . , Qm). (Equivalently, there exists a k×m

matrix Λ such that Q′
i =

∑m
j=1 ΛijQj for all i ∈ [k].)

Proof. Let H be any hyperplane in Rn. For the first statement, we have

U := {(x⊤P⊤Q1Px, . . . , x⊤P⊤QmPx) : x ∈ H} = {(x⊤Q1x, . . . , x
⊤Qmx) : x ∈ H ′},

where H ′ = {Px : x ∈ H} = PH is also a hyperplane in Rn. Thus, by HHC of Q1, . . . , Qm the set
U is also convex.

For the second statement, since span(Q′
1, . . . , Q

′
k) ⊆ span(Q1, . . . , Qm), there exists a k × m

matrix Λ such that Q′
i =

∑m
j=1 ΛijQj for all i ∈ [k]. Then we have {(x⊤Q′

1x, . . . , x
⊤Q′

kx) : x ∈
H} = Λ{(x⊤Q1x, . . . , x

⊤Qmx) : x ∈ H}, which is convex since convexity is preserved under linear
transformations. □

The above result is important, especially (2), since it shows that hidden hyperplane convexity
is a property of linear subspaces of the space of symmetric matrices rather than a property that
holds for some arbitrary subset of quadratic maps.

Our next observation is that hidden hyperplane convexity can be formulated with matrices. Let
φ : Rn → Rm be a quadratic map. Let H be any hyperplane of Rn and the columns of the matrix
WH ∈ Rn×(n−1) be any basis for H. Then note that:

image(φ|H) = {(x⊤Q1x, . . . , x
⊤Qmx) : x ∈ H}

= {(y⊤W⊤
HQ1WHy, . . . , y⊤W⊤

HQmWHy) : y ∈ Rn−1}
= image(φ(H)),

where φ(H) : Rn−1 → Rm is the quadratic map: y → (y⊤W⊤
HQ1WHy, . . . , y⊤W⊤

HQmWHy). On the
other hand, the columns of any full rank n×(n−1) matrix form a basis for some linear hyperplane.
Thus, we arrive at the following equivalence.

Observation 2.6. Q1, . . . , Qm satisfy HHC if and only if for all full-rank matrix W ∈ Rn×(n−1),
W⊤Q1W, . . . ,W⊤QmW satisfy hidden convexity.
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We obtain the following corollary of the above observation, using the classical hidden convexity
theorems of Dines and Calabi.

Corollary 2.7 (m = 2, or m = 3 with PDLC implies HHC). (1) Let Q1, Q2 be symmetric ma-
trices of dimension n ≥ 2. Then Q1, Q2 satisfy HHC.

(2) Let Q1, Q2, Q3 be symmetric matrices of dimension n ≥ 4. If Q1, Q2, Q3 satisfy PDLC,
then Q1, Q2, Q3 satisfy hidden hyperplane convexity.

Proof. (1) By Observation 2.6, it is sufficient to show that W⊤Q1W,W⊤Q2W satisfy hidden

convexity for any full-rank matrix W ∈ Rn×(n−1). This follows from the classic theorem of
Dines [9].

(2) By Observation 2.6, it is sufficient to show that W⊤Q1W,W⊤Q2W,W⊤Q3W satisfy hidden

convexity for any full-rank matrix W ∈ Rn×(n−1). Since Q1, Q2, Q3 satisfy PDLC, there
exists θ ∈ R3 such that

∑3
i=1 θiQi ≻ 0. This implies that

3∑
i=1

θi(W
⊤QiW ) ⪰ 0.

Moreover since W is full-rank, we have that Wy = 0 iff y = 0. Thus,
∑3

i=1 θi(W
⊤QiW ) ≻

0, proving that W⊤Q1W,W⊤Q2W,W⊤Q3W satisfy PDLC. Therefore they satisfy hidden
convexity due to a theorem of Calabi [6].

□

In the following theorem we show a non-trivial example of hidden hyperplane convexity with an
arbitrary number of quadratic functions. This shows that, while hidden hyperplane convexity is
a strong assumption, it can lead to interesting examples of sets defined by quadratic inequalities,
where the convex hull is given by aggregations.

Theorem 2.8 (Non-trivial example of HHC with more constraints). Fix integers n > m+1,m ≥ 1.
Let φ = (f0, . . . , fm) where f0, . . . , fm : Rn → R are quadratic forms on Rn such that f0 is positive
definite, and there exists linear form ℓ : Rn → R such that for all 1 ≤ i ≤ m, fi(x) = ℓ(x)ℓi(x) for
some linear form ℓi : Rn → R. Then φ : Rn → Rm satisfies HHC.

A proof of Theorem 2.8 is presented in Section 4.

2.3. Hidden hyperplane convexity and obtaining convex hull from aggregations. Let
f1, . . . , fm be m (inhomogeneous) quadratic functions fi(x) = x⊤Aix + 2b⊤i x + ci, and let fh

i be
their homogenizations fh

i (x, xn+1) = x⊤Aix + 2(b⊤i x)xn+1 + cix
2
n+1 = (x, xn+1)

⊤Qi(x, xn+1). We

denote by fh = (fh
1 , . . . , f

h
m) the associated homogeneous quadratic map from Rn+1 to Rm.

Our main result of this section states that the convex hull of the set S defined by fi is given by
aggregations if the associated quadratic map has hidden hyperplane convexity.

Theorem 2.9. Let n ≥ 3 and fi : Rn → R be the functions fi(x) = x⊤Aix + 2b⊤i x + ci, i ∈ [m].
Let S = {x ∈ Rn : fi(x) < 0, i ∈ [m]}. Suppose that the associated quadratic map fh satisfies the
hidden hyperplane convexity. If S ̸= ∅ and conv(S) ̸= Rn, then

conv(S) =
⋂
λ∈Ω

Sλ.

Our proof follows the same road-map as the proof in [8] for the case of three quadratics satisfying
PDLC. One of the main ingredients of their proof is the homogeneous S-lemma, and we prove a
similar result using the hidden hyperplane convexity assumption. See Section 5 for a proof of
Theorem 2.9.

Corollary 2.7 states that HHC is always satisfied if m = 2 or m = 3 with PDLC. Thus The-
orem 2.9 together with Corollary 2.7 recovers the main results of [22] and [8]. In fact, by using
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Lemma 2.5 it is straightforward to see that we can obtain the following slightly more general result
than presented in [22] and [8].

Theorem 2.10. Suppose that Q1, . . . , Qm satisfy the following:

• There exists two indices i1, i2 ∈ [m] such that Q1, . . . , Qm belong to the span of Qi1 , Qi2, or,
• There exists three indices i1, i2, i3 ∈ [m] such that Q1, . . . , Qm belong to the span of Qi1 , Qi2 , Qi3

and Qi1 , Qi2 , Qi3 satisfy PDLC.

If ∅ ⊊ conv(S) ⊊ Rn, then conv(S) is given by aggregations, i.e., conv(S) =
⋂

λ∈Ω Sλ.

We next evaluate the “tightness” of Theorem 2.9 vis-á-vis the hidden hyperplane convexity
condition. First via the following example, we show that the weaker condition of hidden convexity
is not sufficient for convex hull to be given by aggregations.

Example 2.11 (Hidden convexity is not sufficient). This example is in part inspired by Example
3.4 in [16]. Let n ≥ 3 and consider the following three quadratic functions on Rn:

f1(x) = x21 − x22, f2(x) = x1x2, f3(x) = −1 − (x21 − x22) − x1x2 +

n∑
i=3

x2i .

It is straightforward to verify that f1, f2, f3 satisfy hidden convexity, as the image of the associated
homogeneous quadratic map is R3. Observe that PDLC does not hold as the coefficients of x21 and
x22 either have different signs, or are both zero in any linear combination of fi.

We now show that any good aggregation must be a scalar multiple of f1 +f2 +f3, and the set de-
fined by all good aggregations is {x :

∑n
i=3 x

2
i < 1}, which has no restrictions on x1 and x2. Observe

that (−0.1, 0.9, 0, . . . , 0), (0.5,−0.7, 0, . . . , 0) ∈ S and hence their midpoint x∗ = (0.2, 0.1, 0, . . . , 0)
lies in conv(S). Let λ ≥ 0 be any good aggregation, i.e., Qλ has at most one negative eigenvalue

and conv(S) ⊆ Sλ. In particular
∑3

i=1 λifi(x
∗) < 0 as x∗ ∈ conv(S). Since f1(x

∗) > 0, f2(x
∗) >

0, f3(x
∗) < 0 we must have λ3 > 0, which means the bottom right diagonal element of Qλ is neg-

ative. Since Qλ has at most one negative eigenvalue and the last row and column are always zero
except for the diagonal element (there are no linear terms), the leading n× n principal submatrix
of Qλ must be PSD, which means λ1 = λ2 = λ3.

On the other hand, the actual convex hull is given by {x : x22 < 1 −
∑n

i=3 x
2
i , (2x1 + x2)

2 <
1 −

∑n
i=3 x

2
i }. Geometrically for any fixed x3, . . . , xn such that

∑n
i=3 x

2
i < 1, the set of feasible

(x1, x2) lies inside an open parallelogram, with vertices (−a, a), (0, a), (a,−a), (0,−a) where a =√
1 −

∑n
i=3 x

2
i .

We next ask whether hidden hyperplane convexity is a necessary condition for obtaining the
convex hull of a set defined by quadratic inequalities using aggregations. As shown in Example 2.4
diagonal quadratic functions may not satisfy HHC. However, in the next result we show that if S
is defined by diagonal quadratic inequalities then conv(S) is always given by aggregations. See [5]
for a study of semidefinite relaxations of related sets.

Theorem 2.12. (HHC not necessary; Separable quadratic maps) Let n ≥ 2 and fi : Rn → R be
the functions fi(x) = x⊤Aix + 2b⊤i x + ci, i ∈ [m]. Let S = {x ∈ Rn : fi(x) < 0, i ∈ [m]}. Assume
Q1, . . . , Qm are diagonal. Then:

(1) S = ∅ if and only if there exists nonzero λ ≥ 0 such that
∑m

i=1 λiQi ⪰ 0.
(2) If S ̸= ∅, then conv(S) ̸= Rn if and only if there exists λ ≥ 0 such that the leading n × n

principal submatrix of
∑m

i=1 λiQi is nonzero and positive semidefinite, i.e. there exists λ ≥ 0
such that the set {x :

∑m
i=1 λifi(x) < 0} is convex and not Rn.

(3) If ∅ ⊊ conv(S) ⊊ Rn, then conv(S) is described by finitely many aggregations, where the
leading n× n principal submatrix of each aggregation is positive semidefinite.

7



A proof of Theorem 2.12 is provided in Section 8.
In Theorem 2.9 we assume S ̸= ∅ and conv(S) ̸= Rn, and it is natural to ask what happens

if either assumption fails. We show that non-emptiness of S can be certified using aggregations
under the weaker assumption of hidden convexity (without requiring HHC). The situation for
conv(S) ̸= Rn is more nuanced, and aggregation certificates suffice except for one case.

Proposition 2.13 (Hidden convexity certifies non-emptiness of S). Let f1, . . . , fm be quadratic
functions where the image of the associated homogeneous quadratic map fh = (fh

1 , . . . , f
h
m) : Rn+1 →

Rm is convex. Then S = ∅ if and only if Qλ ⪰ 0 for some nonzero λ ∈ Rm
≥0.

A proof of Proposition 2.13 is given in Section 6.
Note that if there exists a nonzero λ ≥ 0 such that

∑m
i=1 λiAi ⪰ 0 and furthermore

∑m
i=1 λifi(x)

is not a negative constant function, then conv(S) ̸= Rn. We now show the partial converse that
if no nonzero λ ≥ 0 satisfies

∑m
i=1 λiAi ⪰ 0 then conv(S) = Rn if we assume hidden convexity on

a particular hyperplane. The unresolved case is where
∑m

i=1 λifi(x) is a negative constant for all
nonzero λ ≥ 0 satisfying

∑m
i=1 λiAi ⪰ 0.

Proposition 2.14. Let E = {(x, xn+1) ∈ Rn+1 : xn+1 = 0} and assume image fh|E is convex.
Assume there does not exist nonzero λ ∈ Rm

+ such that
∑m

i=1 λiAi ⪰ 0. Then conv(S) = Rn.

It is clear that this assumption is weaker than hidden hyperplane convexity, which requires
image fh|H to be convex for any hyperplane H ⊆ Rn+1. A proof of Proposition 2.14 is presented
in Section 6.

2.4. Convex hull of sets defined by linear and sphere constraints. In Theorem 2.8 we prove
hidden hyperplane convexity of a special class of quadratic maps. This results leads to the following
theorem on sets defined by linear and sphere inequalities.

Theorem 2.15. Let fi(x) = x⊤Aix+ 2b⊤i x+ ci, 1 ≤ i ≤ m be quadratic functions on Rn, where Ai

is either In for i ∈ P ⊆ [m],−In for i ∈ N ⊆ [m] or 0 for i ∈ Z ⊆ [m]. Let S = {x ∈ Rn : fi(x) <
0, i ∈ [m]}.

Then:

• S = ∅ if and only there exists some nonzero λ ≥ 0 such that Qλ ⪰ 0 (which can be checked
using an SDP.)

• conv(S) ̸= Rn if and only if either P ̸= ∅ or there exists i ∈ Z such that bi ̸= 0 or bi = 0
and ci ≥ 0.

• If ∅ ⊊ conv(S) ⊊ Rn, and either m ≤ n − 1 or m ≤ n and PDLC condition holds, then
conv(S) can be described by at most |P ||N | + |P | + |Z| aggregations.

A proof of Theorem 2.15 is presented in Section 7. Here is an example where m = n = 3 and
PDLC holds.

Example 2.16. Consider the following three quadratics in R3.

f1(x) = x21 + x22 + x23 − 2x3 − 1, f2(x) = x21 + x22 + x23 + 2x3 − 4, f3(x) = −x21 − x22 − x23 + 1

PDLC is satisfied with θ = (−1,−1,−3), and in this case |P | = 2, |N | = 1, |Z| = 0. Thus by
Theorem 2.15 the convex hull is given by at most four aggregations. In fact, three aggregations
suffice for this example. A plot of this region is given in Figure 1.

Note each fi defines a region that is either a ball if Ai = I, a linear halfspace if Ai = 0, or the
complement of a ball if Ai = −I. Thus Theorem 2.15 applies to sets defined by linear and sphere
inequalities. Such sets appear in the context of trust region subproblems, and have been studied in
papers such as [21, 1, 12]. We make no assumptions on the constraints, as opposed to [21] which
requires the outside-the-ball constraints (A = −I) to be non-intersecting. On the other hand we

8



Figure 1. Plot of Example 2.16.

only study conv(S) instead of the convex hull in lifted space {(x, xx⊤) : x ∈ S} or algorithms to
solve the trust region problem as in [1]. If |P |+ |N | = 1, then the set in Theorem 2.15 is related to
the set studied in [17]. We also note that in this case every good aggregation is in fact convex, i.e.,
each good aggregation defines a single convex set, and the set of good aggregations Ω is polyhedral.
Therefore the results in [?] apply to this case.

The following example shows that convex hull may not be given by aggregations when there are
n + 1 (linearly independent) linear and sphere constraints and PDLC does not hold. We do not
know whether an example with n linearly independent constraints (without PDLC) exists.

Example 2.17. Let

f0 = 1 −
n∑

i=1

x2i and fi = −xi, i ∈ [n].

We claim that conv(S) = {x > 0 :
∑n

i=1 xi > 1}. It is clear ε1̄ +αei ∈ S for all ε > 0, α > 1, i ∈ [n],
and therefore {x > 0 :

∑n
i=1 x > 1} ⊆ conv(S). To show conv(S) ⊆ {x > 0 :

∑n
i=1 x > 1}, it

suffices to show
∑n

i=1 xi > 1 holds for all x ∈ S. Suppose this does not hold, then there exists y > 0
with

∑n
i=1 yi ≤ 1, then 0 ≤ yi ≤ 1 for all i, and

∑n
i=1 y

2
i ≤

∑n
i=1 yi ≤ 1, which means f0(y) ≥ 0

and y /∈ S.
We now show that the set defined by all good aggregations is the positive orthant, which is

different from the actual convex hull. Let λ ≥ 0 be any good aggregation. Since Qλ has at most
one negative eigenvalue, we must have λ0 = 0. Thus all good aggregations are nonnegative linear
combinations of fi.

2.5. Together hidden hyperplane convexity and PDLC for every triple lead to finite
number of good aggregations defining the convex hull. In the case where convex hull can be
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described by aggregations, a natural question is whether finitely many aggregations suffice. When
m = 2, this is already shown to be true [22]. Note that we also verified this for the special cases as
stated in Theorem 2.15 and Theorem 2.12.

This question was raised in [8] for three quadratics under PDLC condition. Here we give an
affirmative answer for three quadratics, and consider the question in the more general setting of m
quadratics under hidden hyperplane convexity assumption, where every triple of quadratics satisfies
PDLC condition.

Theorem 2.18. Let n ≥ 3 and fi : Rn → R be the functions fi(x) = x⊤Aix + 2b⊤i x + ci, i ∈ [m].
Let S = {x ∈ Rn : fi(x) < 0, i ∈ [m]}. Assume S ̸= ∅ and conv(S) ̸= Rn and HHC holds for the
associated homogeneous quadratic map fh, so that Theorem 2.9 holds and

conv(S) =
⋂

λ∈Ω1

Sλ,

where Ω1 = Ω \ {λ ∈ Ω : Sλ = Rn}. Furthermore assume for all distinct i, j, k ∈ [m] there exist

scalars pijk, qijk, rijk ∈ R such that pijkQi+qijkQj +rijkQk ≻ 0. Then there exist λ(1), . . . , λ(r) ∈ Ω2

such that

conv(S) =

r⋂
i=1

Sλ(i) ,

where Ω2 = {λ ∈ Ω1 : |{i : λi > 0}| ≤ 2} and r ≤ m2 −m.

Moreover, given any u, v ∈ [m], u ̸= v, there are at most two λ(i)s with support u, v. Furthermore,

these λ(i)s can be written as α′eu+(1−α′)ev, α
′′eu+(1−α′′)ev, where α′, α′′ are roots of det(αQu+

(1 − α)Qv) = 0.

A proof of Theorem 2.18 is presented in Section 9. The key ideas to prove Theorem 2.18 are the
following:

• Given an aggregation Sλ, one can obtain an improved aggregation Sλ̃, i.e. Sλ̃ ⊆ Sλ, such

that λ̃ ∈ Ω1. This is obtained as λ̃ = λ + θ where Qθ ⪰ 0. (Proposition 9.1)
• The idea is to repeatedly improve along such positive definite linear combinations so as to

reduce the support of aggregations that are required to obtain the convex hull to at most
2. (Proposition 9.2)

• Now among aggregations that have support of fixed two indices, say i and j, it is shown
that at most two aggregations are sufficient. (Proposition 9.6)

Remark 2.19. As discussed in [7], the closure of each component defined by a good aggregation
is second-order cone representable (SOCr). Thus finiteness of good aggregations implies that the
closure of convex hull is SOCr, since it is given by intersection of finitely many components which
are all SOCr.

For the case of m = 3, note that PDLC implies hidden hyperplane convexity, so PDLC is sufficient
to guarantee that no more than 32 − 3 = 6 aggregations are sufficient to obtain the convex hull,
answering a question raised in [8].

Corollary 2.20. Let f1, f2, f3 be three quadratic functions such that there exist θ ∈ R3 such that∑3
i=1 θiQi ≻ 0. Suppose S ̸= ∅ and conv(S) ̸= Rn. Then there exists Ω′ ⊆ Ω, |Ω| ≤ 6 such that

conv(S) =
⋂

λ∈Ω′ Sλ.

The following example for m = 3 case requires 4 aggregations to describe the convex hull.
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Example 2.21. Consider the set S described by the following functions:

f1(x) = −x21 + 1 +

n∑
i=2

x2i

f2(x) = x21 + 5x1 − 4 +

n∑
i=2

x2i

f3(x) = −x1 −
n∑

i=2

x2i

so that S = {x ∈ Rn : fi(x) < 0, i ∈ [3]}. We have −7f1(x)−3f2(x)−15f3(x) = 4x21+5
∑n

i=2 x
2
i +5,

corresponding to a positive definite matrix. Thus PDLC holds and therefore conv(S) is given by
at most 6 aggregations. In fact, conv(S) is described by 4 aggregations:

conv(S) = {x ∈ Rn : f1(x) < 0, f2(x) < 0, f1(x) + f3(x) < 0, f2(x) + f3(x) < 0}.

A plot of Example 2.21 when n = 2 is given by Figure 2. The set S is represented by the
black shaded region, which has two connected components. The two aggregations f1(x) + f3(x) <
0, f2(x)+f3(x) < 0 give us the two vertical lines that join the left and right tips of both components.

Figure 2. Plot of Example 2.21 with n = 2. The black region represents S.

The bound of m2 −m can be improved in the special case where the quadratics Qi that defined
S span a linear space of dimension at most three. We have already shown in Theorem 2.10 that
PDLC (or less, when the dimension of the span of the associated quadratic map is 2) is sufficient
for the convex hull to be given by aggregations. We separate our discussion into two cases based
on the dimension of the span of Q1, . . . , Qm.
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Span of Q1, . . . , Qm is two dimensional . Consider the conical hull of Q1, . . . , Qm, which is a closed
polyhedral cone of dimension two. If this cone is a linear subspace or a linear halfspace, i.e.,
there exists nonzero λ ≥ 0 where

∑m
i=1 λiQi = 0, then S = ∅. If S ̸= ∅, then the conical hull of

Q1, . . . , Qm is a closed pointed polyhedral cone of dimension two, which has exactly two extreme
rays. Say the two extreme rays are generated by Qi, Qj respectively, then all other Qk can be
written as nonnegative combinations of Qi and Qj . In this case conv(S) = conv(Si ∩ Sj), reducing
to the two quadratics case which is described in Theorem 1 of [22].
Span of Q1, . . . , Qm is three dimensional . We make the following observations: if S ̸= ∅, then the
conical hull of Q1, . . . , Qm, denoted by C, must be a pointed closed polyhedral cone of dimension
three, and we may assume without loss of generality that every Qi spans an extreme ray of C.
Then C has exactly m facets, and each facet is generated by exactly two Qi’s. Given an aggregation
that lies in the intersection of Ω1 and interior of C, by Proposition 9.1, we may improve it using
a positive definite combination until it touches the boundary of C. Proposition 9.6 implies that
intersection of all aggregations in Ω on a facet can be described by two endpoints. Since there are
exactly m facets, it follows that 2m aggregations suffice to describe the convex hull for the case of
dependent quadratics. Therefore we obtain the following result.

Proposition 2.22. Let n ≥ 3 and f1, . . . , fm be quadratic functions such that span of Q1, . . . , Qm

is three dimensional, and there exists θ ∈ Rm such that
∑m

i=1 θiQi ≻ 0. Suppose S ̸= ∅ and
conv(S) ̸= Rn, then there exists Ω′ ⊆ Ω, |Ω| ≤ 2m such that conv(S) =

⋂
λ∈Ω′ Sλ.

2.6. Closed Inequalities. Given quadratic functions f1, . . . , fm, let S = {x : fi(x) < 0, i ∈ [m]}
be the set defined by open inequalities, and let T = {x : fi(x) ≤ 0, i ∈ [m]} be the one with

closed inequalities. As usual let Qi =

[
Ai bi
b⊤i ci

]
. Note conv(S) is always open but conv(T ) may not

be closed. In this section we study G, the interior of conv(T ). It is clear G is convex, open and
conv(S) ⊆ G.

In [8] it was shown that when G = conv(S) and conv(S) is given by aggregations, then conv(T )
is given by the same aggregations after changing all open inequalities to closed. The original proof
is only for the case of three quadratics with PDLC, but the same proof works for arbitrary number
of quadratics with hidden hyperplane convexity.

We do not make the assumption that G = conv(S), and show that G is still given by aggregations
of open inequalities, under HHC and an additional technical assumption. We now give an example
where G ̸= conv(S), which illustrates the delicate nature of closed inequalities.

Example 2.23 (G ̸= conv(S)). Let n ≥ 2 and consider the following two quadratic functions on
Rn:

f1(x) = −x21 + x1

f2(x) = −1 +
n∑

i=1

x2i

Then conv(S) = S = {x : f1(x) < 0, f2(x) < 0} = {x : x1 < 0, ∥x∥2 < 1}. Note T = S ∪ {e1}, and
G strictly contains conv(S). It turns out that G is also given by aggregations G = {x : f2(x) <
0, 2f1(x) + f2(x) < 0}, which is different from the ones defining conv(S).

A plot of Example 2.23 when n = 2 is given in Figure 3. In the dimension 2 case, the set G
needs to contain the open triangle with vertices (1, 0), (0, 1), (0,−1).

We now state our main theorem for closed inequalities.

Theorem 2.24. Given quadratic functions f1, . . . , fm, let T = {x : fi(x) ≤ 0, i ∈ [m]} and

G = int(conv(T )). Assume Q1, . . . , Qm satisfy hidden hyperplane convexity ∅ ⊊ G ⊊ Rn, and
furthermore Qλ ̸= 0 for all nonzero λ ≥ 0. Then G =

⋂
λ∈ΩT

Sλ, where Sλ = {x :
∑m

i=1 λifi(x) < 0}
12



Figure 3. Plot of Example 2.23 with n = 2.

and ΩT ⊆ Rm
+ \ {0} is the set of λ where Qλ =

∑m
i=1 λiQi has at most one negative eigenvalue and

G ⊆ Sλ.

Remark 2.25. The condition that Qλ ̸= 0 for all nonzero λ ≥ 0 is needed in our proof, and it is
easy to check computationally using linear programming. This condition is satisfied if we assume
PDLC and S ̸= ∅. It allows for situations similar to Example 2.23.

A proof of Proposition 2.24 is presented in Section 10.

3. Conclusions and open questions

We showed that for a set described by any number of quadratics, hidden hyperplane convexity
is a sufficient condition for convex hull to be given by good aggregations, assuming S ̸= ∅ and
conv(S)̸=Rn. Furthermore Theorem 2.12 and Example 2.11 together show that hidden hyperplane
convexity is not necessary while hidden convexity is not sufficient.

We conjecture that even with hidden hyperplane convexity there exist sets S defined by quadratic
inequalities where infinitely many good aggregations are needed to define the convex hull.

Conjecture 3.1. There exists a set S described by quadratic inequalities satisfying hidden hyper-
plane convexity, such that conv(S) cannot be described by finitely many good aggregations.

In Theorem 2.18 we showed that m2−m good aggregations describe the convex hull under hidden
hyperplane convexity and every triple PDLC assumption. In particular when m = 3 and PDLC
holds, six aggregations suffice, and we gave an example where four good aggregations are needed.
We have not discovered an example which requires more than four good aggregations to describe
the convex hull, but we conjecture that such examples exist.

Conjecture 3.2. There exists a set S described by three quadratic inequalities satisfying PDLC,
such that conv(S) is described by using exactly six aggregations.
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We showed that aggregations always certify when S = ∅, and almost always certify when
conv(S) = Rn, except for one unresolved case, where

∑m
i=1 λifi is a negative constant for all

nonzero λ ≥ 0 such that
∑m

i=1 λiAi ⪰ 0. We conjecture that under hidden hyperplane convexity
assumption, in this case conv(S) is also Rn. In other words we have the following conjecture, which
states aggregations always provide certificates when conv(S) = Rn:

Conjecture 3.3. Let fi(x) = x⊤Aix+2b⊤i x+ci, i ∈ [m] be quadratic functions where the associated
homogeneous quadratic map fh = (fh

1 , . . . , f
h
m) : Rn+1 → Rm has hidden hyperplane convexity.

Assume S = {x : fi(x) < 0, x ∈ [m]} is nonempty. Then conv(S) ̸= Rn if and only if there exists
nonzero λ ≥ 0 such that

∑m
i=1 λiAi ⪰ 0, and

∑m
i=1 λifi is not a negative constant.

4. HHC for a special class of quadratic forms

Our goal in this section is to prove that a special class of quadratic maps satisfies hidden hyper-
plane convexity. We first study the image of one particular quadratic map.

Proposition 4.1. Let n ≥ 2 and f0(x) =
∑n

i=1 x
2
i , fi(x) = x1xi, 1 ≤ i ≤ n be (n + 1) quadratic

forms on Rn. Then the image of corresponding quadratic map is given by

{(f0(x), . . . , fn(x)) : x ∈ Rn} = {(y0, . . . , yn) : y0y1 =
n∑

i=1

y2i , y0 ≥ 0, y1 ≥ 0},

which is linearly isomorphic to the boundary of second-order cone (Lorentz cone) in Rn+1, given by
{(z0, . . . , zn) : z20 =

∑n
i=1 z

2
i , z0 ≥ 0}.

Proof. “⊆”: This is clear since f0(x)f1(x) =
∑n

i=1 fi(x)2 and f0, f1 are sum of squares.
“⊇”: Given (y0, . . . , yn) ∈ Rn+1 satisfying y0y1 =

∑n
i=1 y

2
i , y0 ≥ 0, y1 ≥ 0, we construct x ∈ Rn

with yi = fi(x). We divide this into two cases based on whether y1 is zero or positive:

• If y1 = 0, then
∑n

i=1 y
2
i = y0y1 = 0 implies yi = 0 for all 1 ≤ i ≤ m. In this case we let

x2 =
√
y0 and xi = 0 otherwise.

• If y1 > 0, we let x1 =
√
y1 and xi = yi√

y1
for all 2 ≤ i ≤ n.

In both cases one can directly verify yi = fi(x) for all 0 ≤ i ≤ n.
To see that the image is linearly isomorphic to boundary of Lorentz cone, let z0 = y0

2 , z1 =
y1− y0

2 , zi = yi for all 2 ≤ i ≤ n and with this substitution one can verify that {(y0, . . . , yn) : y0y1 =∑n
i=1 y

2
i , y0 ≥ 0, y1 ≥ 0} = {(z0, . . . , zn) : z20 =

∑n
i=1 z

2
i , z0 ≥ 0}. □

Proposition 4.1 shows that the image of this quadratic map is the boundary of a full-dimensional
closed pointed convex cone. We now show that the image of such a set under any linear map with
nontrivial kernel must be convex.

Lemma 4.2. Let C ⊆ Rn be a full-dimensional closed convex set which does not contain lines. Let
π : Rn → Rm be any linear mapping with nontrivial kernel. Then π(∂C) = π(C), and therefore
π(∂C) is convex.

Proof. Let x be a point in the interior of C. It suffices to show (x+ kerπ)∩∂C ̸= ∅, as π(x) = π(z)
for all z ∈ x + kerπ. Let ℓ be any one-dimensional linear subspace of kerπ. Since C does not
contain lines, there exists y ∈ x+ ℓ that is not contained in C. Thus there exists z on the segment
[x, y] that is on boundary of C. □

Remark 4.3. This statement may not be true when C contains a line. For example let C =
[−1, 1] × R ⊆ R2 and π be projection onto the first coordinate. Then π(∂C) = {−1, 1}, while
π(C) = [−1, 1].
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We now show that the following special class of quadratic maps have hidden hyperplane convexity:
one of the maps is given by the identity matrix, and the rest are all products of a fixed variable
with linear forms, and the linear forms do not span Rn. [?] studies a related problem on symmetric
matrices of linear forms.

Theorem 4.4. Fix integers n ≥ 2,m ≥ 1 and consider the following m + 1 quadratic forms on
Rn: f0(x1, . . . , xn) =

∑n
i=1 x

2
i , fj(x1, . . . , xn) = x1ℓj for all 1 ≤ j ≤ m, where each ℓj = (v(j))⊤x =∑n

i=1(v
(j))ixi is a linear form in x1, . . . , xn. Let  L = span{v(1), . . . , v(m)}. If  L ̸= Rn, then the set

{(f0(x), . . . , fm(x)) : x ∈ Rn} ⊆ Rm+1 is convex.

Proof. Let π : Rn+1 → Rm+1 be the linear map π(y0, y1, . . . , yn) = (y0, z1, . . . , zm) where zj =∑n
i=1(v

(j))iyi for all 1 ≤ j ≤ m. Then kerπ = {(0, w) : w ∈  L⊥} is nontrivial, and {(f0(x), . . . , fm(x)) :
x ∈ Rn} = π{(

∑n
i=1 x

2
i , x

2
1, x1x2, . . . , x1xn) : x ∈ Rn}. Thus convexity follows from Proposition 4.1

and Lemma 4.2. □

We have the following immediate Corollary when m < n, since in this case the linear forms do
not span Rn.

Corollary 4.5. Fix integers n > m ≥ 1 and consider the following m + 1 quadratic forms on Rn:
f0(x1, . . . , xn) =

∑n
i=1 x

2
i , fj(x1, . . . , xn) = x1ℓj for all 1 ≤ j ≤ m, where each ℓj is a linear form

in x1, . . . , xn. Then the set {(f0(x), . . . , fm(x)) : x ∈ Rn} ⊆ Rm+1 is convex.

Corollary 4.5 can be extended to quadratic forms defined on an arbitrary finite dimensional real
vector space, after choosing suitable bases. More generally, we only need for the first quadratic
form to be positive definite, and the remaining ones to have a common linear factor.

Proposition 4.6. Fix integers n > m ≥ 1 and V be any real vector space of dimension n. Let
f0, . . . , fm : V → R be quadratic forms on V such that f0 is positive definite (on V ), and there
exists linear form ℓ : V → R such that for all 1 ≤ i ≤ m, fi(x) = ℓ(x)ℓi(x) for some linear form
ℓi : V → R. Then the set {(f0(x), . . . , fm(x)) : x ∈ V } ⊆ Rm+1 is convex.

Proof. If ℓ is identically zero on V , then we have {(f0(x), . . . , fm(x)) : x ∈ V } = {(c, 0, . . . , 0) : c ≥
0} which is clearly convex. Thus from now on assume ℓ is a nonzero linear form.

Our goal is to choose basis for V in which f0 becomes identity matrix and ℓ(x) becomes x1, so
that we can apply Corollary 4.5. Let B : V × V → R be the symmetric bilinear form associated
with f0, i.e., B(x, y) = 1

4(f0(x + y) − f0(x − y)). Since f0 is positive definite, B defines an inner
product on V , by ⟨x, y⟩B = B(x, y). Consider ker ℓ, which is a dimension n− 1 linear subspace of
V . Let {v2, . . . , vm} be a basis of ker ℓ that is orthonormal with respect to inner product ⟨·, ·⟩B,
which can be found using Gram-Schmidt in this inner product. Append v1 so that {v1, . . . , vm} is
an orthonormal basis of V with respect to inner product ⟨·, ·⟩B.

Then by orthonormality we have

B(vi, vj) =

{
1 i = j
0 i ̸= j

,

and ℓ(vi) ̸= 0 if and only if i = 1, since v1 /∈ ker ℓ and all other vi are in the kernel. Let g0, . . . , gm
be quadratic forms on Rn such that gi(x1, . . . , xn) = fi(x1v1 + . . . + xnvn) for all 0 ≤ i ≤ m. Then
{(g0(x), . . . , gm(x)) : x ∈ Rn} = {(f0(x), . . . , fm(x)) : x ∈ V } and one can verify g0(x) =

∑n
i=1 x

2
i ,

gi(x) = x1ℓ
′
i(x) for all 1 ≤ i ≤ m, where ℓ′i(x) = ℓ(v)ℓi(x1v1 + . . . + xnvn) is a linear form

in x. Thus by Corollary 4.5, {(g0(x), . . . , gm(x)) : x ∈ Rn} is convex, and same holds true for
{(f0(x), . . . , fm(x)) : x ∈ V }. □

Proposition 4.6 leads to a quick proof of Theorem 2.8 that such quadratic maps also have hidden
hyperplane convexity.
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Proof of Theorem 2.8. Apply Proposition 4.6 to all quadratic forms restricted to H, and observe
that f0|H is positive definite, and fi(x) = ℓ(x)ℓi(x) for all x ∈ H and 1 ≤ i ≤ m, where ℓ, ℓi are
viewed as linear forms on H. □

5. Proof of Theorem 2.9

There are two key results used in proof of Theorem 2.9 for the three quadratics PDLC case in [8],
which we will also use. The first is from [22], which characterizes when a homogeneous quadratic
function has exactly one negative eigenvalue.

Theorem 5.1. Let P be any (n + 1) × (n + 1) symmetric matrix and P = {x ∈ Rn+1 : x⊤Px <
0} ≠ ∅. The following are equivalent:

(1) There exists a linear hyperplane that does not intersect P.
(2) P has one negative eigenvalue.
(3) P is an open semi-convex cone (SCC), i.e., a union of two disjoint open convex cones which

are symmetric reflections of each other with respect to the origin.

This result implies the following characterization of elements in Ω.

Lemma 5.2. Suppose that S ̸= ∅, and let

Ω = {λ ∈ Rm
+ \ {0} : conv(S) ⊆ Sλ and Qλ has at most one negative eigenvalue}.

Let λ ∈ Rm
+ \ {0} be such that Qλ has at most one negative eigenvalue. Then Qλ has exactly

one negative eigenvalue, and Sλ is either a convex set or a union of two disjoint convex sets.
Furthermore, λ /∈ Ω if and only if Sλ is a union of two disjoint convex sets, and S has nonempty
intersection with both components.

Proof. If Qλ is PSD then S ⊆ Sλ = ∅. When Qλ has exactly one negative eigenvalue, using Theorem
5.1 the set (Sλ)h = {(x, xn+1) : (x, xn+1)

⊤Qλ(x, xn+1) < 0} is a union of two disjoint open convex
cones. Hence Sλ×{1} = (Sλ)h ∩ {(x, xn+1) : xn+1 = 1} is either convex or a union of two disjoint
convex sets. Since Sλ always contains S, the only way it fails to contain conv(S) is when Sλ is a
union of two disjoint convex sets and S has nonempty intersection with both. □

We describe in more detail the set defined by a single quadratic inequality, whose matrix has
exactly one negative eigenvalue.

Lemma 5.3. Let f(x) = x⊤Ax + 2b⊤x + c such that Q =

[
A b
b⊤ c

]
has exactly one negative

eigenvalue. Let S = {x : f(x) < 0}. Then S is convex if A is PSD, and S ⊊ Rn unless A = 0, b = 0,
and c < 0. If A is not PSD, then S is union of two convex sets and conv(S) = Rn.

Proof. If A is PSD the result is straightforward. If A is not PSD we apply Theorem 1 in [22], the
characterization of convex hull defined by 2 quadratics, where f1 = f and f2 = −∥x∥22 − 1 with
Q2 = −In+1. Then λA1 +(1−λ)A2 = λA− (1−λ)In is never PSD for any 0 ≤ λ ≤ 1, which means
conv(S1) = conv(S1 ∩ S2) = Rn. □

The next result is a homogeneous separation lemma which was proved in [8], which holds for
arbitrary quadratics. Recall that the homogenization Sh of S is defined as follows:

Sh = {(x, xn+1) : fh
i (x, xn+1) = x⊤Aix + 2(b⊤i x)xn+1 + cix

2
n+1 < 0, i ∈ [m]}.

Lemma 5.4 (Lemma 5.4 in [8]). Let α⊤x < β be a valid inequality for conv(S). If conv(S) ̸= Rn,
then {(x, xn+1) : α⊤x = βxn+1} ∩ Sh = ∅.

We are now ready to prove our main theorem of this section.
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Proof of Theorem 2.9. By definition of Ω we automatically have conv(S) ⊆
⋂

λ∈Ω Sλ. For the other
direction

⋂
λ∈Ω Sλ ⊆ conv(S), it suffices to show that for any fixed x̃ /∈ conv(S), x̃ /∈

⋂
λ∈Ω Sλ, or

in other words, there exists λ ∈ Ω where x̃ /∈ Sλ.
By separation theorem for convex sets, there exist α ∈ Rn, β ∈ R so that α⊤x < β for all x ∈

conv(S) and α⊤x̃ = β. Lemma 5.4 states that H ∩ Sh = ∅ where H = {(x, xn+1) : α⊤x = βxn+1}
is a hyperplane in the homogenized space.

Let fh : Rn+1 → Rm be the associated quadratic map, i.e., fh = (fh
1 , . . . , f

h
m) where fh

i (x, xn+1) =
x⊤Aix + 2(b⊤i x)xn+1 + cix

2
n+1. By definition of hidden hyperplane convexity, image fh|H is con-

vex, and H ∩ Sh = ∅ means that image fh|H does not intersect the open negative orthant
{y ∈ Rm : yi < 0, i ∈ [m]}. Since both sets are convex, there exists a separating hyperplane,
that is, there exists λ ∈ Rm \ {0}, µ ∈ R such that

image fh|H ⊆ {y ∈ Rm : λ⊤y ≥ µ}

{y ∈ Rm : yi < 0, i ∈ [m]} ⊆ {y ∈ Rm : λ⊤y ≤ µ}.
Then note that

• λ ∈ Rm
+ . Otherwise suppose there exists some j where λj < 0 for contradiction. Then for

any M > 0 let vM = −Mej −
∑m

i=1 ei, where ei is the i-th standard basis vector. Then

vM ∈ {y ∈ Rm : yi < 0, i ∈ [m]} for any M > 0, and λ⊤vM = −Mλj −
∑m

i=1 λivi. Since

λj < 0 and
∑m

i=1 λivi, µ is constant, for sufficiently large M we have λ⊤vM > µ, which is
contradiction.

• µ = 0. Since 0 ∈ image fh|H we have µ ≤ 0. For the other inequality, for any M > 0 let
wM = − 1

M

∑m
i=1 ei ∈ {y ∈ Rm : yi < 0, i ∈ [m]}. We have µ ≥ λ⊤wM = − 1

M

∑m
i=1 λi. Let

M → ∞ we get µ ≥ 0.

Thus image fh|H ⊆ {y ∈ Rm : λ⊤y ≥ 0} where λ ∈ Rm
+ \{0}. This means for any (x, xn+1) ∈ H,

m∑
i=1

λif
h
i (xn+1) =

m∑
i=1

λi

[
x⊤ xn+1

] [Ai bi
b⊤i ci

] [
x

xn+1

]
≥ 0.

Theorem 5.1 then implies that the matrix Qλ =
∑m

i=1 λi

[
Ai bi
b⊤i ci

]
has exactly one negative eigen-

value, and (Sλ)h = {(x, xn+1) : (x, xn+1)
⊤Qλ(x, xn+1) < 0} where Qλ consists of two disjoint convex

cones separated by H = {(x, xn+1) : α⊤x = βxn+1}. Thus (Sλ)h ∩ {(x, xn+1) : α⊤x < βxn+1} is
convex, which geometrically is simply half of (Sλ)h. Also note that S × {1} = {(x, 1) : x ∈ S} is
contained in both (Sλ)h and {x̂ : α⊤x < βxn+1}. Thus conv(S)×{1} ⊆ (Sλ)h∩{x̂ : α⊤x < βxn+1}
as the right side is convex. Since Sλ×{1} = (Sλ)h ∩ {x̂ : xn+1 = 1}, we have conv(S) ⊆ Sλ, which
concludes the proof. □

6. Certificates using aggregations when S = ∅ or conv(S) = Rn

We first examine the case where S = ∅ and prove Proposition 2.13.

Proof of Proposition 2.13. (⇐) If Qλ ⪰ 0 then Sλ = ∅, and the result follows since S ⊆ Sλ.
(⇒) Assume S = ∅. We first show Sh = ∅. Since S = ∅, for any x ∈ Rn, fi(x) ≥ 0 for some i.

Thus if t ̸= 0, then fh
i (x, t) = t2fi(x/t) and thus fh

i cannot be simultaneously negative for all i.
This means Sh ⊆ {(x, xn+1) ∈ Rn+1 : xn+1 = 0}, but Sh is open and full dimensional if nonempty.
Therefore we must have Sh = ∅.

This means intersection of image fh with negative orthant is empty. Thus there exists λ ∈
Rm \ {0}, µ ∈ R such that

image fh ⊆ {y ∈ Rm : λ⊤y ≥ µ}

{y ∈ Rm : yi < 0, i ∈ [m]} ⊆ {y ∈ Rm : λ⊤y ≤ µ}.
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Rest of the proof is exactly the same (other than here we have image fh instead of image fh|H) as
the step in proof of Theorem 2.9 where we show λ ∈ Rm

+ and µ = 0, which means
∑m

i=1 λif
h
i (x, xn+1) ≥

0 for all (x, xn+1) ∈ Rn+1, and Qλ ⪰ 0. Namely:

• λ ∈ Rm
+ . Otherwise suppose there exists some j where λj < 0 for contradiction. Then for

any M > 0 let vM = −Mej −
∑m

i=1 ei, where ei is the ith standard basis vector. Then

vM ∈ {y ∈ Rm : yi < 0, i ∈ [m]} for any M > 0, and λ⊤vM = −Mλj −
∑m

i=1 λivi. Since

λj < 0 and
∑m

i=1 λivi, µ is constant, for sufficiently large M we have λ⊤vM > µ, which is
contradiction.

• µ = 0. Since 0 ∈ image fh we have µ ≤ 0. For the other inequality, for any M > 0 let
wM = − 1

M

∑m
i=1 ei ∈ {y ∈ Rm : yi < 0, i ∈ [m]}. We have µ ≥ λ⊤wM = − 1

M

∑m
i=1 λi. Let

M → ∞ we get µ ≥ 0.

□

We now examine the case conv(S) = Rn and prove Proposition 2.14.

Proof of Proposition 2.14. Let gi(x) = x⊤Aix, i ∈ [m] be the quadratic parts of fi. Then gi are
homogeneous, and we have ĝi = gi and image ĝ = image fh|E . Using Proposition 2.13 for gi we
have {x ∈ Rn : gi(x) < 0, i ∈ [m]} = ∅ if and only if

∑m
i=1 λiAi ⪰ 0 for some nonzero λ ≥ 0.

Thus if such λ does not exist, then there exists some v ∈ Rn where v⊤Aiv = gi(v) < 0 for all
1 ≤ i ≤ m. We now show that for any fixed x ∈ Rn, x + Mv, x−Mv ∈ S for some M > 0, which
then implies x ∈ conv(S) and hence conv(S) = Rn. We have

fi(x + Mv) = M2(v⊤Aiv) + 2M(x⊤Aiv + b⊤i v) + fi(x),

fi(x−Mv) = M2(v⊤Aiv) − 2M(x⊤Aiv + b⊤i v) + fi(x).

Since v⊤Aiv < 0 for all i, the leading coefficient is negative, and the function values become
negative for sufficiently large M . To be more precise, in order for fi(x + Mv) < 0, fi(x−Mv) < 0
for all i, it suffices to take

M > max
i

 |x⊤Aiv + b⊤i v| +
√

(x⊤Aiv + b⊤i v)2 − (v⊤Aiv)fi(x)

−v⊤Aiv


where i ranges over wherever the expression inside square root is non-negative. If such i does

not exist then M can take any positive real value. □

7. Application to sets defined by spheres and halfspaces

Using results from Section 4 we now study sets defined by linear and sphere constraints: consider
quadratic functions fi(x) = x⊤Aix+2b⊤i x+ci, 1 ≤ i ≤ m where each Ai is either I,−I or zero, and
let S = {x ∈ Rn : fi(x) < 0, 1 ≤ i ≤ m}. We call such a set S defined by spheres and halfspaces,
since each fi is either an affine linear function, or it defines the interior or exterior of a sphere. Let
P,Z,N be the index sets of interior of the sphere constraints, exterior of the sphere constraints
and affine linear constraints respectively: P = {i ∈ [m] : Ai = I}, Z = {i ∈ [m] : Ai = 0},
N = {i ∈ [m] : Ai = −I}.

In terms of matrices, after taking ℓ(x) = x1 Theorem 2.8 can be restated as follows. Note we
may use Lemma 2.5 to change basis for the matrices, corresponding to choosing different linear
function ℓ(x).

Corollary 7.1. Fix integers n > m + 1,m ≥ 2 and let Q0, . . . , Qm be n × n symmetric matrices
such that Q0 is positive definite, and Qi has nonzero entries only in first row and column for all
1 ≤ i ≤ m. Then Q0, . . . , Qm satisfy hidden hyperplane convexity.
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We can use Theorem 2.9 to show that the convex hull of a set defined by constraints described
above is always given by good aggregations.

Proposition 7.2. Let fi, i ∈ [m] be linear or sphere constraints such that one of the two following
conditions holds:

• dim span(Q1, . . . , Qm) ≤ n− 1.
• dim span(Q1, . . . , Qm) = n and PDLC condition holds.

Suppose ∅ ⊊ conv(S) ⊊ Rn. Then conv(S) is defined by good aggregations, i.e., conv(S) =⋂
λ∈Ω Sλ, where Ω = {λ ∈ Rm

+ \ {0} :
∑m

i=1 λiAi ⪰ 0} and Sλ = {x :
∑

i=1 λifi(x) < 0}.

Note that given the special structure of the constraints, the description of Ω can be greatly
simplified compared to the general case. This is due to the fact that each Ai is either I,−I or 0,

and therefore Qλ =
∑m

i=1 λi

[
Ai bi
b⊤i ci

]
has at most one negative eigenvalue if and only if λiAi ⪰ 0.

In this case Sλ is automatically convex. In fact, the set Ω ∪ {0} has a polyhedral description:
Ω ∪ {0} = {λ ≥ 0 :

∑
i∈P λi ≥

∑
i∈N λi}.

Proof of Proposition 7.2. When PDLC condition does not hold and there are m ≤ n−1 constraints,
we can always add a trivial constraint f0 = −1 −

∑n
i=1 x

2
i with Q0 = −I, which does not change

S. Thus from now on we assume dim span(Q1, . . . , Qm) ≤ n and PDLC holds. We show that
there exist symmetric matrices Q′

0, . . . , Q
′
m−1 such that span(Q1, . . . , Qm) = span(Q′

0, . . . , Q
′
m−1),

Q′
0 ≻ 0 and A′

i = 0 for all 1 ≤ i ≤ m − 1. Then Q1, . . . , Qm satisfy HHC by Corollary 7.1 and
Lemma 2.5.

Such Q′
0, . . . , Q

′
m−1 can be chosen as follows: Q′

0 is the linear combination of Q1, . . . , Qm that is
positive definite. Since Ai = I,−I or 0, upon rescaling we may assume A′

0 = I. Upon relabeling
assume coefficient of Qm in the linear combination of Q1, . . . , Qm that produces Q′

0 is nonzero.
Now the Q′

is (other than Q′
0) can be chosen to be

Q′
i =


Qi if Ai = 0

Qi −Q′
0 if Ai = I

Qi + Q′
0 if Ai = −I

, 1 ≤ i ≤ m− 1

Then clearly A′
i = 0 for all 1 ≤ i ≤ m, and each Q′

i is a linear combination of Q1, . . . , Qm. Con-
versely, all Q1, . . . , Qm−1 are linear combinations of Q′

0, . . . , Q
′
m−1, and Qm is a linear combination

of Q′
0, Q1, . . . , Qm−1 and hence Q′

0, . . . , Q
′
m−1. □

Recall from Proposition 2.13 that S = ∅ if and only if there exists nonzero λ ≥ 0 such that Qλ ⪰ 0,
which can be checked using an semidefinite program. In general, we do not have a necessary and
sufficient condition for conv(S) = Rn. In the special case of sphere and linear constraints, it is easy
to determine whether conv(S) = Rn by checking the types of sphere constraints. Recall P,Z,N
denote index sets where Ai = I, 0,−I respectively.

Lemma 7.3. conv(S) ̸= Rn if and only if either P ̸= ∅ or there exists i ∈ Z such that bi ̸= 0 or
bi = 0 and ci ≥ 0.

Proof. (⇒) We show the contrapositive. Suppose P = ∅ and for all i ∈ Z we have bi = 0 and
ci < 0. Then complement of each Si is bounded, and thus complement of S is also bounded, which
means conv(S) = Rn.

(⇐) If such i exists then Si is convex and not Rn. Thus conv(S) ̸= Rn as S ⊆ Si. □

7.1. Finiteness for number of good aggregations. Unlike in the general case where we need
further conditions to ensure that the convex hull is given by finitely many good aggregations, for
linear and sphere constraints if the convex hull is given by good aggregations, then finitely many
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will always suffice. The number of aggregations needed will depend on size of P,Z,N , which count
the number of constraints where Ai = I, 0,−I respectively.

Proposition 7.4. Let S be defined using linear and sphere constraints such that conv(S) is given
by good aggregations. Then conv(S) can be described by at most |P ||N | + |P | + |Z| aggregations.
Furthermore each good aggregation is either of the form fi for some i ∈ P ∪ Z or fi + fj for some
i ∈ P, j ∈ N .

Proof. First observe that fi, i ∈ P ∪ Z and fi + fj , i ∈ P, j ∈ N are good aggregations, as their
leading n × n principal submatrices are PSD. Let fλ =

∑m
i=1 λifi be any good aggregation. We

claim that there exist nonnegative coefficients {γij , i ∈ P, j ∈ N}, {αi, i ∈ P}, {βk, k ∈ Z} such that

(2) fλ =
∑

i∈P,j∈N
γij(fi + fj) +

∑
i∈P

αifi +
∑
k∈Z

βkfk.

The above equation would show that fλ is an aggregation of fi, i ∈ P ∪Z and fi + fj , i ∈ P, j ∈ N .
This implies that the constraint fλ < 0 is dominated by the intersection of the constraints fi+fj < 0,
(i, j) ∈ P ×N , fi, i ∈ P , and fk < 0, k ∈ Z, giving us the upper bound of |P ||N | + |P | + |Z|.

Now we prove the claim about (2). Since fλ is a good aggregation, we must have λ ≥ 0 and∑
i∈P λi ≥

∑
j∈N λj . If

∑
j∈N λj = 0 then λj = 0 for all j ∈ N , and we may choose γij = 0 for all

i ∈ P, j ∈ N ,αi = λi for all i ∈ P and βk = λk for all k ∈ Z.
From now on assume

∑
j∈N λj > 0. For all i ∈ P we let

µi = λi

∑
j∈N λj∑
i∈P λi

,

which satisfies 0 ≤ µi ≤ λi for all i ∈ P and
∑

i∈P µi =
∑

j∈N λj . Then (2) holds true if we let

γij =
µiλj∑
j∈N λj

, i ∈ P, j ∈ N, αi = λi − µi, i ∈ P, βk = λk, k ∈ Z.

□

8. Diagonal Inequalities

For x, y ∈ Rn, we let x◦ y ∈ Rn denote the element-wise product (x1y1, ..., xnyn). Given a vector
u ∈ Rk, we let Diag(u) be the k × k diagonal matrix with (i, i) diagonal entry equal to ui.

Let Q1, . . . , Qm be diagonal (n + 1) × (n + 1) matrices, and consider the set

S = {x ∈ Rn :

[
x
1

]⊤
Qi

[
x
1

]
< 0, 1 ≤ i ≤ m}.

Our goal is to describe conv(S), and it is natural to consider the following “open-polyhedron”:
let A ∈ Rm×n, b ∈ Rm be defined such that Qi = Diag(ai1, ..., ain,−bi), then clearly S = {x ∈ Rn :
x ◦ x ∈ P} where P = {x ∈ Rn : Ax < b} is a open-polyhedron, and in particular it is open in the
topological sense, since it is given by intersection of finitely many open halfspaces. The usual notion
of polyhedron given by closed linear inequalities is sometimes referred to as closed polyhedron.

Now we define a new set P ′ = {y ∈ Rn : ∃x,Ax < b, y < x}. We first show that P ′ describe the
element-wise squares of the convex hull.

Proposition 8.1. conv(S) = {x ∈ Rn : x ◦ x ∈ P ′} and P ′ ⊇ P.

Proof. Let 1̄ ∈ Rn be the all-one vector. First observe that P ⊆ P ′: If x̂ ∈ P, then there exists
ϵ > 0 such that x̂ + ϵ · 1̄ ∈ P, since P is open. Since x̂ < x̂ + ϵ · 1̄, this implies x̂ ∈ P ′.
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Since P ⊆ P ′ we have S ⊆ {y ∈ Rn : y ◦ y ∈ P ′}. Also observe that if x ∈ S, then u ∈ S where
|ui| = |xi| for all i ∈ [n]. Thus, given x ∈ S, if |yi| < |xi| for all i ∈ [n] (or equivalently y ◦y < x◦x),
then y ∈ conv(S). This shows that {y ∈ Rn : y ◦ y ∈ P ′} ⊆ conv(S), i.e. ,

S ⊆ {y ∈ Rn : y ◦ y ∈ P ′} ⊆ conv(S).

It remains to show that {y ∈ Rn : y ◦ y ∈ P ′} is convex. Let u, v be such that u ◦ u, v ◦ v ∈ P ′.
This means there exists u′, v′ such that u ◦ u < u′ ◦ u′, v ◦ v < v′ ◦ v′ and u′ ◦ u′, v′ ◦ v′ ∈ P . Note
that u ◦ u < u′ ◦ u′, v ◦ v < v′ ◦ v′ is equivalent to |ui| < |u′i|, |vi| < |v′i| for all i ∈ [n].

Fix any 0 ≤ λ ≤ 1, and let w = λu + (1 − λ)v. We now show w ◦ w ∈ P ′ which then completes
the proof. Since f(t) = t2 is a convex function, we have

(w ◦ w)i = (λui + (1 − λ)vi)
2

≤ λu2i + (1 − λ)v2i

< λ(u′i)
2 + (1 − λ)(v′i)

2,

which shows w ◦ w < λ(u′ ◦ u′) + (1 − λ)(v′ ◦ v′). Since u′ ◦ u′, v′ ◦ v′ ∈ P and P is convex, we
have λ(u′ ◦ u′) + (1 − λ)(v′ ◦ v′) ∈ P which shows w ◦ w ∈ P ′. □

The following observation about P and P ′ is useful in further analysis.

Observation 8.2. P and P ′ are always open. If P ̸= ∅ then its closure is given by P := {x ∈
Rn : Ax ≤ b}, in which case P ′ = {y ∈ Rn : ∃x,Ax ≤ b, y ≤ x} is a closed polyhedron given by
P ′ = {x ∈ Rn : Gx ≤ h} for some G ∈ Rk×n, h ∈ Rk where k is some positive integer. Then
P ′ = int(P ′) = {x ∈ Rn : Gx < h} is an open-polyhedron.

Proof. P is clearly open since it is intersection of finitely many open halfspaces. P ′ is open since it
is the projection of an open set.

From now on assume P ≠ ∅. Clearly {x ∈ Rn : Ax ≤ b} is closed and contains P and hence
P. For the reverse inclusion, Let x̂ satisfies Ax̂ ≤ b and fix arbitrary u ∈ P. Then note that for
λ ∈ (0, 1) we have λx̂ + (1 − λ)u ∈ P. By selecting λ arbitrarily close to 1, we can obtain a point
arbitrarily close to x̂, which means it is a limit point of P and hence belongs to its closure.

We now study closure of P ′. Clearly {y ∈ Rn : ∃x,Ax ≤ b, y ≤ x} contains P ′, and is a closed
polyhedron since it is the projection of a closed polyhedron {(x, y) ∈ R2n : Ax ≤ b, y ≤ x} onto the
y coordinates. To show {y ∈ Rn : ∃x,Ax ≤ b, y ≤ x} ⊆ P ′, take any x̂, ŷ ∈ Rn with Ax̂ ≤ b, ŷ ≤ x̂.
Since P ≠ ∅ there exists u ∈ P. Since P is open there exists ϵ > 0 such that v = u + ϵ · 1̄ ∈ P,
which satisfies Av < b, u < v. Therefore for all 0 < λ < 1 we have

A(λx̂ + (1 − λ)v) = λAx̂ + (1 − λ)Av < b, λŷ + (1 − λ)u < λx̂ + (1 − λ)v.

Therefore λŷ + (1 − λ)u ∈ P ′. Letting λ → 1 we get ŷ ∈ P ′.
Now P ′ ⊇ P ̸= ∅ is open, and its closure P ′, say {x : Gx ≤ h}, is a closed polyhedron with

nonempty interior. First half of observation states that closure of {x : Gx < h} is {x : Gx ≤ h}
if {x : Gx < h} ̸= ∅. Furthermore {x : Gx < h} cannot be empty otherwise {x : Gx ≤ h} is not
full-dimensional. Since both P ′ and {x : Gx < h} are (topologically) open with same closure, they
must coincide. □

Now we state the necessary and sufficient condition for P ′ ⊇ Rn
+. Geometrically, the condition

states that the recession cone of P, same as the recession cone of P, contains a strictly positive
vector.

Proposition 8.3. Suppose P ∩Rn
+ ̸= ∅. Then P ′ ⊇ Rn

+ if and only if Ax ≤ 0, x > 0 is feasible, or

equivalently there does not exist u ≥ 0 such that u⊤A ≥ 0 and is nonzero.
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Proof. Observe Ax ≤ 0, x > 0 is infeasible if and only if Ax ≤ 0,−x ≤ −1̄ is infeasible. By Farkas
lemma, this happens if and only if there exist u, v ≥ 0 such that u⊤A − v⊤ = 0,−v⊤1̄ < 0, or
equivalently there exists u ≥ 0 such that u⊤A ≥ 0 and is nonzero.

(⇒) We show the contrapositive and assume there exists u ≥ 0 such that u⊤A ≥ 0 and is nonzero.
Fix index i where ith coordinate of u⊤A is strictly positive. Then for sufficiently large λ we have
λu⊤Aei > u⊤b. We now claim λei /∈ P ′ which completes the proof of this direction. By definition
of P ′ it suffices to show for any w > λei we have w /∈ P. Suppose for contradiction that w ∈ P for
some w > λei. Then we would have Aw < b since w ∈ P, and u⊤Aw ≤ u⊤b since u ≥ 0. But then
we would also have u⊤A(λei) ≤ u⊤b since w > λei and u⊤A ≥ 0, contradicting λu⊤Aei > u⊤b.

(⇐) Choose w ∈ P ∩ Rn
+ and v > 0 such that Av ≤ 0. Then for all λ > 0, A(w + λv) < 0,

i.e., w + λv ∈ P. Observe for any x ≥ 0 we have x < w + λv for sufficiently large λ, which shows
x ∈ P ′. □

Observation 8.2 states that P ′ is an open polyhedron when P ̸= ∅. The following proposition
states that when P ∩ Rn

+ ̸= ∅, then the defining inequalities of P ′ are precisely aggregations of
defining inequalities of P, where all coefficients in the aggregation are nonnegative.

Proposition 8.4. Let P ∩ Rn
+ ̸= ∅. Then P ′ = {y : (α(i))⊤y < βi, i ∈ [k]} for some integer k and

• α(i) ≥ 0 and b(i) ≥ 0 for all i ∈ [k].

• There exists λ(i) ≥ 0, such that (α(i))⊤ = (λ(i))⊤A and β(i) = (λ(i))⊤b.

Proof. Consider the lifted open-polyhedron Q and its closure given by Observation 8.2:

Q := {(x, y) ∈ R2n : Ax < b, y < x}, Q := {(x, y) ∈ R2n : Ax ≤ b, y ≤ x}.

Observation 8.2 states that P ′ = {y ∈ Rn : ∃x : Ax ≤ b, y ≤ x} is the projection of Q onto the

y coordinates, which means P ′ has description P ′ = {y : (α(i))⊤y ≤ βi, i ∈ [k]} for some integer
k, where each inequality is facet defining. Observation 8.2 also shows that P ′ is given by the

corresponding open inequalities P ′ = {y : (α(i))⊤y < βi, i ∈ [k]}.
Now it remains to show these inequalities have the desired form. Consider a facet defining

inequality α⊤x ≤ β for P ′ = projy(Q). We can consider the following associated LP and its dual:

max α⊤y

s.t. Ax ≤ b

y − x ≤ 0.

min λ⊤b

s.t. λ⊤A− µ⊤I = 0

µ⊤I = α⊤

λ ≥ 0, µ ≥ 0.

Note that since the primal is feasible and bounded, this implies the dual is feasible and bounded.
In particular, let (λ∗, µ∗) be the optimal dual solution. Then, from the second constraint of the
dual α = µ∗ ≥ 0. Since P ∩ Rn

+ ̸= ∅, we have that β ≥ 0.

Also note the first constraint of the dual now shows that (λ∗)⊤A = µ∗ = α and the objective of
the dual optimal solution shows that (λ∗)⊤b = β. □

Now we are ready to describe the convex hull when all quadratics are diagonal.

Proof of Theorem 2.12. Let A ∈ Rm×n, b ∈ Rm be defined such that Qi = diag(ai1, ..., ain,−bi). In
this definition S = {x ∈ Rn : x ◦ x ∈ P} where P = {x ∈ Rn : Ax < b}. Let P ′ = {y ∈ Rn : ∃x ∈
P, y < x}. As shown in Proposition 8.1, conv(S) = {x ∈ Rn : x ◦ x ∈ P ′}. We have three cases
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• S = ∅. Since x◦x ≥ 0 for all x, S = ∅ if and only if Ax < b, x ≥ 0 is infeasible. By Motzkin’s
transposition theorem [18], this happens if and only if there exists u, v ≥ 0, u⊤A− v⊤ = 0
such that u ̸= 0 and u⊤b ≤ 0, i.e. there exists nonzero u ≥ 0 such that u⊤A ≥ 0, u⊤b ≤ 0.
Note if u = 0 then u⊤b ≥ 0 is automatically true. Now observe u⊤A ≥ 0, u⊤b ≤ 0 is
equivalent to

∑m
i=1 uiQi ⪰ 0.

• conv(S) = Rn. Suppose S ̸= ∅, or equivalently P ∩ Rn
+ ̸= ∅. Then conv(S) = Rn if and

only if P ′ ⊇ Rn
+, and by Proposition 8.3 this is equivalent to existence of u ≥ 0 such that

u⊤A ≥ 0 and is nonzero.
• ∅ ⊊ conv(S) ⊊ Rn: In this case P ∩ Rn

+ ̸= ∅. Therefore, using Proposition 8.1 and
Proposition 8.4, we obtain that conv(S) is given by finitely many aggregations where the

aggregated constraint is convex, as each defining inequality of P ′ has the form (λ(j))⊤Ay <

(λ(j))⊤b, for some λ(j) ≥ 0, corresponding to the following aggregation

Sλ(j) = {x ∈ Rn :

[
x
1

]⊤( j∑
i=1

λ
(j)
i Qi

)[
x
1

]
< 0}.

The leading n× n principal submatrix of Qλ(j)

∑j
i=1 λ

(j)
i Qi is PSD as (λ(j))⊤A ≥ 0 from

Proposition 8.4, so Qλ(j) has at most one negative eigenvalue and Sλ(j) is convex, which

means λ(j) ∈ Ω.

□

9. Finite number of aggregations sufficient to obtain the convex hull

We let Θ = {θ ∈ Rm :
∑m

i=1 θiQi ⪰ 0} denote the set of linear combinations that gives rise
to a PSD matrix. Our first observation is that one may always improve an aggregation λ ∈ Ω
(where Sλ ̸= Rn) by elements in Θ as long as it still stays inside nonnegative orthant. Recall that
Ω = {λ ∈ Rm

+ \ {0} : conv(S) ⊆ Sλ and Qλ has at most one negative eigenvalue}.

Proposition 9.1. Assume S ̸= ∅ and conv(S) ̸= Rn. Let Ω1 = Ω \ {λ ∈ Ω : Sλ = Rn}. Let λ ∈ Ω1

and θ ∈ Θ so that λ′ = λ + θ ∈ Rn
+ \ {0}. Then λ′ ∈ Ω1 and Sλ′ ⊆ Sλ.

Note that Proposition 9.1 is for arbitrary quadratics, and in particular does not assume HHC.

Proof. Since Qλ′ ⪰ Qλ we have fλ′ ≥ fλ and Sλ′ ⊆ S, which also implies Sλ′ ̸= Rn since Sλ ̸= Rn.
The next step is to show Qλ′ has exactly one negative eigenvalue. Since Qλ′ ⪰ Qλ, Qλ′ cannot have
more negative eigenvalues than Qλ, due to Weyl’s inequality on eigenvalues [13]. Since Qλ has at
most one negative eigenvalue, same must be true for Qλ′ . On the other hand Qλ′ is not PSD since
S ̸= ∅ and S ⊆ Sλ′ . Thus it has exactly one negative eigenvalue.

It remains to show conv(S) ⊆ Sλ′ . We consider several cases based on whether Sλ′ and Sλ are
convex or unions of two disjoint convex sets.

• Sλ′ is convex then we are done since S ⊆ Sλ′ .
• Sλ′ is union of two disjoint convex sets, i.e., Sλ′ = C ′

1 ∪ C ′
2 where C ′

1, C
′
2 are disjoint and

convex. There are two subcases about Sλ.
– Sλ is convex. From Lemma 5.3 conv(Sλ′) = Rn. Since Sλ′ ⊆ Sλ we must have Sλ = Rn,

contradicting our assumption that λ ∈ Ω1.
– Sλ is union of two disjoint convex sets, i.e., Sλ = C1 ∪ C2 where C1, C2 are disjoint

and convex. Since conv(S) ⊆ Sλ, conv(S) must lie entirely in one of C1 or C2, say
C1 upon relabeling, which means conv(S) ∩ C2 = ∅ since C1, C2 are disjoint. Since
Sλ′ ⊆ Sλ, upon relabeling assume C ′

1 ⊆ C1, C
′
2 ⊆ C2. This means conv(S) ∩ C ′

2 = ∅
and conv(S) ⊆ C ′

1 ⊆ Sλ′ . Hence λ′ ∈ Ω1.

□
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We now prove under the assumption that every triple of quadratics satisfies the PDLC condition,
elements in Ω1 with support at most 2 describe the same set as all elements in Ω1. The idea is
to repeatedly improve along positive definite linear combinations to reduce the support of a good
aggregation.

Proposition 9.2. Assume S ̸= ∅ and conv(S) ̸= Rn. Let Ω1 = Ω \ {λ ∈ Ω : Sλ = Rn}.
Furthermore assume for all distinct i, j, k ∈ [m] there exist scalars pijk, qijk, rijk ∈ R such that
pijkQi + qijkQj + rijkQk ≻ 0. Let Ω2 = {λ ∈ Ω1 : |{i : λi > 0}| ≤ 2}. Then

⋂
λ∈Ω2

Sλ =
⋂

λ∈Ω1
Sλ.

Proof. Clearly
⋂

λ∈Ω1
Sλ ⊆

⋂
λ∈Ω2

Sλ since Ω2 ⊆ Ω1. For reverse inclusion we show that for any

λ ∈ Ω1 with |{i : λi > 0}| ≥ 3 there exists λ′ ∈ Ω1 with |{i : λ′
i > 0}| < |{i : λi > 0}| with

Sλ′ ⊆ Sλ. Then repeatedly applying this subroutine whenever possible, we eventually get λ′′ ∈ Ω1

with |{i : λ′′
i > 0}| ≤ 2 and Sλ′′ ⊆ Sλ.

Fix i, j, k ∈ {l : λl > 0} and pijk, qijk, rijk ∈ R such that pijkQi + qijkQj + rijkQk ≻ 0. If λ is a
multiple of v = pijkei + qijkej + rijkek, we can perturb (pijk, qijk, rijk) so that λ is not a multiple of
v = pijkei + qijkej + rijkek and pijkQi + qijkQj + rijkQk ≻ 0. Also note that pijk, qijk, rijk cannot be
all nonnegative, since otherwise we have that S ⊆ Sv = ∅. Now let α0 = max{α > 0 : λ+αv ∈ Rm

+}
and λ′ = λ + α0v. More explicitly α0 is the minimum between λi

−pijk
,

λj

−qijk
, λk
−rijk

where we only

consider the terms where denominator is positive. Then clearly |{i : λ′
i > 0}| < |{i : λi > 0}|, and

λ′ ∈ Ω1, Sλ′ ⊆ Sλ due to Proposition 9.1. □

Now we study the structure of aggregations with fixed support of size two that contain conv(S),
and show they are either empty or form one or two intervals, whose endpoints are the same as the
intervals described in [22]. Thus for the description of the convex hull it suffices to take either the
two outermost endpoints, or two endpoints of the same interval. The key ingredient in our proof
is the geometry of the set defined by two quadratic inequalities, which was studied in [22]. Here
we list the results that are needed for our proof, and describe their implications. Note that the
versions stated in our paper differ by a sign compared to [22], as we study the set of points where
the quadratic inequalities are negative (instead of positive).

In words, these results show that convex combinations of any two quadratics contain at most
two intervals of matrices that have at most one negative eigenvalue. The endpoints of the intervals
can be recognized as points where the rank drops. Furthermore, homogenized good aggregations
lying in the same interval have an additional geometric property described in Lemma 9.4.

Now we formally state these results. Let ν(M) denote the number of negative eigenvalues of a
matrix M .

Theorem 9.3 (Lemma 2 of [22]). Let Q1, Q2 be two symmetric matrices, and let Λ = {0 ≤ α ≤
1 : ν(αQ1 + (1 − α)Q2) = 1}. If Λ ̸= ∅, then there exists nc ∈ {1, 2} and Λ =

⋃
1≤j≤nc

{Ij}, where

each Ij is a closed interval of [0, 1] and Ij , Ik are disjoint if j ̸= k. Furthermore, the endpoints of
Ij are real roots of det(αQ1 + (1−α)Q2) = 0, known as generalized eigenvalues (GEVs) of Q1 and
Q2.

Lemma 9.4 (Lemma 7 of [22]). Let I be one interval in the previous theorem. Then there exists
a linear hyperplane L that does not intersect {x : x⊤(αQ1 + (1 − α)Q2)x < 0} for any α ∈ I.

Using these results we prove the following proposition about aggregations of homogeneous
quadratics with fixed support of size two: if all aggregations contain a given set S0 and one ag-
gregation with one negative eigenvalue contains conv(S0) (so that this aggregation is good), then
all aggregations in the same interval must also contain conv(S0), i.e. all aggregations in the same
interval are good. The main idea is to use the hyperplane L as promised by Lemma 9.4, and show
that conv(S0) must lie entirely in one of the halfspaces separated by L, and be disjoint from the
other halfspace.
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Proposition 9.5. Let Q1, Q2 be (n+ 1)× (n+ 1) symmetric matrices. Let S0 ⊆ Rn+1 and assume
∅ ⊊ conv(S0) ⊊ Rn+1. Let Λ = {0 ≤ α ≤ 1 : ν(αQ1 + (1 − α)Q2) = 1}. Suppose Λ ̸= ∅ and
S0 ⊆ {x̂ ∈ Rn+1 : x̂⊤(αQ1 + (1 − α)Q2)x̂ < 0} for all α ∈ Λ.

Based on Theorem 9.3 we have Λ =
⋃

1≤j≤nc
{Ij}, nc ∈ {1, 2}, where each Ij is a closed interval

of [0, 1] and Ij , Ik are disjoint if j ̸= k. Fix 1 ≤ j ≤ nc and assume

conv(S0) ⊆ {x̂ ∈ Rn+1 : x̂⊤(α0Q1 + (1 − α0)Q2)x̂ < 0}
for some α0 ∈ Ij. Then

conv(S0) ⊆ {x̂ ∈ Rn+1 : x̂⊤(αQ1 + (1 − α)Q2)x̂ < 0}
for all α ∈ Ij.

Proof. From Theorem 5.1, the set {x̂ ∈ Rn+1 : x̂⊤(α0Q1 + (1 − α0)Q2)x̂ < 0} is an SCC, i.e., a
union of two disjoint open convex cones that are symmetric reflections of each other across the
origin. Let {x̂ ∈ Rn+1 : x̂⊤(α0Q1 + (1 − α0)Q2)x̂ < 0} = C+

α0
∪ C−

α0
, where C+

α0
, C−

α0
are the

disjoint open convex cones. Since conv(S0) ⊆ {x̂ ∈ Rn+1 : x̂⊤(α0Q1 + (1−α0)Q2)x̂ < 0}, it is fully
contained in one of the convex cones and disjoint from the other. Upon relabeling we may assume
conv(S0) ⊆ C+

α0
and conv(S0) ∩ C−

α0
= ∅.

From Lemma 9.4, there exists linear hyperplane L that does not intersect {x̂ ∈ Rn+1 : x̂⊤(αQ1 +
(1 − α)Q2)x̂ < 0} for all α ∈ Ij . Let L+, L− be the two open halfspaces separated by L. Upon
relabeling we may assume C+

α0
⊆ L+, C−

α0
⊆ L−.

Now fix arbitrary α′ ∈ Ij . The set {x̂ ∈ Rn+1 : x̂⊤(α′Q1 + (1 − α′)Q2)x̂ < 0} is an SCC. Let

{x̂ ∈ Rn+1 : x̂⊤(α′Q1 + (1−α′)Q2)x̂ < 0} = C+
α′ ∪C−

α′ , where C+
α′ , C

−
α′ are the disjoint open convex

cones. Note L ∩ {x̂ ∈ Rn+1 : x̂⊤(α′Q1 + (1 − α′)Q2)x̂ < 0} = ∅, which means each of C+
α′ , C

−
α′

is fully contained in one of the open halfspaces separated by L. Upon relabeling we may assume
C+
α′ ⊆ L+, C−

α′ ⊆ L−.
Since conv(S0) ⊆ C+

α0
⊆ L+ and L+∩L− = ∅, we have conv(S0)∩L− = ∅ and hence S0∩L− = ∅.

Therefore S0∩C−
α′ = ∅ as C−

α′ ⊆ L−, and S0 ⊆ C+
α′ . Since C+

α′ is convex, we have conv(S0) ⊆ C+
α′ ⊆

{x̂ ∈ Rn+1 : x̂⊤(α′Q1 + (1 − α′)Q2)x̂ < 0} as desired. □

Recall that S = {x ∈ Rn : x⊤Aix+ 2b⊤i x+ ci < 0, i ∈ [m]} and Ω is the set of good aggregations
which have at most one negative eigenvalue and contain conv(S). Proposition 9.5 implies the
following result about pairwise aggregations that contain the convex hull.

Proposition 9.6. Assume S ̸= ∅, conv(S) ̸= Rn and hidden hyperplane convexity holds for the
associated quadratic map fh, so that Theorem 2.9 holds and conv(S) =

⋂
λ∈Ω Sλ. Fix i, j ∈ [m]

and let

Ωij = {λ ∈ Ω : λk = 0,∀k /∈ {i, j}}
be aggregations in Ω that have support in {i, j}. Then either Ωij = ∅, or there exists λ′, λ′′ ∈ Ωij such
that

⋂
λ∈Ωij

Sλ = Sλ′∩Sλ′′, where λ′, λ′′ can be written as λ′ = α′ei+(1−α′)ej , λ
′′ = α′′ei+(1−α′′)ej,

where α′, α′′ are roots of det(αQi + (1 − α)Qj) = 0.

Proof. Throughout this proof, we reparametrize aggregations with support {i, j} by the unit length
interval [0, 1], and view each 0 ≤ α ≤ 1 as the aggregation αei + (1 − α)ej .

Assume Ωij ̸= ∅. Clearly
⋂

λ∈Ωij
Sλ ⊆ Sλ′ ∩ Sλ′′ since λ′, λ′′ ∈ Ωij . For reverse inclusion, from

Theorem 9.3, {λ : λk = 0, ∀k /∈ {i, j}} where Qλ has at most one negative eigenvalues forms one
or two closed intervals (contained in the reparametrized [0, 1] interval). Furthermore, each interval
either lies entirely in Ωij or is disjoint from it, by applying Proposition 9.5 to S0 = {(x, 1) ∈ Rn+1 :
x ∈ S} and observing that S0 ⊆ Sλ×{1} for all nonzero λ ≥ 0. Thus Ωij is also one or two closed
intervals whose endpoints are GEVs of Qi and Qj . We let λ′, λ′′ be the two outermost endpoints
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of Ωij , and observe that any λ ∈ Ωij is a nonnegative combination of λ′ and λ′′ and therefore
Sλ′ ∩ Sλ′′ ⊆ Sλ, which means Sλ′ ∩ Sλ′′ ⊆

⋂
λ∈Ωij

Sλ. □

Proposition 9.2 and Proposition 9.6 together imply Theorem 2.18.

Proof of Theorem 2.18. Let Ω2 = {λ ∈ Ω1 : |{i : λi > 0}| ≤ 2}. Then from Proposition 9.2,⋂
λ∈Ω1

Sλ =
⋂

λ∈Ω2
Sλ. Now Ω2 =

⋃
i ̸=j Ωij \ {λ ∈ Ω : Sλ = Rn}. Therefore Theorem 2.18 follows

after applying Proposition 9.6 to all {i, j} ⊆ [m] and removing any λ′ where Sλ′ = Rn, which does
not change the convex hull. □

10. Results for closed inequalities

Proof of Theorem 2.24. Recall that T = {x : fi(x) ≤ 0, i ∈ [m]} is the set defined by closed

inequalities and G = int(conv(T )). We remind the reader that S ⊆ G and we assume G ̸= ∅.
Take any y /∈ G. Since G is convex and open, there exists α ∈ Rn such that G ⊆ {x :

α⊤x > α⊤y}. Let H = {x : α⊤x = α⊤y} ⊆ Rn be the separating affine hyperplane and Ĥ =

{(x, xn+1) : α⊤x = (α⊤y)xn+1} ⊆ Rn+1 be its homogenization. Let Ĥ+ = {(x, xn+1) : α⊤x ≥
(α⊤y)xn+1}, Ĥ− = {(x, xn+1) : α⊤x ≤ (α⊤y)xn+1} be the closed halfspaces created by Ĥ. Then

we have conv(T ) × {1} ⊆ Ĥ+.
Note that Lemma 5.4 still applies since conv(S) ̸= Rn. Thus, since y /∈ S (because S ⊆ G) we

have that Sh ∩ Ĥ = ∅, i.e., {x̂ ∈ Ĥ : x̂⊤Qix̂ < 0, i ∈ [m]} = ∅. Proceeding in the same way as in
the proof of Theorem 2.9, we use the fact that Qi’s satisfy hidden hyperplane convexity, to show
that there exists a nonzero vector λ ∈ Rm

+ such that Qλ is PSD on Ĥ. By our assumption we also
have Qλ ̸= 0.

By the Interlacing Theorem, Qλ has at most one negative eigenvalue, and it cannot be PSD
otherwise T × {1} ⊆ kerQλ, which would imply G = ∅. This means Qλ has exactly one nega-
tive eigenvalue. Therefore Sλ consists of one or two disjoint open convex sets. Let Tλ = {x :∑m

i=1 λifi(x) ≤ 0} denote the set defined by the same aggregation with closed inequalities. It is
clear that Tλ is closed, T ⊆ Tλ and Sλ = int(Tλ).

We now show that conv(T ) ⊆ Tλ which then implies that G ⊆ Sλ. If Sλ is convex then we
are done as in this case Tλ is convex and closed. Suppose Sλ consists of two disjoint open convex
connected components. We write Sλ = (Sλ)+ ∪ (Sλ)− where (Sλ)+, (Sλ)− are disjoint open convex

sets. Since Qλ is PSD on Ĥ, these two sets lie in different sides of Ĥ, and upon relabeling we
assume (Sλ)+ ⊆ Ĥ+, (Sλ)− ⊆ Ĥ−.

Let (Tλ)+ = (Sλ)+, (Tλ)− = (Sλ)−. Then it is clear that Tλ = (Tλ)+∪ (Tλ)−, (Tλ)+∩ (Tλ)− ⊆ Ĥ,

and (Tλ)+ ⊆ Ĥ+, (Tλ)− ⊆ Ĥ−.

Recall T × {1} ⊆ Ĥ+. We claim this implies T × {1} ⊆ (Tλ)+, which completes the proof
as (Tλ)+ is closed and convex. Suppose otherwise, then (T × {1}) ∩ ((Tλ)− \ (Tλ)+) ̸= ∅, but

(Tλ)− \ (Tλ)+ ⊆ Ĥ− \ Ĥ which is disjoint from Ĥ+. □

11. Acknowledgements
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