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Abstract

Let fk(n,H) denote the maximum number of edges not contained in any monochromatic
copy of H in a k-coloring of the edges of Kn, and let ex(n,H) denote the Turán number
of H . In place of f2(n,H) we simply write f(n,H). In [5], Keevash and Sudakov proved
that f(n,H) = ex(n,H) if H is an edge-critical graph or C4 and asked if this equality holds
for any graph H . All known exact values of this question require H to contain at least one
cycle. In this paper we focus on acyclic graphs and have the following results:

(1) We prove f(n,H) = ex(n,H) when H is a spider or a double broom.
(2) A tail in H is a path P3 = v0v1v2 such that v2 is only adjacent to v1 and v1 is only

adjacent to v0, v2 in H . We obtain a tight upper bound for f(n,H) when H is a bipartite
graph with a tail. This result provides the first bipartite graphs which answer the question
of Keevash and Sudakov in the negative.

(3) Liu, Pikhurko and Sharifzadeh [6] asked if fk(n, T ) = (k − 1)ex(n, T ) when T is a
tree. We provide an upper bound for f2k(n, P2k) and show it is tight when 2k − 1 is prime.
This provides a negative answer to their question.

1 Introduction

Given any graph H, the classical theorem of Ramsey asserts that there exists an integer R(H,H)
such that every 2-coloring of the edges of the complete graph Kn with n ≥ R(H,H) contains
a monochromatic copy of H. A natural extension of this problem is determining how many
monochromatic copies of H there are. For the case of H = K3, this question was answered by
Goodman [4] and the case of H = K4 was settled by Thomason [10].

In a different direction, one can ask how many edges must be contained in some monochro-
matic copy of H in every 2-coloring of the edges of Kn (equivalently how many edges there
can be in a 2-coloring which are not contained in any monochromatic copy of H). The first
result about this topic is due to Erdős, Rousseau and Schelp [2]. They considered the maximum
number of edges not contained in any monochromatic triangle in a 2-coloring of the edges of Kn.
Erdős also wrote “many further related questions can be asked” in [2]. In this paper, we will
consider problems of this type.

Let c be a 2-coloring of the edges of Kn and let H be a graph. If an edge of Kn is not
contained in any monochromatic copy of H, then we say it is NIM-H. Let E(c,H) denote the
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set of all NIM-H edges in Kn under the 2-edge-coloring c and let

f(n,H) = max
{

|E(c,H)| : c is a 2-edge-coloring of Kn

}

.

Let ex(n,H) be the Turán number of H. If one considers a 2-coloring of the edges of Kn in
which one of the colors yields an extremal graph for H, then it is easy to see

f(n,H) ≥ ex(n,H). (1)

As observed by Alon, the result on f(n,K3) by Erdős, Rousseau and Schelp [2] can also be
deduced from a result of Pyber [9] (see [5]). In [5], Keevash and Sudakov studied f(n,H)
systematically. They proved that if H contains an edge e such that χ(H − e) < χ(H) or
H = C4, then equality holds in (1) for sufficiently large n. Furthermore, they asked if the
equality holds for all H.

Question 1 (Keevash, Sudakov [5]). Is it true that for any graph H we have f(n,H) = ex(n,H)
when n is sufficiently large?

In 2017, Ma [7] provided an affirmative answer to Question 1 for an infinite family of bipartite
graphs H, including all even cycles and complete bipartite graphs Ks,t for t > s2 − 3s + 3 or
(s, t) ∈ {(3, 3), (4, 7)}. In 2019, Liu, Pikhurko and Sharifzadeh [6] extended Ma’s result by
providing a larger family of bipartite graphs for which f(n,H) = ex(n,H) holds (however, the
graphs they construct still contain a cycle). Surprisingly, Yuan [11] recently found an example
showing that the assertion in Question 1 does not hold in general.

Theorem 1 (Yuan [11]). Let p ≥ t + 1 ≥ 4 and Kp+1
t denote the graph obtained from Kt by

replacing each edge of Kt with a clique Kp+1. When n is sufficiently large, then

f(n,Kp+1
t ) = ex

(

n,Kp+1
t

)

+

(
(t−1

2

)

2

)

.

Based on this result, he conjectured the following.

Conjecture 1 (Yuan [11]). Let H be any graph and n be sufficiently large. Then there exists a
constant C = C(H) such that f(n,H) = ex(n,H) + C.

As mentioned earlier, the known results about the exact value of f(n,H) require that H
contains a cycle. For acyclic graphs and some other bipartite graphs, the situation is less clear.
Thus, in this paper, we will focus on this case. A spider is the graph consisting of t paths
with one common end vertex such that all other vertices are distinct. A double broom with
parameters t, s1 and s2 is the graph consisting of a path with t vertices with s1 and s2 distinct
leaves appended to each of its respective end vertices.

Theorem 2. Let H a spider or a double broom with s1 < s2 and n be sufficiently large, we have

f(n,H) = ex(n,H).

A tail in a (not necessary acyclic) graph H is a path P3 = v0v1v2 such that v2 is only adjacent
to v1 and v1 is only adjacent to v0 and v2.

Theorem 3. Let H = (A,B,E) be a bipartite graph containing a tail and |A| ≤ |B|. When n
is sufficiently large, we have

f(n,H) ≤ ex(n,H) +

(

|A| − 1

2

)

. (2)

Furthermore, the upper bound is tight.
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Remark 1. In Theorem 3, there are many bipartite graphs H such that f(n,H) achieves an
upper bound greater than ex(n,H). This implies that even for the bipartite case, the answer to
Question 1 can be negative. However, the graphs from Theorem 3 satisfy Conjecture 1.

We will also consider the case of edge colorings with 3 or more colors. Let fk(n,H) be the
maximum number of edges not contained in any monochromatic copy of H in a k-coloring of the
edges of Kn. Thus, f2(n,H) = f(n,H). It appears likely that for k ≥ 3, the function fk(n,H)
has different behavior for bipartite graphs and non-bipartite graphs. For non-bipartite graphs,
one can see that fk(n,H) 6= (k − 1)ex(n,H) since (k − 1)ex(n,H) ≥

(n
2

)

.
For a tree T , Ma [7] constructed a lower bound by taking random overlays of k − 1 copies

of extremal T -free graphs, and the construction implies fk(n, T ) ≥ (k − 1− o(1))ex(n, T ). Liu,
Pikhurko and Sharifzadeh [6] showed that this lower bound is asymptotically correct.

Theorem 4 (Liu, Pikhurko, Sharifzadeh [6]). Let T be a tree with h vertices. Then there exists
a constant C(k, h) such that for all sufficiently large n, we have

∣

∣fk(n, T )− (k − 1)ex(n, T )
∣

∣ ≤ C(k, h).

For more general bipartite graph H, Ma [7] wrote “it may be reasonable to ask if fk(n,H) =
(k − 1)ex(n,H) holds for sufficiently large n”. However, this is not true for disconnected bi-
partite graphs. Liu, Pikhurko and Sharifzadeh [6] gave an example and showed fk(n, 2K2) =
(k − 1)ex(n, 2K2)−

(

k−1
2

)

. Based on this example, Liu, Pikhurko and Sharifzadeh [6] asked the
following question.

Question 2 (Liu, Pikhurko, Sharifzadeh [6]). Is it true that fk(n, T ) = (k − 1)ex(n, T ) for any
tree T and sufficiently large n?

Our third result concerns the case when T is a path with an even number of vertices and
yields a negative answer to Question 2.

Theorem 5. Let k ≥ 1 and n ≥ (2k)2k
2

be integers. We have

f2k(n, P2k) ≤ (2k − 1)ex(n, P2k) + (k − 1)

(

2k − 1

2

)

.

Furthermore, equality holds when 2k−1 is a prime and n ∈
{

a(2k−1)+(k − 1), a(2k − 1)+k
}

.

Notation and organization. For a given graph G, we use e(G) to denote the number of edges
of G. For a subset of vertices X, let G[X] denote the subgraph induced by X and G−X denote
the subgraph induced by V (G)\X. For two disjoint subsetX,Y , let G[X,Y ] denote the bipartite
subgraph of G consisting of the edges of G with one end vertex in X and the other in Y . In a
red-blue edge-colored complete graph Kn, we say that u is a red (or blue) neighbor of v if the
edge uv is red (or blue). For a set X of vertices, let Nr(v,X) and Nb(v,X) denote the red and
blue neighbors of v in X, respectively. Let dr(v,X) =

∣

∣Nr(v,X)
∣

∣ and db(v,X) =
∣

∣Nb(v,X)
∣

∣. If
X = V (Kn), then we simply write dr(v) and db(v). For two graphs G and H, we use G ∪H to
denote the disjoint union of G and H. Let G+H be the graph obtained from G∪H by adding
all edges with one end vertex in V (G) and one end vertex in V (H).

The rest of the paper is organized as follows. In Sections 2 and 3, we study the function
f(n,H) and prove Theorems 2 and 3, respectively. In Section 4, we study the general function
fk(n,H) and prove Theorem 5.

2 Proof of Theorem 2

Let H be a spider or a double broom on k vertices and c be a red-blue edge-coloring of Kn with
|E(c,H)| being maximum. If E(c,H) contains no H, then

f(n,H) =
∣

∣E(c,H)
∣

∣ ≤ ex(n,H),
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and we are done. Hence we may assume there is a non-monochromatic copy of H in E(c,H).
Since we can take n to be larger than the Ramsey number R(k2, k2), it follows, without loss

of generality, that Kn contains a blue clique K of size at least k2. We partition V (Kn) into two
parts X and Y such that Y is maximal with the property that any vertex v in Y has db(v, Y ) ≥ k
and X consists of the remaining vertices. Note that the large blue clique K is contained in Y ,
and hence |Y | ≥ k2. Since each vertex in Y has blue degree at least k in Y , every blue edge
in Y or between X and Y can be extended to a blue copy of H. Hence, all blue NIM-H edges
are contained in X and |X| ≥ 2.

For each vertex u in X, we have db(u, Y ) ≤ (k − 1). Thus for each subset X ′ of X, the
subset Y ′ = Y \Nb(X

′, Y ) is such that Kn[X
′, Y ′] is a red complete bipartite graph and |Y ′| ≥

|Y | − (k − 1)|X ′|. We call Y ′ the corresponding subset of X ′.
First assume |X| ≥

⌊

k
2

⌋

+ 1. For each red edge uv contained in X or between X and Y ,

we can find a subset X ′ ⊆ X of size
⌊

k
2

⌋

that contains exactly one of u and v. Using the
corresponding subset Y ′ of X ′, this red edge uv can be extended to a red copy of H. Hence all
red NIM-H edges are contained in Y and

∣

∣E(c,H)
∣

∣ ≤ ex
(

|Y |,H
)

+ ex
(

|X|,H
)

≤ ex(n,H).

Therefore, in the rest of the proof, we will assume |X| ≤
⌊

k
2

⌋

. Furthermore, each red edge
in Y is NIM-H, otherwise we replace the color of this edge by blue and since E(c,H) is maximum,
it has no changes.

Next we distinguish two cases based on whether H is a spider or a double broom.

The proof when H is a spider. Let H be a spider consisting of t paths with a common
initial vertex v0. We call each path starting from v0 a branch, and we assume that the lengths
of these t branches are ℓ1, . . . , ℓt such that v(H) = k = 1 +

∑t
i=1 ℓi.

Now we choose a copy of H from E(c,H) and denote it by H ′. Let X ′ = X ∩ V (H ′).
Since H ′ contains blue edges and all NIM-H blue edges are contained in X, we have X ′ 6= ∅ and
the corresponding subset Y ′ is of size at least

|Y | − (k − 1)|X ′| ≥ k.

For every branch of H ′, we apply the following method to replace all blue edges with red
edges. First, every branch consisting entirely of blue edges is replaced by a red path of the same
length in Kn[X

′, Y ′]. This can be done since Kn[X
′, Y ′] is a complete bipartite graph consisting

of only red edges and Y ′ is large enough. For any remaining branch v0v1 . . . vℓm , let vivi+1 be
the first red edge on this branch, i.e., every edge in the path v0v1 . . . vi is blue. If i is even,
we replace the path v2jv2j+1v2j+2 by a new red path v2jyjv2j+2 with a distinct yj ∈ Y ′ for all
0 ≤ j ≤ i

2 − 1. If i is odd, we replace the path v2jv2j+1v2j+2 by a new red path v2jyjv2j+2 with
a distinct yj ∈ Y ′ for all 0 ≤ j ≤ i−1

2 − 1 and replace the single edge vi−1vi by a new red path
vi−1y

′vi with a distinct y′ ∈ Y ′. For all other blue edges after vivi+1, we replace them by a new
red P3 with the middle vertices in Y ′. Again, this can be done since Kn[X

′, Y ′] is a complete
bipartite graph consisting of only red edges and Y ′ is large enough.

After this, the original branch becomes a longer red path and we take the first segment of
length ℓm as the new branch. Note that this new branch still contains the original red edge
vivi+1 unless i is odd and i+ 1 = ℓm. Let H ′′ be the resulting copy of H.

If H ′′ still contains one of the original red edges, then we have a monochromatic copy of H,
a contradiction since the original edges are NIM-H. Otherwise every branch of H ′ is either
entirely blue or has even length and is such that only the final edge is red. However, then we
have |X| ≥ |X ′| ≥

⌊

k
2

⌋

+ 1, a contradiction of our assumption that |X| ≤
⌊

k
2

⌋

(recall that the
blue edges are in X ′). The proof is complete for spiders.

The proof when H is a double broom. Let H be a double broom with parameters t, s1
and s2 such that k = t+ s1 + s2 and s1 < s2.
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First, assume that t is odd and |X| ≥
⌊

t
2

⌋

+ 1. For a red edge uv with u ∈ X, v ∈ Y , there
is a subset X ′ ⊆ X of size t+1

2 containing u. Let Y ′ be the corresponding subset for X ′. Then
there is a path Pt in Kn[X

′, Y ′] which starts from u and ends at another vertex, say w in X ′,
and avoids v. Since |Y ′| ≥ k2 − (k− 1) t+1

2 , we can select additional red edges incident to u and
w, which together with the edge uv represent the set of edges incident to the leaves of H. It
follows that uv is not NIM-H. Hence all red NIM-H edges are contained in X and Y , and we
have

∣

∣E(c,H)
∣

∣ ≤ ex
(

n− |X|,H
)

+

(

|X|

2

)

≤ ex(n,H),

where the second inequality holds since |X| ≤ k
2 .

Now assume that t is even and |X| ≥
⌊

t
2

⌋

+ 1. Let Y1 = {v ∈ Y : dr(v,X) ≥ 1} and
Y2 = Y \Y1. Since each vertex in X has at most k−1 blue neighbors in Y , we have |Y2| ≤ k−1.

Now we show that for each vertex v ∈ Y1, there are at most s1+
t
2 −1 NIM-H edges incident

to v. Suppose by way of contradiction that for a vertex v ∈ Y1, there are at least s1 +
t
2 red

NIM-H edges incident to v. By the definition of Y1, there is a red edge vu with u ∈ X. Let
X ′ = X and let Y ′ ⊂ Y be the corresponding subset of X ′. We extend the red edge vu to a red
path Pt in such a way that: (1) one of the end vertex is v and the other end vertex w is in X ′,
(2) every second vertex of the path is in X ′ and the remaining vertices of the path are in Y ′,
(3) there remain at least s1 red NIM-H edges incident to v which are not vertices of the path.
These conditions can be satisfied since Y ′ is sufficiently large. Now at least s1 red NIM-H edges
incident to v are not covered by the vertices of the path, which we can view as leaf edges of H
incident to v. Select another t red (but not necessarily NIM-H) edges incident to w and to some
vertices which have not been used yet. Thus we found a red copy of H containing at least one
NIM-H edge, a contradiction.

Therefore, for each vertex v ∈ Y1, there are at most s1 +
t
2 − 1 NIM-H edges incident to v.

All other NIM-H edges are contained in Y2 and X. Hence,

∣

∣E(c,H)
∣

∣ ≤|Y1|

(

s1 +
t

2
− 1

)

+

(

|Y2|

2

)

+

(

|X|

2

)

(1)

≤ex
(

|Y1|,H
)

+ ex
(

|Y2|,H
)

+ ex
(

|X|,H
)

≤ex(n,H),

where the second inequality holds since the coefficient of |Y1| satisfies s1 +
t
2 − 1 < k−2

2 and

|Y2| ≤ k − 1, |X| ≤ k
2 . Thus, we are done in the case |X| ≥

⌊

t
2

⌋

+ 1.
Finally, we consider the case when |X| ≤

⌊

t
2

⌋

. Since |X| ≥ 2, we have t ≥ 4. Let Y1 =
{v ∈ Y : dr(v,X) ≥ 2} and Y2 = Y \ Y1. Now we show that there is no red path of length
t− 2|X|+ 1 in Y1. Suppose by way of contradiction that P is a red path of length t− 2|X|+ 1
in Y1. First, we extend P to a red path of length t−1 using vertices in X and the corresponding
subset of X in Y such that the two end vertices of this longer path, say u and v, are contained
in X. Since each vertex in X has red degree at least |Y | − (k − 1) in Y , we can find s1 new red
neighbors of u and s2 new red neighbors of v in Y and view them as the leaf-edges of H. That
is, we extended the red path P to a red copy of H. However, as we assumed all red edges in Y
are NIM-H, we have a contradiction.

Now we show |Y2| ≤ s1− 1. Suppose by way of contradiction that |Y2| ≥ s1. If there are two
vertices v1, v2 in Y2 such that Nb(v1,X) ∪ Nb(v2,X) = X, then for any blue edge u1u2 in X,
we have that v1u1u2v2 or v1u2u1v2 is a blue path. Since t ≥ 4 and all vertices in Y have large
blue degree in Y , this blue path can be extended to a blue copy of H. Hence there are no blue
NIM-H edges, a contradiction. Thus by the definition of Y2, there exists a vertex w ∈ X such
that Nb(v,X) = X \ {w} for any v ∈ Y2. Let uu′ be a blue NIM-H edge in X with u 6= w.
Using uu′ and s1 blue edges between u and Y2, we can find a blue star with s1 + 1 leaves. By
the definition of Y , we can extend this blue star to a blue copy of H using other vertices in Y ,
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a contradiction. Hence we have |Y2| ≤ s1 − 1. Furthermore, there are at most |Y2| red NIM-H
edges between X and Y2.

Therefore, we have

∣

∣E(c,H)
∣

∣ ≤ ex
(

|Y1|, Pt−2|X|+2

)

+ |Y1|
(

|Y2|+ |X|
)

+

(

|Y2|

2

)

+

(

|X|

2

)

+ |Y2|

≤
t− 2|X|

2
|Y1|+ |Y1|

(

|Y2|+ |X|
)

+

(

|Y2|

2

)

+

(

|X|

2

)

+ |Y2|

≤
t+ 2(s1 − 1)

2

(

n− (s1 − 1)− |X|
)

+

(

s1
2

)

+

(

|X|

2

)

≤
t+ 2s1 − 2

2
n ≤ ex(n,H), (2)

where the last inequality holds since s1 < s2. The proof is complete. �

Remark 2. One may note that in inequality (1) and (2), we need the condition s1 < s2 to ensure
that t+2s1−2

2 n ≤ ex(n,H). For the case s1 = s2, these inequalities still show f(n,H) ≤ k−2
2 n but

this does not imply f(n,H) ≤ ex(n,H) for all n. With additional details, one could extend the
proof to the case s1 = s2. But this would make our proof more complicated, so we omit it.

3 Proof of Theorem 3

We first construct some bipartite graphs which attain the upper bound in (2). Our idea comes
from a theorem of Bushaw and Kettle [1]. Before we present the detailed constructions, we recall
some results which we will require.

It is well-known that ex(n, T ) ≤ v(T )−2
2 n when T is a path or star. For a general tree T , this

is the celebrated Erdős–Sós Conjecture.

Conjecture 2 (Erdős–Sós). For a tree T , we have ex(n, T ) ≤ v(T )−2
2 n.

In 2005, McLennan [8] proved that the Erdős–Sós Conjecture holds for trees of diameter at
most four.

Theorem 6 (McLennan [8]). Let T be a tree of diameter at most four, then ex(n, T ) ≤ v(T )−2
2 n.

A tree is called balanced if it has the same number of vertices in each color class when the
tree is viewed as a bipartite graph. A forest is called balanced if each of its components is a
balanced tree. Bushaw and Kettle [1] proved the following theorem.

Theorem 7 (Bushaw and Kettle [1]). Let H be a balanced forest on 2a vertices which comprises
at least two trees. If the Erdős–Sós Conjecture holds for each component tree in H, then for any
n ≥ 3a2 + 32a2

(2a
a

)

, we have

ex(n,H) =

{

(

a−1
2

)

+ (a− 1)(n − a+ 1) if H admits a perfect matching,

(a− 1)(n − a+ 1) otherwise.

Now, making use of Theorems 6 and 7, we construct some bipartite graphs H which are
negative examples for Question 1. Let H1 be the family of all balanced trees on 2a vertices
which admit no perfect matching and for which the Erdős–Sós Conjecture holds. One can see
that H1 is not empty since a double star Sa−1,a−1 is a balanced tree on 2a vertices and the
Erdős–Sós Conjecture holds for it by Theorem 6. Let H2 be the family of balanced trees on 2a
vertices for which the Erdős–Sós Conjecture holds for sufficiently large n. Note that H2 is also
nonempty, for example a path on 2a vertices belongs to H2.
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Let H1 ∈ H1, H2 ∈ H2 and set H = H1 ∪ H2. We know that H is a balanced forest on
4a vertices. Since H1 admits no perfect matching, H admits no perfect matching either. The
Erdős–Sós Conjecture holds for each component of H, hence by Theorem 7, when n is sufficiently
large, we have

ex(n,H) = (2a− 1)(n − 2a+ 1).

On the other hand, consider a partition of the vertices of the complete graph Kn into parts
X and Y with |X| = 2a − 1 and |Y | = n − 2a + 1. We color all edges between X and Y red
and the remaining edges blue. One can see that the red edges induce a complete bipartite graph
K2a−1,n−2a+1 which contains no red copy of H. The blue edges induce a blue (2a − 1)-clique
and a blue (n − 2a + 1)-clique which are disjoint with each other. Since each component of H
contains 2a vertices, all blue copies of H are contained in the (n− 2a+1)-clique. Therefore, all
red edges and all the edges in the blue (2a− 1)-clique are NIM-H, that is,

f(n,H) ≥

(

2a− 1

2

)

+ (2a− 1)(n − 2a+ 1) =

(

2a− 1

2

)

+ ex(n,H).

Therefore, such a bipartite graph H attains the upper bound of the inequality (2).

Next we prove that if the bipartite graph H contains a tail v0v1v2, then f(n,H) ≤ ex(n,H)+
(|A|−1

2

)

. Note that it is possible that H is disconnected, hence let H = H1 ∪ · · · ∪Hq, where Hi

are its components (if H is connected, then H = H1) and we say the tail v0v1v2 is contained
in H1. Let Ai, Bi be the two color classes of Hi with |Ai| ≤ |Bi| for any 1 ≤ i ≤ q, and let
A =

⋃q
i=1Ai, B =

⋃q
i=1Bi. Set a = |A|.

Since we take n to be sufficiently large, we may assume n ≥ R
(

Kv(H),Kv(H)

)

. Let c be a
red-blue edge-coloring of Kn. Without loss of generality, there is a blue clique on at least v(H)
vertices in Kn. Let Kt be a blue clique in Kn such that t is as large as possible. We have
t ≥ v(H) and every other vertex has a red neighbor in V (Kt). We partition V (Kn) \ V (Kt)
into two subsets X,Y such that Y consists of the vertices which have blue neighbors in V (Kt)
and X consists of the remaining vertices. Hence all edges between V (Kt) and X are red.

The following claims will be used several times.

Claim 1. All blue NIM-H edges are contained in X.

Proof. Obviously, the blue edges in Kt and Kn

[

V (Kt), Y
]

are not NIM-H. Let xy be a blue
edge with y ∈ Y and x ∈ X ∪Y . By the definition of Y , the vertex y has a blue neighbor, say v,
in V (Kt). If we embed V (H) \ {v1, v2} into V (Kt) and view vyx as the tail of H, then we find
a blue copy of H containing xy. Thus xy is not NIM-H. Therefore, all blue NIM-H edges are
contained in X.

Claim 2. If |X| ≥ a, then the red edges between X and V (Kt) ∪ Y are not NIM-H.

Proof. Since the red edges between X and V (Kt) induce a red complete bipartite graph and
|X| ≥ a and t ≥ v(H), each such edge is contained in a red copy of H, thus these edges are not
NIM-H. Let xy be a red edge with x ∈ X, y ∈ Y . By the maximality of Kt, the vertex y has a
red neighbor, say v, in V (Kt). Actually, {x, y, v} induces a red triangle. If the tail v0v1v2 of H
satisfies {v0, v2} ⊂ B and v1 ∈ A, then embed B \ {v2} into V (Kt) so that v0 is identified with
v, embed A \ {v1} into X \ {x} and view vxy as the tail of H, thus we find a red copy of H
containing xy. So in this case, xy is not NIM-H. If the tail v0v1v2 of H satisfies {v0, v2} ⊂ A
and v1 ∈ B, then embed B \{v1} into V (Kt)\{v}, embed A\{v2} into X so that v0 is identified
with x. View xyv as the tail, we find a red copy of H containing xy. So in this case, xy is not
NIM-H either.

We distinguish three cases based on the size of X.
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Case 1: |X| ≥ a+1. In this case, we first claim that the red edges in X are also not NIM-H.
Let xx′ be a red edge contained in X and v be a vertex in Kt. If the tail v0v1v2 in H satisfies
{v0, v2} ⊂ B and v1 ∈ A, then since

∣

∣X \ {x, x′}
∣

∣ ≥ a− 1 =
∣

∣A \ {v1}
∣

∣, we can embed A \ {v1}
into X \ {x, x′}, embed B \ {v2} into V (Kt) so that v0 is identified with v and view vxx′ as the
tail v0v1v2, thereby finding a red copy of H containing xx′. So in this case, xx′ is not NIM-H.
If the tail v0v1v2 in H satisfies {v0, v2} ⊂ A and v1 ∈ B, then we embed A \ {v2} into X \ {x′}
so that v0 is identified with x, embed B \ {v1} into V (Kt) \ {v} and view xx′v as the tail, and
again we can find a red copy of H containing xx′. Therefore, xx′ is not NIM-H.

By Claim 2 and the above result, all red NIM-H edges are contained in V (Kt) ∪ Y . Note
that the red NIM-H edges contained in V (Kt) ∪ Y induce an H1-free graph. Otherwise, such
a red copy of H1 together with a red copy of H2 ∪ · · · ∪Hq (if H is disconnected) contained in
the complete bipartite graph Kn

[

X,V (Kt)
]

yields a red copy of H containing an NIM-H edge,
a contradiction. Analogously, the blue NIM-H edges contained in X induce a graph which is
H1-free. Hence,

∣

∣E(c,H)
∣

∣ ≤ex
(

|X|,H1

)

+ ex
(

n− |X|,H1

)

≤ex(n,H1) ≤ ex(n,H),

where the second inequality holds since H1 is connected. The proof is complete in this case.
Case 2: |X| = a. By Claim 2, the set of red NIM-H edges can be partitioned into two parts:

the ones contained in V (Kt) ∪ Y and the remaining ones which are contained in X. Since all
blue NIM-H edges are contained in X by Claim 1, the sum of the total number of blue NIM-H
edges and the number of red NIM-H edges contained in X is at most

(a
2

)

. The set of red NIM-H
edges contained in V (Kt) ∪ Y yields an H1-free graph. Indeed, otherwise together with a red
copy of H2 ∪ · · · ∪ Hq (if H is disconnected) in Kn

[

X,V (Kt)
]

, we could find a red copy of H
containing a red NIM-H edge, a contradiction. Thus the number of red NIM-H edges contained
in V (Kt) ∪ Y is at most ex(n− a,H1).

Therefore, the total number of NIM-H edges is at most ex(n − a,H1) +
(

a
2

)

. Since H1 is
connected and contains a tail, it follows that the union of a star Sa−1 on a vertices and an
extremal graph for ex(n − a,H1) is still H1-free. Hence,

ex(n− a,H1) + (a− 1) ≤ ex(n,H1).

Thus, we have

∣

∣E(c,H)
∣

∣ ≤ex(n− a,H1) +

(

a

2

)

≤ ex(n,H1) +

(

a− 1

2

)

≤ex(n,H) +

(

a− 1

2

)

,

and the proof of this case is complete.
Case 3: |X| ≤ a− 1. By Claim 1, the number of blue NIM-H edges is at most

(

a−1
2

)

, and
the red NIM-H edges yield an H-free graph. Hence

∣

∣E(c,H)
∣

∣ ≤ ex(n,H) +

(

a− 1

2

)

,

and the proof is complete. �

Remark 3. In [12], the first author and Chen also give a family of examples such that χ(H) = 3
and f(n,H) > ex(n,H).

8



4 Proof of Theorem 5

We first give a 2k-edge-coloring of Kn with (2k − 1)ex(n, P2k) + (k − 1)
(2k−1

2

)

NIM-P2k edges
when 2k − 1 is a prime and n ∈

{

a(2k − 1) + (k − 1), a(2k − 1) + k
}

. Before showing our
construction, we need to recall the exact value of ex(n, Pℓ).

Theorem 8 (Faudree and Schelp [3]). Let n = a(ℓ− 1) + b with 0 ≤ b ≤ ℓ− 2. Then we have

ex(n, Pℓ) = a

(

ℓ− 1

2

)

+

(

b

2

)

.

If ℓ is even and b ∈ {ℓ/2, ℓ/2−1}, then the extremal graphs are tKℓ−1∪
(

Kℓ/2−1+Kn−t(ℓ−1)−ℓ/2+1

)

for any 0 ≤ t ≤ a. Otherwise aKℓ−1 ∪Kb is the unique extremal graph.

Therefore, by Theorem 8, when n ∈
{

a(2k−1)+(k−1), a(2k−1)+k
}

, the extremal graphs
for ex(n, P2k) are tK2k−1 ∪

(

Kk−1 +Kn−t(2k−1)−(k−1)

)

for any 0 ≤ t ≤ a.

Let U be a subset of size (2k − 1)2 of V (Kn) and label the vertices of U by [i, j] where
1 ≤ i, j ≤ 2k − 1. We divide U into 2k − 1 subsets by setting

Ui =
{

[i, 1], [i, 2], . . . , [i, 2k − 1]
}

, 1 ≤ i ≤ 2k − 1.

When it is not confusing, we also let U and Ui denote the cliques induced by the vertices in
them.

For any 1 ≤ i, j ≤ 2k−1, let σji denote the clique induced by the vertices [1, i], [2, i + j], . . . ,
[2k − 1, i+ (2k − 2)j], where the indices are taken modulo 2k − 1. For any 1 ≤ j ≤ 2k − 1, let

Cj = {σji : 1 ≤ i ≤ 2k − 1}.

Then Cj is a set consisting of 2k − 1 disjoint (2k − 1)-cliques.
Let c : E(Kn) → {c1, . . . , c2k} be a 2k-edge-coloring defined as follows. Let W = V (Kn) \U .

For any j ∈ [2k − 1], we assign the color cj to the edges of each clique σji in Cj. Let σ
⋄
j1 denote

the clique induced by the vertices [k + 1, 1 + kj], . . . , [2k − 1, 1 + (2k − 2)j]. Clearly, we have
σ⋄
j1 ⊂ σj1. Now consider the sub-clique σj1 − σ⋄

j1 and replace the color cj by c2k inside it.

With this, σj1 decomposes into a copy of Kk−1 +Kk colored by cj and a copy of Kk colored by
c2k. After this, we assign the color cj to all the edges between σ⋄

j1 and V . Figure 1 shows the
subgraph induced by the edges colored by c2k−1. Finally, we assign the color c2k to the edges
which have not been colored yet.

σ⋄
2k−1,1

σ2k−1,2 σ2k−1,k+1
σ2k−1,2k−1

[1, 2k − 1]

[k, 2k − 1]

[k + 1, 2k − 1]

[2k + 1, 2k − 1]

W

Figure 1: The subgraph induced by the edges of color c2k−1.

In the next two paragraphs, we show that this 2k-edge-coloring is well-defined, namely, each
edge is assigned exactly one color. Clearly, each edges is assigned at least one color and the
edges inside W or between U1 ∪ · · · ∪ Uk and W are assigned exactly one color.
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Note that U is a (2k − 1)2-clique. Let 1 ≤ i, ℓ, s, t ≤ 2k − 1. Clearly, the edge [i, s][i, t] is
only covered by the clique Ui. If the edge [i, s][ℓ, t] with i < ℓ were covered by two cliques, say
by one in Cj and by another one in Cj′ for some 1 ≤ j, j′ ≤ 2k − 1, then

{

t ≡ s+ (ℓ− i)j (mod 2k − 1)

t ≡ s+ (ℓ− i)j′ (mod 2k − 1)

would hold, and since 2k − 1 is prime, we would have j = j′, a contradiction. Thus, each
edge inside U is covered by at most one clique in Cj or by the clique Ui. On the other hand,
considering the number of edges in U and the total number of edges of cliques in each Cj and
Ui yields

e(U) =

2k−1
∑

i=1

e(Ui) +

2k−1
∑

j=1

∑

σji∈Cj

e(σji).

Therefore, the cliques in each Cj together with the cliques Ui for all 1 ≤ i, j ≤ 2k − 1 form an
edge-decomposition of the large clique U . Hence each edge in U is assigned one color.

Now we show that for any 1 ≤ j, j′ ≤ 2k − 1 with j 6= j′, the sub-cliques σ⋄
j1 and σ⋄

j′1 are
vertex-disjoint. Supposing that a vertex [i, 1 + (i − 1)j] ∈ V (σ⋄

j1) is also contained in σ⋄
j′1 for

some 1 ≤ i, j, j′ ≤ 2k − 1, we obtain

1 + (i− 1)j ≡ 1 + (i− 1)j′ (mod 2k − 1).

Since 2k − 1 is a prime number, we get j = j′, a contradiction. Thus the sub-cliques σ⋄
j1 for all

1 ≤ j ≤ 2k − 1 form a vertex-decomposition of Uk+1 ∪ · · · ∪ U2k−1. Hence, each edge between
Uk+1∪· · ·∪U2k−1 and W is assigned one color in {c1, . . . , c2k−1}. Therefore, our 2k-edge-coloring
c is well-defined.

Note that for any 1 ≤ j ≤ 2k − 1, the subgraph induced by the edges of color cj is a copy of
tK2k−1 ∪

(

Kk−1 +Kn−(k−1)−t(2k−1)

)

with t = 2k − 2, and this graph is extremal for ex(n, P2k)
when n ∈

{

a(2k − 1) + (k − 1), a(2k − 1) + k
}

. Now consider the edges colored by c2k. They
are in the cliques Ui with 1 ≤ i ≤ 2k − 1, inside σj1 − σ⋄

j1 with 1 ≤ j ≤ 2k − 1, inside W ,
and between U1 ∪ · · · ∪ Uk and W . Note that for any k + 1 ≤ i ≤ 2k − 1, Ui are independent
(2k− 1)-cliques colored by c2k, hence the edges in Ui are also NIM-P2k. For all other c2k-edges,
they construct a large connected component such that W is a clique in the component. Hence
none of these edges are NIM-P2k.

Therefore,
∣

∣E(c, P2k)
∣

∣ = (2k − 1)ex(n, P2k) + (k − 1)

(

2k − 1

2

)

,

and we are done.

Remark 4. Note that tK2k−1 ∪
(

Kk−1 +Kn−(k−1)−t(2k−1)

)

is not extremal for ex(n, P2k) when
n /∈

{

a(2k − 1) + (k − 1), a(2k − 1) + k
}

, but we still have

ex(n, P2k)− e
(

tK2k−1 ∪
(

Kk−1 +Kn−(k−1)−t(2k−1)

)

)

< (k − 1)2.

Hence in our construction, when 2k − 1 is prime, the number of NIM-P2k edges is more than
(2k−1)ex(n, P2k). That is to say, when 2k−1 is prime, we have f2k(n, P2k) > (2k−1)ex(n, P2k)
for every sufficiently large n.

Next we prove the upper bound of f2k(n, P2k). Let c : E(Kn) → {c1, . . . , c2k} be a 2k-
edge-coloring of Kn. We call an edge a ci-edge if it is of color ci and we let Gi denote the
subgraph induced by all ci-edges, for any 1 ≤ i ≤ 2k. Without loss of generality, we can assume
e(G2k) ≥

(n
2

)

/2k. By Theorem 8, there is a path P of at least n
2k vertices in G2k. Let G′

2k be
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the component of G2k which contains the path P , and let X = V (G′
2k) and Y = V (Kn) −X.

Then we have |X| ≥ n
2k and there is no c2k-edge between X and Y . Since the component G′

2k

contains a long path P , each edge of G′
2k is contained in a monochromatic copy of P2k. Hence,

all NIM-P2k c2k-edges are contained in Y .
For each 1 ≤ i ≤ 2k−1, there are at most ex(n, P2k) NIM-P2k ci-edges. If |Y | ≤ (k−1)(2k−1),

then there are at most ex
(

|Y |, P2k

)

≤ (k−1)
(2k−1

2

)

NIM-P2k c2k-edges. Hence, the total number
of NIM-P2k edges is at most

(2k − 1)ex(n, P2k) + (k − 1)

(

2k − 1

2

)

,

so we are done. Therefore, we may assume |Y | ≥ (k − 1)(2k − 1) + 1.

Let us define a procedure to find pairs (Xi, Yi) satisfying the following conditions:

(i) Xi ⊆ X with |Xi| = 2k and Yi ⊆ Y with |Yi| = k for any 1 ≤ i ≤ 2k,

(ii) Yi and Yj are disjoint for any 1 ≤ i, j ≤ 2k with i 6= j,

(iii) Kn[Xi, Yi] forms a monochromatic copy of complete bipartite graph for any 1 ≤ i ≤ 2k.

Assume that for some 1 ≤ i ≤ 2k, we have found (X1, Y1), . . . , (Xi−1, Yi−1) which satisfy the
conditions. Let s = (k − 1)(2k − 1) + 1. If

∣

∣

∣

∣

∣

∣

Y \
i−1
⋃

j=1

Yj

∣

∣

∣

∣

∣

∣

≤ s− 1,

then the procedure terminates. Otherwise we choose a subset Y ′
i of Y \

⋃i−1
j=1 Yj with |Y ′

i | = s.
Let Y ′

i = {y1, . . . , ys}. For each x ∈ X, we define a vector ~ǫ(x, Y ′
i ) = (ǫ1, . . . , ǫs) as follows: for

any 1 ≤ j ≤ s, let
ǫj = i if and only if the edge xyj is colored by ci.

Since no edge between X and Y is colored by c2k, we have ~ǫ(x, Y ′
i ) ∈ {1, . . . , 2k − 1}s for any

x ∈ X. For each ~v ∈ {1, . . . , 2k − 1}s, let X~v denote the set of vertices x ∈ X for which
~ǫ(x, Y ′

i ) = ~v. Hence, X is divided into (2k − 1)s subsets and clearly, at least one subset, say
X~vi , contains at least |X|/(2k − 1)s vertices. Observe that Kn[X~vi , yj] is a monochromatic star
for any yj ∈ Y ′

i . Since |Y ′
i | = (k − 1)(2k − 1) + 1 and there are at most 2k − 1 different colors

between X~vi and Y ′
i , by pigeonhole principle, there exists a subset Yi ⊂ Y ′

i such that |Yi| = k
and the edges between Yi and X~vi are monochromatic. That is Kn[X~vi , Yi] is a monochromatic

complete bipartite graph. Since n ≥ (2k)2k
2

,

|X~vi | ≥
|X|

(2k − 1)s
≥

n

(2k)s
≥ 2k.

We can choose a subset Xi from X~vi with |Xi| = 2k, thereby finding the pair (Xi, Yi) as we
wanted.

Note that since Y is finite, the procedure terminates. Let t denote the number of steps
the algorithm took, and let (X1, Y1), . . . , (Xt, Yt) be the pairs the algorithm found. Let Y0 =
Y \

⋃t
1 Yi. Then we have |Y0| ≤ (k−1)(2k−1). For any 1 ≤ i ≤ 2k−1, let ti denote the number

of the pairs (Xj , Yj) for which the edges of Kn[Xj , Yj ] are of color ci. Without loss of generality,

we may assume that t1, . . . , th > 0 for some 1 ≤ h ≤ 2k−1. Then t =
∑h

i=1 ti. Let 1 ≤ i ≤ h and
consider the ci-edges. Without loss of generality, we can assume thatKn[X1, Y1], . . . ,Kn[Xti , Yti ]
are of color ci. Then each NIM-P2k ci-edge is contained in V (Kn) \

⋃ti
j=1(Xj ∪ Yj). Since the

sets Y1, . . . , Yti are pairwise disjoint and X1, . . . ,Xti ⊆ X, we have
∣

∣

∣

∣

∣

∣

ti
⋃

j=1

(Xj ∪ Yj)

∣

∣

∣

∣

∣

∣

≥ tik + 2k,
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thus the number of NIM-P2k ci-edges is at most ex(n− tik−2k, P2k). Now let h+1 ≤ i ≤ 2k−1
(if such an index exists). Since ti = 0, the number of NIM-P2k ci-edges is at most ex(n, P2k).

As we have proved, all NIM-P2k c2k-edges are contained in Y and |Y | ≤ (k− 1)(2k− 1)+ tk.
Therefore, the total number of NIM-P2k edges is at most

ex
(

(k − 1)(2k − 1) + tk, P2k

)

+
h
∑

i=1

ex(n− tik − 2k, P2k) + (2k − 1− h)ex(n, P2k). (3)

To prove the final result, we need the following lemma.

Lemma 1. Let n1, n2 and c be constants. Then we have

ex(n1, Pℓ) + ex(n2, Pℓ) < ex(n1 − c, Pℓ) + ex(n2 + c+ ℓ, Pℓ).

Proof. Let n1 − c = a1(ℓ − 1) + b1 and n2 + c = a2(ℓ − 1) + b2, where 0 ≤ b1, b2 ≤ ℓ − 2. By
Theorem 8, we have

ex(n1 − c, Pℓ) + ex(n2 + c+ ℓ, Pℓ) ≥ ex(n1 − c, Pℓ) + ex(n2 + c, Pℓ) + ex(ℓ, Pℓ)

> (a1 + a2)

(

ℓ− 1

2

)

+

(

b1
2

)

+

(

b2
2

)

+

(

ℓ− 1

2

)

and

ex(n1, Pℓ) + ex(n2, Pℓ) ≤
ℓ− 2

2
(n1 + n2) = (a1 + a2)

(

ℓ− 1

2

)

+ (b1 + b2)
ℓ− 2

2
.

Hence we have

ex(n1 − c, Pℓ) + ex(n2 + c+ ℓ, Pℓ)−
(

ex(n1, Pℓ) + ex(n2, Pℓ)
)

>

(

b1
2

)

+

(

b2
2

)

+

(

ℓ− 1

2

)

− (b1 + b2)
ℓ− 2

2
> 0.

we are done.

When applying the above lemma to (3), we get

ex
(

(k − 1)(2k − 1) + tk, P2k

)

+
s

∑

i=1

ex(n− tik − 2k, P2k) + (2k − 1− s)ex(n, P2k)

<(2k − 1)ex(n, P2k) + ex
(

(k − 1)(2k − 1), P2k

)

=(2k − 1)ex(n, P2k) + (k − 1)

(

2k − 1

2

)

.

Thus the proof is complete. �
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