
A MATRIX-FREE ILU REALIZATION BASED ON SURROGATES

DANIEL DRZISGA† , ANDREAS WAGNER†∗, AND BARBARA WOHLMUTH†

Abstract. Matrix-free techniques play an increasingly important role in large-scale simulations.
Schur complement techniques and massively parallel multigrid solvers for second-order elliptic partial
differential equations can significantly benefit from reduced memory traffic and consumption. The
matrix-free approach often restricts solver components to purely local operations, for instance, to the
most basic schemes like Jacobi- or Gauss–Seidel-Smoothers in multigrid methods. An incomplete LU
(ILU) decomposition cannot be calculated from local information and is therefore not amenable to an
on-the-fly computation which is typically needed for matrix-free calculations. It generally requires the
storage and factorization of a sparse matrix which contradicts the low memory requirements in large
scale scenarios. In this work, we propose a matrix-free ILU realization. More precisely, we introduce
a memory-efficient, matrix-free ILU(0)-Smoother component for low-order conforming finite-elements
on tetrahedral hybrid grids. Hybrid-grids consist of an unstructured macro-mesh which is subdivided
into a structured micro-mesh. The ILU(0) is used for degrees-of-freedom assigned to the interior
of macro-tetrahedra. This ILU(0)-Smoother can be used for the efficient matrix-free evaluation of
the Steklov–Poincaré operator from domain-decomposition methods. After introducing and formally
defining our smoother, we investigate its performance on refined macro-tetrahedra. Secondly, the
ILU(0)-Smoother on the macro-tetrahedrons is implemented via surrogate matrix polynomials in
conjunction with a fast on-the-fly evaluation scheme resulting in an efficient matrix-free algorithm.
The polynomial coefficients are obtained by solving a least-squares problem on a small part of the
factorized ILU(0) matrices to stay memory efficient. The convergence rates of this smoother with
respect to the polynomial order are thoroughly studied.

Key words. ILU-Smoother, multigrid, hybrid grids, polynomial surrogates, matrix-free

AMS subject classifications. 65F55, 65N55

1. Introduction. The incomplete LU(0)-factorization [34] (ILU) approximates
an LU factorization by retaining the sparsity pattern of the original matrix. For strongly
anisotropic problems in 2D, it is often used as a smoother within multigrid algorithms
since its convergence rates are more stable than the ones of simpler smoothers like
the Gauss–Seidel- or Jacobi-Smoothers [47, Sec. 7.8]. This property carries on to
anisotropic 3D problems in which the coupling in one spatial direction is dominant while
other schemes have to be used if two of the spatial directions are dominant [26]. The
related thresholded ILU-Smoother was recently used for p-multigrid in isogeometric
analysis [41,42] or as a smoother for the wave equation [45].

Besides its usage as a smoother, incomplete factorizations like the ILU are used
as preconditioners [5, 40], for instance in problems involving the incompressible Stokes
equation [24] or in electromagnetic scattering [31]. An algorithm for a communication
avoiding ILU(0) preconditioner in the high-performance context was introduced in [22].
Algorithms for the efficient parallel assembly of thresholded ILU preconditioners can
be found in [3] including adaptions to GPUs in [4, 30].

Matrix-free methods are becoming increasingly prevalent within finite-element
frameworks [27,29,46]. For instance, large scale mantle-convection simulations typically
operate on scales on which storing the discretization matrices is not always feasible [6].
On the other hand, reducing the memory traffic by not requiring to load a matrix from
memory has the potential to result in faster algorithms on today’s hardware. This

∗Corresponding author.
Funding: This work was partly supported by the German Research Foundation through grant

WO671/11-1.
†Lehrstuhl für Numerische Mathematik, Fakultät für Mathematik (M2), Technische Universität

München, Garching bei München (drzisga@ma.tum.de, wagneran@ma.tum.de, wohlmuth@ma.tum.de)

1

ar
X

iv
:2

21
0.

15
28

0v
1

 [
m

at
h.

N
A

]
 2

7
O

ct
 2

02
2

mailto:drzisga@ma.tum.de
mailto:wagneran@ma.tum.de
mailto:wohlmuth@ma.tum.de

2 DANIEL DRZISGA, ANDREAS WAGNER, BARBARA WOHLMUTH

generates interest in adapting old matrix-based algorithms to the matrix-free context.
For non-local factorization algorithms like the ILU, this poses a tremendous challenge
as the matrix entries cannot be locally computed on-the-fly.

For structured grids, several techniques exist to approximate matrices for an
efficient evaluation. For instance, stencil-scaling techniques that work for both scalar [7]
and vectorial [19] equations. However, since the ILU-approach relies on a matrix
factorization which cannot be computed locally, these approaches are inapplicable.
In our work, we propose a matrix-free ILU realization on structured subgrids based
on surrogates. Here, the discrete matrix, which usually approximates a continuous
operator is additionally approximated by surrogate polynomials [8–10,17,18]. These
techniques can also be adapted for hybrid structured grids which are extensively used
in [11–13, 27] and consist of a coarse unstructured macro-grid which is subdivided
into a fine structured micro-grid. The former gives the approach enough flexibility to
represent relevant domains while the latter provides the computational advantages of
structured grids.

In this work, we apply the surrogate methodology to our factorized ILU matrix.
In the interior of the highly structured grids, we utilize an ILU factorization and
approximate the resulting matrix by surrogate polynomials. This approximation is
formed in a memory-efficient way such that the memory costs stay within sensible
bounds. We therefore obtain an efficient solver in the interior of our structured grid.

To illustrate the potential of our approach, we provide two examples of how the
matrix-free ILU can be used on hybrid grids: Our main application is the approximation
of the Steklov–Poincaré operator for the Laplacian in a matrix-free way. This operator
is a main ingredient of many non-overlapping domain-decomposition methods and
therefore efficient algorithms for its evaluation are highly relevant, see [15,28,32,38,43]
and references therein. It formally requires the exact inversion of an elliptic equation
inside a subdomain for which a multigrid method can be efficiently applied. By using
the ILU-factorization as a smoother within this inner multigrid, the inversion becomes
robust with respect to distortions along one axis. In the supplementary material a
second application is provided in which we extend the subgrid ILU-Smoother to a
smoother on the global grid.

The article is structured as follows: In Section 2, we describe the problem, introduce
the notation and present the Steklov–Poincaré operator. In Section 3, we introduce an
ILU formulation that is amenable to a matrix-free algorithm. Next, we introduce a
reordering strategy on our hybrid mesh, to optimize its performance as a smoother
inside single subdomains. Finally, we introduce the matrix-free surrogate ILU in
Section 4 and compare its asymptotic convergence rates within a multigrid algorithm
to the matrix-based ILU. We conclude with a short outlook and summary in Section 5.

2. Hybrid grids. In this section, we describe our model problem in the context
of a low-order conforming finite element discretization on hybrid grids. Hybrid grids
combine the flexibility of unstructured grids with the computational advantages of
structured grids [11–13,33]. In addition, they provide a natural domain partitioning
that can be used to distribute the work to different nodes.

2.1. Preliminaries and notation. In the weak form of a Poisson-type equation,
−div(K∇u) = f , on an open domain Ω⊆R3 with homogeneous Dirichlet boundary
conditions on ΓD ⊆ ∂Ω, natural boundary conditions on ∂Ω\ΓD and an inhomogeneous,
bounded, symmetric, uniformly positive-definite diffusion tensor K(x) : Ω→ R3×3, we

A MATRIX-FREE ILU REALIZATION BASED ON SURROGATES 3

obtain the bilinear form

a(u, v) =

∫
Ω

∇u(x)>K(x)∇v(x) dx, u, v ∈ V =
{
u ∈ H1(Ω) : u|ΓD = 0

}
.

This includes the special case of a bounded, uniformly-positive scalar material pa-
rameter κ : Ω → R by setting K = κ Id3, where Id3 ∈ R3×3 is the identity matrix.
One application of the full diffusion tensor, would be the pull-back of a blending
function which maps a simple tetrahedral domain to a more complex domain, thereby
providing a better approximation of the domain boundary. Given a load f ∈ L2(Ω)
which defines the linear form F (v) =

∫
Ω
fv dx, we obtain the standard variational

problem: Find u ∈ V satisfying a(u, v) = F (v) for v ∈ V.
The typical approach in HHG [11–13] and HyTeG [27] is to discretize the domain Ω

with a coarse, possibly unstructured, simplicial triangulation. This so-called macro-
mesh consists of macro-vertices VH , macro-edges EH , macro-faces FH and macro-
tetrahedra TH . All macro-primitives are referred to as PH = VH ∪ EH ∪ FH ∪ TH .
Based on this initial grid, we construct a hierarchy of L ∈ N, grids T = {Thl , hl =
2−lH, l = 2, . . . L+ 1} by successive global uniform refinement. The choice to start
in the multigrid hierarchy with l = 2 guarantees that each macro-element contains
at least one interior element, which simplifies the notation in our algorithms. As it
is standard, each of these refinements is achieved by subdividing all elements in 3D
into 8 sub-elements. For details of the refinement in 3D, we refer to [14]. Due to
this refinement process, the element neighborhood at each vertex in the interior of a
macro element is always the same. The whole process of the hybrid grid mesh setup is
schematically depicted in Figure 1.

Associated with Thl , is the space Vhl ⊆V of piecewise linear conforming finite
elements

Vhl = {v ∈ V : v|t ∈ P1(t) for each t ∈ Thl}.

}
Fig. 1: Hybrid-grid refinement procedure in 3D for a clipped tetrahedron in a cubic
macro-mesh. The DoF belonging to the index sets Iv, Ie, If , It and I∂t are illustrated
by different colors and shapes.

Let φi ∈ Vhl and φj ∈ Vhl be the scalar-valued linear nodal basis functions
associated with the i-th and j-th mesh node. The set containing all our degrees-of-
freedom (DoF) indices is referred to by Ihl . If the multigrid level is obvious from the
context, we will try to suppress the level dependence hl for a more compact notation.
By u =

∑
i uiφi and v =

∑
i viφi we denote linear combinations of the nodal basis

function with coefficients ui, vi ∈ R. Defining the matrix Aij = a(φi, φj) and vector

4 DANIEL DRZISGA, ANDREAS WAGNER, BARBARA WOHLMUTH

fi = F (φi) results in the linear algebraic formulation of the discrete variational problem
associated with the weak formulation: Find u ∈ R|I| satisfying Au = f .

Hybrid meshes impose a domain-partitioning, which is also used for assigning the
DoF in an HPC environment to computing nodes. This approach avoids communication
between the DoF located inside the same macro-primitive, while for DoF on different
macro-primitives communication is necessary. This has to be considered for an efficient
evaluation of our operators since operations acting locally on the same primitive type
do not require inter-node communication. To define these local operations, we have
to introduce notation to localize our vectors and matrices: For arbitrary index sets
I ⊆I we define restriction operators RI : R|I| → R|I| consisting of zeros and ones,
which discard vector entries whose component is not present in the index set and just
retain entries in I. We also assume that the restriction operator retains the global
DoF ordering. Given a macro-primitive p ∈ PH , we denote the set of all DoF which
are located on the primitive by Ip⊆I and its restriction operator by Rp = RIp . For
an arbitrary macro-tetrahedron t ∈ TH , which is adjacent to macro-vertices vi ∈ VH ,
1 ≤ i ≤ 4, macro-edges ej ∈ EH , 1 ≤ j ≤ 6 and macro-faces fk ∈ FH , 1 ≤ k ≤ 4 we
define the index-set of its ghost-layer as I∂t = (∪4

i=1Ivi) ∪ (∪6
j=1Iej) ∪ (∪4

k=1Ifk). All
these sets are illustrated in Figure 1.

Our surrogate ILU algorithm heavily relies on geometric properties associated
with our DoF: Each micro-vertex in a macro-tetrahedron on level L can be labeled by
the logical grid coordinates GLt = {(x, y, z) ∈ Z3 : 0 ≤ x, y, z and x+ y + z < 2L + 1}.
Similarly, we define the inner grid coordinates by G̊Lt = {(x, y, z) ∈ Z3 : 1 ≤
x, y, z and x+y+z < 2L}. If we restrict the coordinates by setting z to a fixed value, we
obtain a face-layer GNf = {(x, y) ∈ Z2 : 0 ≤ x, y and x+y < N}. For a vector u|It∪∂It
on level l restricted to a tetrahedron t, there is a one-to-one correspondence between
DoF-indices in It and inner logical grid coordinates G̊Lt which can be constructed as
follows: Assume that t is adjacent to the macro-vertices vi at coordinates p̃i ∈ R3 for
1 ≤ i ≤ 4. The tetrahedron is spanned by the edges di = p̃i+1 − p̃1 at the base point
p̃1 for 1 ≤ i ≤ 3 (see Figure 2 left). The point p̃(x,y,z) = (d1 ·x+d2 · y+d3 · z)/(2L + 1)
for (x, y, z) ∈ GLt belongs to a shape function φk ∈ Vhl with k ∈ It ∪ I∂t such that
φk(p̃(x,y,z)) = 1. This induces the mapping ιt : It ∪ I∂t → GLt with ιt(k) = (x, y, z).
Thus, vector components ui of a vector u|It∪I∂t with ι ∈ It ∪ I∂t will also be referred
to by u(x,y,z) or up for p = (x, y, z) ∈ GLt , when the macro-tetrahedron t is evident
from the context.

The mapping between logical grid coordinates and local DoF in It also allows us to
specify an ordering of the DoF indices. This is crucial since the properties of the Gauss–
Seidel-Smoother (GS-Smoother) or the ILU-Smoother strongly depend on this order.
For i, j ∈ It with logical grid coordinates (xi, yi, zi) = ιt(i) and (xj , yj , zj) = ιt(j), we
fix the ordering by

i < j =⇒ (zi < zj) ∨ (zi = zj ∧ yi < yj) ∨ (zi = zj ∧ yi = yj ∧ xi < xj).

Consequently, the ordering strongly depends on the order of the adjacent macro-vertices
vi which we used to construct ιt. In Section 3, we will use this by permutating vi with
a permutation π to obtain good smoothing factors µt for the new DoF ordering.

We will now introduce the applied stencil notation for our surrogate-ILU-Algorithm
in Section 4. For this, we first define the stencil directions between logical coordinates
as displacement vectors, i.e. {x − y |x, y ∈ GLt }. The most common directions are
named after the four cardinal directions, as well as the top and bottom directions,
such that the x-axis runs from west to east, the y-axis from south to north, and the

A MATRIX-FREE ILU REALIZATION BASED ON SURROGATES 5

w e
nw

ses
n

bnw

tse
tc

bc
bn

be

tw

ts

(x,y,z)(x-1, y, z) (x+1, y, z)

(x,y,z+1)

(x,y,z-1) (x+1,y,z-1)

(x+1,y,z-1)

(x-1,y+1,z) (x,y+1,z)

(x+1,y-1,z+1)

(x-1,y,z+1)

(x+1,y-1,z)(x,y-1,z)

Fig. 2: Left: Direction vectors in a one-to-one correspondence between DoF and coor-
dinates. Right: Stencil directions and grid coordinates inside a structured tetrahedral
grid.

z-axis from top to bottom. For instance, the west direction w corresponds to the
displacement (−1, 0, 0). All stencil directions are collected in the set

D = {w, s, se, bnw, bn, bc, be, c, e, n, nw, tse, ts, tc, tw}.

Relying on the ordering defined above, the set of all lower stencil directions needed in
our ILU is given by

Dl = {w, s, se, bnw, bn, bc, be}.

Consider two indices i ∈ It and j ∈ It ∪ I∂t with coordinates pi = ιt(i) and pj = ιt(j).
Due to the local support of the low order conforming finite-element shape functions,
we know that if Aij 6= 0 there exists a d̃ ∈ D such that pj = pi + d̃. We can define the
stencil (Apid)d∈D by Api

d̃
= Aij . The matrix-vector multiplication v|It = (Au)|It on

the macro-tetrahedron t can therefore be written in terms of stencils as

vp =
∑
d∈D

Apdu
p+d for all p ∈ G̊Lt ,

where we identified the DoFs with logical coordinates. Stencils and the associated grid
coordinates are depicted in Figure 2 (right).

We mainly rely on a geometric multigrid algorithm which combines a so called
smoother with a coarse grid correction step to an optimal solver (see e.g. [23]). We now
introduce smoothers which only act on the DoF of a single primitive. This is motivated
by our hybrid mesh on which only operations between DoF located on the same
primitive are cheap while everything else requires expensive inter-node communication.
In our setting, for a given primitive p ∈ PH , a smoother acting on the DoF Ip located
on the primitive can be described by applying a preconditioner matrix Cp ∈ R|Ip|×|Ip|
inside a Richardson iteration with the appropriate restriction operators

u← u +RTp C
−1
p Rp(f −Au),

where we denote the current right-hand-side vector by f and the current estimate

6 DANIEL DRZISGA, ANDREAS WAGNER, BARBARA WOHLMUTH

by u. Note that usually Cp depends on our system matrix A and is not necessarily
symmetric. If it is, we stress this by using Cp,sym.

As a reference example, we consider the GS-Smoother: On the primitive p we
define the lower triangular part LA,p ∈ R|Ip|×|Ip| and diagonal part DA,p ∈ R|Ip|×|Ip|
of our system matrix A restricted to the primitive as

(LA,p)ij =

{
(RpAR

T
p)ij if j ≤ i

0 else
and (DA,p)ij =

{
(RpAR

T
p)ii if i = j

0 else
.

The GS-Smoother is then given by Cp = LA,p and its symmetrized version by Cp,sym =
(LA,p)(DA,p)

−1(LA,p)
T .

2.2. Steklov–Poincaré operator. The idea of many non-overlapping domain
decomposition methods is to solve a system of equations just on the boundary primitives
of a decomposition and apply static condensation to the interior DoF. Often, the
decomposition is performed on unstructured meshes using graph partitioning libraries
like METIS [25] or SCOTCH [36]. On hybrid meshes, the decomposition can simply
be derived from the macro-mesh such that each refined macro-tetrahedron represents
a subdomain. The macro-vertices, edges and faces and their respective DoF then
form the interfaces between the subdomains. The index set containing all DoF on
the macro-interface is given by IΓ = ∪t∈THI∂t. With the previously introduced
restriction operators, we define the submatrix AΓΓ = RΓAR

T
Γ which just considers the

coupling between the boundary DoFs, the matrix Att = RtAR
T
t which couples the

interior DoF of a macro-tetrahedron t ∈ Th and the coupling matrices AΓt = RΓAR
T
t ,

AtΓ = RtAR
T
Γ between the interior DoF of a tetrahedron and the boundary DoF.

Inverting A is equivalent to solving SuΓ = χΓ for uΓ where the Steklov–Poincaré
operator S is given by

S = AΓΓ −
∑
t∈TH

AΓtA
−1
tt AtΓ

and the right hand side is χΓ = RΓb −
∑
t∈TH AΓtA

−1
tt Rtb. The interior DoFs can

be reconstructed by solving Attut = Rtb−AtΓuΓ for ut on each tetrahedron t ∈ TH .
Usually, S is not constructed explicitly, but is inverted by using a preconditioned
conjugate gradient (PCG) method (see [15,43] for a non-exhaustive overview). The
PCG algorithms relies on the evaluation of matrix-vector products with S. Evaluating
S requires the evaluation of A−1

tt for which we use a multigrid method with an ILU-
Smoother in the interior of our macro-tetrahedron. We will show, that our ILU
algorithm gives us robustness with respect to tetrahedra which are distorted along
one axial direction.

3. Matrix-based ILU-Smoother. In this section, we introduce an ILU-Smooth-
er that is amenable to an efficient matrix-free implementation and investigate its
performance. Both the efficiency and the possibility for a matrix-free implementation
heavily depend on the used ILU formulation.

We first start with the general definition: Let the sparsity pattern of the matrix A
be given by SA = {(i, j) ∈ R|I|×|I||Aij 6= 0}, then the ILU factorization consisting of
the lower-triangular matrix L ∈ R|I|×|I| and diagonal matrix D ∈ R|I|×|I| is defined
by (LDLT)ij = Aij for i, j ∈ SA.

The ILU will be restricted to the interior of macro-tetrahedra. Hence, we define
the lower triangular matrices Lt ∈ R|It|×|It| and diagonal matrices Dt ∈ R|It|×|It| by

A MATRIX-FREE ILU REALIZATION BASED ON SURROGATES 7

(LtDtL
T
t)ij = (RtAR

T
t)ij for i, j ∈ SRtARTt . We thus define our preconditioner on the

macro-tetrahedra by Ct,sym = LtDtL
T
t .

Remark 3.1. Another popular choice would be the modified-ILU which is derived
from the factorization (L̊+D)D−1(L̊+D)Tij = Aij for (i, j) ∈ SA, where L̊ is now a
strictly lower-diagonal matrix. The remainder matrix containing the additional fill-in
is R = (L̊ + D)D−1(L̊ + D) − A. Summing over the remainder matrix terms and
adding them to the diagonal with a weight ω, i.e. (Dω)ii = Dii + ω

∑
i 6=j |rij |, yields

the modified ILU

(L̊+Dω)D−1
ω (L̊+Dω)T ,

which for ω = 0 becomes the usual ILU factorization, but is known to behave more
robustly for different triangle types [35]. For ω > 0, the Dω matrix contains entries
from the fill-in compared to the sparse matrix A, which we aim to approximate with
the ILU. In 3D, our fill-in consists of 12 additional nonzero entries per row which
cannot be calculated in a memory-efficient way during our factorization. They can
possibly be reconstructed approximately in a postprocessing step, but we nevertheless
restrict ourselves to the case of ω = 0.

For our concrete implementation, we aim for a factorization of the form LDLT ,
where L is a lower triangular matrix with a unit diagonal to minimize the number of
multiplications and divisions during the forward and backward substitutions.

3.1. Strategy on macro-elements. The performance of the ILU smoother
strongly depends on the ordering of the DoF. To mitigate this effect and increase
robustness, an alternating ILU-Smoother can be used [35] which successively applies
several ILU factorizations with different orderings. This cannot be efficiently done
in a matrix-free algorithm since the different orderings would result in cache misses
for at least one of the orderings. Thus, we have to use an efficient ordering from the
beginning which means that we may have to permute the tetrahedral vertices in a
preprocessing step. It is shown in [37] with a Local Fourier Analysis (LFA) that for
optimal performance, the triangles in 2D have to be orientated such that the first
vertex is at the largest angle, the second at the smallest, and the third at the remaining
angle.

This heuristic does not directly extend to 3D. For a more reliable strategy, we
iterate over all macro-tetrahedra and apply an LFA with the techniques from [20,21]
to the asymptotic ILU stencil for each of its possible orientations. Finally, we apply
the permutation resulting in the smallest smoothing factor to the macro-tetrahedron.

For a formula of the asymptotic ILU stencil, we derive the ILU in-place factorization
which only relies on local information from DoF neighbors. On structured grids, the
factorization can be derived by evaluating LDLT and comparing it to the matrix A
on the respective sparsity pattern. This yields the stencil equations

Apd =
∑

d̃∈Dl∪{c}

Lp
d̃
Dp+d̃
c Lp+d

d̃−d
, with d ∈ Dl ∪ {c}.

If the stencils at p+ d for d ∈ Dl are already factorized, this system of equations can
be solved for Lp

d̃
and Dp

c for d̃ ∈ Dl ∪ {c}. Thus, the factorization of the stencils Lp
d̃

8 DANIEL DRZISGA, ANDREAS WAGNER, BARBARA WOHLMUTH

and Dp
c at p = (x, y, z) at level L relies on information at the points

Ip = Iβp ∪ Iγp where

Iβp = {(x̃, y, z)|0 ≤ x̃ < x} ∪
{

(x̃, ỹ, z)|0 ≤ x̃ < 2L+1−ỹ−z, ỹ < y
}

and

Iγp =
{

(x̃, ỹ, z − 1)|0 ≤ x̃ < 2L+2−ỹ−z, 0 ≤ ỹ < 2L+2−z
}

are the logical DoF-coordinates on the current layer and the layer below. This standard
procedure was already applied in the very first ILU paper [34] for an incomplete
Cholesky decomposition in 2D on quadrilateral grids.

Specifically, we obtain the following equations

Apbc = LpbcD
p+bc
c ,

Aps = LpbcD
p+bc
c Lp+sbn + LpsD

p+s
c ,

Apbnw = LpbcD
p+bc
c Lp+bnwse + LpbnwD

p+bnw
c ,

Apbe = LpbcD
p+bc
c Lp+bew + LpbeD

p+be
c ,

Apw = LpbcD
p+bc
c Lp+wbe + LpbnwD

p+bnw
c Lp+wbn + LpsD

p+s
c Lp+wse + LpwD

p+w
c ,

Apbn = LpbcD
p+bc
c Lp+bns + LpbeD

p+be
c Lp+bnse + LpbnwD

p+bnw
c Lp+bnw + LpbnD

p+bn
c ,

Apse = LpbcD
p+bc
c Lp+sebnw + LpbeD

p+be
c Lp+sebn + LpseD

p+se
c + LpsD

p+s
c Lp+sew

and

Apc = Dp
c + (Lpbc)

2
Dp+bc
c + (Lpbe)

2
Dp+be
c + (Lpbnw)

2
Dp+bnw
c + (Lpbn)

2
Dp+bn
c

+ (Lpse)
2
Dp+se
c + (Lps)

2
Dp+s
c + (Lpw)

2
Dp+w
c ,(3.1)

at a grid point p = (x, y, z), where the already factorized symbols at points in Ip are
formatted in bold for convenience. We further omitted the equations which require
information that is not available during the factorization.

To estimate the asymptotic stencils, we assume K = Id3 inside the macro-
tetrahedra. The assumption is valid if K is close to a scaled identity and it is
not spatially varying too much. Inside the macro-tetrahedra, this leads to coordinate
independent stencils Apd = Ad for all d ∈ D at all grid points p. Similarly to the 2D
case from [37], we can now calculate the asymptotic ILU stencils L∞d and D∞c for
d ∈ D by iterating Eqs. 3.1 with a Gauss-Seidel scheme. The initial stencil values are

given by L
(0)
c = D

(0)
c = 1, L

(0)
d = D

(0)
d = 0 for d ∈ D \ {c}.

The Fourier symbols are then given by

D(θ) = D∞c , L(θ) = 1 +
∑
d∈Dl

L∞d e
id·θ and A(θ) =

∑
d∈D

Ade
id·θ

for θ ∈ (−π,+π)
3
. The smoothing factor µt is then calculated for the highly-oscillating

frequencies Θosc = (−π,+π)
3 \ (−π/2,+π/2)

3
by

µt = sup
θ∈Θosc

∣∣∣∣L(θ)D(θ)L(θ)−A(θ)

L(θ)D(θ)L(θ)

∣∣∣∣ .
For our purpose, µt is determined by sampling Θosc on a uniform grid with 16 samples
in each coordinate direction.

A MATRIX-FREE ILU REALIZATION BASED ON SURROGATES 9

In order to determine the optimal orientation of a macro-tetrahedron t, we it-
erate over all possible vertex permutations πk, 1 ≤ k ≤ 24, calculate µtπk for all
the permutated tetrahedra tπk and finally apply the permutation with the smallest
smoothing factor µtπk . Note that we need to calculate 163 · 24 = 98304 symbols per
macro-tetrahedron to determine the final orientation, but we only have to do this once
during a preprocessing step before the actual calculation.

Remark 3.2. We can a-priori determine the scaling behaviour of the asymptotic
stencils in the mesh width h: For this, assume that the asymptotic stencils D∞c , L∞d
for d ∈ Dl exist and that the stencil Apd is independent of p. Due to the transformation
rule, we know Ad ∼ Θ(h) and since Ac = D∞c (1 +

∑
d∈Dl(L

∞
d)2) has just positive

summands, we immediately see D∞c ∼ Θ(h), D∞c (L∞d)2 ∼ Θ(h) and thus L∞d ∼ Θ(1).

Numerical results for the performance of our smoother for different permutations
validating this strategy are given in Appendix A.

4. Matrix-free ILU-Smoother on macro-tetrahedra. After introducing our
matrix-based hybrid ILU-Smoother, we now turn towards our matrix-free algorithm.
Our goal is to develop a surrogate smoother with the same smoothing performance
as the ILU, but with significantly lower memory requirements supporting large scale
computations. For this purpose, it is sufficient to consider structured meshes consisting
of a single macro-tetrahedron since its behavior on hybrid grids is the same as for the
matrix-based variant. We also reflect this in our notation by omitting references to
specific tetrahedra t ∈ TH whenever possible and by keeping it as concise as possible.
Furthermore, we always assume that this macro-tetrahedron is oriented with respect
to our reordering strategy.

x
y

z

Fig. 3: Stencil functions for the L
(·)
d and D

(·)
c stencils of the distorted tetrahedron of

height h = 0.1 on grid level 5. The tetrahedron is scaled in the z-direction for better
visibility. The original tetrahedron is depicted with red dashed lines in the plots.

10 DANIEL DRZISGA, ANDREAS WAGNER, BARBARA WOHLMUTH

To motivate our approach, we depict in Figure 3 each stencil direction of the
factorized ILU of the distorted tetrahedron of height h = 0.1 as continuous functions.
The z-axis is exaggerated by a factor of 10 to make the stencil plots easier to read.
The outlines of the distorted untransformed tetrahedron are indicated by red dashed
lines in the plots while the outlines of the exaggerated tetrahedron are indicated by
black lines. One vertical and three horizontal slices make the inside visible. For all
stencil directions, we see that the stencil function does not vary much in the x-y-plane,
except for some tiny layer close to the boundary. Along the z-axis, all stencil functions
display a color gradient from top to bottom.

This allows us to make several important observations: Firstly, the stencil weights
of a single direction are smooth functions. Secondly, the stencil weights are anisotropic
with respect to the z-axis. Both observations will enter into our surrogate strategy.

0.75

0.50

0.25

0.00
bc

0.001

0.000

0.001
bnw

0.02

0.01

0.00
bn

0.02

0.01

0.00
be

0.00 0.05

0.2

0.4

0.6
c

0.00 0.05
0.005

0.004

0.003

0.002

se

0.00 0.05

0.02

0.01

s

0.00 0.05

0.02

0.01

w

level 5 level 6 level 7

Fig. 4: Stencil plots for the distorted tetrahedron on different grid levels along the
line parallel to the z-axis starting at (0.1, 0.1, 0) and ending at (0.1, 0.1, 0.1).

In Figure 4, we have a more thorough look at the behavior in the z-direction. We
have depicted the stencil weights of the matrix-based ILU for the distorted tetrahedron
along a line starting at (0.1, 0.1, 0) and ending at (0.1, 0.1, 0.1) for refinement levels
from 5 to 7. Each stencil direction approaches its asymptotic value towards the right.
From Remark 3.2, we expect that the diagonal stencil values from the D matrix scale
as the diagonal entries of the Laplacian with respect to the mesh width h. Thus, its
asymptotic value from a coarse level to its refinement has to decrease by a factor of 1/2
which is visible in the y-scaling of the center plots. For the stencils of the L matrix,
Remark 3.2 suggests that they do not scale in h at all, which results in the same
lower and upper bounds in the plots. We see that all the curves for the different levels
retain the same shape. Furthermore, the curve for level 5 scaled by 1/2 or 1/4 in the
x-direction yields curves similar to the ones on levels 6 and 7. This suggests, that the
non-asymptotic part of the stencil factorization decays in a level-independent way and
only depends on the graph distance on the mesh to the DoF in the x-y-plane.

A MATRIX-FREE ILU REALIZATION BASED ON SURROGATES 11

4.1. The surrogates. We want to replace our in-memory ILU algorithm with
a matrix-free variant to save main-memory storage capacities and enable large-scale
computations. Note that we cannot use an on-the-fly approach to execute the ILU
Algorithm, since the factorization itself does not rely only on local information.
Furthermore, only the forward substitution moves through the DoF in the same
direction as the typical in-place ILU factorization algorithm while the backward
substitution moves in the opposite direction. Rewriting the factorization such that
it moves in the same direction as the backward substitution is possible, but it is not
numerically stable due to the fact that it requires to reconstruct ILU stencils from
nearly asymptotic ILU stencils. Therefore, a memory-efficient factorization will only
be the first step of our algorithm and has to be combined with some approximation
approach that reconstructs the ILU.

For the factorization, we will use an in-place approach and store just enough
information to complete the factorization. Matrix entries which are no longer needed
for the factorization are immediately discarded. These types of in-place factorizations
are typically used for ILU factorizations [34] and just rely on local information from
factorized neighboring DoF. The factorization can be derived by solving Eqs 3.1 for
Lpd, d ∈ Dl and Dp

c at each point p = (x, y, z). Our asymptotic storage requirements for
the factorization can be estimated from the set Ip. Clearly, our memory requirements
scale as |Ip| = O(h−2) for storing the factorization on the current face-layer (Iβ) and
the layer below (Iγ). This has to be compared to a memory consumption scaling as
O(h−3) which we would need to store the stencils on the whole grid in a matrix-based
implementation. The O(h−2) for the factorization are thereby negligible for practical
purposes.

We want to replace factorized stencils with surrogate polynomial approximations
in the anisotropic polynomial space

Pdgx,dgy,dgz =
{
xiyjzk | 0 ≤ i ≤ dgx, 0 ≤ j ≤ dgy, 0 ≤ k ≤ dgz

}
for dgx,dgy,dgz ∈ N

such that L
(·)
d , (D

−1
c)(·) ∈ Pdgx,dgy,dgz for d ∈ Dl ∪ {c}. The different degrees for the

different directions will allow us to vary the accuracy of the stencils in a direction-
dependent way. The factorized stencils on our grid will be added direction-wise to a
least-squares (LSQ) problem to obtain one surrogate polynomial per stencil direction.
Of course, adding all the stencils to our least-squares problem would require a large
memory overhead to store the matrix and a large computational overhead for solving
the least-squares problem. Therefore, only stencils Lpd, D

p
c at points p ∈ Sd on some

coarser grid Sd of sample points will be added whose structure depends on the direction
d ∈ Dl ∪ {c}. For a coarse sampling grid at level LH , these sample points are defined
as

Sd =
{
p | p ∈ GLt , (p− (1− d)) mod min(2L/2LH , 1) = 0 and p+ d 6∈ GLt \ G̊Lt

}
.

They are illustrated for three directions in Figure 5. The shift by direction d is
necessary to make sure to have the utmost boundary points in our approximation as
sample points, which impacts the quality of the surrogate and thus the smoother.

This discontinuity also affects our substitution at the boundary. For these stencils,
we will test two variants: In the first variant denoted by (V1), all the boundary
stencils Lpd, D

p
d at boundary points p will be stored and later used in the backward and

forward substitutions. Again, this just requires a memory complexity of O(h−2) since
we have four boundary faces each with a O(h−2) storage requirement. In a second

12 DANIEL DRZISGA, ANDREAS WAGNER, BARBARA WOHLMUTH

a) bee

t

b) w b) c

{

Fig. 5: Illustration of the sample sets in the x-z plane for be, w, and c. All points
have the distance 2L/2LH along each grid axis. Note the offset from the bottom for be
and the offset from the left for w. No shift has to be applied for the c direction.

variant (V2), we will refrain from storing any boundary stencils and just correct the
interpolated stencil entries at the boundary during the substitutions by setting the
respective directions to 0.

The full factorization algorithm for 3D is given in Alg. 4.1. All the information in
Ip from previously factorized stencils is colored in red. The information of the current
stencil, which was calculated before and is used for other stencil entries, is colored in
blue. We denote temporarily saved stencils of the current face-layer belonging to Iβ

by β and stencils on the previous face-layer which correspond to Iγ by γ. After each
factorization step, we check if the stencil direction should be added to a least-squares
problem. Note that for the central direction, we add the multiplicative inverse to the
least-squares problem to avoid a floating-point division while applying the smoother.

Note that we rescale the integer coordinates (x, y, z) by the mesh width h before
adding them to the least-squares problem in order to have a level independent approx-
imation quality. The steps in which we store the boundary stencils of the factorization
are marked by (V1) and they are only used in the first variant of the algorithm.
Before increasing the z index, we have to copy β into γ.

In Alg. 4.2, we show one step of the smoothing algorithm. Again, the steps specific
to the first variant of the algorithm are marked by (V1) while steps exclusively for
the second variant are marked by (V2).

Altogether, by merging the operator application with the forward substitution and
the backward substitution with the diagonal scaling, we have to iterate twice over the
entire mesh. Therefore, the runtime due to the storage accesses should be comparable
to the symmetric GS algorithm which also iterates twice over the tetrahedral grid.
During the first iteration, we calculate the residual by either assembling the A matrix or
evaluating its surrogate matrix. We then plug the residual into the forward substitution
for L. In the second iteration, we combine the multiplication of the inverse diagonal
matrix D−1 with the backward substitution of LT and the correction step. The
evaluation of all the surrogate polynomials is implemented with a Newton’s Divided
Differences Formula (NDDF). The algorithm is known to be unstable, however, this
does not pose a problem for the low polynomial degrees considered here. This approach
significantly speeds up the polynomial evaluation compared to other schemes: If the
stencils for L at p = (x, y, z) were already evaluated, a new evaluation at the direct
neighbor (x+1, y, z) only takes (dgx+1)·|Dl| = 7·(dgx+1) floating point additions and
no multiplication at all. Similarly, if during the second iteration the stencils for LT and

A MATRIX-FREE ILU REALIZATION BASED ON SURROGATES 13

Algorithm 4.1 Memory efficient in-place LDLT factorization in a single tetrahedron.

1: N = number of micro-vertices on a macro edge.

2: Initialize β
(x,y)
d = γ

(x,y)
d = 0 for d ∈ Dl and β

(x,y)
c = γ

(x,y)
c = 1 and (x, y) ∈ GNf .

3: for z = 1, . . . , N − 2 do
4: for y = 1, . . . , N − 2− z do
5: for x = 1, . . . , N − 2− z − y do

6: Assemble Ad = A
(x,y,z)
d for d ∈ D.

7: Assign

8:

β
(x,y)
bc = Abc/γ

(x,y)
c

β(x,y)
s = (As − β(x,y)

bc γ(x,y)
c β

(x,y−1)
bn)/β(x,y−1)

c

β
(x,y)
bnw = (Abnw − β(x,y)

bc γ(x,y)
c γ(x−1,y+1)

se)/γ(x−1,y+1)
c

β
(x,y)
be = (Abe − β(x,y)

bc γ(x,y)
c γ(x+1,y)

w)/γ(x+1,y)
c

β(x,y)
w = (Aw − β(x,y)

bc γ(x,y)
c β

(x−1,y)
be − β(x,y)

bnw γ(x−1,y+1)
c β

(x−1,y)
bn

− β(x,y)
s β(x,y−1)

c β(x−1,y)
se)/β(x−1,y)

c

β
(x,y)
bn = (Abn − β(x,y)

bc γ(x,y)
c γ(x,y+1)

s − β(x,y)
be γ(x+1,y)

c γ(x,y+1)
se

− β(x,y)
bnw γ(x−1,y+1)

c γ(x,y+1)
w)/γ(x,y+1)

c

β(x,y)
se = (Ase − β(x,y)

bc γ(x,y)
c β

(x+1,y−1)
bnw − β(x,y)

be γ(x+1,y)
c β

(x+1,y−1)
bn

− β(x,y)
s β(x,y−1)

c β(x+1,y−1)
w)/β(x+1,y−1)

c

β(x,y)
c = Ac −

(
β

(x,y)
bc

)2

γ(x,y)
c −

(
β

(x,y)
be

)2

γ(x+1,y)
c

−
(
β

(x,y)
bnw

)2

γ(x−1,y+1)
c −

(
β

(x,y)
bn

)2

γ(x,y+1)
c

−
(
β(x,y)
se

)2

β(x+1,y−1)
c −

(
β(x,y)
s

)2

β(x,y−1)
c

−
(
β(x,y)
w

)2

β(x−1,y)
c

9: Set p = h · (x, y, z) ∈ R3.
10: for d ∈ Dl do

11: if (x, y, z) ∈ Sd then Add β
(x,y)
d at p to a LSQ problem.

12: if (x, y, z) on the cell boundary then Store β
(x,y)
d in memory. . (V1)

13: if (x, y, z) ∈ Sc then Add 1/β
(x,y)
c at p to a LSQ problem.

14: if (x, y, z) on the cell boundary then Store 1/β
(x,y)
c in memory. . (V1)

15: Copy β into γ.

16: Set β
(x,y)
c = 1 and β

(x,y)
d = 0 for d ∈ Dl with (x, y) ∈ GN−2−z

f .

17: Solve the least-squares problems.

D−1 at p = (x, y, z) were already evaluated, a new evaluation at the direct neighbor
(x + 1, y, z) only takes (dgx + 1) · (|Dl| + 1) = 8 · (dgx + 1) floating point additions.
Since the number of stencils with a predecessor to the west is O(h−3) compared
to O(h−2) stencils without a predecessor, the surrogate evaluation asymptotically
becomes computationally cheap for small h and large multigrid levels. Furthermore,
the stencils Lp, Dp and (LT)p taken together have the same number of non-zero stencil

14 DANIEL DRZISGA, ANDREAS WAGNER, BARBARA WOHLMUTH

Algorithm 4.2 Surrogate evaluation for x+ (LDLT)−1(b−Ax) with boundary layer.

1: for z = 1, . . . N − 2 do
2: for y = 1, . . . N − 2− z do
3: for x = 1, . . . N − 2− z − y do
4: Set p = (x, y, z).
5: Evaluate Apd for d ∈ D by surrogates with Newton’s Divided Differences
6: Formula (NDDF) or assemble it.
7: Apply wp = bp −

∑
d∈D A

p
dx
p+d for d ∈ Dl.

8: if p is on the cell boundary then
9: Load Lpd for d ∈ Dl from main memory. . (V1)

10: If p+ d is on the boundary set Lpd = 0. . (V2)
11: else
12: Evaluate Lpd for d ∈ Dl by surrogates with NDDF.

13: wp = wp −
∑
d∈Dl L

p
dw

p+d

14: for z = N − 2, . . . 1 do
15: for y = N − 2− z, . . . 1 do
16: for x = N − 2− z − y, . . . 1, do
17: Set p = (x, y, z)
18: Evaluate (Dp

c)−1 by surrogates with NDDF.
19: wp = wp · (Dp

c)−1

20: for d ∈ Dl do
21: if p− d is on the cell boundary then
22: Load Lp−dd for d ∈ Dl from main memory. . (V1)

23: If p− d is on the boundary set Lp−dd = 0 for d ∈ Dl. . (V2)
24: else
25: Evaluate Lp−dd for d ∈ Dl by surrogates with NDDF.

26: wp = wp −
∑
d∈Dl L

p−d
d wp−d

27: xp = xp + wp

entries as Ap. Therefore, we only have to evaluate one additional stencil compared
to the symmetric GS-Smoother. Note that the if statement inside the loop keeps
the pseudo-algorithm concise and in practice, it is avoided by moving it before the
loop. Therefore, for two sufficiently optimized implementations, we expect comparable
computational costs for the ILU and the symmetric GS-Smoother. In the following,
we will show that we can preserve the advantageous convergence rates from Section 3
with our surrogate smoother.

4.2. Numerical results. In the following, all numerical experiments are con-
ducted on a mesh hierarchy from levels 2 to 6. We use a V-cycle based multigrid solver
with 3 pre- and postsmoothing steps. A simple CG solver is used on the coarsest mesh.
The asymptotic convergence factor ρ is determined by 20-steps of a power iteration
applied to the error propagation operator with a random initial error.

To test the approximation quality of our ILU algorithm, we apply it to different
scalar coefficients κi, where

κi(x, y, z) = 1 + 10
(
xi + yi + zi

)
, with 0 ≤ i ≤ 3

is a polynomial of degree i on a trirectangular tetrahedron with unit height and vertices
(0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1). The asymptotic convergence rates are given in

A MATRIX-FREE ILU REALIZATION BASED ON SURROGATES 15

0 1 2 3
dgx = dgy = dgz

10 2

10 1

100

0 1 2 3
dgx = dgy = dgz

matrix
surrogate 0
surrogate 1
surrogate 2
surrogate 3

Fig. 6: Convergence rates of the surrogate ILU for different degrees for (V1) on the
left and (V2) on the right.

Figure 6 for (V1) on the left and (V2) on the right. The rates of the exact matrix
version are plotted with dashed lines. The operator A is approximated by a surrogate
with dgx = dgy = dgz = 3 while the degree of the surrogate approximation varies. For
undistorted tetrahedra, the convergence rates depend on the degree of the coefficient
function κi. Using the same degrees for the surrogate ILU and the coefficient function
κi allows us to recover the convergence rates of the original ILU algorithm. Both
versions of our algorithm perform similarly. Saving the boundary stencils in (V1) only
provides a small advantage in case of κ3 compared to using the surrogates everywhere
and adjusting the boundary stencils in (V2), see Figure 6.

0 1 2 3 4 5 6 7 8 9 10 11 12
dgx = dgy = dgz

10 3

10 2

10 1

100

0 1 2 3 4 5 6 7 8 9 10 11 12
dgz

matrix
surrogate V1
surrogate V2

Fig. 7: Convergence rates of the surrogate ILU for different degrees for (V1) on the
left and (V2) on the right.

In Figure 7, we use the constant κ = 1 on a distorted tetrahedron of height h = 0.1.
To approximate the Laplace operator for the residual, we use a constant surrogate
polynomial. On the left, we use isotropic degrees along each coordinate axis for both

16 DANIEL DRZISGA, ANDREAS WAGNER, BARBARA WOHLMUTH

variants of the surrogate ILU. The convergence rates ρ for both surrogate smoothers
nearly coincide and saving the boundary stencils yields only negligible improvements.

The previous results from Figure 3 suggest, that our stencil approximation has
to be accurate in the z-direction, while lower polynomial degrees should be feasible
inside the x-y-plane. Thus on the right of Figure 7, we set dgx = dgy = 0 and
only vary dgz. In this case, during our iteration O(h−3) stencils do not have to be
calculated at all, only the O(h−1) stencils along the z-axis have to be evaluated. The
asymptotic convergence rate of the correct ILU are not exactly attained even for large
polynomial degrees, though the difference is negligible for all practical purposes. To
obtain a similar convergence rate as for the isotropic case, a higher polynomial degree
in z-direction has to be used. Saving the boundary stencils leads here to a more robust
version, though again, both variants coincide if the polynomial degree in the z-direction
is large enough.

10 2

2 × 10 2
3 × 10 2
4 × 10 2
6 × 10 2

L2 -e
rro

r

bc

10 4

10 3 bnw

10 4

10 3

bn

10 4

10 3

be

0 2 4
degree

10 2

4 × 10 3
6 × 10 3

2 × 10 2

L2 -e
rro

r

c

0 2 4

10 4

10 3
se

0 2 4
10 4

10 3

s

0 2 4
degree

10 4

10 3

w

level 6 level 7

Fig. 8: Error in the discrete L2-norm for the L
(·)
d and D

(·)
c stencils of the distorted

tetrahedron with height h = 0.1 for levels 6 and 7. No values were skipped and no
boundary stencils were saved.

In Figure 8, the error in the discrete L2-norm is plotted on different multigrid
levels for surrogate degrees from 0 to 5. As expected, for all stencil directions, a higher
polynomial degree leads to a smaller overall error. For higher levels and hence finer
meshes, this error becomes typically larger for the same polynomial degrees. Recall
that in Figure 4, we observed that the non-asymptotic parts of the factorization are
scaled in the spatial direction by a factor of 1/2 from the coarser to the finer level.
Thus, the stencil functions which we aim to approximate obtain a larger gradient
and hence require higher polynomial degrees for the same approximation error. An
exception is the c-direction, whose absolute value (Figure 4) decreases by a factor of
1/2 from the coarser level to the finer level. This results in a smaller absolute error.

To show that our surrogate ILU also works in scenarios with less artificial geometries
and coefficients, we apply it to a blended tetrahedron on the outer boundary of a
narrow spherical shell with outer radius 1 and inner radius 0.9 (Figure 9 left). The
blended tetrahedron under consideration is depicted in red while the unperturbed
tetrahedron is indicated with black lines. The rest of the shell which we do not use in

A MATRIX-FREE ILU REALIZATION BASED ON SURROGATES 17

0 1 2 3 4 5 6 7 8 9 10
dgx = dgy = dgz

10 3

10 2

10 1

100

matrix
surrogate with boundary
surrogate without boundary

Fig. 9: Left: Test geometry with a distorted and blended tetrahedron. Right:
Convergence rates of the surrogate ILU on the given primitive for different degrees.

the simulation is indicated in light-gray. This benchmark combines both properties of
the previous example: the varying coefficient tensor due to the blending map and the
strong anisotropy due to the distorted base triangle.

For simplicity, we reassemble A for each operator application instead of relying on
a surrogate approximation.

The convergence rates are depicted on the right of Figure 9, for surrogate poly-
nomials with isotropic degrees along the coordinate axes. Starting with polynomial
degree 3, our ILU-Smoother is accurate enough to ensure convergence. In this case,
both variants of our ILU-Algorithm behave in the same way. For polynomials of
degrees larger than 7, the rates for the surrogate ILU and the matrix-based ILU
coincide.

An ILU-factorization is not only used as a smoother for multigrid methods, but can
also be applied directly as a preconditioner for a different iterative method. Candidates
would be the Richardson iteration or Krylov methods. This use-case is depicted in
Figure 10: We apply the surrogate ILU as a preconditioner within a CG method and
increase its degree along the x-axis. We present the required number of iterations for
decreasing the absolute residual below 10−3. The symmetric Gauss–Seidel method, not
depicted in the plot, needs 67 iterations for achieving this. The ILU’s performance is
much better, starting at 41 and 37 iterations for low polynomial degrees and resulting
in 9 to 7 iterations for higher degrees. Similar to the multigrid case, a surrogate
polynomial degree of 7 is roughly the point at which our approximation quality
stagnates and does not improve by much.

4.3. Performance analysis. Large scale low-order finite-element computations
are typically memory-bound. Therefore, to increase the performance of an algorithm
we have to minimize memory transfers. To judge the possible performance benefits
of our surrogate algorithm, we will therefore determine the arithmetic intensity of
Algorithm 4.2 away from the boundary. The costs for the different lines of our
implementation are given in Table 1. The columns on the left relate to our matrix-free
implementation while the right column lists the theoretical costs for a matrix-based
implementation. We separately sum up the costs of the first and second loop in

18 DANIEL DRZISGA, ANDREAS WAGNER, BARBARA WOHLMUTH

0 2 4 6 8 10 12
dgx = dgy = dgz

5

10

15

20

25

30

35

40
ite

ra
tio

ns
surrogate V1
surrogate V2
inplace

Fig. 10: Number of required iterations for a CG method directly preconditioned by
our ILU factorization to decrease the absolute residual below 10−3 for the example
from Fig. 9.

matrix-free in-memory
line memory traffic [Byte] FLOP memory traffic [Byte] FLOP
5 0 0 0 0
6 15 · 8 16 15 · 8 16
11 0 7 · degx 7 · 8 0
12 6 · 8 8 6 · 8 8∑

21 · 8 24 + 7 · degx 28 · 8 24
AI (1/7 + degx/24) FLOP/Byte 3/28 FLOP/Byte
17 0 1 · degx 1 · 8 0
18 1 · 8 1 1 · 8 1
24 0 7 · degx 7 · 8 0
25 6 · 8 8 6 · 8 8
26 1 · 8 1 1 · 8 1∑

8 · 8 10 + 8 · degx 16 · 8 10
AI (5/32 + degx/8) FLOP/Byte 5/64 FLOP/Byte

Table 1: Theoretical cost analysis of memory traffic and FLOP in the interior of our
mesh.

Algorithm 4.2.
In this analysis, we assume that no blending and a constant coefficient is used.

Hence, the matrix stencil Apd is constant, fits into the caches and therefore Line 6 does
not require memory traffic or FLOP. In Line 7, we can assume that xp+w is already
present in the cache. Therefore, only 15 vector entries of x and b have to be loaded,
and 15 multiplications and one subtraction have to be applied. Since we assume to

A MATRIX-FREE ILU REALIZATION BASED ON SURROGATES 19

38

40

42

44

46

Ru
nt

im
e

(R
DT

SC
) [

s]

0 1 2 3 4 5
degree

3000

4000

5000

DP
 [M

FL
OP

/s
]

dgx = dgy = dgz = deg
dgx = dgy = 1, dgz = deg
dgx = dgy = 2, dgz = deg

matrix-based
constant

Fig. 11: Performance for the forward-substitution: Top: Runtime for different surro-
gate polynomials. Bottom: Scalar double-precision FLOP/s for different surrogate
polynomials.

be in the interior, Lines 7-10 do not contribute. In Line 11, evaluating each of the 7
stencil entries takes degx evaluations. In Line 12, we assume that wp and wp+w are
already cached and that 7 multiplications followed by 1 addition are needed.

The in-memory implementation differs from the matrix-free implementation in
Lines 11 and 24, where instead of evaluating the stencil matrix-free, it has to loaded
from main memory. Altogether, 15 · 8 additional bytes have to be loaded from the
main memory. Therefore, our matrix-free implementation has the potential to decrease
the necessary memory traffic by 34%.

Finally, we want to discuss the total memory requirements of the factorization.
Both for the matrix-free and the in-memory algorithm, we need one additional inter-
mediate vector w which consists of #dof · 8 bytes. Since the memory requirements for
the polynomial coefficients can be neglected, no additional memory for the matrix free
implementation is required. The in-memory algorithm on the other hand requires the
storage of the matrices L and D. Since each interior row of L consists of 7 non-zeros, in
total #dof · 64 additional bytes have to be stored. Therefore, the in-memory algorithm
requires 9 times the memory of our matrix-free implementation.

In Figure 11, we depict the experimentally determined runtime and the FLOP/s
averaged over the processes of the second variant of our forward substitution. The
code is executed on an Intel Xeon Gold 6136 with 12 processes distributed over its two
sockets. As an example, we used a grid with 48 macro-tetrahedra on multigrid level 9
with 32 repetitions of the forward- and backward substitutions, and as a measurement
tool we rely on LIKWID [39,44]. In the figure, the performance of a simple matrix-
based implementation, in which all the stencils of the L, D and LT matrices are stored
continuously inside a large memory buffer is depicted with a dashed line while the
results of an implementation which just relies on fixed asymptotic stencils is denoted
with a solid line. The latter provides a lower bound for the attainable runtime of our

20 DANIEL DRZISGA, ANDREAS WAGNER, BARBARA WOHLMUTH

algorithm, but has no practical relevance.
If we increase the polynomial degree in each direction uniformly, we arrive at the

curve. With each increase in the degree, the FLOP count increases, and brings
a modest increase in runtime. For a degree larger or equal 3, storing the stencils
externally and loading them from memory is more efficient.

We showed that usually a high degree in the z-direction and lower degrees in
the x- and y-directions are completely sufficient to approximate the ILU-Surrogate
accurately enough. We use and to depict these scenarios, where the degrees in x-
and y-direction are fixed to 1 and 2, respectively, and only the degree in z-direction
is variable. In this case, the additional costs due to the higher degrees in z-direction
are negligible and are not visible in both plots. The runtime for our surrogate based
forward-substitution is consistently lower than for the matrix-based version, even
though we only get a minor performance gain.

Overall, we have presented a memory efficient ILU-Smoother which can be applied
to much larger problems as if matrix-based implementations are used. In the most
general case, our method yields a modest runtime penalty for larger polynomial degrees.
However, due to the reduced memory traffic, we can even achieve a small runtime gain
with our surrogate approach for many relevant cases.

5. Conclusion. In this paper, we have introduced an ILU algorithm on hybrid
grid geometries and investigated its performance within a multigrid solver. We replaced
the matrix-based algorithm by two matrix-free variants based on surrogate polynomials
approximating the stencils of the ILU matrix. To our knowledge, this is the first
matrix-free realization of a non-local operator based on an algebraic factorization.
Both matrix-free methods could attain the asymptotic convergence rates of their
matrix-based counterparts.

The ILU convergence rates were robust for individual distorted tetrahedra which
suggests a large performance gain for the matrix-free evaluation of the Steklov–Poincaré
operator on distorted hybrid grids compared to simpler smoothing schemes as the
GS algorithm. The surrogate ILU provides a huge memory reduction with a small
improvement in runtime compared to the usual matrix-based realizations.

Furthermore, only the standard ILU-Smoother was investigated. The extension of
our algorithm to a matrix-free version of the modified ILU described in Remark 3.1
and an investigation of its performance are still of interest.

Code availability. The software used for obtaining the presented results are part
of the open source framework HyTeG [27] and publicly available at [1]. The results
can be reproduced by executing the Python scripts in apps/ILUSmoother/scripts.

Appendix A. Smoother performance on single macro-tetrahedra. The
following numerical experiments investigate the performance of our smoother on single
macro-tetrahedra.

In Figure 12, we depict different tetrahedral shapes based on the ones in [21],
which are the “Spindle”, the “Cap”, the “Spade”, and a regular tetrahedron. The red
numbers are used to assign numbers to the vertices to which a permutation will be
applied. The tetrahedral coordinates are given in Table SM1 in the supplementary
materials.

Due to the symmetry of the shapes, we only obtain a small number of different
permutations. The asymptotic convergence rates for these are given in Table 2 for
both our ILU and symmetric GS-Smoother. The rate determined by our permutation
heuristic is marked in bold. For all shapes, our ILU-Smoother yields better rates than
the GS-Smoother if the best orientation is used. This gain is especially dramatic for

apps/ILUSmoother/scripts

A MATRIX-FREE ILU REALIZATION BASED ON SURROGATES 21

regularspade

spindle

cap

1

2
3

4

1

2

3

4

1

2

3

4

1

2
3

4

trirectangular

1

2

3

4

Fig. 12: Tetrahedron shapes.

the “Cap” shape, where ρGS ≈ 0.5, which means that 6-7 MG iterations are necessary
with GS when compared to a single MG iteration with an ILU-Smoother. In addition,
the optimal permutations for the GS and the ILU-Smoother always coincide. For a
fair comparison, we will therefore use in all our future comparisons the same ordering
for the GS as for the ILU-Smoother.

π (1 2 3 4) (1 3 2 4) (1 4 2 3) (1 2 3 4) (1 2 4 3) (1 3 4 2) (2 3 4 1)
ρGS 0.77 0.54 0.78 0.52 0.53 0.52 0.51
ρILU 0.65 0.39 0.35 0.010 0.43 0.43 0.0096
#GS 53 23 56 22 22 22 21
#ILU 33 15 14 3 17 17 3

Spindle Cap

π (1 2 3 4) (1 2 4 3) (1 3 4 2) (2 1 3 4) (2 1 4 3) (2 3 4 1) (1 2 3 4)
ρGS 0.20 0.085 0.20 0.079 0.20 0.055 0.054
ρILU 0.084 0.053 0.060 0.014 0.14 0.028 0.025
#GS 9 6 9 6 9 5 5
#ILU 6 5 5 4 8 4 4

Spade Regular

Table 2: Asymptotic convergence rates ρ and the number of iterations # to decrease
the error by 10−6 for different permutations π. The convergence rates due to our
reordering algorithm are marked in bold.

We depict the convergence rate of a trirectangular tetrahedron for different heights
of the top vertex in Figure 13. As we see in the leftmost plot, decreasing the height
degenerates the asymptotic convergence rate ρ for multigrid with symmetric GS
smoothing. It is a well-known fact that the ILU-Smoother remains robust with respect
to these deformations. The logarithmic plot in the middle even suggests, that it
becomes an exact solver. In the right we have plotted log(ρILU)/ log(ρSGS), which is
a measure how many additional multigrid iterations the SGS based multigrid need to

22 DANIEL DRZISGA, ANDREAS WAGNER, BARBARA WOHLMUTH

0.0 0.5 1.0
h

0.0

0.2

0.4

0.6

0.8

SGS
ILU

0.0 0.5 1.0
h

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

SGS
ILU

0.0 0.5 1.0
h

101

102

lo
g(

IL
U
)/

lo
g(

SG
S)

SGS

Fig. 13: The multigrid algorithm on a distorted tetrahedron. Left: The asymptotic
convergence rates for the multigrid algorithm. Middle: The convergence rates in a
semilogarithmic plot. Right: Comparison of log(ρILU)/ log(ρSGS).

achieve the same convergence rate as the ILU based multigrid. The performance gain
due to an ILU becomes arbitrary large for small heights h.

Both Table 2 and Figure 13 suggest, that the ILU on the reoriented tetrahedra
mesh provides a robust smoother inside the macro-tetrahedrons. This transfers directly
to the Steklov–Poincaré operator in which we use our ILU as an inner solver component.

Appendix SM1. Supplementary Material: Hybrid-Smoother. In this
second application, we extend the subgrid ILU-Smoother to a smoother on the global
grid. On the interfaces between the structured grids, we apply a simple Gauss–Seidel-
Smoother (GS-Smoother). Thereby, we obtain a block smoother that we examine on
a hybrid structured tetrahedral grid for a finite-element discretization of piecewise
continuous finite-element functions.

Given a set of preconditioner matrices Cp ∈ R|Ip|×|Ip| for the lower dimensional
primitives p ∈ VH ∪EH ∪FH and a set of symmetric preconditioner matrices Ct,sym =
CTt,sym ∈ R|It|×|It| for each tetrahedron t ∈ TH , we define a symmetric hybrid smoother
in Algorithm SM1.1. This smoother sequentially updates the degrees-of-freedom (DoF)

Algorithm SM1.1 Symmetric hybrid smoother.

1: u← u +
∑
v∈VH R

T
v C
−1
v Rv (f −Au).

2: u← u +
∑
e∈EH R

T
e C
−1
e Re (f −Au).

3: u← u +
∑
f∈FH R

T
f C
−1
f Rf (f −Au).

4: u← u +
∑
t∈TH R

T
t C
−1
t,symRt(f −Au).

5: u← u +
∑
f∈FH R

T
f C
−T
f Rf (f −Au).

6: u← u +
∑
e∈EH R

T
e C
−T
e Re (f −Au).

7: u← u +
∑
v∈VH R

T
v C
−T
v Rv (f −Au).

on the macro-vertices, macro-edges, macro-faces and macro-tetrahedra. In order
to retain symmetry, we traverse the macro-hierarchy in the reverse direction by

A MATRIX-FREE ILU REALIZATION BASED ON SURROGATES 23

applying smoothing steps to the macro-face, macro-edge and finally to the macro-
vertex DoF. Note that procedures like that can be performed efficiently for distributed
memory parallelizations since all DoF sharing a primitive type can be smoothed in
parallel [27]. Due to the symmetrization it is possible to use our multigrid algorithm
as a preconditioner for a conjugate gradient (CG) or minimial residual (MINRES)
method.

We define a hybrid symmetric Gauss–Seidel-Smoother (SGS-Smoother) as a
reference example. It is given by

Cv = LA,v, Ce = LA,e, Cf = LA,f , and Ct,sym = (LA,t)(DA,t)
−1(LA,t)

T ,

for v ∈ VH , e ∈ EH , f ∈ FH and t ∈ TH . For simplicity, we will refer to it by
Gauss–Seidel even though this is technically not correct since some of the DoF on the
interfaces VH ∪ EH ∪ FH are handled additively instead of multiplicatively. Numerical
experiments in [27] have shown that in practice this has no impact on the convergence
rates.

The hybrid ILU-Smoother is defined similarly by

Cv = LA,v, Ce = LA,e, Cf = LA,f , and Ct,sym = LtDtL
T
t .

In a nutshell, the smoother consists of Gauss–Seidel steps on the macro-vertices, macro-
edges, and macro-faces. The ILU itself is just applied inside the macro-tetrahedra.

Remark SM1.1. We stress that the submatrices RvAR
T
v , ReAR

T
e , and RfAR

T
f for

v ∈ VH , e ∈ EH , and f ∈ FH on the lower dimensional primitives are well conditioned
matrices. Hence, even a simple iterative scheme is sufficient for reducing the error
significantly. Therefore, using an ILU also on the lower primitives is not necessary
and only complicates the implementation.

SM1.1. Numerical experiments. We investigate the performance of our hy-
brid ILU-Smoother on a hybrid mesh consisting of several tetrahedra. For this, we
will introduce a suitable benchmark problem. Firstly, we will directly apply the
multigrid algorithm as solver and in a second scenario we will use the multigrid as a
preconditioner within a CG method.

Benchmark. Figure 1 depicts our benchmark scenario. A unit cube with Dirichlet
boundary conditions on the top and bottom and Neumann boundary conditions on the
remaining sides is divided into two parts where hlower is the height of the lower volume.
In both volumes, we assume a piecewise constant material parameter κ with a possible
jump at the interface. We want to compare the convergence rates for different heights
of the lower cube. This is similar to a scenario in geophysics in which the viscosity
jumps from a narrow upper layer in the Earth’s mantle that can barely be resolved to
a wider lower layer [16]. We will use this scenario to assess the performance of our
hybrid ILU-Smoother.

24 DANIEL DRZISGA, ANDREAS WAGNER, BARBARA WOHLMUTH

Fig. SM 1: Benchmark scenario:
The size of the lower half of the
cube is decreased to approximate
a tiny layer in the Earth’s mantle.

Geometry x y z
Spindle 0.0 0.0 0.5

0.0 0.0 -0.5
0.5 1.0 0.0
-0.5 1.0 0.0

Cap 0.0 0.0 0.0
1.0 0.0 0.0
0.5 0.866 0.0
0.5 0.288 0.093

Spade 0.0 0.0 0.0
1.0 -0.666 0.0
1.0 0.666 0.0
1.0 0.0 0.443

Table SM 1: Tetrahedral coordinates
for the Spindle, Cap and Spade.

Multigrid solver. The results for the asymptotic convergence rates of our multigrid
algorithm are depicted in the left of Figure 2, for a fixed κlower = 1 and 3 different
choices of κupper. As expected, since the material jump happens on an interface that
can be resolved by all coarse grids, it does not impact the SGS-Smoother (see [23,
Sec. 10.3]) and the same is true for our ILU-Smoother. For jumps inside the elements,
special interpolation operators would have to be introduced [2]. Our ILU-Smoother
consistently performs better than the SGS-Smoother for the multigrid algorithm.
For small tetrahedral heights, the performance of both smoothers decays and the
convergence rate approaches one. The slope of the performance degradation is similar
for both smoothers. Note that on the interfaces, we use the same Gauss–Seidel
smoothing strategy for both smoothers which suggests that the performance loss is
related to them and better methods are necessary to handle the interfaces.

Multigrid preconditioner. In the right plot of Figure 2, we use our multigrid
algorithm only as a preconditioner for a CG solver and plot the iteration count for
getting the absolute unpreconditioned residual below 10−5. The hybrid ILU-Smoother
is an improvement compared to the SGS-Smoother, but again the hybrid solver cannot
preserve the robustness with respect to degenerated tetrahedra. The ratio between
the number of iterations between a GS and an ILU based multigrid preconditioner is
depicted in the lower right. For a large range of heights it stays around 1.2 before it
degenerates to 1 for extremely small heights.

SM1.2. Conclusion. We extended the smoother to a hybrid ILU-Smoother to
directly use it as a smoother on a more complex domain with several tetrahedrons
joined via an interface. In this case, our algorithm outperforms the SGS-Smoother
while having comparable computational costs.

Although, a hybrid block smoother is perfectly suited for matrix-free approaches on
hybrid meshes, we observed that it lacks robustness with respect to poorly structured
macro-meshes. Future work might therefore include applying more sophisticated

A MATRIX-FREE ILU REALIZATION BASED ON SURROGATES 25

0.0 0.1 0.2 0.3 0.4 0.5
hlower

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
SGS upper = 10 5

ILU upper = 10 5

SGS upper = 1
ILU upper = 1
SGS upper = 105

ILU upper = 105 101

102

ite
ra

tio
ns

SGS upper = 10 5

ILU upper = 10 5

SGS upper = 1
ILU upper = 1
SGS upper = 105

ILU upper = 105

0.0 0.1 0.2 0.3 0.4 0.5
hlower

1.0

1.2

1.4

ite
r S

G
S
/it

er
IL

U
Fig. SM 2: Different solvers applied to our benchmark scenario (Fig. 1). Left:
Asymptotic convergence rates with a multigrid V-Cycle on grid levels 2 to 6, and 3
pre- and postsmoothing steps. Right: The V-Cycle used as a preconditioner for a
PCG solver with iteration numbers in the upper plot and the ratio of the SGS and
ILU iteration numbers in the lower plot.

techniques on the interfaces to further improve the performance.

Appendix SM2. Simulation data. Table 1 provides the detailed coordinates
of the reference tetrahedra for result reproductions and comparisons.

REFERENCES

[1] ILU implementation - source code. https://doi.org/10.5281/zenodo.7199022.
[2] R. E. Alcouffe, A. Brandt, J. E. Dendy, Jr, and J. W. Painter, The multi-grid

method for the diffusion equation with strongly discontinuous coefficients, SIAM Journal on
Scientific and Statistical Computing, 2 (1981), pp. 430–454.

[3] H. Anzt, E. Chow, and J. Dongarra, ParILUT—a new parallel threshold ILU
factorization, SIAM Journal on Scientific Computing, 40 (2018), pp. C503–C519.

[4] H. Anzt, T. Ribizel, G. Flegar, E. Chow, and J. Dongarra, ParILUT-a parallel
threshold ILU for GPUs, in 2019 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), IEEE, 2019, pp. 231–241.

[5] O. Axelsson, Incomplete block matrix factorization preconditioning methods. the ultimate
answer?, Journal of Computational and Applied Mathematics, 12 (1985), pp. 3–18.

[6] S. Bauer, H.-P. Bunge, D. Drzisga, S. Ghelichkhan, M. Huber, N. Kohl,
M. Mohr, U. Rüde, D. Thönnes, and B. Wohlmuth, TerraNeo—mantle con-
vection beyond a trillion degrees of freedom, in Software for Exascale Computing-SPPEXA
2016-2019, Springer, 2020, pp. 569–610.

[7] S. Bauer, D. Drzisga, M. Mohr, U. Rüde, C. Waluga, and B. Wohlmuth, A
stencil scaling approach for accelerating matrix-free finite element implementations, SIAM
Journal on Scientific Computing, 40 (2018), pp. C748–C778.

[8] S. Bauer, M. Huber, S. Ghelichkhan, M. Mohr, U. Rüde, and B. Wohlmuth,
Large-scale simulation of mantle convection based on a new matrix-free approach, Journal
of Computational Science, 31 (2019), pp. 60–76, https://doi.org/10.1016/j.jocs.2018.12.006,
https://doi.org/10.1016/j.jocs.2018.12.006.

[9] S. Bauer, M. Huber, M. Mohr, U. Rüde, and B. Wohlmuth, A new matrix-free
approach for large-scale geodynamic simulations and its performance, in International
Conference on Computational Science, Springer, 2018, pp. 17–30.

[10] S. Bauer, M. Mohr, U. Rüde, J. Weismüller, M. Wittmann, and
B. Wohlmuth, A two-scale approach for efficient on-the-fly operator assembly in
massively parallel high performance multigrid codes, Applied Numerical Mathematics,

https://doi.org/10.5281/zenodo.7199022
https://doi.org/10.1016/j.jocs.2018.12.006
https://doi.org/10.1016/j.jocs.2018.12.006

26 DANIEL DRZISGA, ANDREAS WAGNER, BARBARA WOHLMUTH

122 (2017), pp. 14 – 38, https://doi.org/https://doi.org/10.1016/j.apnum.2017.07.006,
http://www.sciencedirect.com/science/article/pii/S0168927417301642.

[11] B. Bergen, Hierarchical Hybrid Grids: Data Structures and Core Algorithms for Efficient
Finite Element Simulations on Supercomputers, SCS Publishing House, Erlangen, 2005.

[12] B. Bergen and F. Hülsemann, Hierarchical hybrid grids: data structures and core
algorithms for multigrid, Numer. Lin. Alg. Appl., 11 (2004), pp. 279–291.

[13] B. Bergen, G. Wellein, F. Hülsemann, and U. Rüde, Hierarchical hybrid grids:
Achieving TERAFLOP performance on large scale finite element simulations, International
Journal of Parallel, Emergent and Distributed Systems, 22 (2007), pp. 311–329.

[14] J. Bey, Tetrahedral grid refinement, Computing, 55 (1995), pp. 355–378.
[15] T. F. Chan and T. P. Mathew, Domain decomposition algorithms, Acta numerica, 3

(1994), pp. 61–143.
[16] G. F. Davies and M. A. Richards, Mantle convection, The Journal of Geology, 100

(1992), pp. 151–206.
[17] D. Drzisga, B. Keith, and B. Wohlmuth, The surrogate matrix methodology: A priori

error estimation, SIAM Journal on Scientific Computing, 41 (2019), pp. A3806–A3838,
https://doi.org/10.1137/18M1226580.

[18] D. Drzisga, B. Keith, and B. Wohlmuth, The surrogate matrix methodology: Low-
cost assembly for isogeometric analysis, Computer Methods in Applied Mechanics and
Engineering, 361 (2020), p. 112776, https://doi.org/10.1016/j.cma.2019.112776.

[19] D. Drzisga, U. Rüde, and B. Wohlmuth, Stencil scaling for vector-valued PDEs on
hybrid grids with applications to generalized Newtonian fluids, SIAM Journal on Scientific
Computing, 42 (2020), pp. B1429–B1461.

[20] F. J. Gaspar, J. L. Gracia, and F. J. Lisbona, Fourier analysis for multigrid methods
on triangular grids, SIAM Journal on Scientific Computing, 31 (2009), pp. 2081–2102.

[21] B. Gmeiner, T. Gradl, F. Gaspar, and U. Rüde, Optimization of the multigrid-
convergence rate on semi-structured meshes by local Fourier analysis, Computers & Mathe-
matics with Applications, 65 (2013), pp. 694–711.

[22] L. Grigori and S. Moufawad, Communication avoiding ILU0 preconditioner, SIAM
Journal on Scientific Computing, 37 (2015), pp. C217–C246.

[23] W. Hackbusch, Multi-grid methods and applications, vol. 4, Springer Science & Business
Media, 2013.

[24] S. Kang, L. C. Ngo, H. Choi, W. Chung, Y.-H. Yoo, and J. Y. Yoo, Performance
comparison of parallel ILU preconditioners for the incompressible Navier-Stokes equations,
Journal of Mechanical Science and Technology, 34 (2020), pp. 1175–1184.

[25] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning
irregular graphs, SIAM Journal on Scientific Computing, 20 (1998), pp. 359–392, https:
//doi.org/10.1137/S1064827595287997, https://doi.org/10.1137/S1064827595287997, https:
//arxiv.org/abs/https://doi.org/10.1137/S1064827595287997.

[26] R. Kettler and P. Wesseling, Aspects of multigrid methods for problems in three
dimensions, Applied mathematics and computation, 19 (1986), pp. 159–168.

[27] N. Kohl, D. Thönnes, D. Drzisga, D. Bartuschat, and U. Rüde, The HyTeG
finite-element software framework for scalable multigrid solvers, International Journal of
Parallel, Emergent and Distributed Systems, 34 (2019), pp. 477–496.

[28] V. G. Korneev and U. Langer, Domain Decomposition Methods and Preconditioning,
John Wiley & Sons, Ltd, 2004, ch. 22, https://doi.org/https://doi.org/10.1002/0470091355.
ecm019, https://onlinelibrary.wiley.com/doi/abs/10.1002/0470091355.ecm019, https://
arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/0470091355.ecm019.

[29] M. Kronbichler, K. Ljungkvist, M. Allalen, M. Ohlerich, I. Pasichnyk,
and W. A. Wall, Performance optimization of matrix-free finite-element algorithms
within deal. II, (2017).

[30] D. Lukarski, H. Anzt, S. Tomov, and J. Dongarra, Hybrid multi-elimination
ILU preconditioners on GPUs, in 2014 IEEE International Parallel Distributed Processing
Symposium Workshops, 2014, pp. 7–16, https://doi.org/10.1109/IPDPSW.2014.7.

[31] T. Malas and L. Gürel, Incomplete LU preconditioning with the multilevel fast multipole
algorithm for electromagnetic scattering, SIAM Journal on Scientific Computing, 29 (2007),
pp. 1476–1494.

[32] T. Mathew, Domain decomposition methods for the numerical solution of partial differential
equations, vol. 61, Springer Science & Business Media, 2008.

[33] M. Mayr, L. Berger-Vergiat, P. Ohm, and R. S. Tuminaro, Non-invasive
multigrid for semi-structured grids, arXiv preprint arXiv:2103.11962, (2021).

[34] J. A. Meijerink and H. A. Van Der Vorst, An iterative solution method for lin-

https://doi.org/https://doi.org/10.1016/j.apnum.2017.07.006
http://www.sciencedirect.com/science/article/pii/S0168927417301642
https://doi.org/10.1137/18M1226580
https://doi.org/10.1016/j.cma.2019.112776
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/S1064827595287997
https://arxiv.org/abs/https://doi.org/10.1137/S1064827595287997
https://arxiv.org/abs/https://doi.org/10.1137/S1064827595287997
https://doi.org/https://doi.org/10.1002/0470091355.ecm019
https://doi.org/https://doi.org/10.1002/0470091355.ecm019
https://onlinelibrary.wiley.com/doi/abs/10.1002/0470091355.ecm019
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/0470091355.ecm019
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/0470091355.ecm019
https://doi.org/10.1109/IPDPSW.2014.7

A MATRIX-FREE ILU REALIZATION BASED ON SURROGATES 27

ear systems of which the coefficient matrix is a symmetric m-matrix, Mathematics of
computation, 31 (1977), pp. 148–162.

[35] K.-D. Oertel and K. Stüben, Multigrid with ILU-smoothing: Systematic tests and
improvements, in Robust Multi-Grid Methods, Springer, 1989, pp. 188–199.

[36] F. Pellegrini, Scotch and PT-Scotch Graph Partitioning Software: An Overview, in
Combinatorial Scientific Computing, O. S. Uwe Naumann, ed., Chapman and Hall/CRC,
2012, pp. 373–406, https://doi.org/10.1201/b11644-15, https://hal.inria.fr/hal-00770422.

[37] M. Pinto, C. Rodrigo, F. Gaspar, and C. Oosterlee, On the robustness of ILU
smoothers on triangular grids, Applied Numerical Mathematics, 106 (2016), pp. 37–52.

[38] A. Quarteroni and A. Valli, Domain decomposition methods for partial differential
equations, no. BOOK, Oxford University Press, 1999.

[39] T. Roehl, J. Treibig, G. Hager, and G. Wellein, Overhead analysis of performance
counter measurements, in 43rd International Conference on Parallel Processing Workshops
(ICCPW), Sept 2014, pp. 176–185, https://doi.org/10.1109/ICPPW.2014.34.

[40] Y. Saad, Iterative methods for sparse linear systems, SIAM, 2003.
[41] R. Tielen, M. Möller, D. Göddeke, and C. Vuik, p-multigrid methods and their

comparison to h-multigrid methods within isogeometric analysis, Computer Methods in
Applied Mechanics and Engineering, 372 (2020), p. 113347.

[42] R. Tielen, M. Möller, and K. Vuik, A direct projection to low-order level for p-
multigrid methods in isogeometric analysis, in Numerical Mathematics and Advanced
Applications ENUMATH 2019, Springer, 2021, pp. 1001–1009.

[43] A. Toselli and O. Widlund, Domain decomposition methods-algorithms and theory,
vol. 34, Springer Science & Business Media, 2004.

[44] J. Treibig, G. Hager, and G. Wellein, LIKWID: A lightweight performance-oriented
tool suite for x86 multicore environments, in Proceedings of PSTI2010, the First International
Workshop on Parallel Software Tools and Tool Infrastructures, San Diego CA, 2010.

[45] N. Umetani, S. P. MacLachlan, and C. W. Oosterlee, A multigrid-based shifted
Laplacian preconditioner for a fourth-order Helmholtz discretization, Numerical Linear
Algebra with Applications, 16 (2009), pp. 603–626.

[46] A. Vargas, T. M. Stitt, K. Weiss, V. Z. Tomov, J.-S. Camier, T. Kolev,
and R. N. Rieben, Matrix-free approaches for GPU acceleration of a high-order finite
element hydrodynamics application using MFEM, Umpire, and RAJA, arXiv preprint
arXiv:2112.07075, (2021).

[47] P. Wesseling, Introduction to multigrid methods, tech. report, 1995.

https://doi.org/10.1201/b11644-15
https://hal.inria.fr/hal-00770422
https://doi.org/10.1109/ICPPW.2014.34

	1 Introduction
	2 Hybrid grids
	2.1 Preliminaries and notation
	2.2 Steklov–Poincaré operator

	3 Matrix-based ILU-Smoother
	3.1 Strategy on macro-elements

	4 Matrix-free ILU-Smoother on macro-tetrahedra
	4.1 The surrogates
	4.2 Numerical results
	4.3 Performance analysis

	5 Conclusion
	Appendix A. Smoother performance on single macro-tetrahedra
	Appendix SM1. Supplementary Material: Hybrid-Smoother
	SM1.1 Numerical experiments
	SM1.2 Conclusion

	Appendix SM2. Simulation data
	References

