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Abstract. The moment method is used to prove the exact controllability of a wide class of

bidimensional linear dispersive PDE’s posed on the two-dimensional torus T2. The control func-
tion is considered to be acting on a small vertical and horizontal strip of the torus. Our results

apply to several well-known models including some bidimesional extensions of the Benajamin-

Ono and Korteweg-de Vries equations. As a by product, the exponential stabilizability with
any given decay rate is also established in Hs

p(T2), with s ≥ 0, by constructing an appropriated

feedback control law.

1. Introduction

The controllability and stabilizability for the linear Schrödinger equation on higher dimensions
have been intensively studied during the last years, see for instance [9, 19, 23, 38, 46] and references
therein. When the problem is posed on a periodic domain, there are pioneering works on this
issue developed by the authors in [8, 21, 32] for the linear and nonlinear Schrodinger equations in
dimensions 2 and 3 (see also [22]). However, as far as we know, there are a few works addressing the
problems of exact controllability and asymptotic stabilization for bidimensional linear dispersive-
type equations on a periodic setting. To the best of our knowledge, the only work dealing with
this problem for a different dispersive model is the recent one in [43], where the authors study
the internal controllability of a non-localized solution for the linear and non-linear Kadomtsev-
Petviashvili II equation.

As is well known, the first step to study the controllability of a nonlinear equation is to under-
stand the controllability of the corresponding linear equation. So, our main goal in this paper is
to investigate the control properties of a quite general class of linear dispersive equations on the
two-dimensional torus T2 := R2/(2πZ)2. More precisely, we are interested in the equation

∂tu− ∂xLu = 0, (x, y) ∈ T2, t ∈ R, (1.1)

where u ≡ u(x, y, t) denotes a real-valued function of three real variables x, y and t, and L denotes
a linear Fourier multiplier operator. We assume that such multiplier L is of “order” r − 1, for
some r ∈ R, with r ≥ 1. This means that the symbol b : Z2 → R satisfies

L̂u(k) = b(k)û(k), ∀ k = (k1, k2) ∈ Z2, (1.2)

where û stands for the (periodic) Fourier transform of u (see (2.2)), and

|b(k)| ≤ C|k|r−1, (1.3)

for some positive constant C and |k| :=
√
k21 + k22 ≥ N0, for some N0 ≥ 0. In view of the Parseval

identity, it is easy to see that L is a self-adjoint operator on L2
p(T2) (see Section 2 for notations)

and commutes with derivatives.
There are several models that fit in the abstract form (1.1). For instance, the bidimensional

versions of the Benjamin-Ono (BO) and Korteweg-de Vries (KdV) equations on a periodic set-
ting. Specifically, the 2D Benjamin-Ono (L = H(x)∂y) and the Zakharov-Kuznetsov (L = −∆)

equations, where H(x) denotes the Hilbert transform with respect to the x-variable and ∆ is the
bidimensional Laplacian operator. More general equations can also be written in the abstract form
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(1.1), for example, the Benjamin-Ono-Zakharov-Kuznetsov (L = H(x)∂x − ∂2y) and the dispersion

generalized BOZK (L = Dα
x − ∂2y) equations, where Dα

x is defined for α > 0. As we will see below,
all these equations may be treated in a single way.

As usual, the idea to study the controllability of (1.1) is to add a forcing term f ≡ f(x, y, t) as
a control input. So, we shall consider the following non-homogeneous initial-value problem (IVP):

∂tu− ∂xLu = f, u(x, y, 0) = u0(x, y), (x, y) ∈ T2, t ∈ R, (1.4)

for some suitable control f . Here, we will assume that f is acting on a small set composed by the
union of a vertical and a horizontal strip; this means, f is assumed to be supported on a set of the
form ((ω1 × T) ∪ (ω2 × T)) ⊂ T2, where ω1 and ω2 are small open intervals in T (see Figure 1).

Figure 1. Region where the control f is acting.

Note that (1.1) conserves the total mass, that is, the quantity∫
T2

u(x, y, t) dxdy

is conserved by any solution of (1.1). In order to keep the mass conserved in the control system
(1.4), we demand the function f to satisfy∫

T2

f(x, y, t) dxdy = 0, ∀t ∈ R. (1.5)

In this regard, we consider the control f of the form Gh, where h is a function defined in T2× [0, T ]
and the operator G : Hs

p(T2) → Hs
p(T2), s ≥ 0, is defined in the following way: let g1 and g2 be

non-negative real-valued functions in C∞(T) such that

2πĝ1(0) =

∫
T
g1(x)dx = 1, (1.6)

2πĝ2(0) =

∫
T
g2(y)dy = 1. (1.7)

Assume supp g1 = ω1 ⊂ T and supp g2 = ω2 ⊂ T, where ω1 = {x ∈ T : g1(x) > 0} and
ω2 = {y ∈ T : g2(y) > 0} are open intervals. Now, we define the operator G as

G(φ)(x, y) := g2(y) G1(φ)(x, y) + g1(x) G2(φ)(x, y), φ ∈ Hs
p(T2), s ≥ 0, (1.8)

where

G1(φ)(x, y) =
1

2π
φ(x, y)− 1

(2π)2

∫ 2π

0

φ(x′, y)dx′, (1.9)
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and

G2(φ)(x, y) =
1

2π
φ(x, y)− 1

(2π)2

∫ 2π

0

φ(x, y′)dy′. (1.10)

It is easy to see that G is linear and self-adjoint as an operator from L2
p(T2) into L2

p(T2). In

addition, it is bounded in Hs
p(T2), that is, there exists a constant C depending only on s, g1, and

g2 such that

‖G(φ)‖Hs
p(T2) ≤ C‖φ‖Hs

p(T2). (1.11)

Since we are setting f = Gh, the function h can now be considered as the new control function
and for each t ∈ [0, T ] we have that (1.5) holds.

Next, we specify the problems that we address in this work, which are fundamental in control
theory:

Exact controllability problem: Let s ≥ 0 and T > 0 be given. Assume u0 and u1 belong to
Hs
p(T2) with û0(0, 0) = û1(0, 0). Can one find a control input h such that the unique solution of

the initial-valued problem (IVP){
∂tu− ∂xLu = G(h), (x, y) ∈ T2, t ∈ R,
u(x, y, 0) = u0(x, y),

(1.12)

is defined until time T and satisfies u(x, y, T ) = u1(x, y), for all (x, y) ∈ T2?

Asymptotic stabilizability problem: Let s ≥ 0 and u0 ∈ Hs
p(T2) be given. Can one define a

feedback control law f = G(Ku) for some linear operator K, such that the resulting closed-loop
system {

∂tu− ∂xLu = G(Ku), (x, y) ∈ T2, t ∈ R,
u(x, y, 0) = u0(x, y),

(1.13)

is globally well-defined and asymptotically stable to an equilibrium point as t→ +∞?

Let us now describe our results. First, we state a result regarding controllability of equation
(1.12). Similar to the criteria in [47], the following results directly link the problem of controlla-
bility with some specific properties of the eigenvalues associated to the operator ∂xL. To derive
our first result, we assume that ∂xL has a countable number of eigenvalues which, except on the
coordinates axes, have finite multiplicity. Specifically, we will assume the following hypothesis
hold:

(H1) ∂xLψk = iλkψk, where ψk is defined in (2.3) and λk = k1b(k), for all k = (k1, k2) ∈ Z2.

The eigenvalues in the sequence {iλk}k∈Z2 are not necessarily distinct and we need to distinguish
simple and multiple eigenvalues. Therefore, for each k′ ∈ Z2, we set I(k′) := {k ∈ Z2 : λk = λk′}
and m(k′) := #I(k′), where #I(k′) denotes the number of elements in I(k′). In particular,
m(k′) = 1 if iλk′ is a simple eigenvalue.

(H2) For any k = (k1, k2) ∈ Z2, λk is even in the first variable and odd in the second one, it
means, λ(k1,k2) = λ(−k1,k2), and λ(k1,−k2) = −λ(k1,k2). Furthermore, for any k = (k1, k2) ∈
Z2, with k1 6= 0, we have that the unique entire solution j2 ∈ Z of equation λ(k1,j2) =

λ(k1,k2) is j2 = k2. Also, for any k = (k1, k2) ∈ Z2, with k2 6= 0, the unique entire solutions
of equation λ(j1,k2) = λ(k1,k2) are j1 = ±k1.

Assumptions (H1) and (H2) allows the eigenvalues iλk to have infinite multiplicity on the coordi-
nate axes. Also, it may occur that m(k′)→∞ as λk′ →∞ (see Subsection 6.2 where a particular
example involving the 2D-BO equation is given). Both properties make the problem of exact
controllability associated to (1.4) a great challenge and require us to find strong control functions
f acting not only on a small open subset of T2 but on small subsets of vertical and horizontal
strips of the 2-torus (see Figure 1).
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If we count only the distinct eigenvalues, we obtain a countable (maximal) set J ⊂ Z2 and a
sequence {λk}k∈J, with the property that λk 6= λk′ for any k,k′ ∈ J with k 6= k′. Now we are able
to state our first result.

Theorem 1.1. Let s ≥ 0 and assume (H1) and (H2). Suppose that

γ := inf
k,k′∈J
k6=k′

|λk − λk′ | > 0
(1.14)

and define

γ′ := sup
S⊂J

inf
k,k′∈J\S

k6=k′

|λk − λk′ |,
(1.15)

where S runs over all finite subsets of J. Then, for any T > 2π
γ′ and for each u0, u1 ∈ Hs

p(T2) with

û0(0, 0) = û1(0, 0), there exists a function h ∈ L2([0, T ];Hs
p(T2)) such that the unique solution u

of the non-homogeneous system
u ∈ C

(
[0, T ];Hs

p(T2)
)
,

∂tu = ∂xLu+G(h)(t) ∈ Hs−r
p (T2), t ∈ (0, T ),

u(0) = u0.

(1.16)

satisfies u(T ) = u1. Furthermore,

‖h‖L2([0,T ];Hs
p(T2)) ≤ ν

(
‖u0‖Hs

p(T2) + ‖u1‖Hs
p(T2)

)
(1.17)

for some positive constant ν ≡ ν(s, g1, T ).

Using symmetry, we can replace (H2) by the following hypothesis and still have a similar result
of exact controllability for system (1.12):

(H3) For any k = (k1, k2) ∈ Z2, λk is odd in the first variable and even in the second one, that
is, λ(−k1,k2) = −λ(k1,k2) and λ(k1,k2) = λ(k1,−k2). Furthermore, For any k = (k1, k2) ∈ Z2,
with k1 6= 0 we have the unique entire solutions j2 ∈ Z of equation λ(k1,j2) = λ(k1,k2) are

j2 = ±k2. Moreover, for any k = (k1, k2) ∈ Z2, with k2 6= 0 the unique entire solution
j1 ∈ Z of equation λ(j1,k2) = λ(k1,k2) is j1 = k1.

In this case, we denote by I the (maximal) subset of Z2 such that the sequence {λk}k∈I have the
property λk 6= λk′ for any k,k′ ∈ I with k 6= k′. We now estate our second result.

Theorem 1.2. Let s ≥ 0 and assume (H1) and (H3). Suppose that

γ := inf
k,k′∈I
k6=k′

|λk − λk′ | > 0
(1.18)

and define

γ′ := sup
S⊂I

inf
k,k′∈I\S
k6=k′

|λk − λk′ |,
(1.19)

where S runs over all finite subsets of I. Then, for any T > 2π
γ′ the same conclusions of Theorem

1.1 hold.

The idea to prove Theorems 1.1 and 1.2 is to use the moment method (see, for instance, [40, 47]).
Combined with a generalization of Ingham’s theorem (see [17]), the construction of the function
h reduces in analyzing the solutions of an algebraic equation or system of equations.

Remark 1.3. Note if λk ∈ Z, for all k ∈ J (or I), then we always have γ, γ′ ≥ 1. This situation
occurs, for instance, when L is a differential operator. See Section 6 for some examples.

Attention is now turned to our stabilization result. Choosing an appropriate linear bounded
operator K one is able to show that the resulting closed-loop system is exponentially stable with
an arbitrary exponential decay rate. More precisely,
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Theorem 1.4. Let g1, g2 be as in (1.6)-(1.7) and let s ≥ 0, and λ > 0 be given. Under the
assumptions of Theorem 1.1 or Theorem 1.2, there exists a bounded linear operator Kλ from
Hs
p(T2) to Hs

p(T2) such that the unique solution u of the closed-loop system
u ∈ C([0,+∞);Hs

p(T2)),

∂tu(t) = ∂xLu(t) +GKλu(t) ∈ Hs−r
p (T2), t > 0,

u(0) = u0 ∈ Hs
p(T2),

(1.20)

satisfies

‖u(·, t)− û0(0, 0)‖Hs
p(T2) ≤Me−λt‖u0 − û0(0, 0)‖Hs

p(T2),

for all t ≥ 0, and some positive constant M = M(g1, g2, λ, s).

Remark 1.5. Using a simple feedback control law Ku = −G∗, where G∗ denotes the adjoint
operator of G, we can prove that the closed-loop system (1.13) is exponentially stable in L2

p(T2)
for some exponential decay rate by using similar arguments as in [37, Theorem 5.4] (see also
[25, 41]).

The paper is organized as follows. In Section 2 we introduce the basic notation and review
some definitions related to periodic functions. In Section 3 we just prove the well-posedness of our
associated IVPs. Theorems 1.1 and 1.2 is then proved in Section 4. Section 5 is dedicated to prove
the stabilization result. Finally, in Section 6 we apply our results to prove the exact controllability
and exponential stabilization for some well known models.

2. Preliminaries

In this section we introduce some basic notation and summarize some important results related
with the theory of distributions on the two-dimensional torus (2-torus, for short). We will use k
and j for generic points (k1, k2) and (j1, j2) in Z2. For multi-indices α = (α1, α2) and β = (β1, β2)
in N2 we say that β ≤ α if and only if βi ≤ αi, i = 1, 2. Also, we define α! = α1!α2! and
|α| = α1 +α2. Given two vectors x = (x1, y1) and x′ = (x2, y2) in R2, x ·x′ = x1x2 +y1y2, denotes
the usual inner product. Also, |x| denotes the usual Euclidean norm of x.

2.1. Distributions on the 2-torus. Here we recall some aspects of the Fourier analysis on the
torus as well as some properties of the periodic distributions. The details may be found in [11,
Chapter 3]. The space of test functions on the 2-torus is the space C∞(T2) of all C∞ functions
that are 2π-periodic in every coordinate. The topology generated by the family of semi-norms
sup |Dαf(x)| allows one to see C∞(T2) as a locally convex topological space. We denote by G(Z2)
the space of the rapidly decreasing sequences on Z2 of all complex-valued sequences µ = {µk}k∈Z2

such that ∑
k∈Z2

|kα| |µk| <∞, for all multi-index α ∈ N2. (2.1)

Recall that kα = (k1, k2)(α1,α2) = kα1
1 kα2

2 . The space G(Z2) is a Hausdorff locally convex topolog-
ical space with the topology induced by the family of semi-norms

‖µ‖∞,α := sup
k∈Z2

(|kα| |µk|) ,

where α ranges over all multi-indices in N2. The dual spaces of C∞(T2) and G(Z2) under these
topologies are denoted by D′(T2) (the space of all distributions on T2) and G′(Z2) (the space of
sequences with slow growth on Z2), respectively. C∞(T2) is dense in D′(T2) and we can define
the usual operations of differentiation, translation, reflection, convolution and multiplication. The
Fourier transform of u ∈ D′(T2) is the sequence {û(k)}k∈Z2 defined as

û(k) =
1

(2π)2
〈
u, e−ik·x

〉
, k = (k1, k2) ∈ Z2, x = (x, y) ∈ T2, (2.2)
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where 〈·, ·〉 denotes the pairing between D′(T2) and C∞(T2). The map ∧ : D′(T2) → G′(Z2) is a
linear bijection with inverse ∨ : G′(Z2)→ D′(T2) (the inverse Fourier transform) defined by

η = {ηk}k∈Z2 7→ η∨(x) :=
∑
k∈Z2

ηk e
ik·x, ∀ x = (x, y) ∈ T2,

where the series converges in the sense of D′(T2).
Recall that L2

p(T2) (the standard space of square integrable 2π-periodic functions) with complex
inner product

(u, v)L2
p(T2) =

∫
T2

u(x, y)v(x, y)dxdy

is a Hilbert space. If u ∈ L2
p(T2) then

û(k) =
1

(2π)2

∫
T2

e−ik·xu(x, y)dxdy.

2.2. Sobolev spaces and Fourier series. (See [45, Chapter 3 & 4]) In this subsection we will
introduce the so-called Sobolev spaces of L2-type on the 2-torus. Given s ∈ R, the (periodic)
Sobolev space of order s is defined as

Hs
p(T2) :=

{
u =

∑
k∈Z2

û(k) eik·x ∈ D′(T2)
∣∣∣‖u‖2Hs

p(T) := (2π)2
∑
k∈Z2

(1 + |k|)2s|û(k)|2 <∞

}
.

The space Hs
p(T2) is a Hilbert space endowed with the inner product

(u , v)Hs
p(T2) = (2π)2

∑
k∈Z2

(1 + |k|)2sû(k) v̂(k), v ∈ Hs
p(T2), u ∈ Hs

p(T2).

For any s ∈ R, (Hs
p(T2))′, the topological dual of Hs

p(T2), is isometrically isomorphic to H−sp (T2),
where the duality is implemented by the pairing

〈u, v〉H−s
p (T2)×Hs

p(T2) = (2π)2
∑
k∈Z2

û(k) v̂(k), for all v ∈ Hs
p(T2), u ∈ H−sp (T2).

If s1, s2 ∈ R with s1 ≥ s2 then Hs1
p (T2) ↪→ Hs2

p (T2), where the embedding is dense. Also H0
p (T2)

is isometrically isomorphic to L2
p(T2).

It is well-known that any distribution u ∈ Hs
p(T2), s ∈ R, may be written as

u = 2π
∑
k∈Z2

û(k)ψk = lim
l→∞

Sl(u),

where the limit is taken in the sense of D′(T2), Sl(u) is the l-th partial sum of the Fourier series
associated to u, defined by

Sl(u)(x) := 2π
∑

k=(k1,k2)∈Z2

|k|≤l

û(k)ψk,

and {ψk}k∈Z2 is a complete orthonormal sequence in L2
p(T2) (see [11, Chapter 3 & 3.1]) formed

by the complex-valued functions

ψk(x) =
1

2π
eik·x, k ∈ Z2, x = (x, y) ∈ T2. (2.3)

3. Well-posedness

Before establishing our main result concerning the exact controllability a we need a well-
posedness theory associated with (1.1). The following result states the well-posedness with initial
data in Hs

p(T2), s ∈ R.
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Theorem 3.1. Assume L satisfies (1.2)-(1.3). Then for any and u0 ∈ Hs
p(T2), s ∈ R, the IVP

u ∈ C(R;Hs
p(T2)),

∂tu = ∂xLu ∈ Hs−r
p (T2), t ∈ R,

u(0) = u0,

(3.1)

has a unique solution.

Proof. This follows from the standard semigroup theory. For the sake of completeness we bring
some steps (see for e.g. [3, 13, 36] for more details). We consider ∂xL : D(∂xL) ⊆ Hs−r(T2) →
Hs−r(T2), where D(∂xL) = Hs(T2). Note that D(∂xL) is dense in Hs−r(T2) and, using the
definition of ∂xL and the properties of the Fourier transform, we see that it is skew-adjoint, that
is, for any ϕ,ψ ∈ Hs(T2),

(∂xLϕ,ψ)Hs−r(T2) = − (ϕ, ∂xLψ)Hs−r(T2) .

Hence, by Stone’s theorem it follows that ∂xL generates a strongly continuous unitary group of
contractions, say, {U(t)}t∈R on Hs−r(T2). Theorem 3.2.3 in [3] now implies the desired result. �

Remark 3.2. Using the Fourier transform, we may deduce that the unique solution given in The-
orem 3.1 satisfies

û(t)(k) = eik1b(k)tû0(k), k = (k1, k2) ∈ Z2,

or by taking the inverse Fourier transform,

u(t) =
(
eik1b(k)tû0(k)

)∨
, t ∈ R.

It means that

u(x, t) =
∑
k∈Z2

eik1b(k)tû0(k)eik·x, x = (x, y) ∈ T2,

must be the unique solution of IVP (1.1) with initial data u0 ∈ Hs
p(T2), where the series converges

in the sense of D′(T2). In particular, the unitary group U(t) is given by

t 7→ U(t)ϕ := e∂xLtϕ =
(
eik1b(k)tϕ̂(k)

)∨
, k = (k1, k2) ∈ Z2,

in such way that the solution of IVP (1.1) with initial data u0 ∈ Hs
p(T2), becomes u(t) = U(t)u0,

for any t ∈ R. Also, recall that according to [3, Corollary 3.2.6] the adjoint operator U(t)∗ of U(t)
is linear bounded and satisfies U(t)∗ = U(−t), for all t ∈ R.

Next, we deal with the well-posedness of the non-homogeneous linear problem (1.12). The
following lemma is needed.

Lemma 3.3. Let s ≥ 0 and G be defined as in (1.8). Given any T > 0, the operator

G : L2([0, T ];Hs
p(T2)) −→ L2([0, T ];Hs

p(T2))

is linear and bounded.

Proof. It is clear that G is linear. In addition, for any h ∈ L2([0, T ];Hs
p(T2)), it follows from

(1.11) that

‖Gh‖2L2([0,T ];Hs
p(T2)) =

∫ T

0

‖Gh(t)‖2Hs
p(T2)dt

≤ C2

∫ T

0

‖h(t)‖2Hs
p(T2)dt

= C2‖h‖2L2([0,T ];Hs
p(T2)),

which yields the desired. �

Theorem 3.4. Let T > 0, s ≥ 0, u0 ∈ Hs
p(T), and h ∈ L2([0, T ];Hs

p(T2)). Then there exists a

unique (mild) solution u ∈ C([0, T ];Hs
p(T2)) of the IVP (1.12).
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Proof. As in the proof of Lemma 3.3 we infer that Gh ∈ L1([0, T ];Hs
p(T2)). Corollary 2.2 and

Definition 2.3 in [36, Chapter 4] imply that

u(t) = U(t)u0 +

∫ t

0

U(t− t′)Gh(t′)dt′

is the unique (mild) solution of
u ∈ C

(
[0, T ];Hs

p(T2)
)
,

∂tu = ∂xLu+Gh(t) ∈ Hs−r
p (T2), t ∈ (0, T ),

u(0) = u0 ∈ Hs
p(T2),

which in turn provides the solution of (1.12). �

4. Exact controllability results

This section is devoted to prove Theorems 1.1 and 1.2, as an application of the classical moment
method (see [40]). Before starting with the results, note that by replacing u1 by u1 − U(T )u0 if
necessary, we may assume without loss of generality that u0 = 0. Consequently, in view of our
assumptions, we may assume û1(0, 0) = û0(0, 0) = 0.

Let us start by writing the terminal estate u1 ∈ Hs
p(T2) as

u1(x) =
∑
k∈Z2

û1(k)eik·x = 2π
∑
k∈Z2

û1(k) ψk(x), (4.1)

where the series converges in the distributional sense and ψk is defined as in (2.3). Next result
characterizes the exact controllability of the linear non-homogeneous system (1.16). The idea of
the proof is similar to that of [37, Lemma 4.1], passing to the frequency space when necessary; so
we omit the details.

Lemma 4.1. Let s ≥ 0 and T > 0 be given. Assume u1 ∈ Hs
p(T2) with û1(0, 0) = 0. Then, there

exists h ∈ L2([0, T ];Hs
p(T2)) such that the solution of the IVP (1.16) with initial data u0 = 0

satisfies u(T ) = u1 if and only if∫ T

0

〈Gh(·, ·, t), ϕ(·, ·, t)〉Hs
p(T2)×(Hs

p(T2))′ dt = 〈u1(·, ·), ϕ0(·, ·)〉Hs
p(T2)×(Hs

p(T2))′ , (4.2)

for any ϕ0 ∈ (Hs
p(T2))′, where ϕ is the solution of the adjoint problem

ϕ ∈ C
(

[0, T ] :
(
Hs
p(T2)

)′)
,

∂tϕ = ∂xLϕ ∈ H−s−rp (T2), t > 0,

ϕ(T ) = ϕ0.

(4.3)

The following characterization to show the existence of control for the linear system (1.16) (with
initial data u0 = 0) is a direct consequence of Lemma 4.1. It provides a method to find the control
function h explicitly. For a proof in a very similar situation, we refer the reader to [47, Lemma
4.3].

Corollary 4.2 (Moment Equation). Let s ≥ 0 and T > 0 be given. If u1 is written as in (4.1)
and satisfies û1(0, 0) = 0, then the solution of (1.16) with initial data u0 = 0 satisfies u(T ) = u1
if and only if there exists h ∈ L2([0, T ];Hs

p(T2)) such that∫ T

0

(
Gh(·, ·, t), e−iλk(T−t)ψk(·, ·)

)
L2(T2)

dt = 2πû1(k), ∀ k = (k1, k2) ∈ Z2, (4.4)

where λk = k1b(k).

With Corollary 4.2 in hand, we see that in order to prove Theorem 1.1 (for instance) we only
need to construct a control function h satisfying relation (4.4). Before that, we need two additional
results. The first one, gives some properties of how the operators G1 and G2 behave at complex
exponential functions.
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Lemma 4.3. For G1 and G2 as in (1.9)-(1.10), define

mj,k
1 := Ĝ1(eijx)(k) =

1

2π

∫ 2π

0

G1(eijx)e−ikx dx, j, k ∈ Z, (4.5)

mj,k
2 := Ĝ2(eijy)(k) =

1

2π

∫ 2π

0

G2(eijy)e−iky dy, j, k ∈ Z. (4.6)

Then

(i) mj,0
n = 0, for all j ∈ Z and n = 1, 2;

(ii) m0,k
n = 0, for all k ∈ Z and n = 1, 2;

(iii) m0,0
n = 0, for n = 1, 2;

(iv) If j, k ∈ Z with j 6= 0 and k 6= 0, then

mj,k
n =


1

2π
, if j = k,

0, if j 6= k,
(4.7)

for n = 1, 2.

Proof. The proof follows by direct calculations. �

The second result, gives the existence of a biorthogonal basis with respect to {e−iλkt}k∈J.

Lemma 4.4. Let H := span{e−iλkt : k ∈ J} in L2([0, T ]). There exists a unique basis {qk}k∈J ⊂ H
such that

(e−iλkt , qk′)H =

∫ T

0

e−iλktqk′(t) dt = δkk′ , k,k′ ∈ J, (4.8)

where δkk′ represents the Kronecker delta.

Proof. The proof is quite well-known by now (see, for instance, [25, Theorem 1.3] or [47, Thorem
1.3]). The main idea is to use Ingham’s Theorem (see [17, Theorem 4.6, pag. 67]) to show that
{e−iλkt}k∈J is a Riesz basis of H. Then, the existence of the biorthogonal basis follows from the
standard theory in Hilbert spaces (see [12]). �

We are now able to show the main results of this section regarding exact controllability.

Proof of Theorem 1.1. We prove this Theorem in three steps. Recall, we are assuming û1(0, 0) = 0
in (4.1).

Step 1. Construction of h.
Let {qk}k∈J be the sequence obtained in Lemma 4.4. As a first step we will extend the definition

of qk for all k ∈ Z2. We do this following the rule: given k ∈ Z2 we know that there exists k′ ∈ J
such that λk = λk′ , so we define

qk(t) := qk′(t), t ∈ [0, T ]. (4.9)

The control function h is now defined as

h(x, y, t) =
∑
j∈Z2

hj qj(t) ψj(x, y), (x, y) ∈ T2, (4.10)
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for suitable coefficients hj’s to be determined later by using the Moment equation. Therefore, we
note that for any k = (k1, k2) ∈ Z2 the left-hand side of (4.4) can be rewritten as

I :=

T∫
0

(
Gh(x, y, t), e−iλk(T−t)ψk(x, y)

)
L2(T2)

dt

=

T∫
0

∑
j∈Z2

hjqj(t)G(ψj)(x, y, t), e
−iλk(T−t)ψk(x, y)


L2

p(T2)

dt

=
∑
j∈Z2

hj

T∫
0

qj(t) e
iλk(T−t) dt (G(ψj)(x, y), ψk(x, y))L2(T2)

=
∑
j∈Z2

hj e
iλkT

 T∫
0

e−iλkt qj(t) dt

 (G(ψj)(x, y), ψk(x, y))L2(T2) ,

where

(G(ψj)(x, y), ψk(x, y))L2(T2) =

(
g2(y)

eij2y

2π
G1(eij1x),

eik1xeik2y

2π

)
L2(T2)

+

(
g1(x)

eij1x

2π
G2(eij2y),

eik1xeik2y

2π

)
L2(T2)

= ĝ2(y)(k2 − j2)

(
1

2π

∫ 2π

0

G1(eij1x)e−ik1xdx

)
+ ĝ1(x)(k1 − j1)

(
1

2π

∫ 2π

0

G2(eij2y)e−ik2ydy

)
= ĝ2(y)(k2 − j2) mj1,k1

1 + ĝ1(x)(k1 − j1) mj2,k2
2 .

Hence,

I =
∑
j∈Z2

hj e
iλkT

 T∫
0

e−iλkt qj(t) dt

 ĝ2(y)(k2 − j2) mj1,k1
1

+
∑
j∈Z2

hj e
iλkT

 T∫
0

e−iλkt qj(t) dt

 ĝ1(x)(k1 − j1) mj2,k2
2 ,

(4.11)

with mjn,kn
n defined as in (4.5)-(4.6) for n = 1, 2.

Step 2. Construction of the coefficients hj.
First of all, note that in order to prove the first part of the theorem, identity (4.11), Lemma

4.3 (ii), and Corollary 4.2 yield that it suffices to choose hj’s such that

2πû1(k) =
∑

j∈Z∗×Z
hj e

iλkT

 T∫
0

e−iλkt qj(t) dt

 ĝ2(y)(k2 − j2) mj1,k1
1

+
∑

j∈Z×Z∗
hj e

iλkT

 T∫
0

e−iλkt qj(t) dt

 ĝ1(x)(k1 − j1) mj2,k2
2 ,

(4.12)

for all k = (k1, k2) ∈ Z2. Recall that Z∗ = Z \ {0}.
We will now show that we may indeed choose hj’s satisfying (4.12). To see this, first observe

that, since û1(0, 0) = 0, part (i) in Lemma 4.3 implies that (4.12) holds for (k1, k2) = (0, 0)
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independently of hj’s. In particular, we may choose h(0,0) = 0. Next, from Lemma 4.3 (i)-(iv), if

k = (k1, k2) ∈ Z2 with k1 6= 0 and k2 = 0, we see that (4.12) reduces to

2πû1(k1, 0) =
∑

j∈Z∗×Z
hj e

iλ(k1,0)T

 T∫
0

e−iλ(k1,0)t qj(t) dt

 ĝ2(y)(−j2) mj1,k1
1

=
∑
j2∈Z

h(k1,j2) e
iλ(k1,0)T

 T∫
0

e−iλ(k1,0)t q(k1,j2)(t) dt

 ĝ2(y)(−j2) mk1,k1
1 .

(4.13)

According to (4.8)-(4.9), all terms of the series on the right-hand side of (4.13) is zero, except for
those j2 ∈ Z such that

λ(k1,j2) = λ(k1,0).

In view of hypothesis (H2), this holds only for j2 = 0. Hence,

2πû1(k1, 0) = h(k1,0) e
iλ(k1,0)T ĝ2(y)(0)

1

2π
(4.14)

and, in view of (1.7),

h(k1,0) = (2π)3û1(k1, 0)e−iλ(k1,0)T . (4.15)

Similarly, from Lemma (4.3) (i)-(iv), if k = (k1, k2) ∈ Z2 with k1 = 0 and k2 6= 0, we see that
(4.12) reduces to

2πû1(0, k2) =
∑
j1∈Z

h(j1,k2) e
iλ(0,k2)T

 T∫
0

e−iλ(0,k2)t q(j1,k2)(t) dt

 ĝ1(x)(−j1) mk2,k2
2 . (4.16)

In view of hypothesis (H2), we see that λ(j1,k2) = λ(0,k2) only for j1 = ±0. Hence, from (4.8)-(4.9),
and (1.6) we deduce that

2πû1(0, k2) = h(0,k2) e
iλ(0,k2)T ĝ1(x)(0)

1

2π
(4.17)

or, equivalently,

h(0,k2) = (2π)3û1(0, k2)e−iλ(0,k2)T . (4.18)

Finally, if k = (k1, k2) ∈ Z2 with k1 6= 0 and k2 6= 0, we get from (4.12) and Lemma (4.3) (iv),
that

2πû1(k1, k2) =
∑
j2∈Z

h(k1,j2) e
iλ(k1,k2)T

 T∫
0

e−iλ(k1,k2)t q(k1,j2)(t) dt

 ĝ2(y)(k2 − j2) mk1,k1
1

+
∑
j1∈Z

h(j1,k2) e
iλ(k1,k2)T

 T∫
0

e−iλ(k1,k2)t q(j1,k2)(t) dt

 ĝ1(x)(k1 − j1) mk2,k2
2 .

(4.19)

According to (4.8)-(4.9), all terms in the sums are zero, except the ones where the entire variables
j1, j2 solve the following equations:

λ(k1,j2) = λ(k1,k2),

λ(j1,k2) = λ(k1,k2).

In view of hypothesis (H2), we have the solutions j2 = k2 and j1 = ±k1, respectively. Hence,

2πû1(k1, k2) = h(k1,k2) e
iλ(k1,k2)T ĝ2(y)(0)

1

2π
+ h(k1,k2) e

iλ(k1,k2)T ĝ1(x)(0)
1

2π

+ h(−k1,k2) e
iλ(k1,k2)T ĝ1(x)(2k1)

1

2π
,

(4.20)
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or, equivalently,

(2π)2e−iλ(k1,k2)T û1(k1, k2) = h(k1,k2)

(
ĝ2(y)(0) + ĝ1(x)(0)

)
+ h(−k1,k2) ĝ1(x)(2k1). (4.21)

Note that in the left-hand side of (4.21) appear the coefficients h(k1,k2) and h(−k1,k2); so, in order
to determine them we will couple (4.21) with another equation. To do so, observe that

2πû1(−k1, k2) =
∑
j2∈Z

h(−k1,j2) e
iλ(−k1,k2)T

 T∫
0

e−iλ(−k1,k2)t q(−k1,j2)(t) dt

 ĝ2(y)(k2 − j2) m−k1,−k11

+
∑
j1∈Z

h(j1,k2) e
iλ(−k1,k2)T

 T∫
0

e−iλ(−k1,k2)t q(j1,k2)(t) dt

 ĝ1(x)(−k1 − j1) mk2,k2
2 .

As before, from (4.8)-(4.9), all terms in the sums are zero, except the ones for which j1, j2 solves

λ(−k1,j2) = λ(−k1,k2),

λ(j1,k2) = λ(−k1,k2).

In view of hypothesis (H2) again, we must have j2 = k2 and j1 = ∓k1. Hence,

2πû1(−k1, k2) = h(−k1,k2) e
iλ(−k1,k2)T ĝ2(y)(0)

1

2π
+ h(−k1,k2) e

iλ(−k1,k2)T ĝ1(x)(0)
1

2π

+ h(k1,k2) e
iλ(−k1,k2)T ĝ1(x)(−2k1)

1

2π
,

or, which is the same,

(2π)2e−iλ(−k1,k2)T û1(−k1, k2) = h(−k1,k2)

(
ĝ2(y)(0) + ĝ1(x)(0)

)
+ h(k1,k2) ĝ1(x)(−2k1). (4.22)

It follows from (4.21) and (4.22) that we must solve the linear systemh(k1,k2)
(
ĝ2(y)(0) + ĝ1(x)(0)

)
+ h(−k1,k2) ĝ1(x)(2k1) = (2π)2e−iλ(k1,k2)T û1(k1, k2),

h(−k1,k2)

(
ĝ2(y)(0) + ĝ1(x)(0)

)
+ h(k1,k2) ĝ1(x)(−2k1) = (2π)2e−iλ(−k1,k2)T û1(−k1, k2).

To see that such a system has a (unique) solution, using (1.6)-(1.7), we may write it as 1

π
ĝ1(x)(2k1)

ĝ1(x)(−2k1)
1

π

( h(k1,k2)
h(−k1,k2)

)
= (2π)2

(
e−iλ(k1,k2)T û1(k1, k2)

e−iλ(−k1,k2)T û1(−k1, k2)

)
.

If we set

M :=

 1

π
ĝ1(x)(2k1)

ĝ1(x)(−2k1)
1

π

 ,

then

det(M) =
1

π2
− ĝ1(x)(2k1) ĝ1(x)(2k1) =

1

π2
−
∣∣∣ĝ1(x)(2k1)

∣∣∣2 =: dk1 .

Now, observe that since g1 is a non-negative function, from (1.6), we deduce,∣∣∣ĝ1(x)(2k1)
∣∣∣ ≤ 1

2π

∫ 2π

0

g1(x)dx =
1

2π
.

Hence,

dk1 ≥
1

π2
− 1

4π2
=

3

4π2
, ∀k1 ∈ Z,
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and the matrix M is invertible with

M−1 =


1

πdk1
− ĝ1(x)(2k1)

dk1

− ĝ1(x)(−2k1)

dk1

1

πdk1

 . (4.23)

This implies that the above system has a solution and, in addition, there exists a constant D,
independent of k1 ∈ Z∗, such that

‖M−1‖ ≤ D,
where ‖M−1‖ is the Euclidean norm of the matrix M−1.

Step 3. The function h defined by (4.10) with h(0,0) = 0, h(k1,0) given by (4.15), h(0,k2) given by
(4.18), and h(k1,k2) given as the solution of(

h(k1,k2)
h(−k1,k2)

)
= M−1

(
(2π)2e−iλ(k1,k2)T û1(k1, k2)

(2π)2e−iλ(−k1,k2)T û1(−k1, k2)

)
, for all (k1, k2) ∈ Z∗ × Z∗. (4.24)

belongs to L2([0, T ];Hs
p(T2)).

Indeed, recall from Lemma 4.4 that {qk}k∈J is a Riesz basis for H. Thus, from [12, Theorem
7.13] and the definition of qk, k ∈ Z2 it follows that {qk}k∈Z2 is a bounded sequence in L2([0, T ]).
Hence, in view of (4.10), we deduce the existence of a positive constant C such that

‖h‖2L2([0,T ];Hs
p(T2)) =

∑
k∈Z2

(1 + |k|)2s|hk|2
∫ T

0

|qk(t)|2 dt

≤ C
∑
k∈Z2

(1 + |k|)2s|hk|2

= C
∑
k1∈Z∗

(1 + |(k1, 0)|)2s|h(k1,0)|
2

+ C
∑
k2∈Z∗

(1 + |(0, k2)|)2s|h(0,k2)|
2

+ C
∑

(k1,k2)∈Z∗×Z∗
(1 + |(k1, k2)|)2s|h(k1,k2)|

2.

(4.25)

From (4.24), we infer that

|h(k1,k2)|
2 ≤ ‖M−1‖2(2π)4

(
|û1(k1, k2)|2 + |û1(−k1, k2)|2

)
, ∀(k1, k2) ∈ Z∗ × Z∗.

Therefore,

(1 + |(k1, k2)|)2s|h(k1,k2)|
2 ≤ D2(2π)4(1 + |(k1, k2)|)2s|û1(k1, k2)|2

+D2(2π)4|(1 + |(−k1, k2)|)2s|û1(−k1, k2)|2,
(4.26)

for all (k1, k2) ∈ Z∗ × Z∗. Thus, identities (4.15), (4.18) and (4.26) imply

‖h‖2L2([0,T ];Hs
p(T2)) ≤ C(2π)6

∑
k1∈Z∗

(1 + |(k1, 0)|)2s|û1(k1, 0)|2

+ C(2π)6
∑
k2∈Z∗

(1 + |(0, k2)|)2s|û1(0, k2)|2

+ 2C(2π)4D2
∑

(k1,k2)∈Z∗×Z∗
(1 + |(k1, k2)|)2s|û1(k1, k2)|2

≤ ν2
∑
k∈Z2

(1 + |k|)2s|û1(k)|2,

(4.27)

where ν2 = 3 max{C(2π)6, 2C(2π)4D2}. Since u1 ∈ Hs
p(T2) the above series converges. In addition

(1.17) holds (recall u0 = 0). This completes the proof of the theorem. �
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The proof of Theorem 1.2 is very similar with minor modifications, so we omit the details.

Corollary 4.5. Assume s ≥ 0. Under the assumptions of Theorem 1.1 or Theorem 1.2, for any
T > 2π

γ′ , there exists a unique bounded linear operator{
Φ : Hs

p(T2)×Hs
p(T2) −→ L2([0, T ];Hs

p(T2))

(u0, u1) 7−→ Φ(u0, u1) =: h

such that

u1 = U(T )u0 +

∫ T

0

U(T − s)(G(Φ(u0, u1)))(·, ·, s)ds

and

‖Φ(u0, u1)‖L2([0,T ];Hs
p(T2)) ≤ ν

(
‖u0‖Hs

p(T2) + ‖u1‖Hs
p(T2)

)
,

for some positive constant ν.

Remark 4.6. The constant ν in Corollary 4.5 depends only on s, g1 and T (resp. s, g2 and T )
under assumptions of Theorem 1.1 (resp. Theorem 1.2).

Corollary 4.7. Let s ≥ 0. Under assumptions of Theorem 1.1 or Theorem 1.2, for any T > 2π
γ′

there exists δ > 0 such that∫ T

0

‖G∗U(−t)∗φ‖2Hs
p(T2) (t)dt ≥ δ2‖φ‖2Hs

p(T2), ∀φ ∈ H
s
p(T2), (4.28)

where the constant δ depends only on s, g1, and T (resp. s, g2, and T ) under assumptions of
Theorem 1.1 (resp. Theorem 1.2).

Proof. This is a consequence of the Hilbert Uniqueness Method (HUM) due to J.-L. Lions [27].
Actually, as is well known, the exact controllability is equivalent to the observability inequality
(4.28). See for instance [28, Theorem 2.3] or [39, Theorem 2.4]. �

Remark 4.8. If γ′ = +∞, then Corollaries 4.5 and 4.7 are valid for any time T > 0.

5. Stabilization Results

In this section we prove the exponential stabilization result stated in Theorem 1.4. First, we
show if K is a bounded operator in Hs

p(T2) then system (1.13) is globally well-posed in Hs
p(T2),

s ≥ 0.

Theorem 5.1. Let u0 ∈ Hs
p(T2), s ≥ 0. Then the IVP (1.13) has a unique (mild) solution

u ∈ C([0,∞);Hs
p(T2)).

Proof. We know, from Theorem 3.1, that operator ∂xL, with domain Hs+r
p (T2) is the infinitesimal

generator of a unitary group in Hs
p(T2). Hence, it also generates of a C0-semigroup {U(t)}t≥0.

We also know that GK is a bounded linear operator on Hs
p(T2). From the semigroup theory (see

[36, page 76]), we get that operator ∂xL+GK, which is a perturbation of ∂xL by a bounded linear
operator, is the infinitesimal generator of a C0-semigroup, say, {T (t)}t≥0 on Hs

p(T2). Consequently,

(1.13) has a unique mild solution. �

Proof of Theorem 1.4. The well-posedness of IVP (1.20) is given by Theorem 5.1. Then, Theorem
1.4 is a direct consequence of Corollary 4.7 and the classical principle: Exact controllability implies
exponential stabilizability for conservative control systems (see [28, Theorem 2.3-2.4] and [44,
Theorem 2.1]). Actually, according to [44] one can choose

Kλ = −G∗D−1T,λ,

where, for some T > 2π
γ′ ,

DT,λφ =

∫ T

0

e−2λτU(−τ)GG∗U(−τ)∗φ dτ, ∀φ ∈ Hs
p(T2), (5.1)
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and U(t) is the C0-semigroup generated by ∂xL. �

6. Applications

In many situation, internal waves arise due to the gravitational effects, at the interface of two
layers in a stratified fluid. Several theoretical models exist which govern the evolution of long
internal waves with small amplitudes in such cases. When the height of the heavier fluid is much
larger than that of the upper layer, the motion is described by the Benjamin-Ono equation (BO)
[2, 35]:

∂tu−H∂2xu+ u∂xu = 0, x ∈ R, t > 0, (6.1)

where H denotes the Hilbert transform. Equation (6.1) may also be viewed as a general model for
the propagation of weakly nonlinear long waves incorporating the lowest-order effects of nonlinear-
ity and non-local dispersion and it turns out to be important in many others physical situations
(see, for instance, [7, 14, 29]).

On the other hand, when the total depth of the a fluid is very small, the motion is governed by
the Korteweg-de Vries (KdV) equation

∂tu+ ∂3xu+ u∂xu = 0, x ∈ R, t > 0, (6.2)

derived in [18] as a model for the propagation of long one dimensional surface gravity waves with
small amplitude in a shallow channel of water. The KdV equation has a very rich structure from
the mathematical point of view and it has also been derived in several other physical context (see,
for instance, [1]).

In both situations above, when transversal effects must also be considered, the resulting equa-
tions are bidimensional. Hence, in this section, we present some particular examples of bidimen-
sional dispersive PDE’s, where the general control theory developed in this work can be applied
to their linear counterpart.

6.1. The Zakharov-Kuznetsov (ZK) equation: One of the most accepted generalization of
the KdV equation in two dimensions is the Zakharov-Kuznetsov (ZK) equation:

∂tu+ ∂x∆u+ u∂xu = 0, (x, y) ∈ R2, t > 0, (6.3)

where ∆ denotes the bidimensional Laplacian, that is, ∆ = ∂2x + ∂2y . Equation (6.3) models ion-
acoustic waves propagating in a low-pressure magnetized plasma. It was derived in [48] where the
existence and stability for circularly symmetric soliton solutions were established. Questions of
local well-posedness for (6.3) in the Sobolev spaces Hs(R2) may be found, for instance in, [10],
[16], [24], [34]. The initial-value problem posed on the two dimensional torus was studied in [26].
In addition, in [33] the authors addressed the exact controllability of the linear ZK equation on a
rectangle with a left Dirichlet boundary control by using the flatness approach.

Here we address the exact controllability associated with the linear equation{
∂tu+ ∂x∆u = Gh, (x, y) ∈ T2, t > 0,

u(x, y, 0) = u0(x, y).
(6.4)

In order to set (6.4) as in (1.4), we define L = −∆ so that

b(k) := |k|2 = k21 + k22, for all k = (k1, k2) ∈ Z2,

and the eigenvalues of ∂xL are iλk with

λk := k1b(k) = k1(k21 + k22).

Clearly,
|b(k)| ≤ |k|2, for all k = (k1, k2) ∈ Z2

and (1.3) holds.
Also, it is easy to check that (H3) holds and the value of γ in (1.18) is equal to 1. Note that,

if n ∈ N, then λ(22n,0) →∞, λ(1,23n) →∞, as n→∞ and λ(22n,0) 6= λ(1,23n) with∣∣λ(22n,0) − λ(1,23n)∣∣ = |26n − 1− 26n| = 1.

Hence, γ′ defined in (1.19) is also equal to 1.
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Applying Theorem 1.2 we conclude that system (6.4) is exactly controllable in any time T > 2π
in the Sobolev space Hs

p(T2) with s ≥ 0, where the control function h is given by (4.10). Also,
Theorem 1.4 holds and the system (6.4) is exponentially stabilizable with any decay rate λ > 0.

6.2. The 2D Benjamin-Ono (2D-BO) equation: In this subsection, we consider a two-
dimensional extension of the BO equation, which reads as

∂tu−H(x)∂2xyu+ u∂yu = 0, (x, y) ∈ R2, t > 0, (6.5)

where H(x) denotes the Hilbert transform with respect to the x-variable, that is, via Fourier
transform,

Ĥ(x)u(ξ, η) = −i sng(ξ)û(ξ, η), (ξ, η) ∈ R2.

From the mathematical point of view, local and global well-posedness for (6.5) have been studied
in [30] and [31].

The control equation associated to the linear part of (6.5) on the periodic setting reads as
follows:

∂tu−H(x)∂2xyu = Gh, u(x, y, 0) = u0(x, y), (x, y) ∈ T2, t > 0. (6.6)

In this case the operator L takes the form L = H(x)∂y, where the Hilbert transform H(x) in the
frequency space is given by

Ĥ(x)u(k1, k2) := −i sng(k1)û(k1, k2), k = (k1, k2) ∈ Z2.

Therefore,
b(k) = k2 sgn(k1),

and the eigenvalues of operator ∂xL have the form iλk with

λk := k1b(k) = |k1|k2, k ∈ Z2. (6.7)

In what follows we shall show that Theorems 1.1, and 1.4 can be applied to prove that (6.6) is
exactly controllable in any time T > 2π, and exponentially stabilizable with any given decay rate
in the Sobolev space Hs

p(T2), s ≥ 0. Indeed, first of all note that

|b(k)| ≤ |k|, k ∈ Z2,

and (1.3) is true with r = 2. From (6.7) it is clear that (H2) holds. Additionally, for any k,k′ ∈ J,

|λk − λk′ | =
∣∣∣|k1|k2 − |k′1|k′2∣∣∣ ≥ 1.

Also, note that, if k1 →∞ then λ(k1+1,1) →∞, λ(k1,1) →∞, and λ(k1+1,1) 6= λ(k1,1) with∣∣λ(k1+1,1) − λ(k1,1)
∣∣ = ||k1 + 1| − |k1|| = 1.

Therefore, γ and γ′ defined respectively by (1.14) and (1.15) are, in this case, equal to 1. The
result follows as desired.

6.3. The Benjamin-Ono-Zakharov-Kuznetsov (BOZK) equation: Another model that may
be seen as a two-dimensional extension of the BO equation is the so called BOZK equation:

∂tu−H(x)∂2xu+ ∂x∂
2
yu+ u∂xu = 0, (x, y) ∈ R2, t > 0. (6.8)

The equation in (6.8) was introduced in [20] [15], and it has applications to electromigration in
thin nanoconductors on a dielectric substrate. Local and global well-posedness for the Cauchy
problem associated with (6.8) in Sobolev spaces was studied, for instance, in [4], [5], and [42].

In this subsection we investigate the control and stabilization properties of linear BOZK equa-
tion:

∂tu−H(x)∂2xu+ ∂x∂
2
yu = Gh, u(x, y, 0) = u0(x, y), (x, y) ∈ T2, t > 0. (6.9)

Here, we consider the operator L defined in (1.4) as L := H(x)∂x − ∂2y . Therefore,

b(k) = |k1|+ k22, k = (k1, k2) ∈ Z2,

and
|b(k)| = |k1|+ k22 ≤ |k|+ |k|2 ≤ 2|k|2, for all k ∈ Z2.
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The eigenvalues of operator ∂xL are iλk with

λk := k1b(k) = k1(|k1|+ k22).

Next, we shall verify that (H3) holds. We easily check that λ(k1,−k2) = λ(k1,k2) and λ(−k1,k2) =

−λ(k1,k2) for all (k1, k2) ∈ Z2. Also, for (k1, k2) ∈ Z2, with k1 6= 0, it is clear that the unique
entire solutions of the j2-equation

λ(k1,j2) = λ(k1,k2) ⇐⇒ k1j
2
2 = k1k

2
2,

are j2 = ±k2. On the other hand, for (k1, k2) ∈ Z2, with k2 6= 0, we analyze the entire solutions
of the j1-equation

λ(j1,k2) = λ(k1,k2) ⇐⇒ j1(|j1|+ k22) = k1(|k1|+ k22),

which can be rewritten in the following form

j1|j1| − k1|k1|+ k22(j1 − k1) = 0. (6.10)

It is enough to assume k1 6= 0, because the unique solution of (6.10) with k1 = 0 is clearly j1 = 0
and the desired result follows. Immediately, we observe that j1 and k1 should share the same sign.
To see this, it suffices to note that the expression on left-hand side in (6.10) is strictly positive
if j1 ≥ 0 and k1 < 0 and strictly negative when j1 ≤ 0 and k1 > 0. Therefore, to solve equation
(6.10) with k1 > 0, we may assume j1 ≥ 0 to see that it is equivalent to

(j1 − k1)(j1 + k1 + k22) = 0,

from which we obtain that the unique entire solution is j1 = k1. Similarly, when k1 < 0, equation
(6.10) is equivalent to

(j1 − k1)(−j1 − k1 + k22) = 0,

and again the unique entire solution is j1 = k1. Consequently, (H3) holds.
Finally, we note that γ given by (1.18) is equal to 1. In addition, by taking λ(k1,0) and λ(1,k1)

for any 0 < k1 ∈ Z we easily verify that λ(k1,0) →∞, λ(1,k1) →∞ as k1 →∞ and λ(k1,0) 6= λ(1,k1)
with

|λ(k1,0) − λ(1,k1)| = 1.

from which we infer γ′ = 1 (see (1.19)). Thus, we can apply Theorems 1.2 and 1.4 to deduce that
system (6.9) is exactly controllable in any T > 2π, and exponentially stabilizable with any decay
rate in the Sobolev space Hs

p(T2), s ≥ 0.

6.4. The dispersion generalized Benjamin-Ono-Zakharov-Kuznetsov (dgBOZK) equa-
tion: To finish our applications, we shall consider the dgBOZK equation

∂tu−Dα
x∂xu+ ∂x∂

2
yu+ u∂xu = 0, (x, y) ∈ R2, t > 0, (6.11)

where α > 0 and Dα
x is defined via Fourier transform as D̂α

xu(ξ, η) = |ξ|αû(ξ, η). In the case
α ∈ (1, 2), equation (6.11) may be seen as an interpolation between the ZK and BOZK equations
in the sense that in the limiting cases α = 2 and α = 1, (6.11) reduces to ZK and BOZK equations,
respectively. The interested reader will find some local and global well-posedness results for the
associated Cauchy problem in [6] and [42].

As in the earlier examples, here we study the control problem for the linear dgBOZK equation:

∂tu−Dα
x∂xu+ ∂x∂

2
yu = Gh, u(x, y, 0) = u0(x, y), (x, y) ∈ T2, t > 0, (6.12)

where α > 0 and Dα
x is now defined as D̂α

xu(k) = |k1|αû(k). Thus, the operator L reads as
L := Dα

x − ∂2y , so that

b(k) = |k1|α + k22,

and

|b(k)| ≤ |k1|α + k22 ≤ |k|α + |k|2 ≤

{
2|k|2, if 0 < α < 2,

2|k|α, if α ≥ 2,

which means that (1.3) holds. The eigenvalues of ∂xL are iλk with

λk := k1b(k) = k1(|k1|α + k22).
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Let us check that (H3) also holds here. Indeed, clearly the eigenvalues are even in the second
variable and odd in the first one. Also, for any k = (k1, k2) ∈ Z2 given with k1 6= 0, it is easy to
show that the unique entire solutions of the j2-equation

λ(k1,j2) = λ(k1,k2) ⇐⇒ k1(|k1|α + j22) = k1(|k1|α + k22),

are j2 = ±k2. On the other hand, if k = (k1, k2) ∈ Z2 is such that k2 6= 0, we now analyze the
entire solutions of the j1-equation

λ(j1,k2) = λ(k1,k2) ⇐⇒ j1(|j1|α + k22) = k1(|k1|α + k22),

which can be rewritten as
j1|j1|α − k1|k1|α + k22(j1 − k1) = 0. (6.13)

Similar to the analysis for the BOZK equation, we may assume k1 6= 0 and observe that j1, k1
share the same sign. Without loss of generality, let us assume k1 > 0 (the case k1 < 0 being
similar). Therefore, we may assume j1 ≥ 0 and (6.13) is equivalent to

jα+1
1 − kα+1

1 + k22(j1 − k1) = 0. (6.14)

Recall we want to show that (6.14) has no other solution than j1 = k1. Assume by contradiction
the existence of another solution, say, with j1 > k1. Then, from the Mean Value Theorem, for
some θ between k1 and j1, we have

(α+ 1)θα(j1 − k1) + k22(j1 − k1) = 0

or
(j1 − k1)[(α+ 1)θα + k22] = 0.

Since the expression between brackets is positive, this last identity is clearly a contradiction. This
shows hypothesis (H3) holds.

Hence, Theorems 1.2 and 1.4 also apply in this case and we conclude that system (6.12) is
exactly controllable at any time T > 2π and exponentially stabilizable with any decay rate.
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