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Abstract. We consider determinantal Coulomb gas ensembles with a class of discrete rotational
symmetric potentials whose droplets consist of several disconnected components. Under the insertion
of a point charge at the origin, we derive the asymptotic behaviour of the correlation kernels both in
the macro- and microscopic scales. In the macroscopic scale, this particularly shows that there are
strong correlations among the particles on the boundary of the droplets. In the microscopic scale,
this establishes the edge universality. For the proofs, we use the nonlinear steepest descent method
on the matrix Riemann-Hilbert problem to derive the asymptotic behaviours of the associated planar
orthogonal polynomials and their norms up to the first subleading terms.

1. Introduction and main results

We consider a configuration {zj}N1 of N points in C with joint probability distribution

(1.1) dPN =
1

ZN

∏
j>k

|zj − zk|2
N∏
j=1

e−NQ(zj) dA(zj), dA(z) :=
d2z

π
,

where ZN is the normalisation constant and Q : C→ R is a suitable function called external potential.
The ensemble (1.1) corresponds to the eigenvalue system of the random normal matrix model, which
can be interpreted as the two-dimensional Coulomb gas ensemble at a specific inverse temperature
β = 2. For a recent account of the theory and various topics on the Coulomb gas ensemble, we refer
the reader to [41] and references therein.

By definition, the k-point correlation function RN,k of the system (1.1) is given by

(1.2) RN,k(z1, · · · , zk) :=
N !

(N − k)!

∫
Cn−k

PN

N∏
j=k+1

dA(zj).

The normalised 1-point function 1
NRN,1 corresponds to the macroscopic density of the model. It is

well known that as N → ∞, the empirical measure of {zj}N1 converges to Frostman’s equilibrium
measure, see e.g. [5,25]. In particular, the system {zj}N1 tends to occupy certain compact set S called
the droplet.

The k-point function RN,k can be effectively analysed in terms of the correlation kernel. To be more
concrete, let pk ≡ pk,N be the k:th orthonormal polynomial with respect to the weighted Lebesgue

measure e−NQ dA:

(1.3)

∫
C
pj(z)pk(z)e

−NQ(z) dA(z) = δjk,
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2 SUNG-SOO BYUN AND MENG YANG

where δjk is the Kronecker delta. We write

(1.4) KN (z, w) = e−
N
2

(Q(z)+Q(w))
N−1∑
j=0

pj(z)pj(w)

for the weighted reproducing kernel of analytic polynomials (of degree less than N−1) in L2(e−NQ dA).
Then the k-point function RN,k in (1.2) is expressed as

(1.5) RN,k(z1, · · · , zk) = det
[
KN (zj , zl)

]k
j,l=1

.

We mention that the correlation kernel can be defined up to a sequence of cocycles, i.e.

det
[
KN (zj , zl)

]k
j,l=1

= det
[
gN (zj) gN (zl) ·KN (zj , zl)

]k
j,l=1

,

where gN is a continuous unimodular function.
Due to the property (1.5), the system (1.1) is also called the determinantal Coulomb gas ensemble.

Moreover, this naturally calls for the investigation of various asymptotic behaviours of KN as N →∞.
Here, one has to distinguish two cases, the macroscopic scale and the microscopic scale.

The asymptotic behaviour in the microscopic scale is closely related to the universality principle
in random matrix theory. To describe the local statistics of the model at a given base point p ∈ S,
one needs to investigate the asymptotic behaviour of the function

(1.6) (z, w) 7→ KN

(
p+

eiθ z√
N∆Q(p)

, p+
eiθ w√
N∆Q(p)

)
.

Here if p ∈ ∂S, the angle θ ∈ [0, 2π) is chosen so that eiθ is outer normal to ∂S at p, and otherwise

θ = 0. We remark that the specific choice of the rescaling factor
√
N∆Q(p) in (1.6) (which is often

called the “unfolding”) comes from the fact that 1
NRN,1(p) ∼ ∆Q(p).

For the bulk case when p ∈ IntS, it was shown in [8] that for a general external potential Q,

(1.7) KN

(
p+

z√
N∆Q(p)

, p+
w√

N∆Q(p)

)
→ G(z, w) := ezw̄−

|z|2
2
− |w|

2

2 .

Here IntS stands for the interior of S, the largest open set of S, and the universal scaling limit G in
(1.7) is called the Ginibre kernel [32]. For the edge case when p ∈ ∂S, it was shown in a fairly recent
work [35] that for a general external potential Q,

(1.8) KN

(
p+

eiθ z√
N∆Q(p)

, p+
eiθ w√
N∆Q(p)

)
→ G(z, w)

1

2
erfc

(z + w̄√
2

)
.

The class of potentialsQ covered in [35] is quite general but dependent on the topology of the associated
droplet.

Turning to the macroscopic scale, recently, Ameur and Cronvall [7] made significant results on the
asymptotic behaviour of KN (z, w). For the Ginibre ensemble with Q(z) = |z|2, they obtained a precise
asymptotic result. Namely, it was obtained in [7, Theorem 1.1] that

(1.9) KN (z, w) =

√
N

2π

1

zw̄ − 1
(zw̄)NeN−

N
2

(|z|2+|w|2) ·
(

1 +O(
1

N
)
)
,

where z 6= w and zw̄ is outside the Szegő curve

(1.10) S1 := {z ∈ C : |z| ≤ 1, |z e1−z| = 1}.
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Here, we intentionally add the subscript 1 since (1.10) can be realised as a special case of Sa in (1.12)
below with a = 1. We stress that [7, Theorem 1.1] indeed provides a closed form of large-N expansions
of KN . Let us also mention that (1.9) can also be interpreted as an asymptotic result of the incomplete
gamma function with complex argument, see [7, Section 1.4] and (A.4). (Cf. this was crucially used
in a recent work [20].)

Beyond the Ginibre ensemble, Ameur and Cronvall considered general external potential Q and
derived the uniform asymptotic behaviour of KN (z, w) for z, w outside the droplet, see [7, Theorem
1.3]. (We also refer to [3,31,42] for similar results on the elliptic Ginibre ensemble.) In particular, they
showed that there are strong correlations among the particles on the boundary of the droplet. One
of the main ingredients in their proof is the asymptotic behaviour of planar orthogonal polynomials
(1.3) due to Hedenmalm and Wennman [35].

The above-mentioned results were mainly obtained for the case where the external potential Q
is fixed, i.e. independent of N . Nevertheless, the case when Q depends on N is also interesting in
particular in the context of the insertion of point charges [11] also known as the induced ensembles [30]
or spectral singularities [36]. (Another important example that N -dependence of the potential being
crucial is the almost-Hermitian regime, see e.g. [6].)

Furthermore, in [35] (and also in the follow-up paper [34]), the asymptotic behaviours of planar
orthogonal polynomials were constructed in terms of a conformal map from the outside the droplet
onto the outside the unit disc. Accordingly, the asymptotic result in [35] was obtained for the potential
Q whose associated droplet is simply connected as a domain on the Riemann sphere. As a consequence,
the edge universality (1.8) in [35] as well as the Szegő type asymptotic behaviour in [7] were obtained
under the assumption that the associated droplet does not have several disconnected components.

In this work, we aim to provide concrete examples of asymptotic results for the ensembles with a
class of N -dependent potentials associated with disconnected droplets, see Figure 1.

Figure 1. Illustration of the lemniscate archipelago and zooming process

1.1. Main results. We now precisely introduce our models. It is more convenient to begin with a
special case when removing the discrete rotational symmetry. In this case, the model corresponds to
the induced Ginibre ensemble [30] with the potential

(1.11) Qc(z) ≡ QN,c(z) := |z|2 − 2c

N
log |z − a|,
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where c > −1 and a ≥ 0. From the statistical physics point of view, we insert a point charge c at a
given point a. When c is an integer, the ensemble (1.1) with the potential (1.11) can also be realised
as the Ginibre ensemble conditioned to have eigenvalue a with multiplicity c.

The orthogonal polynomials associated with (1.11) reveal a discontinuity at c = 0. Namely, if
c = 0, since the orthogonal polynomials are simply given by monomials, all the zeros are located at
the origin. On the other hand, in [38], it was shown that for any c 6= 0 and a > 1, the zeros of
orthogonal polynomials tend to occupy the limiting skeleton (also known as mother body, cf. [33])

(1.12) Sa :=
{
z ∈ C : log |z| − aRe z = log

(1

a

)
− 1 , Re z ≤ 1

a

}
.

Note that Sa crosses the point 1/a. The limiting skeleton Sa plays an important role in the asymptotic
behaviours of the orthogonal polynomials. See Figure 2 for the shape of Sa.

(a) a = 4 (b) a = 2 (c) a = 4/3

Figure 2. The plots display Sa. The red dots show the origin and 1/a. The green
dashed lines indicate the branch cuts in Theorem 1.1.

In our first result, we obtain the following asymptotic behaviour of KN in the macroscopic scaling.

Theorem 1.1. (Macroscopic asymptotic of the induced Ginibre ensemble) Let Q be the
induced Ginibre potential (1.11) with a > 1 and c > −1 (c 6= 0). Suppose that z and w are outside Sa,
and |z − w| > δ for some δ > 0. Then we have

(1.13) KN (z, w) =

√
N

2π

1

zw̄ − 1

( z

1− az
w̄

1− aw̄

)c
(zw̄)N |(z−a)(w−a)|ceN−

N
2

(|z|2+|w|2) ·
(

1+O(
1

N
)
)
.

Here the branch cuts for the variables z and w̄ are the line segment [0, 1/a].

Note that if we formally put c = 0, the formula (1.13) corresponds (1.9). We mention that the
condition z and w being outside the limiting skeleton was also considered in [3] for the elliptic Ginibre
ensemble. (In this case, the limiting skeleton is a line segment connecting two foci of the ellipse.)

In the spirit of the edge universality (1.8), we obtain the following.

Theorem 1.2. (Boundary scaling limits of the induced Ginibre ensemble) Let Q be the
induced Ginibre potential (1.11) with a > 1 and c > −1. Let p be a point on the unit circle. Then as
N →∞, we have

1

N
KN

(
p+

p z√
N
, p+

pw√
N

)
→ G(z, w)

1

2
erfc

(z + w̄√
2

)
,

uniformly for z, w on compact subsets of C.
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We now discuss the ensemble with discrete rotational symmetry. For a ≥ 0 and d ∈ N, let

(1.14) V (z) =
1

d
|zd − a|2, Vc(z) ≡ VN,c := V (z)− 2c

N
log |z|.

We refer to [10,21,27] and references therein for recent studies on such models. Note that the induced
Ginibre potential (1.11) corresponds to (1.14) with d = 1 up to a translation. It is well known that
the droplet SV associated with the potential V is given by

(1.15) SV := {z ∈ C : |zd − a| ≤ 1},
see e.g. [14, Lemma 1]. The density with respect to dA is given by

(1.16) ∆V (z) = d |z|2d−2.

Due to the explicit formula (1.15), one can easily notice that if a < 1, SV is connected. On the
other hand, if a > 1, SV consists of d-connected components that we call the lemniscate archipelago
following [7], see Figure 1.

We denote by qcj,N the orthonormal polynomials associated with the weighted measure e−NVc dA:

(1.17)

∫
C
qcj,N (z)qck,N (z)|z|2ce−NV (z) dA(z) = δjk.

For a > 1, it was shown in [13, 38] that as j → ∞, the (non-trivial) zeros of qcj,N tend to accumulate
on the curve

(1.18) Sda :=
{
z ∈ C : log |zd − a|+ aRe zd = log

(1

a

)
− 1 + a2 , Re zd ≥ a− 1

a

}
.

Notice that (1.18) and (1.12) are related by the mapping z 7→ a − zd. See Figure 3 for the shape of
Sda .

(a) d = 2 (b) d = 3 (c) d = 4

Figure 3. The plots display ∂SV (black) and Sda (blue), where a = 1.1. The red dots

indicate (a− 1
a)1/dωk and a1/dωk. The green dashed lines are the branch cuts in (1.20).

Let us consider the associated correlation kernel

(1.19) Kc
N (z, w) := |zw|ce−

N
2

(V (z)+V (w))
N−1∑
j=0

qcj,N (z)qcj,N (w).

The kernel (1.19) corresponds to the reproducing kernel (1.4) associated with the potential Q = Vc.
We derive the asymptotic behaviours of Kc

N in the macroscopic scale.
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Theorem 1.3. (Macroscopic asymptotic of the lemniscate archipelago) Let d > 1, a > 1
and c > −1 be fixed. Suppose that z and w are outside Sda , and |z − w| > δ for some δ > 0. If
c = 0, 1, . . . , d− 1, we further assume that (zd − a)(w̄d − a) is outside S1. Then as N →∞, we have

Kc
dN (z, w) = d

√
N

2π

((zd − a)(w̄d − a))N

(zd − a)(w̄d − a)− 1
|zw̄|ceN−

dN
2

(V (z)+V (w))

×
( zd − a
azd + 1− a2

w̄d − a
aw̄d + 1− a2

) c
d
((zd − a)(w̄d − a))

1
d
−1

× (azd + 1− a2)(aw̄d + 1− a2)− zd(zd − a)w̄d(w̄d − a)

(azd + 1− a2)
1
d (aw̄d + 1− a2)

1
d − z(zd − a)

1
d w̄(w̄d − 1)

1
d

·
(

1 +O(
1

N
)
)
.

(1.20)

Here the branch cuts for the variables z and w̄ are given by the combination of d line segments
connecting (a− 1

a)1/dωk and a1/dωk, where ω = e2πi/d and k = 0, 1, . . . , d− 1.

Note that by (1.14) and (1.15), we have

|zd − a| = 1, V (z) =
1

d
, (z ∈ ∂SV ).

Then as an immediate consequence of Theorem 1.3, we obtain that for z, w ∈ ∂SV ,

|Kc
dN (z, w)| = d

√
N

2π

∣∣∣ (zw̄)c

(zd − a)(w̄d − a)− 1

(
(azd + 1− a2)(aw̄d + 1− a2)

)− c
d
∣∣∣

×
∣∣∣ (azd + 1− a2)(aw̄d + 1− a2)− zd(zd − a)w̄d(w̄d − a)

(azd + 1− a2)
1
d (aw̄d + 1− a2)

1
d − z(zd − a)

1
d w̄(w̄d − 1)

1
d

∣∣∣ · (1 +O(
1

N
)
)
.

Thus one can notice that Kc
dN (z, w) = O(

√
N) for z, w ∈ ∂SV , which indicates that there are strong

correlations among the particles on the boundary of the droplets.
To provide a physical realisation of Theorem 1.3, let us consider the Berezin kernel

(1.21) BN (z, w) :=
RN,1(z)RN,1(w)−RN,2(z, w)

RN,1(z)
=
|Kc

N (z, w)|2

RN,1(z)
.

For a given point z, the function w 7→ BN (z, w) corresponds to the probability density of the ensemble
conditioned to have a particle at z. See Figure 4 for the graphs of BN .

(a) d = 2 (b) d = 3 (c) d = 4

Figure 4. The plots display the approximation of the graphs w 7→ BN (z, w) in (1.21)

(for w away from z), where z = (a− 1)
1
d ∈ ∂SV and a = 1.1. Here c = 0 and N = 600.

For the approximation, we use (1.20) and the fact that RN,1(z) ∼ N∆V (z)/2.
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We remark that the asymptotic behaviour (1.20) may involve special functions (in the subleading
terms) with certain periodicity such as Jacobi theta functions as observed in [26] for a rotationally
symmetric ensemble. We refer to [18, 28] for a discussion on similar situations on Hermitian matrix
model.

In our final result, we derive the boundary scaling limits.

Theorem 1.4. (Boundary scaling limits of the lemniscate archipelago) Let p ∈ ∂SV and
choose θ so that eiθ is outer normal to ∂SV at p. Then as N →∞, we have

1

dN∆V (p)
Kc
dN

(
p+

eiθ z√
dN∆V (p)

, p+
eiθ w√
dN∆V (p)

)
→ G(z, w)

1

2
erfc

(z + w̄√
2

)
,

uniformly for z, w on compact subsets of C.

We emphasise that Theorem 1.4 provides an example of edge universality for the ensembles with
disconnected droplets that are not covered in [35].

1.2. Outline of the proofs. The overall strategy of the proofs is as follows.

• We use the multi-fold transform of the correlation kernels (Lemma 2.1) that relates those of
Qc in (1.11) and of Vc in (1.14). Due to this property, one can easily derive Theorems 1.3
and 1.4 from Theorems 1.1 and 1.2, respectively.

• We apply the generalised Christoffel-Darboux formula (Proposition 2.2) that allows expressing
the correlation kernel only in terms of three monic orthogonal polynomials (of degree N − 1,
N , and N + 1) and their norms.

• Using the steepest descent method to the Riemann-Hilbert problem developed in [12, 38],
we derive the asymptotic behaviours of orthogonal polynomials (Proposition 2.3) and norms
(Lemma 2.4) up to the first subleading terms. Combined with the Christoffel-Darboux formula,
these lead to Theorems 1.1 and 1.2.

The overall strategy described above was introduced in [24] to obtain the microscopic limit of the
correlation kernel at multi-criticality a = 1. We use this strategy when a > 1 together with new
asymptotic behaviours of orthogonal polynomials and their norms (Proposition 2.3 and Lemma 2.4).
These are probably of interest by themselves in the spirit of several works [13,15,19,40] on Riemann-
Hilbert analysis for planar orthogonal polynomials.

The rest of this paper is organised as follows. In Section 2, we present the overall strategy of the
proofs in more detail and show our main results. However it requires Proposition 2.3 and Lemma 2.4
that are only shown in the following section. For the proofs, in Section 3, we use the nonlinear
steepest descent method to the Riemann-Hilbert problem associated with the orthogonal polynomials.
In Appendix A, we present the proofs of Proposition 2.3 and Lemma 2.4 for the exactly solvable case
c = 1 using well-known properties of some special functions.

2. Proofs of main results

In this section, we present the overall strategy of the proofs and show the main results. In Subsec-
tions 2.1 and 2.2 we introduce the multi-fold transform (Lemma 2.1) and the generalised Christoffel-
Darboux formula. In Subsection 2.3, we present asymptotic behaviours of orthogonal polynomials
(Proposition 2.3) and the norms (Lemma 2.4). In Subsection 2.4, we prove Theorems 1.1 and 1.2. In
the last subsection, we show Theorems 1.3 and 1.4.
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2.1. Multi-fold transform. We write pcj,N for the orthonormal polynomials satisfying∫
C
pcj,N (z)pck,N (z)|z|2ce−N |z−a|2 dA(z) = δjk.

Then the orthogonal polynomials qcj,N in (1.17) is related to pcj,N as

(2.1) qcdj+l,dN (z) =
√
d zlp

c+l+1
d
−1

j,N (zd),

see e.g. [15, Section 3] and [24, Section 2]. We now define the correlation kernel

(2.2) K̂c
N (z, w) = (zw̄)ce−

N
2

(|z−a|2+|w−a|)2
N−1∑
j=0

pcj,N (z)pcj,N (w).

Notice that we use (zw̄)c instead of |zw|c.
By (2.1), we have the following multi-fold transform relation, see [24, Section 2] for more detail.

(Cf. this idea appeared also in [29, Proposition 2.1], see [1] for the chiral setup.) Recall that Kc
N is

given by (1.19).

Lemma 2.1. We have

(2.3) Kc
dN (z, w) = d(zw̄)d−1

( |zw|
zw̄

)c d−1∑
l=0

K̂
c+l+1
d
−1

N (zd, wd).

Note that in the left-hand side of (2.3) we use dN instead of N . This is indeed the key observation

for such a transform. Due to Lemma 2.1, it suffices to derive the asymptotics of K̂c
N .

2.2. Christoffel-Darboux formula. One can compute asymptotics of ∂̄wK̂
c
N (z, w) by virtue of the

Christoffel-Darboux formula in [24, Theorem 3.2].
For this, we set some notations. Let Pj ≡ P cj be the monic orthogonal polynomial satisfying∫

C
Pj(z)Pk(z)|z − a|2ce−N |z|

2
dA(z) = hj δjk,(2.4)

where hj is the (squared) orthogonal norm. Note that we have the following relation

pcj,N (z) =
1√
hj
Pj(a− z).

We denote

(2.5) W (z) = (z − a)c, ψj(z) := W (z)Pj(z), φj(z) := W (z)
Pj(z)

hj
.

Let us define

K̃c
N (z, w) := ((z − a)(w̄ − a))ce−Nzw̄

N−1∑
j=0

Pj(z)Pj(w)

hj
= e−Nzw̄

N−1∑
j=0

φj(w)ψj(z).

The kernel KN in (1.4) with Q given by (1.11) is written in terms of K̃c
N as

(2.6) KN (z, w) =
( |(z − a)(w̄ − a)|

(z − a)(w̄ − a)

)c
e−

N
2

(|z|2+|w|2−2zw̄)K̃c
N (z, w).

Note also that

K̃c
N (a− z, a− w) = (zw̄)ce−N(a−z)(a−w̄)

N−1∑
j=0

pcj,N (z)pcj,N (w)
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Thus it is related to K̂c
N in (2.2) as

(2.7) K̂c
N (z, w) = e−

N
2

(|z−a|2+|w−a|2−2(z−a)(w̄−a))K̃c
N (a− z, a− w).

The following version of the Christoffel-Darboux formula was obtained in [24, Theorem 3.2].

Proposition 2.2. (Christoffel-Darboux formula) Suppose that a 6= 0 and that

〈zψj |φ0〉 6= 0, φj(a) 6= 0, for all j.

Then we have the following form of the Christoffel-Darboux identity:

∂̄wK̃
c
N (z, w) = e−Nzw̄

1
N+c
N hN−1 − hN

∂̄wψN (w)
(
ψN (z)− zψN−1(z)

)
− e−Nzw̄PN+1(a)

PN (a)

N hN/hN−1
N+c+1
N hN − hN+1

ψN−1(w)
(
ψN+1(z)− zψN (z)

)
.

(2.8)

This formula plays a key role in performing asymptotic analysis for Theorems 1.1 and 1.2. We also
refer to [2,16,20,22,23,37] for various Christoffel-Darboux type identities involving certain differential
operators.

2.3. Fine asymptotic behaviours of orthogonal polynomials and norms. Recall that the
monic polynomial Pj satisfies the orthogonality condition (2.4). The weighted orthogonal polynomial
ψj is given by (2.5). We obtain the strong asymptotic behaviour of ψj up to the first subleading terms.

Proposition 2.3. Let a > 1 and c > −1. Then for z ∈ C outside Sa in (1.12), we have

ψN−1(z) = zN+c−1
( z − a
z − 1

a

)c
·
[
1− c

1− az

(1 + c

2

1

1− az
+

c

1− a2
− 1
) 1

N
+O(

1

N2
)
]
,(2.9)

ψN (z) = zN+c
( z − a
z − 1

a

)c
·
[
1− c

1− az

(1 + c

2

1

1− az
+

c

1− a2

) 1

N
+O(

1

N2
)
]
,(2.10)

ψN+1(z) = zN+c+1
( z − a
z − 1

a

)c
·
[
1− c

1− az

(1 + c

2

1

1− az
+

c

1− a2
+ 1
) 1

N
+O(

1

N2
)
]
.(2.11)

In particular, we have

ψN (z)− zψN−1(z) = zN+c
( z − a
z − 1

a

)c
· c

az − 1

1

N
·
(

1 +O(
1

N
)
)
,(2.12)

ψN+1(z)− zψN (z) = zN+1+c
( z − a
z − 1

a

)c
· c

az − 1

1

N
·
(

1 +O(
1

N
)
)
.(2.13)

We emphasise that the leading terms in Proposition 2.3 were obtained in [38, Theorem 2]. Note
that the terms (2.12) and (2.13) appear in the Christoffel-Darboux formula (2.8). For these terms, we
should extend [38, Theorem 2] up to the first subleading O(1/N) terms.

Notice that if c = 0, then ψj(z) = zj . Thus in this case Proposition 2.3 trivially holds.
To apply the Christoffel-Darboux formula (2.8), one should also derive the asymptotic behaviours

of the orthogonal norms hj in (2.4).
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Lemma 2.4. Let a > 1 and c > −1. Then we have

hN−1 = e−N
√

2π

N
a2c ·

[
1 +

( c

a2 − 1
+
c(c− 1)

2
+

1

12

) 1

N
+O(

1

N2
)
]
,(2.14)

hN = e−N
√

2π

N
a2c ·

[
1 +

( c

a2 − 1
+
c(c− 1)

2
+

1

12

) 1

N
+O(

1

N2
)
]
,(2.15)

hN+1 = e−N
√

2π

N
a2c ·

[
1 +

( c

a2 − 1
+
c(c− 1)

2
+

13

12

) 1

N
+O(

1

N2
)
]
.(2.16)

In particular, for c 6= 0, we have

1
N+c
N hN−1 − hN

=
1

c

1

a2c

1√
2π

N
3
2 eN ·

(
1 +O(

1

N
)
)
,(2.17)

N hN/hN−1
N+c+1
N hN − hN+1

=
1

c

1

a2c

1√
2π

N
5
2 eN ·

(
1 +O(

1

N
)
)
.(2.18)

Note that (2.17) and (2.18) appear in the Christoffel-Darboux formula (2.8). We remark that for
c = 0, we have

hj =

∫
C
|z|2je−N |z|2 dA(z) = 2

∫ ∞
0

r2j+1e−Nr
2
dr =

j!

N j+1
.

Thus by Stirling’s formula, one can directly check that Lemma 2.4 holds for c = 0.

2.4. Proofs of Theorems 1.1 and 1.2. Combining the Christoffel-Darboux formula (Proposi-
tion 2.2) with Proposition 2.3 and Lemma 2.4, we show Theorem 1.1.

Proof of Theorem 1.1. By the transform (2.6), it suffices to show that for z and w̄ outside Sa in (1.12),

(2.19) K̃c
N (z, w) =

√
N

2π

1

zw̄ − 1

( z − a
1− az

w̄ − a
1− aw̄

)c
· (zw̄)N+ceN−Nzw̄ ·

(
1 +O(

1

N
)
)
.

Using Proposition 2.3, we have

∂̄wψN (w) = Nw̄N+c−1
( w̄ − a
w̄ − 1

a

)c
·
(

1 +O(
1

N
)
)
, ψN−1(w) = w̄N+c−1

( w̄ − a
w̄ − 1

a

)c
·
(

1 +O(
1

N
)
)
.

By [38, Theorem 2], we also have

PN+1(a)

PN (a)
= a ·

(
1 +O(

1

N
)
)
.

Therefore by (2.12) and (2.13), we obtain

∂̄wψN (w)
(
ψN (z)− zψN−1(z)

)
=

c

az − 1
zN+cw̄N+c−1

( z − a
z − 1

a

)c( w̄ − a
w̄ − 1

a

)c
·
(

1 +O(
1

N
)
)

and

ψN−1(w)
(
ψN+1(z)− zψN (z)

)
=

c

az − 1

1

N
zN+1+cw̄N+c−1

( z − a
z − 1

a

)c( w̄ − a
w̄ − 1

a

)c
·
(

1 +O(
1

N
)
)
.
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Then by Lemma 2.4, we have

1
N+c
N hN−1 − hN

∂̄wψN (w)
(
ψN (z)− zψN−1(z)

)
=

1

c

1

a2c

1√
2π

N
3
2 eN

c

az − 1
zN+cw̄N+c−1

( z − a
z − 1

a

)c( w̄ − a
w̄ − 1

a

)c
·
(

1 +O(
1

N
)
)

=
1√
2π

N
3
2 eN

1

az − 1
zN+cw̄N+c−1

( z − a
1− az

w̄ − a
1− aw̄

)c
·
(

1 +O(
1

N
)
)

and

PN+1(a)

PN (a)

N hN/hN−1
N+c+1
N hN − hN+1

ψN−1(w)
(
ψN+1(z)− zψN (z)

)
= a

1

c

1

a2c

1√
2π

N
5
2 eN

c

az − 1

1

N
zN+1+cw̄N+c−1

( z − a
z − 1

a

)c( w̄ − a
w̄ − 1

a

)c
·
(

1 +O(
1

N
)
)

=
1√
2π

N
3
2 eN

az

az − 1
zN+cw̄N+c−1

( z − a
1− az

w̄ − a
1− aw̄

)c
·
(

1 +O(
1

N
)
)
.

Now it follows from the Christoffel-Darboux formula (Proposition 2.2) that

∂̄wK̃
c
N (z, w) = − N

3
2

√
2π

( z − a
1− az

w̄ − a
1− aw̄

)c
· zN+cw̄N+c−1eN−Nzw̄ ·

(
1 +O(

1

N
)
)
.

Integrating this equation, we obtain

K̃c
N (z, w) =

√
N

2π

1

zw̄ − 1

( z − a
1− az

w̄ − a
1− aw̄

)c
· (zw̄)N+ceN−Nzw̄ ·

(
1 +O(

1

N
)
)

+ fN (z)

for some function fN depending only on z. Due to the symmetry K̃c
N (z, w) = K̃c

N (w, z), it follows
that fN is a constant function. Furthermore, by combining the exterior estimate

K̃c
N (z, z)→ 0, as z →∞

that holds in general (see [9, Section 4.1.1]) and the elementary inequality

det

[
K̃c
N (z, z) K̃c

N (z, w)

K̃c
N (w, z) K̃c

N (w,w)

]
≥ 0, i.e. K̃c

N (z, z)K̃c
N (w,w) ≥ |K̃c

N (z, w)|2,

one can observe that K̃c
N (z, w)→ 0 as z →∞. Thus we conclude (2.19). �

Proof of Theorem 1.2. By (2.6), it suffices to show that

(2.20)
1

N
K̃c
N

(
p+

p z√
N
, p+

pw√
N

)
→ 1

2
erfc

(z + w̄√
2

)
.

To lighten notations, let us write

zp := p
(

1 +
z√
N

)
, wp := p

(
1 +

w√
N

)
.

First note that

e−Nzpw̄p = e−N−
√
N(z+w̄)−zw̄.

We also have

zN+c
p = pN+c e

√
Nz− z

2

2 ·
(

1 +O(
1√
N

)
)
, zN+1+c

p = pN+1+c e
√
Nz− z

2

2 ·
(

1 +O(
1√
N

)
)
.
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Combining these asymptotics with Proposition 2.3, we have

ψN (zp)− zpψN−1(zp) = pN+c e
√
Nz− z

2

2

( p− a
p− 1

a

)c
· c

ap− 1

1

N
·
(

1 +O(
1√
N

)
)
,

ψN+1(zp)− zpψN (zp) = pN+1+c e
√
Nz− z

2

2

( p− a
p− 1

a

)c
· c

ap− 1

1

N
·
(

1 +O(
1√
N

)
)

and

ψ′N (wp) = N p̄N+c−1e
√
Nw̄− w̄

2

2

( p̄− a
p̄− 1

a

)c
·
(

1 +O(
1√
N

)
)
,

ψN−1(wp) = p̄N+c−1e
√
Nw̄− w̄

2

2

( p̄− a
p̄− 1

a

)c
·
(

1 +O(
1√
N

)
)
.

Then by Lemma 2.4, we obtain

e−Nzpw̄p
1

N+c
N hN−1 − hN

ψ′N (wp)
(
ψN (zp)− zpψN−1(zp)

)
= e−

(z+w̄)2

2
1

a2c

1√
2π

N
3
2

( p̄− a
p̄− 1

a

)c ( p− a
p− 1

a

)c
· p

ap− 1
·
(

1 +O(
1√
N

)
)

= e−
(z+w̄)2

2
1√
2π

N
3
2 · p

ap− 1
·
(

1 +O(
1√
N

)
)
.

Here we have used that ∣∣∣ p− a
ap− 1

∣∣∣ =
∣∣∣p− a
a− p̄

∣∣∣ = 1,

which follows from |p| = 1.
Similarly, we have

e−Nzpw̄p
PN+1(a)

PN (a)

N hN/hN−1
N+c+1
N hN − hN+1

ψN−1(wp)
(
ψN+1(zp)− zpψN (zp)

)
= e−

(z+w̄)2

2
1

a2c

1√
2π

N
3
2

( p̄− a
p̄− 1

a

)c ( p− a
p− 1

a

)c
· ap2

ap− 1
·
(

1 +O(
1√
N

)
)

= e−
(z+w̄)2

2
1√
2π

N
3
2 · ap2

ap− 1
·
(

1 +O(
1√
N

)
)
.

Therefore by Proposition 2.2, we obtain that

∂̄w

[ 1

N
K̃c
N (zp, wp)

]
= − 1√

2π
e−

(z+w̄2)
2 ·

(
1 +O(

1√
N

)
)
.

This gives that

1

N
K̃c
N (zp, wp) =

1

2
erfc

(z + w̄√
2

)
·
(

1 +O(
1√
N

)
)
,

which leads to the desired convergence (2.20). Here the integration constant is determined similarly

above by the fact that 1
N K̃

c
N (zp, wp)→ 0 as z → +∞. �
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2.5. Proofs of Theorems 1.3 and 1.4. We derive Theorem 1.3 from Theorem 1.1.

Proof of Theorem 1.3. By Theorem 1.1 and (2.7), we have

K̂c
N (z, w) =

√
N

2π

1

(a− z)(a− w̄)− 1

( z

a2 − 1− az
w̄

a2 − 1− aw̄

)c
×
(

(z − a)(w̄ − a)
)N+c

eN−
N
2

(|z−a|2+|w−a|2) ·
(

1 +O(
1

N
)
)
.

By (2.3), we obtain

Kc
dN (z, w) = d

√
N

2π

((zd − a)(w̄d − a))N

(zd − a)(w̄d − a)− 1
|zw|ceN−

dN
2

(V (z)+V (w))

×
d−1∑
l=0

( zd − a
azd + 1− a2

w̄d − a
aw̄d + 1− a2

) c+l+1
d
−1

(zw̄)l ·
(

1 +O(
1

N
)
)
.

Now (1.20) follows from straightforward computations.
�

Finally, we derive Theorem 1.4 from Theorem 1.2.

Proof of Theorem 1.4. By (2.3) and (1.16), we have

1

dN∆V (p)
Kc
dN

(
p+

eiθ z√
dN∆V (p)

, p+
eiθ w√
dN∆V (p)

)
=

1

d2Np2d−2
Kc
dN

(
p+

eiθ z

d pd−1
√
N
, p+

eiθ w

dpd−1
√
N

)
=

1

dN

d−1∑
l=0

K̂
c+l+1
d
−1

N

(
pd +

eiθ z√
N
, pd +

eiθ w√
N

)
·
(

1 +O(
1√
N

)
)
.

Therefore Theorem 1.4 follows from Theorem 1.2. �

3. Riemann-Hilbert analysis and fine asymptotic behaviours

In this section, we derive fine asymptotic behaviours of the orthogonal polynomials (Proposition 2.3)
and the orthogonal norms (Lemma 2.4). Subsection 3.1 is devoted to the recalling the matrix-valued
Riemann-Hilbert problem developed in [12] and the transforms introduced in [38]. Based on the
Riemann-Hilbert analysis in Subsections 3.2 and 3.3, we prove Proposition 2.3 and Lemma 2.4.

3.1. Outline of the Riemann-Hilbert analysis. Let us briefly recall the Riemann-Hilbert analysis
in [12,38] (see also [39,40] for its generalisation) that was developed to derive the asymptotic behaviours
of the orthogonal polynomials Pn. We also refer the reader to [13, 15] for similar studies in different
settings. This will be used in the following subsection to derive fine asymptotic behaviours of Pn.

Let Γ be a simple closed curve that encloses the line segment [0, a] ∈ C with counterclockwise
orientation. Let the analytic function wn,N on C \ [0, a] be defined by

(3.1) wn,N (z) :=
(z − a

z

)c e−Naz
zn

,

where we choose the principal branch.
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Define the matrix function Y (z) by

Y (z) :=

 Pn(z)
1

2πi

∫
Γ

Pn(s)wn,N (s)

s− z
ds

Qn−1(z)
1

2πi

∫
Γ

Qn−1(s)wn,N (s)

s− z
ds

 ,
where Qn−1 is a unique polynomial of degree n− 1 satisfying

1

2πi

∫
Γ

Qn−1(s)wn,N (s)

s− z
ds =

1

zn
·
(

1 +O(
1

z
)
)
.

Then it was shown in [12, Section 3] that Y (z) is a unique solution to the Riemann-Hilbert problem

(3.2)



Y (z) is holomorphic in C \ Γ,

Y+(z) = Y−(z)

[
1 wn,N (z)

0 1

]
, z ∈ Γ,

Y (z) =
(
I +O( 1

N )
)[zn 0

0 z−n

]
, z →∞.

Here Y±(z) are the boundary values on the sides of the corresponding contour. Since Pn(z) = [Y (z)]11,
we aim to analyse the solution to the Riemann-Hilbert problem (3.2). For this purpose, we shall
introduce several transforms of (3.2).

First, let us define g by

g(z) =

{
log z, z ∈ ExtSa,
az + log β − aβ, z ∈ IntSa.

Here and in the sequel, we write β = 1/a. The function g is a building block to define

(3.3) φ(z) = az + log z − 2g(z) + l, l = log β − aβ,

which satisfies Reφ(z) = 0 for z ∈ Sa.
Following the nonlinear steepest descent method that applied to the above Riemann-Hilbert prob-

lem for Y , we define

(3.4) Z(z) := e
−Nl

2
σ3Y (z)e−Ng(z)σ3e

Nl
2
σ3

[
1 0

?
(

z
z−a
)c
eNφ(z) 1

]
,

where

? =


1, when z ∈ U ∩ ExtΓ,

−1, when z ∈ U ∩ IntΓ,

0, when z /∈ U.
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Here U is a neighbourhood of Sa. Then by (3.2), the matrix function Z satisfies the following Riemann-
Hilbert problem

(3.5)



Z+(z) = Z−(z)

[
1 0(

z
z−a
)c
eNφ(z) 1

]
, z ∈ ∂U,

Z+(z) = Z−(z)

[
0

(
z−a
z

)c
−
(

z
z−a
)c

0

]
, z ∈ Γ ∩ U,

Z+(z) = Z−(z)

[
1
(
z−a
z

)c
e−Nφ(z)

0 1

]
, z ∈ Γ \ U,

Z(z) = I +O( 1
N ), z →∞,

Z(z) is holomorphic, otherwise.

Next, we define the global parametrix

Φ(z) =



[(
z

z−β
)c

0

0
( z−β

z

)c
]
, z ∈ ExtΓ,[

0
(
z−a
z−β
)c

−
( z−β
z−a
)c

0

]
, z ∈ IntΓ.

Then Φ satisfies the following Riemann-Hilbert problem


Φ+(z) = Φ−(z)

[
0

(
z−a
z

)c
−
(

z
z−a
)c

0

]
, z ∈ Sa,

Φ(z) = I +O( 1
N ), z →∞,

Φ(z) is holomorphic, otherwise.

Note that we let Γ match Sa for z ∈ U and away from a small neighborhood of β.
Near the point β, the jump matrices of Φ do not converge to those of Z. Therefore one needs

the local parametrix around β that satisfies the exact jump conditions of Z. Moreover, we shall
construct a rational matrix function R such that the improved global parametrix, RΦ, matches the
local parametrix better. This construction is called “partial Schlesinger transform” [17], and it was
used in [12] to obtain the strong asymptotics of Pn. Here we use it to derive fine asymptotic behaviours
of the orthogonal polynomials (Proposition 2.3) and the orthogonal norms (Lemma 2.4).

Let Dβ be a disk neighborhood of β with a fixed radius such that the map ζ : Dβ → C given by

ζ :=
√

2N(a(z − β)− log z + log β) = a
√
N(z − β)(1 +O(z − β))

is univalent.
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Γ

Γ

U

U

Figure 5. The jump contours of P (z) in Dβ. Γ are the blue curves, U are the shaded
region bounded by the green curves.

We now define P : Dβ → C2×2 that satisfies the following Riemann-Hilbert problem

(3.6)



P+(z) = P−(z)

[
1 e−

ζ(z)2

2

0 1

]
, z ∈ Γ \ U,

P+(z) = P−(z)

[
1 0

e
ζ(z)2

2 1

]
, z ∈ ∂U ∩ ExtΓ,

P+(z) = P−(z)

[
1 0

e−
ζ(z)2

2 1

]
, z ∈ ∂U ∩ IntΓ,

P+(z) =

[
0 −1

1 0

]
P−(z)

[
0 1

−1 0

]
, z ∈ Γ ∩ U,

P+(z) = e−cπiσ3P−(z)ecπiσ3 , z ∈ R,
P (z) is holomorphic, otherwise.

and the boundary condition, P (z) ∼ I on ∂Dβ. Using the Riemann-Hilbert problem (3.6) for P , one
can notice that the matrix function

Φ(z)
(z − a

z

) c
2
σ3

P (z)
(z − a

z

)− c
2
σ3

satisfies the jump conditions of Z in (3.5).
Finally, let us define W by

W (z) := ζ(z)−cσ3SP (z)T (ζ(z))−1S−1,

where T is a diagonal matrix function

T (ζ) =

{
exp

( ζ2

4 σ3

)
, |argζ| < 3π/4,

exp
(
− ζ2

4 σ3

)
, otherwise,
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and S is a piecewise constant matrix

S =



I, Imζ < 0 ∩ |argζ| < 3π/4,

ecπiσ3 Imζ > 0 ∩ |argζ| < 3π/4,[
0 1

−1 0

]
, Imζ < 0 ∩ |argζ| ≥ 3π/4,

ecπiσ3

[
0 1

−1 0

]
, Imζ > 0 ∩ |argζ| ≥ 3π/4.

Then W satisfies the following jump conditions,

(3.7)



W+(z) = W−(z)

[
1 1− e2cπi

0 1

]
, ζ(z) ∈ R+,

W+(z) = W−(z)

[
1 0

e−2cπi 1

]
, ζ(z) ∈ iR+,

W+(z) = W−(z)

[
e2cπi e2cπi − 1

0 e−2cπi

]
, ζ(z) ∈ R−,

W+(z) = W−(z)

[
1 0

−1 1

]
, ζ(z) ∈ iR−.

3.2. Asymptotic behaviours of orthogonal polynomials. In this subsection, we prove Proposi-
tion 2.3.

Proof of Proposition 2.3. Recall that the parabolic cylinder function D−c is given by

D−c(ζ) :=
e
ζ2

4

i
√

2π

∫ ε+i∞

ε−i∞
e−ζs+

s2

2 s−c ds, ε > 0,

see e.g. [43, Chapter 12]. Using this, we define W : C \ (R ∪ iR)→ C2×2 by

W(ζ) :=



 D−c(ζ) i
√

2πe
cπi
2

Γ(c) D−1+c(iζ)

− Γ(c+1)√
2πecπi

D−1−c(ζ) e−
cπi
2 Dc(iζ)

 , −π
2 < arg(ζ) < 0, D−c(ζ) − i

√
2πe

3cπi
2

Γ(c) D−1+c(−iζ)

− Γ(c+1)√
2πecπi

D−1−c(ζ) e
cπi
2 Dc(−iζ)

 , 0 < arg(ζ) < π
2 , e−cπiD−c(−ζ) − i

√
2πe

3cπi
2

Γ(c) D−1+c(−iζ)
Γ(c+1)√
2πe2cπi

D−1−c(−ζ) e
cπi
2 Dc(−iζ)

 , π
2 < arg(ζ) < π, ecπiD−c(−ζ) i

√
2πe

cπi
2

Γ(c) D−1+c(iζ)
Γ(c+1)√

2π
D−1−c(−ζ) e−

cπi
2 Dc(iζ)

 , π < arg(ζ) < 3π
2 .

This function is used to define

W (ζ) = H(z)W(ζ(z)),

where H(z) is a unimodular holomorphic matrix function on Dβ that will be determined later.
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By [38, Lemma 7], the function W(ζ(z)) satisfies the jump conditions of W in (3.7), and the
asymptotic behaviour

F (ζ(z)) :=W(ζ)ζcσ3e
ζ2

4
σ3 = I +

C1

ζ
+
C2

ζ2
+O(

1

ζ3
), (|ζ| → ∞),

where

C1 =

[
0

√
2πecπi

Γ(c)
−Γ(c+1)√

2πecπi
0

]
, C2 =

[
− c(c+1)

2 0

0 c(c−1)
2

]
.

Moreover, by [38, Lemma 9], for any positive integer L, there exists a positive integer k such that
F (ζ) can be decomposed into

(3.8) F (ζ)F1(ζ)−1 . . . Fk(ζ)−1 = I +O(
1

ζL
).

In particular, F1 and F2 are given by

(3.9) F1(ζ) = I +
1

ζ

[
0
√

2πecπi

Γ(c)

0 0

]
, F2(ζ) = I +

 − c(c+1)
2ζ2

√
2πecπic2(c+1)2

4Γ(c+1)ζ3

− Γ(c+1)√
2πecπiζ

c(c+1)
2ζ2

 .
Given {Fj}kj=1, the sequences {Hj} and {Rj} can be obtained inductively. Assume that Hj−1 is

unimodular holomorphic and nonvanishing at β. When j = 1, we choose H0(z) = I. We define

(3.10) F̃j(z) :=
(z − a

z

) c
2
σ3
(zζ(z)

z − β

)cσ3

Hj−1(z)Fj(ζ(z))Hj−1(z)−1
(z − a

z

)− c
2
σ3
(zζ(z)

z − β

)−cσ3

.

Given F̃j as above, by [38, Lemma 10], the unique rational matrix function Rj can be constructed

explicitly such that its only singularity is at β, Rj(∞) = I, and Rj(z)F̃j(z)
−1 is holomorphic at β.

We define R1, a unimodular meromorphic matrix function with a simple pole at β, by

(3.11) R1(z) = I +

√
2π(a2 − 1)c

N1/2−caΓ(c)(z − β)

[
0 1
0 0

]
.

Using R1 and F1 in (3.9), set

(3.12) H1(z) :=
(z − a

z

)− c
2
σ3
(zζ(z)

z − β

)−cσ3

R1(z)
(z − a

z

) c
2
σ3
(zζ(z)

z − β

)cσ3

F1(ζ(z))−1.

Then H1 is unimodular and holomorphic at β.
Next, let us write

(3.13) R2(z) = I +

[
c11
z−β + c12

(z−β)2
c21
z−β + c22

(z−β)2 + c23
(z−β)3

c31
z−β

c41
z−β + c42

(z−β)2

]
,

where cjk’s are some constants. Using H1(z) in (3.12), F̃j in (3.10) with j = 2 and the condition that

R2(z)F̃2(z)−1 is holomorphic at β, we have

R2(z) = N
c
2
σ3

(
I +

[
c2β

Na(β−a)
1

z−β −
c(c+1)β

2Na
1

(z−β)2 +O( 1
N2 ) O( 1

N )

O( 1√
N

) O( 1√
N

)

])
N−

c
2
σ3 .

Moreover, by (3.8), we have Fk(ζ) = I +O(ζ−3) for k ≥ 3. Then by [38, Corollary 1], when z ∈ ∂Dβ

we have

Rk(z) . . . R3(z) = N
c
2
σ3(I +O(N−3/2)).



DETERMINANTAL COULOMB GAS ENSEMBLES OF LEMNISCATE ARCHIPELAGO TYPE 19

Combining the above equation with R1 in (3.11) and R2 in (3.13), for z ∈ Dβ, we have

R(z) = Rk(z) . . . R1(z)

= N
c
2
σ3

(
I +

[
c2β

Na(β−a)
1

z−β −
c(c+1)β

2Na
1

(z−β)2 +O( 1
N2 )

√
2π(a2−1)c√
NaΓ(c)

1
z−β +O( 1

N )

O( 1√
N

) O( 1√
N

)

])
N−

c
2
σ3 .

Note in particular that

(3.14) [R(z)]11 = 1 +
c2β

Na(β − a)

1

z − β
− c(c+ 1)β

2Na

1

(z − β)2
+O(

1

N2
).

We define Z∞(z) by

(3.15) Z∞(z) :=

R(z)Φ(z), z /∈ Dβ,

Φ(z)
(
z−a
z

) c
2
σ3

P (z)
(
z−a
z

)− c
2
σ3

, z ∈ Dβ.

By the proof of [38, Theorem 2], we have

(3.16) Z(z) =
(
I +O

( 1

N∞
))
Z∞(z),

where the error bound O( 1
N∞ ) means O( 1

Nk ) for arbitrary integer k. Note that the error bound is
uniform over any compact subset of the corresponding region.

Using (3.4), for z outside Sa, we have

Y (z) = e
Nl
2
σ3Z(z)e−

Nl
2
σ3eNg(z)σ3 = e

Nl
2
σ3

(
I +O(

1

N∞
)
)
R(z)Φ(z)e−

Nl
2
σ3zNσ3 ,(3.17)

where the second equality follows from (3.16) and (3.15). Here l is given by (3.3). Then by (3.14), we
obtain

PN (z) = [Y (z)]11 = zN
( z

z − β

)c
[R(z)]11 ·

(
1 +O(

1

N∞
)
)

= zN
( z

z − β

)c(
1 +

c2β

Na(β − a)

1

z − β
− c(c+ 1)β

2Na

1

(z − β)2
+O(

1

N2
)
)
·
(

1 +O(
1

N∞
)
)
,

which leads to (2.10). For (2.9) and (2.11), we shall use the relation

(3.18) Pn,N (z; a) =
( n
N

)n
2
Pn,n

(√N

n
z,

√
N

n
a
)
.

Using (3.18), we have

PN−1(z) =
(N − 1

N

)N−1
2
PN−1,N−1

(√ N

N − 1
z,

√
N

N − 1
a
)

= zN−1
( √

N
N−1z√

N
N−1z −

√
N−1
N β

)c(
1 +O(

1

N∞
)
)

×
(

1 +
c2
√

N−1
N β/(

√
N
N−1z −

√
N−1
N β)

N
√

N
N−1a(

√
N−1
N β −

√
N
N−1a)

−
c(c+ 1)

√
N−1
N β

2N
√

N
N−1a

1

(
√

N
N−1z −

√
N−1
N β)2

+O(
1

N2
)
)
.
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This gives

PN−1(z) = zN−1
( z

z − β

)c(
1− c

Na(z − β)
+O(

1

N2
)
)

×
(

1 +
c2β

Na(β − a)

1

z − β
− c(c+ 1)β

2Na

1

(z − β)2
+O(

1

N2
)
)(

1 +O(
1

N∞
)
)

= zN−1
( z

z − β

)c(
1 +

c2β

Na(β − a)

1

z − β
− c

Na(z − β)
− c(c+ 1)β

2Na

1

(z − β)2
+O(

1

N2
)
)
,

which leads to (2.9). Similarly, we obtain

PN+1(z) =
(N + 1

N

)N+1
2 PN+1,N+1

(√ N

N + 1
z,

√
N

N + 1
a
)

= zN+1
( z

z − β

)c(
1 +

c2β

Na(β − a)

1

z − β
+

c

Na(z − β)
− c(c+ 1)β

2Na

1

(z − β)2
+O(

1

N2
)
)
,

which gives (2.11). This completes the proof. �

3.3. Asymptotic behaviours of orthogonal norms. In this subsection, we prove Lemma 2.4.

Proof of Lemma 2.4. By [12, Proposition 7.1], we have

(3.19) hn = − 1

π

Γ(c+ n+ 1)

2iN c+n+1

h̃n
Pn+1,N (0)

, h̃n ≡ h̃n,N (a) :=

∫
Γ
Pn,N (z)2wn,N (z) dz.

Here wn,N is given by (3.1). Using (3.18), we also have

(3.20) h̃n,N (a) =
( n
N

)n+1
2
h̃n,n

(√
N
n a
)
.

By [38, Theorem 2], for z ∈ IntSa \ U , we have

(3.21) PN (z) = −β
N
√

2π(a2 − 1)ceNa(z−β)

N
1
2
−caΓ(c)(z − β)

(z − β
z − a

)c
·
(

1 +O(
1√
N

)
)
.

Recall here that β = 1/a. Combining (3.18) and (3.21), we have

(3.22)

PN+1(z) =
(N + 1

N

)N+1
2
PN+1,N+1

(√
N
N+1z,

√
N
N+1a

)
= −

(N+1
N β)N+1

√
2π( N

N+1a
2 − 1)ceNa(z−N+1

N
β)

(N + 1)
1
2
−c N

N+1aΓ(c)(z − N+1
N β)

(z − N+1
N β

z − a

)c
·
(

1 +O(
1√
N

)
)

and

(3.23)

PN+2(z) =
(N + 2

N

)N+2
2
PN+2,N+2

(√
N
N+2z,

√
N
N+2a

)
= −

(N+2
N β)N+2

√
2π( N

N+2a
2 − 1)ceNa(z−N+2

N
β)

(N + 2)
1
2
−c N

N+2aΓ(c)(z − N+2
N β)

(z − N+2
N β

z − a

)c
·
(

1 +O(
1√
N

)
)
.
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Using (3.17), we have

(3.24)

h̃N = −2πi lim
z→∞

zN+1[Y (z)]12 = −2πi lim
z→∞

zN+1[R(z)]12

(z − β
z

)c βN

zNeNaβ
·
(

1 +O(
1

N∞
)
)

= −2πi lim
z→∞

zN+1
(√2π(a2 − 1)c

N
1
2
−caΓ(c)

1

z − β
+O(

1

N
)
)(z − β

z

)c βN

zNeNaβ
·
(

1 +O(
1

N∞
)
)

= −2πi
βN

eNaβ
·
(√2π(a2 − 1)c

N
1
2
−caΓ(c)

+O(
1

N
)
)
.

Combining (3.20) and (3.24), we have

(3.25)

h̃N−1 =
(N − 1

N

)N
2
h̃N−1,N−1

(√
N
N−1a

)
= −2πi

βN−1
(
N−1
N

)N− 1
2

e(N−1)aβ
·
( √

2π( N
N−1a

2 − 1)c

(N − 1)
1
2
−c
√

N
N−1aΓ(c)

+O(
1

N
)
)

and

(3.26)

h̃N+1 =
(N + 1

N

)N+2
2
h̃N+1,N+1

(√
N
N+1a

)
= −2πi

βN+1
(
N+1
N

)N+1− 1
2

e(N+1)aβ
·
( √

2π( N
N+1a

2 − 1)c

(N + 1)
1
2
−c
√

N
N+1aΓ(c)

+O(
1

N
)
)
.

Substituting (3.24) and (3.22) with z = 0 into (3.19), we obtain

hN =
Γ(N + c+ 1)

NN+c+1

( a2 − 1

1− N+1
Na2

)c(N + 1

N

) 1
2
−c e

(N+1
N )N+1

·
(

1 +O(
1√
N

)
)
.

Similarly, it follows from (3.25), (3.21) and (3.26), (3.23) that

hN−1 =
Γ(N + c)

NN+c

( N
N−1a

2 − 1

1− 1
a2

)c( N

N − 1

) 1
2
−c e

( N
N−1)N

·
(

1 +O(
1√
N

)
)
,

hN+1 =
Γ(N + c+ 2)

NN+c+2

( N
N+1a

2 − 1

1− N+2
Na2

)c(N + 2

N + 1

) 1
2
−c e

(N+2
N+1)N+2

·
(

1 +O(
1√
N

)
)
.

Now (2.14), (2.15) and (2.16) follow from straightforward computations using Stirling’s formula. �

Appendix A. Asymptotic analysis for the exactly solvable case c = 1

As a concrete example, we study the case c = 1 in this appendix. For this special case, Propo-
sition 2.3 and Lemma 2.4 can be achieved using asymptotic behaviours of some well-known special
functions instead of using the Riemann-Hilbert analysis. Thus for the readers who are not familiar
with Riemann-Hilbert analysis, we provide direct proofs for this exactly solvable case.

We also remark that indeed, the value c = 1 also reveals a phase transition in a sense that as
the degree of the orthogonal polynomials increases, their zeros approach Sa in (1.12) from ExtSa for
c > 1, and from IntSa for c < 1, see [38, p.308].

For c = 1, we have

(A.1) Pk(z) =
1

z − a

(
zk+1 − eaN(z−a)Q(k + 1, Na z)

Q(k + 1, Na2)
ak+1

)
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and

(A.2) hk =
(k + 1)!

Nk+2

Q(k + 2, Na2)

Q(k + 1, Na2)
,

see [24, Subsection 3.2] and [4, Section 3]. Here

Q(a, z) :=
Γ(a, z)

Γ(a)
=

1

Γ(a)

∫ ∞
z

ta−1e−t dt

is the regularised incomplete gamma function.
Using this explicit representation, we show Proposition 2.3 and Lemma 2.4 for c = 1.

Proof of Proposition 2.3 for c = 1. By (A.1), we have

(A.3) ψk(z) = zk+1 − eaN(z−a)Q(k + 1, Na z)

Q(k + 1, Na2)
ak+1,

which gives

ψN (z)− zψN−1(z) = eaN(z−a)aN
(
z
Q(N,Na z)

Q(N,Na2)
− a Q(N + 1, Na z)

Q(N + 1, Na2)

)
.

We first recall the asymptotic behaviours of Q. It follows from [7, Theorem 1.1] that

Q(N,Nz) = e−Nz
NN

N !

zN

z − 1

[
1− z

(1− z)2

1

N
+O(

1

N2
)
]

=
1√

2πN
eN−Nz

zN

z − 1

[
1−

( 1

12
+

z

(1− z)2

) 1

N
+O(

1

N2
)
](A.4)

for z outside S1. Note that if z is outside Sa, then az is outside S1. Then we have

Q(N,Naz) =
1√

2πN
eN−Naz

(az)N

az − 1

[
1−

( 1

12
+

az

(1− az)2

) 1

N
+O(

1

N2
)
]
.(A.5)

This gives that

Q(N,Naz)

Q(N,Na2)
= e−aN(z−a)

(z
a

)N a2 − 1

az − 1

[
1 +

( a2

(1− a2)2
− az

(1− az)2

) 1

N
+O(

1

N2
)
]
.

Similarly, we have

Q(N + 1, Naz) =
eN−Naz√
2π(N + 1)

(az)N+1

az − 1

[
1 +

( 5

12
− 1

(1− az)2

) 1

N
+O(

1

N2
)
]
.(A.6)

This gives

Q(N + 1, Naz)

Q(N + 1, Na2)
= e−aN(z−a)

(z
a

)N+1 a2 − 1

az − 1

[
1 +

( 1

(1− a2)2
− 1

(1− az)2

) 1

N
+O(

1

N2
)
]
.

We also have

Q(N + 2, Naz) =
eN−Naz√
2π(N + 2)

(az)N+2

az − 1

[
1−

( 2

1− az
+

1

12
+

az

(1− az)2

) 1

N
+O(

1

N2
)
]
,(A.7)

which leads to

Q(N + 2, Naz)

Q(N + 2, Na2)
= eaN(a−z)

(z
a

)N+2 a2 − 1

az − 1

[
1+
( 2

1− a2
+

a2

(1− a2)2
− 2

1− az
− az

(1− az)2

) 1

N
+O(

1

N2
)
]
.
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Therefore by (A.3), we have

ψN−1(z) = zN − zN 1− a2

1− az

[
1 +

( a2

(1− a2)2
− az

(1− az)2

) 1

N
+O(

1

N2
)
]

= zN
[ z − a
z − 1

a

− 1− a2

1− az

( a2

(1− a2)2
− az

(1− az)2

) 1

N
+O(

1

N2
)
]
.

Similarly, we have

ψN (z) = zN+1 − zN+1 1− a2

1− az

[
1 +

( 1

(1− a2)2
− 1

(1− az)2

) 1

N
+O(

1

N2
)
]

= zN+1
[ z − a
z − 1

a

− 1− a2

1− az

( 1

(1− a2)2
− 1

(1− az)2

) 1

N
+O(

1

N2
)
]

and

ψN+1(z) = zN+2 − zN+2 1− a2

1− az

[
1 +

( 2

1− a2
+

a2

(1− a2)2
− 2

1− az
− az

(1− az)2

) 1

N
+O(

1

N2
)
]

= zN+2
[ z − a
z − 1

a

− 1− a2

1− az

( 2

1− a2
+

a2

(1− a2)2
− 2

1− az
− az

(1− az)2

) 1

N
+O(

1

N2
)
]
.

Now the proof is complete. �

Proof of Lemma 2.4 for c = 1. By (A.5), (A.6) and (A.7), we have

Q(N + 1, Na2)

Q(N,Na2)
= a2

(
1 +

1

a2 − 1

1

N
+O(

1

N2
)
)
,

Q(N + 2, Na2)

Q(N + 1, Na2)
= a2

(
1 +

2− a2

a2 − 1

1

N
+O(

1

N2
)
)
.

Similarly, we have

Q(N + 3, Na2)

Q(N + 2, Na2)
= a2

(
1 +

3− 2a2

a2 − 1

1

N
+O(

1

N2
)
)
.

By (A.2) and Stirling’s formula, we obtain

hN−1 =
N !

NN−1

Q(N + 1, Na2)

Q(N,Na2)
= e−N

√
2π

N

Q(N + 1, Na2)

Q(N,Na2)
·
(

1 +
1

12

1

N
+O(

1

N2
)
)
,

hN =
(N + 1)!

NN+2

Q(N + 2, Na2)

Q(N + 1, Na2)
= e−N

√
2π

N

Q(N + 2, Na2)

Q(N + 1, Na2)
·
(

1 +
13

12

1

N
+O(

1

N2
)
)
,

hN+1 =
(N + 2)!

NN+3

Q(N + 3, Na2)

Q(N + 2, Na2)
= e−N

√
2π

N

Q(N + 3, Na2)

Q(N + 2, Na2)
·
(

1 +
37

12

1

N
+O(

1

N2
)
)
.

This completes the proof. �
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Fluid Mechanics. Birkhäuser/Springer, Cham, 2014.
[34] H. Hedenmalm. Soft Riemann-Hilbert problems and planar orthogonal polynomials. preprint arXiv:2108.05270,

2021.
[35] H. Hedenmalm and A. Wennman. Planar orthogogonal polynomials and boundary universality in the random normal

matrix model. Acta Math., 227(2):309–406, 2021.
[36] A. B. J. Kuijlaars and M. Vanlessen. Universality for eigenvalue correlations at the origin of the spectrum. Comm.

Math. Phys., 243(1):163–191, 2003.
[37] S.-Y. Lee and R. Riser. Fine asymptotic behavior for eigenvalues of random normal matrices: Ellipse case. J. Math.

Phys., 57(2):023302, 2016.
[38] S.-Y. Lee and M. Yang. Discontinuity in the asymptotic behavior of planar orthogonal polynomials under a pertur-

bation of the Gaussian weight. Comm. Math. Phys., 355(1):303–338, 2017.
[39] S.-Y. Lee and M. Yang. Planar orthogonal polynomials as Type II multiple orthogonal polynomials. J. Phys. A,

52(27):275202, 14, 2019.
[40] S.-Y. Lee and M. Yang. Strong asymptotics of planar orthogonal polynomials: Gaussian weight perturbed by finite

number of point charges. Comm. Pure Appl. Math. (to appear), arXiv:2003.04401, 2020.
[41] M. Lewin. Coulomb and Riesz gases: the known and the unknown. J. Math. Phys., 63(6):Paper No. 061101, 77,

2022.
[42] L. Molag. Edge universality of random normal matrices generalizing to higher dimensions. preprint arXiv:2208.12676,

2022.
[43] F. W. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark (Editors). NIST Handbook of Mathematical Functions.

Cambridge University Press, Cambridge, 2010.

Center for Mathematical Challenges, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-
gu, Seoul 02455, Republic of Korea

Email address: sungsoobyun@kias.re.kr

Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Universitetsparken
5, 2100 København Ø, Denmark

Email address: my@math.ku.dk


	1. Introduction and main results
	1.1. Main results
	1.2. Outline of the proofs

	2. Proofs of main results
	2.1. Multi-fold transform
	2.2. Christoffel-Darboux formula
	2.3. Fine asymptotic behaviours of orthogonal polynomials and norms
	2.4. Proofs of Theorems 1.1 and  1.2 
	2.5. Proofs of Theorems 1.3 and  1.4 

	3. Riemann-Hilbert analysis and fine asymptotic behaviours
	3.1. Outline of the Riemann-Hilbert analysis
	3.2. Asymptotic behaviours of orthogonal polynomials
	3.3. Asymptotic behaviours of orthogonal norms

	Appendix A. Asymptotic analysis for the exactly solvable case c=1
	Acknowledgements

	References

