
Stacking designs: designing multi-fidelity computer experiments with target
predictive accuracy ∗

Chih-Li Sung † , Yi (Irene) Ji ‡ , Simon Mak § , Wenjia Wang ¶, and Tao Tang ∥

Abstract. In an era where scientific experiments can be very costly, multi-fidelity emulators provide a useful
tool for cost-efficient predictive scientific computing. For scientific applications, the experimenter is
often limited by a tight computational budget, and thus wishes to (i) maximize predictive power of
the multi-fidelity emulator via a careful design of experiments, and (ii) ensure this model achieves a
desired error tolerance with some notion of confidence. Existing design methods, however, do not
jointly tackle objectives (i) and (ii). We propose a novel stacking design approach that addresses
both goals. A multi-level reproducing kernel Hilbert space (RKHS) interpolator is first introduced to
build the emulator, under which our stacking design provides a sequential approach for designing
multi-fidelity runs such that a desired prediction error of ϵ > 0 is met under regularity assumptions.
We then prove a novel cost complexity theorem that, under this multi-level interpolator, establishes a
bound on the computation cost (for training data simulation) needed to achieve a prediction bound of
ϵ. This result provides novel insights on conditions under which the proposed multi-fidelity approach
improves upon a conventional RKHS interpolator which relies on a single fidelity level. Finally,
we demonstrate the effectiveness of stacking designs in a suite of simulation experiments and an
application to finite element analysis.

Key words. Computer Experiments, Experimental Design, Finite Element Analysis, RKHS interpolator, Multi-
level Modeling, Uncertainty Quantification.

AMS subject classifications. 00A20

1. Introduction. With recent developments in scientific computing and mathematical
modeling, computer experiments have now become an essential tool in solving many scientific
and engineering problems. These experiments, which typically solve complex mathematical
models representing reality, are useful in applications which are prohibitively expensive or
infeasible for direct experimentation. Such virtual experiments have now been successfully
applied in a broad range of problems, from nuclear physics [13] to rocket design [30]. As the
science becomes more sophisticated, however, such simulations can become prohibitively costly
for parameter space exploration. A popular solution is emulation [39], which makes use of a
carefully designed training set from the simulator to build an efficient predictive model that
emulates the expensive computer code. Popular emulator models include the Gaussian process
(GP) model or reproducing kernel Hilbert space (RKHS) interpolators [38, 9, 17, 18], neural

∗Submitted to the editors on Oct. 31, 2022.
Funding: CS gratefully acknowledges funding from NSF DMS 2113407. YJ and SM are funded by NSF CSSI

Frameworks 2004571, NSF DMS 2210729, NSF DMS 2316012 and DE-SC0024477. TT is funded by the Statistical
and Applied Mathematical Sciences Institute.

†Department of Statistics and Probability, Michigan State University (sungchih@msu.edu).
‡Department of Statistical Science, Duke University (yi.ji@duke.edu).
§Department of Statistical Science, Duke University (sm769@duke.edu).
¶Data Science and Analytics Thrust, Information Hub, Hong Kong University of Science and Technology

(Guangzhou) (wenjiawang@ust.hk).
∥Department of Mathematics, Duke University (tao.tang250@duke.edu).

1

ar
X

iv
:2

21
1.

00
26

8v
3

 [
st

at
.M

E
]

 2
7

O
ct

 2
02

3

mailto:sungchih@msu.edu
mailto:yi.ji@duke.edu
mailto:sm769@duke.edu
mailto:wenjiawang@ust.hk
mailto:tao.tang250@duke.edu

networks [46, 33] and polynomial chaos methods [56], all of which have demonstrated successes
in various areas of application.

For full-scale complex scientific systems, however, it is often the case that the training data
needed to train an accurate emulator model can be prohibitively expensive to generate from
the simulator. One way to address this is via multi-fidelity emulation, which supplements the
costly high-fidelity (or high-accuracy) simulation dataset with less expensive lower-fidelity (or
lower-accuracy) approximations for fitting the emulator model. The idea is that, by leveraging
useful information from cheaper lower-fidelity simulations to enhance predictions for the high-
fidelity model, an accurate multi-fidelity emulator can be trained with fewer high-fidelity runs
and thus lower simulation costs. The usefulness of this multi-fidelity emulation framework has
led to much work in recent years. A popular framework is the Kennedy-O’Hagan (KO) model
[23], which models a sequence of computer simulations from lowest to highest fidelity using
a sequence of GP models linked by a linear autoregressive framework. Recent developments
on the KO model include [36, 24, 26, 25, 35, 20] (among many others), which investigated
modeling strategies for efficient posterior prediction and Bayesian uncertainty quantification.
For multi-fidelity simulators controlled by a single mesh parameter (e.g., mesh density in
finite element analysis), [49] proposed a non-stationary GP model which leverages data at
different mesh densities to predict the highest-fidelity simulation at the finest mesh. This
model has been further developed for conglomerate multi-fidelity emulation [21] and graphical
multi-fidelity emulation [20].

Despite this body of work, there remains important unresolved needs, particularly on
the design of such multi-fidelity experiments for cost-efficient emulation. In modern scientific
computing problems, the experimenter is often limited by a tight computational budget
dictated by available computing resources for a project; see, e.g., [6]. Given such constraints,
one thus wishes to (i) maximize predictive power of the multi-fidelity emulator via a careful
design of experiments, and (ii) ensure the resulting emulator achieves a desired prediction
error bound with some notion of confidence. Despite its importance, however, there is little
work to our knowledge on design methods for multi-fidelity emulators which jointly tackles
objectives (i) and (ii). Recent works have addressed objective (i) in various ways. For instance,
[25] propose one-sample-at-a-time and batch sequential designs using fast cross-validation
techniques for multi-fidelity simulations. [43] suggest a sequential design that maximizes
uncertainty reduction while considering the simulation cost. [11] introduce a sequential design
strategy that maximizes the mutual information for the next sampling location and minimizes
the theoretical error bound to select the most effective fidelity level. However, these works do
not fully address objective (ii). Hence, we propose a novel stacking design framework which
aims to jointly address (i) and (ii).

In what follows, we let fl(x) denote the scalar (deterministic) simulation output of the
computer code with input parameters x ∈ Ω ⊆ Rd and at fidelity level l. In finite element
analysis (FEA), this fidelity level may reflect the underlying mesh density of the numerical
simulator. We further suppose that, as fidelity level l increases, the simulated output fl(x)
approaches a limiting solution of f∞(x), the desired “exact” solution of the simulator. In
practice, this exact solution often cannot be simulated numerically; for example, the limiting
solution for finite element analysis (i.e., at an infinitely dense mesh density) often cannot be
computed numerically. Our proposed method makes use of a multi-level RKHS interpolator,

2

which leverages simulated data of multiple fidelities to train an emulator for predicting the
desired limiting solution f∞(x).

With the multi-level interpolator, the proposed stacking design aims to carefully choose
the multi-fidelity experimental runs, to target a desired prediction bound of ϵ > 0 between
the multi-level interpolator and the desired solution f∞(·). This is achieved by iterating the
following sampling steps. First, for a fixed number of sampled fidelity levels L, we show that
the multi-level interpolator provides an easy-to-evaluate expression for allocating sample sizes
over each fidelity level. After performing runs with these sample sizes in a space-filling fashion,
we then derive a novel stopping rule for deciding, under regularity conditions, whether the
number of levels L is sufficiently large for achieving the desired error bound ϵ. If L is not
large enough, we then increment L and repeat the above design step. The resulting batch
sequential design procedure creates a “stacking” effect, where design points are stacked on
at each fidelity level until the stopping rule is satisfied, at which point the desired prediction
bound ϵ is satisfied under regularity conditions. This stacking behavior is visualized in the
bottom of Figure 1, where we see the “stacking” of sample sizes at each fidelity stage as the
batch sequential design progresses. The proposed stacking designs are inspired by a similar
sequential approach for multi-level Monte Carlo (MLMC; see [15]), which aims to provide
cost-efficient error control for multi-level Monte Carlo simulations. We then demonstrate the
effectiveness of the proposed stacking designs (in terms of cost efficiency and error guarantees)
in a suite of simulation experiments and an application to finite element analysis.

A key novelty of our work is a new cost complexity theorem which, under the multi-level
interpolator, establishes a bound on the required computation cost (for training data generation)
needed to ensure the desired prediction bound ϵ. Such a result sheds useful insight on when
multi-fidelity emulation may be most (or least) effective given a computation cost budget. As
a corollary, we then show that the presented multi-fidelity approach yields provably improved
predictions over a conventional single-fidelity RKHS interpolator, under intuitive conditions
on the error decay and cost complexity of the multi-fidelity simulator. These results are again
inspired by existing work in MLMC for characterizing the cost complexity of multi-level Monte
Carlo estimators. To our knowledge, there has been little work on extending such results for
characterizing cost complexity of multi-fidelity computer experiments; we aim to address this
gap here.

The paper is organized as follows. Section 2 introduces the multi-level RKHS interpolator.
Section 3 presents the proposed stacking designs in several steps. Section 4 discusses a cost
complexity theorem for the multi-level interpolator. Section 5 investigates the effectiveness of
stacking designs via a suite of simulation studies and an application to FEA. Section 6 concludes
the paper. Proofs and code for reproducing numerical results are provided in Supplemental
Materials.

2. Multi-Level RKHS Interpolator. We first introduce a multi-level interpolator, which
we leverage later for our stacking designs. Again, let fl(x) denote the scalar simulation output
of the computer code, with input parameters x ∈ Ω ⊆ Rd and at fidelity level l. In what
follows, we assume that L distinct fidelity levels have been sampled for training data, where
a larger fidelity level indicates a higher fidelity (or higher accuracy) simulator with higher
computational costs per run.

3

n1

n2

n3

n4

0 20 40 60 80
sample size

stage 1 2 3 4

12n1

n2

n3

n4

0 10 20 30 40
sample size

16

10

n1

n2

n3

n4

0 10 20 30 40
sample size

26

10

10

n1

n2

n3

n4

0 10 20 30 40
sample size

33

10

10

10

n1

n2

n3

n4

0 10 20 30 40
sample size

L = 1

x1 (pressure side)

x2
 (s

uc
tio

n
si

de
)

L = 2

x1 (pressure side)

x2
 (s

uc
tio

n
si

de
)

L = 3

x1 (pressure side)

x2
 (s

uc
tio

n
si

de
)

L = 4

x1 (pressure side)

x2
 (s

uc
tio

n
si

de
)

1

1

l = 1

l = 2

l = 3

l = 4

Figure 1. Visualizing the stacking behavior of the proposed stacking designs for a jet engine turbine blade
application investigated later. (Top) The proposed stacking designs at L = 4 fidelity levels, over four batch
sequential design stages (from left to right). (Bottom) The corresponding sample sizes at the L = 4 fidelity levels,
over four batch sequential design stages (from left to right).

The goal then is to construct an efficient surrogate model, with uncertainty quantification,
for the highest-fidelity (and thus most expensive) simulation code fL(x). Suppose, for l-th

fidelity level, simulations are performed at the design points Xl = {x
[l]
i }

nl
i=1, where the sample

size nl varies for different fidelity levels l. This yields the simulation outputs fl|Xl
= (fl(x))x∈Xl

,
where f |X denotes the vector of outputs for f(x) at design points x ∈ X . For this multi-level
emulator, we further assume that the designs Xl are sequentially nested, i.e.,

(2.1) XL ⊆ XL−1 ⊆ · · · ⊆ X1 ⊆ Ω,

In other words, design points run for a higher fidelity simulator will be contained within the
design points run for a lower fidelity simulator.

With this, the multi-level interpolator is constructed as follows. Note that the high-fidelity
response surface fL can be decomposed as fL =

∑L
l=1(fl − fl−1), where f0 ≡ 0, and (fl − fl−1)

can be viewed as the discrepancy between the (l − 1)-th and l-th code, capturing refinements
in the response surface as fidelity increases. Suppose that Φl(x, x

′) is a positive-definite kernel
function used for interpolating the refinement (fl − fl−1)|Xl

, then the RKHS interpolator of
(fl − fl−1)|Xl

has the simple form [52, 18]:

Pl(x) =
nl∑
i=1

αl
iΦl(x, x

[l]
i),

4

where (αl
1, . . . , α

l
ni
)T = Φ−1

l zl with Φl = [Φl(x
[l]
i , x

[l]
j)]i,j=1,...,nl

and zl := (fl − fl−1)|Xl
. Then,

a multi-level RKHS interpolator is introduced as follows,

(2.2) f̂L(x) =

L∑
l=1

Pl(x).

The resulting interpolator f̂L(x) has some similarities to the co-kriging models [23, 26, 25],
which also assumes nested designs but models instead the function (fl − ρl−1fl−1) via a GP
prior using a Bayesian framework, where ρl−1 is an unknown parameter. A potential alternative
model is the non-stationary GP proposed in [49]. One advantage of the interpolator (2.2), as
discussed in [11], is that it explicitly models for the bias between the exact simulation solution
and its surrogate model, thus allowing for quantify the emulation accuracy in theory, which is
developed in the next section. For further insight on the comparison between GP and RKHS
interpolators, we refer readers to the works of [50, 27, 40, 22], and for potential extensions to
GP emulators are discussed in Section 6.

In the following, we make use of the Matérn kernel Φl(xi, xj) = ϕνl(∥Θ
−1
l (xi − xj)∥2),

where:

(2.3) ϕνl(r) =
21−νl

Γ(νl)

(
r
√
2νl
)νl Bνl

(
r
√
2νl
)
.

Here, νl > 0 is a smoothness parameter which controls differentiability of the interpolator,
Θl is a diagonal d× d matrix of lengthscale parameters, Bνl is the modified Bessel function
of the second kind, and Γ is the gamma function. Matérn kernels are widely used in the
computer experiment [39, 17] and spatial statistics [42] literature, and we will show later that
such a kernel choice yields useful insights for characterizing the cost complexity performance
of stacking designs.

Of course, the hyperparameters Θl and νl are unknown in practice and need to be
estimated. These hyperparameters can be chosen to minimize the cross-validation error [18].
Although cross-validation methods are typically expensive to implement, the leave-one-out
cross-validation (LOOCV) error of RKHS interpolators can be expressed in a closed form
[18], which makes the computation more efficient. In particular, the LOOCV error of the
interpolator Pl(x) is

(2.4)
1

nl
∥Λ−1

l Φ−1
l zl∥22,

where Λl is a diagonal matrix with the element (Λl)j,j = (Φ−1
l)j,j , and the hyperparameters

Θl and νl can be chosen by minimizing (2.4).

3. Stacking designs. With the multi-level RKHS interpolator in hand, we now introduce
the proposed stacking designs. We first define some notation. Let NΦ(Ω) be the RKHS
associated with a kernel Φ, and let ∥g∥NΦ(Ω) denote its RKHS norm for a function g ∈ NΦ(Ω).
In the following, we consider the refinement (fl − fl−1) to live on the RKHS NΦl

(Ω).
Suppose now, for each fidelity level l, there corresponds a measure of fidelity ξl > 0

quantifying how close the simulated response surface fl(·) is to the exact solution, which we

5

denote as f∞(·). As l → ∞, it is intuitive that ξl → 0, meaning we approach the limiting
solution as fidelity level increases. However, the exact solution f∞(·) typically cannot be
computed numerically and must be approximated. In the case of finite element method (FEM),
which is widely used for computer experiments, one such parameter for ξl is the mesh size: a
smaller mesh size ξl results in higher mesh density and thus a more accurate simulator, at the
cost of higher computation.

We now investigate the error in approximating the desired exact solution f∞(x) with the
multi-fidelity interpolator f̂L(x) in (2.2), which can be decomposed as

(3.1) |f∞(x)− f̂L(x)| ≤ |f∞(x)− fL(x)|︸ ︷︷ ︸
simulation error

+ |fL(x)− f̂L(x)|︸ ︷︷ ︸
emulation error

.

The first term corresponds to the simulation error, which measures the discrepancy between
the simulated solution fL(x) at fidelity level L and the true/exact function f∞(x). This error
can be reduced by increasing L, the fidelity level L of the simulator, or equivalently by reducing
ξl. The second term represents emulation error - the error for the multi-level interpolator
given limited evaluations of the simulators. This error can be reduced by increasing nL, the
sample size at the fidelity level L, or increase nL−1, . . . , n1, the sample sizes at lower fidelity
levels.

With this, the proposed stacking designs provide a batch sequential design scheme that
aims to achieve the desired prediction accuracy of ϵ > 0, i.e., ∥fL − f̂L∥ ≤ ϵ. Here, ∥ · ∥ may
be the L2 or L∞ norm. This can be achieved by making both the simulation and emulation
errors smaller than ϵ/2, i.e.,

(3.2) ∥f∞ − fL∥ ≤ ϵ/2 and ∥fL − f̂L∥ ≤ ϵ/2.

We thus propose our stacking designs in two parts. In Section 3.1, we first present a sample
size determination approach which bounds the emulation error ∥fL − f̂L∥ via closed-form
expressions for sample sizes at each fidelity level. In Section 3.2, we then present a useful
stopping rule on the maximum fidelity L such that the simulation error bound on ∥f∞ − fL∥
is satisfied. We then discuss a sequential algorithm for stacking designs in Section 3.3, and
prove a novel complexity theorem that supports its performance in Section 4.

3.1. Emulation error control. Consider first the emulation error ∥fL − f̂L∥. We first
present a useful bound on this error for the multi-level interpolator (proof in Supplementary
Material S1).

Proposition 3.1. Suppose Ω is bounded and convex, (fl−fl−1) ∈ NΦl
(Ω). Assume that there

exist constants C1, C2, C3, C4, νmin, νmax > 0 such that C1 ≤ ∥Θ−1
l ∥2 ≤ C2, C3 ≤ ∥Θl∥2 ≤ C4,

νmin ≤ νl ≤ νmax, for all l = 1, ..., L. Then one can bound the prediction error of f̂L(x) as:

(3.3) |fL(x)− f̂L(x)| ≤ c0

L∑
l=1

∥Θ−1
l ∥

νl
2 h

νl
Xl
∥fl − fl−1∥NΦl

(Ω)

for some constant c0 > 0. Here, hXl
is the fill distance [52] of the design Xl, i.e., hXl

=
supx∈Ωminxu∈Xl

∥x− xu∥2.
6

This proposition nicely decomposes the prediction error of the multi-level interplator f̂L into
three distinct components at each fidelity level l = 1, . . . , L. The first term, ∥fl − fl−1∥NΦl

(Ω),
captures the size of the refinement with respect to its corresponding RKHS norm. This is
quite intuitive, since a larger norm of the refinement fl − fl−1 is expected to induce greater
error. The second term, hνlXl

, measures the quality of the design Xl in terms of how well it fills
the design space Ω. Note that a smaller fill distance hXl

suggests that there are less “gaps”
between design points [28], which in turn should reduce prediction error. The third term,
∥Θ−1

l ∥
νl
2 , captures the magnitude of the lengthscales Θl. These three components provide the

basis for the stacking sequential design method presented next.
We now wish to minimize the error bound in (3.3) under a total budget on computational

resources, to yield easy-to-evaluate expressions for determining sample sizes nl at each fidelity
level l = 1, · · · , L. Let Cl be the computational cost (e.g., in CPU hours) for a single run of the
simulator at fidelity level l. Note that, since higher-fidelity simulators are more computationally
intensive, this implies that 0 < C1 < C2 < . . . < CL.

From the experimental design perspective, an appealing design criterion for interpolation
is quasi-uniformity [52], which ensures design points are uniformly placed over the design
space Ω. Specifically, denote qX = mini ̸=j ∥xi − xj∥/2, and a design X = {xi}ni=1 satisfying
hX /qX ≤ c, for some constant c, is called a quasi-uniform design. Such a design satisfies the
fill distance bound [52, 32] hX ≤ c1n

−1/d for some constant c1 > 0, where n is the number of
design points in X . Quasi-uniformity has been widely studied in the literature [14], and there
are a variety of designs which enjoy this property [55]. We thus restrict the designs Xl to be
quasi-uniform for l = 1, · · · , L. The construction of such designs is discussed later in Section
3.3. Under this restriction, the error bound in (3.3) reduces to

|fL(x)− f̂L(x)| ≤ c0

L∑
l=1

cνl1 ∥Θ
−1
l ∥

νl
2 n

−νl/d
l ∥fl − fl−1∥NΦl

(Ω)

≤ c0c
∗
1

L∑
l=1

∥Θ−1
l ∥

νl
2 n

−νmin/d
l ∥fl − fl−1∥NΦl

(Ω),(3.4)

where c∗1 = maxl=1,...,L cνl1 and νmin = minl=1,...,L νl.
Consider now the sample size determination problem, where we wish to minimize the error

bound in (3.4) under the constraint of the total computational budget,
∑L

l=1 nlCl. This can
be done by the method of Lagrange multipliers, which aims to find the saddle point of the
Lagrangian function:

L∑
l=1

(
∥Θ−1

l ∥
νl
2 n

−νmin/d
l ∥fl − fl−1∥NΦl

(Ω) + λnlCl

)
,

where λ > 0 is the Lagrange multiplier. With some algebraic manipulations (by setting the
gradient of the above function to zero), one can show that the optimal sample size for nl is:

(3.5) nl = µrl, where rl =

(
∥Θ−1

l ∥
νl

Cl
∥fl − fl−1∥NΦl

(Ω)

)d/(νmin+d)

,

7

for some constant µ > 0. To ensure that nl is an integer, in our later implementation, we set it
to the floor value of µrl, i.e., nl = ⌊µrl⌋.

The closed-form expression (3.5) reveals several useful insights for sample size determination
in multi-fidelity experiments. First, with all things equal, we see that (3.5) allocates greater
sample size nl for simulations with lower costs Cl (i.e., lower fidelity simulations), which is
intuitive. Second, note that (3.5) assigns greater sample size nl for fidelity levels where the
refinement fl− fl−1 is more complex, whether that be in terms of a smaller lengthscale Θl or a
larger RKHS norm. In particular, note that the RKHS norm of fl−fl−1 captures dissimilarities
of the simulators from fidelity level l − 1 to level l. Thus, by minimizing (3.5), our approach
naturally factors in this dissimilarity information for optimal sample size allocation.

There is still a free constant µ, which we can set to achieve the desired emulation error
∥fL − f̂L∥ < ϵ/2. This parameter can be optimized as follows. By Theorem 11.14 of [52], an
alternative pointwise error bound of f̂L(x) is

(3.6) |fL(x)− f̂L(x)| ≤
L∑
l=1

σl(x)∥fl − fl−1∥NΦl
(Ω),

where σl(x) is the so-called power function of the form

(3.7) σ2
l (x) = Φl(x, x)− Φl(x,Xl)Φ

−1
l Φl(x,Xl)

T ,

where Φl(x,Xl) = {Φl(x, y)}y∈Xl
. In contrast from the error bound in Theorem 3.1, the bound

(3.6) does not depend on any constants, which allows for the following development. By the
triangle inequality, ∥fL − f̂L∥ can be bounded by

(3.8) ∥fL − f̂L∥ ≤
L∑
l=1

∥σl∥∥fl − fl−1∥NΦl
(Ω).

To ensure the bound in (3.8) is less than the desired error tolerance ϵ/2, one can set the
constant µ by solving the optimization problem

(3.9) µ∗ = argmin
µ>0

∣∣∣∣∣ ϵ2 −
L∑
l=1

∥σl∥∥fl − fl−1∥NΦl
(Ω)

∣∣∣∣∣ s.t.
L∑
l=1

∥σl∥∥fl − fl−1∥NΦl
(Ω) ≤

ϵ

2
.

This optimization ensures that the error bound is equal (or close) to ϵ/2, while the constraint
ensures that it remains below ϵ/2. Here, the dependency of the objective function on µ is via
the term ∥σl∥. This is because σl(x) depends on the sample size nl and subsequently µ (recall
nl = ⌊µrl⌋), since the power function (3.7) depends on the design points Xl. To optimize for
µ∗ in (3.9), ∥σl∥ can be approximated numerically via Monte Carlo integration [5] for L2 norm
and grid search optimization for L∞ norm. While one can alternatively set a fixed total cost
budget (i.e.,

∑L
l=1 nlCl) for determining µ, we will focus here on achieving a desired predictive

accuracy threshold ϵ.
Finally, to optimize µ∗, we also require knowledge of the RKHS norm ∥fl − fl−1∥NΦl

(Ω).
Of course, the exact norm is unknown in implementation since it depends on fl and fl−1. One

8

can, however, approximate this term via its RKHS interpolator, which can be shown to equal
to (zTl Φ

−1
l zl)

1/2 [52]. It should be noted that prior to optimization (i.e., before obtaining Xl),
we require information about the data zl and the matrix Φl in order to approximate the RKHS
norm. These can be initially obtained via simulations on a pilot sample (we shall call this
X0 later), then adaptively updated after collecting additional data from our stacking design
(see Section 3.3). Similarly, the kernel parameters Θl and νl, which are also required for the
optimization (3.9) and obtaining the sample size as in (3.5), can also be adaptively estimated
using the pilot sample X0 via cross-validation as mentioned in Section 2. With these plug-in
estimates within (3.9), the desired µ∗ can then be efficiently obtained via simple dichotomous
search [1].

We note that the above sample size determination approach has several key distinctions
from that in [11]. First, our proposed sample sizes are determined by the desired prediction
accuracy ϵ via (3.9), while theirs are controlled by a fixed total cost budget. This becomes
important in the following subsection, where we leverage such sample sizes within a sequential
stacking approach for controlling prediction error. Second, our approach makes use of an initial
pilot sample to estimate the RKHS norm and other required parameters in (3.5), which lends
well to our later sequential design procedure. The approach in [11], by contrast, makes use of
misspecified kernel functions, in particular, the rates proved in [51].

3.2. Simulation error control via stacking. Consider next the simulation error ∥f∞ − fL∥
in (3.2), which concerns the numerical error of the simulator at fidelity level L. For many
numerical simulators, this error can be bounded as

(3.10) |f∞(x)− fl(x)| ≤ c1(x)ξ
α
l , for all x ∈ Ω,

for some positive constants α and c1(x) depending on x. Recall that ξl is a fidelity parameter
which quantifies how close fl(·) is to the exact solution f∞(·); the smaller ξl is, the higher
the fidelity of the simulator fl(·). Equation (3.10) thus assumes that the simulation error
is decaying polynomially in the fidelity parameter ξl. In the case of FEM with ξl taken as
the finite-element mesh size, it is well-known that the bound (3.10) holds under regularity
conditions on the underlying solution (see, e.g., [4, 49]). Similarly polynomial decay rates have
also been shown in a broad range of numerical simulators, e.g., for elliptical PDEs [19] and
large-eddy simulations in fluid mechanics [45]. We will thus assume the error bound in (3.10),
and leverage this for controlling simulation error via the stacking designs presented next.

Suppose the fidelity parameters {ξ1, ξ2, · · · } follow a geometric sequence for increasing
fidelity levels, i.e., ξl = ξ0T

−l, l ∈ N+ for some integer T ≥ 2. In the setting of FEM, where
ξl measures finite-element mesh size, ξ1, ξ2, · · · correspond to mesh sizes for increasing mesh
refinements. The use of such a geometric sequence is motivated by multi-level Morte Carlo
(MLMC) [15, 16], which makes use of a similar sequence for time discretization of stochastic
differential equations.

We now wish to ensure the simulation error satisfies the desired bound of ∥f∞− fL∥ ≤ ϵ/2.
Let us first assume a slightly stronger condition (compared to (3.10)):

f∞(x)− fL(x) = c1(x)ξ
α
L +O(ξα+1

L),(3.11)

where O(ξα+1
L) denotes a leading error term on the order of ξL to the (α+ 1)-th power. This

assumption is common in the scientific computing literature, where it is referred to as the

9

α-order discretization error to the mesh spacing parameter ξL [2, 34]. Using the above sequence,
ξl = ξ0T

−l, and (3.11), it follows that

f∞(x)− fL−1(x) = c1(x)ξ
α
LT

α +O(ξα+1
L).(3.12)

By multiplying (3.11) by Tα and subtracting (3.12), we get

f∞(x) =
1

Tα − 1
(TαfL(x)− fL−1(x)) +O(ξα+1

L).

It thus follows that

(3.13) f∞(x)− fL(x) =
fL(x)− fL−1(x)

Tα − 1
,

where terms of order ξα+1
L and higher are neglected. Of course, the numerator (fL(x)−fL−1(x))

is unknown in implementation; we can, however, estimate it via its RKHS interpolator, namely,
PL(x). Combining everything together, the following criterion then serves as a check for
whether the desired simulation error bound ∥f∞ − fL∥ ≤ ϵ/2 is met,

(3.14)
∥PL(x)∥
Tα − 1

≤ ϵ

2
.

The above procedure extends a similar argument made in [15] for bounding approximation
error in MLMC.

From (3.14), the rate parameter α plays an important role for ensuring ∥f∞ − fL∥ ≤ ϵ/2.
One way to set this parameter, as suggested in [49], is to infer α via the known error bound
(3.10) from numerical analysis. For example, in FEM, if the interest lies in the integration
of f∞(·) over a specific region, then α = 2 is suggested [49]. If such prior information is not
available from numerical analysis, then one could instead estimate this rate from data. In
particular, using the error expansion (3.11), we can write

fl(x) = f∞(x) + c1(x)T
(L−l)αξαL +O(ξα+1

L),

fl−1(x) = f∞(x) + c1(x)T
(L−l+1)αξαL +O(ξα+1

L),

fl−2(x) = f∞(x) + c1(x)T
(L−l+2)αξαL +O(ξα+1

L).

Neglecting terms of ξα+1
L and higher, and subtracting fl−1 from fl and fl−2 from fl−1 yields

fl(x)− fl−1(x) = c1(x)T
(L−l)αξαL(1− Tα), and

fl−1(x)− fl−2(x) = c1(x)T
(L−l)αξαLT

α(1− Tα),

which gives

α =
log
(
fl−1(x)−fl−2(x)
fl(x)−fl−1(x)

)
log T

for l = 3, . . . , L.

Thus, the parameter α can be estimated by the average value evaluated by the data:

(3.15) α̂ =
1

L− 2

L∑
l=3

∑
x∈Xl

log
(∣∣fl−1(x)−fl−2(x)

fl(x)−fl−1(x)

∣∣)
nl log T

,

10

where the absolute value is used to ensure a positive value within the logarithm.
It is worth noting that the above developments have direct analogies in the scientific

computing literature, in terms of the Grid Convergence Index (GCI) method and the assessment
of observed order of accuracy. Such methods are commonly used to quantify discretization
uncertainty in numerical models governed by partial differential equations. The foundation
of these developments lies in a re-interpretation of Richardson’s extrapolation procedure [37],
as employed in the above derivations; further details can be found in Chapter 8 of [34]. A
comparative analysis between GCI and a Bayesian alternative for discretization uncertainty
quantification [49] is discussed in [2].

3.3. Stacking design algorithm. We now combine the two error control approaches
in Sections 3.1 and 3.2 into a sequential algorithm for stacking designs. From previous
developments, there are two key properties that the design points in Xl, l = 1, · · · , L, should
satisfy: (i) they should be nested over fidelity levels, i.e., XL ⊆ · · · ⊆ X1, and (ii) for each
fidelity level l, the design Xl should satisfy the quasi-uniformity property discussed in Section
3.1. One way to satisfy both properties is first choose a quasi-uniform sequence {zi}∞i=1 on the
domain Ω, then construct the multi-level designs as Xl = {zi}nl

i=1, l = 1, · · · , L. Although there
are methods for constructing quasi-uniform sequences (see, e.g., the low-dispersion sequences
[57, 3], such approaches typically have inflexible sample sizes or are not easily adaptable in a
batch sequential manner (as needed for stacking designs). In our later implementation, we
made use of Sobol’ sequences [41], which have been used empirically as sequential quasi-uniform
designs (see, e.g., [47]). While it is unclear whether such designs achieve the optimal rates
required for quasi-uniformity [44, 55], it appears to yield good empirical performance in our
numerical studies.

We now describe the proposed stacking design algorithm in detail. The algorithm begins
by selecting an initial fidelity level L = 1, then choosing an initial pilot design X0 of size n0.
Here, we suggest the initial sample size n0 to be 5d ∼ 10d. We then iterate the following steps:

1. Run the simulator at fidelity level L and observe fL(x) at the pilot design X0. Estimate
the hyperparameters {Θl}Ll=1 and {νl}Ll=1 by minimizing the LOOCV error (2.4), and
the RKHS norms {∥fl − fl−1∥NΦl

(Ω)}Ll=1 using the approach in Section 3.1.

2. Using these estimated parameters, compute the optimal sample sizes nl via (3.5) and
(3.9) for the current fidelity levels l = 1, · · · , L. With this, construct designs Xl (with
sample size nl) to satisfy a nested structure, i.e., X0 ⊆ XL ⊆ XL−1 ⊆ · · · ⊆ X1. Run
the simulators at these design points at their respective fidelity levels.

3. If the number of fidelity levels L ≥ 3, estimate the rate parameter α in (3.10) via
regression (see Section 3.2). Using this estimate, test convergence via the stopping rule
(3.14).

4. If convergence is not satisfied, iterate L← L+1 and repeat the above three steps. Oth-
erwise, stop the batch sequential design and return the multi-level RKHS interpolator
(2.2).

Note that the computed sample sizes from Step 2 aim to control the emulation error |fL(x)−
f̂L(x)| (see Section 3.1), and the stopping rule in Step 3 aims to control the simulation error
|f∞(x)− fL(x)| (see Section 3.2). The workflow of this batch sequential design algorithm is
visualized in Figure 2, and further details on the algorithm can be found in Supplementary

11

Simulate
fL on an

initial pilot
design X0

Compute sample
sizes nl via (3.5)
and (3.9) and
simulate fl on
design Xl, for
l = 1, . . . , L

Test for error
convergence

via (3.14)

Is L ≥ 3
and con-
verged?

L = L + 1

Return the
multi-level
interpo-
lator (2.2)

no

yes

Figure 2. Visualizing the sequential workflow for the proposed stacking design algorithm.

Material S2.
By combining (3.13) and (3.6) and replacing the refinement (fl−fl−1) with its interpolator

Pl(x), an approximate pointwise error interval of f∞(x) can be constructed as

(3.16) f̂L(x)±

(
|PL(x)|
Tα − 1

+
L∑
l=1

σl(x)(z
T
l Φ

−1
l zl)

1/2

)
.

These intervals can be used to quantify emulation uncertainty of the multi-level interpolator.
For the practical choice of the desired prediction accuracy ϵ, one can begin with a large ϵ

to conduct the proposed stacking design, and if the prediction performance is not satisfactory
(e.g., unsatisfactory predictions when comparing with validation simulations), the prediction
accuracy can be subsequently improved by performing a “post” stacking design. More precisely,
one can increase the precision by further selecting a smaller ϵ and iterating the above steps
of the algorithm starting from the fidelity level L, at which the previous stacking design was
terminated. This can be naturally done because the additional design points can be stacked
on the previous stacking design.

4. Cost complexity theorem. With this in hand, we now investigate the computational
cost for training data simulation to achieve the desired prediction error of ϵ in the following
novel theorem. It should be noted that this theorem does not specify which design is used; it
shows the existence of multi-fidelity designs that achieve the asserted computational complexity
with desired prediction error, and provides useful insights on conditions under which multi-
fidelity emulation may be most effective. Such existence results are commonly encountered in
the deterministic sampling literature (see, e.g., pg. 40 of [10] and [29]), and typically serve as
a first step for design construction. Our theorem is also similar in spirit to the cost complexity
theorems in [15] for multi-level Monte Carlo, extended to the multi-level interpolation setting
at hand.

Let Cl denote the computational cost required for a single simulation run at fidelity level l,
and let Ctot =

∑L
l=1 nlCl, which is the total computational budget for training data simulation.

Our cost complexity theorem is stated as follows:

12

Theorem 4.1. Suppose Ω is bounded and convex, with Φl taken as the Matérn kernel (2.3).
Further suppose the smoothness parameters νl = ν for each level l. Assume there exists positive
constants α ≥ βν/d, β, c1, c2, c3 and c4 such that, for l = 1, . . . , L,

1. the simulation error |f∞(x)− fl(x)| is bounded as in (3.10); furthermore, c1(x) ≤ c1 for all
x ∈ Ω and all l = 1, ..., L,

2. the refinement function (fl − fl−1) ∈ NΦl
(Ω) and there exists vl ∈ L2(Ω), such that fl(x) −

fl−1(x) =
∫
ΩΦl(x, y)vl(y)dy, and v̄ := supl∈N+ ∥vl∥L2(Ω) < +∞,

3. the kernel length-scale parameters are bounded as ∥Θ−1
l ∥2 < c2,

4. the designs Xl are quasi-uniform, i.e., hXl
< c3n

−1/d
l ,

5. the computational cost Cl is bounded as Cl ≤ c4ξ
−β
l .

Assuming an error tolerance of 0 < ϵ < e−1, there then exist choices of L and n1, · · · , nL for
which the multi-level interpolator achieves the desired prediction bound

|f∞(x)− f̂L(x)| ≤ ϵ, x ∈ Ω,

with a total computational cost Ctot bounded by

(4.1) Ctot ≤

c5ϵ

− d
ν , α

β > 2ν
d ,

c5ϵ
− d

ν | log ϵ|1+
d
ν , α

β = 2ν
d ,

c5ϵ
− d

ν
− 2βν−αd

2α(ν+d) , α
β < 2ν

d .

where c5 is a positive constant.

Note that Condition 2 implies that the extended function (fl − fl−1)e ∈ H2ν+d(Rd). This
higher-order smoothness requirement allows for improved convergence rates in our specific
context; see [48] for further details. The proof of Theorem 4.1 is given in Supplementary
Material S3. The underlying principle of the proof is to require L to be

L =

⌈
log(2c1ξ

α
0 ϵ

−1)

α log T

⌉
to ensure |f∞(x) − fL(x)| ≤ ϵ/2, where ⌈·⌉ rounds up to the nearest integer and c1 =
supx∈Ω c1(x), and then select the optimal n1, . . . , nL:

(4.2) nl ∝ ξ
(α+2β)d
2(ν+d)

l ,

and a constant of proportionality is chosen so that |fL(x) − f̂L(x)| ≤ ϵ/2. In practice, the
value of L is unknown due to the presence of the unknown constant c1. This is where our
proposed stacking design comes into play in practice, as it can be utilized to determine the
value of L effectively.

While this theorem is quite involved, it provides several novel and useful insights on
the multi-fidelity design problem. By (4), for a given fidelity level l, it follows that the

computational work nlξ
−β
l satisfies

(4.3) nlξ
−β
l ∝ ξ

αd−2βν
2(ν+d)

l , l = 1, · · · , L,
13

where ξl is again the fidelity parameter for level l. From this, a key factor for determining
how much of the total budget Ctot to allocate to each fidelity is whether the numerator of the
last term αd− 2βν > 0, or equivalently, the factor α/β > 2ν/d. When α/β > 2ν/d, one can
see from (4.3) that much of the budget Ctot is expended on the levels with lower fidelities,
i.e., with coarser mesh densities. Conversely, when α/β < 2ν/d, much of the budget will be
allocated to levels with higher fidelities, i.e., with denser mesh densities.

One can further glean intuition on the terms α/β and 2ν/d in this comparison. Recall that
the parameters α, β, ν and d correspond to the rate parameter for simulator error convergence
(see (3.10)), the rate of increase in computational cost Cl as fidelity increases, the smoothness
of the refinement function (fl − fl−1), and the number of input parameters, respectively. One
can thus interpret the first fraction α/β as the rate of simulator error reduction over the rate
of computational cost increase as fidelity increases. Similarly, the second fraction 2ν/d can
be interpreted as the rate of convergence for the RKHS interpolator (see, e.g., [52]). Thus,
when α/β exceeds this rate of convergence for the RKHS interpolator (due to a combination
of (i) and (ii)), the design procedure would shift more computational resources towards lower
fidelity simulation runs, which is quite intuitive.

To further explore this idea, we compare next the cost complexity rate in Theorem 4.1
with the corresponding rate if our emulator were trained using only high-fidelity simulation
data. Note that the fidelity level chosen for this latter high-fidelity emulator may be different
from the high-fidelity level L for the multi-fidelity interpolator; to distinguish this, we will use
fidelity level H with corresponding fidelity parameter ξH . For this high-fidelity emulator, its
predictor is given by the RKHS interpolator of fH |XH

, i.e.,

f̂H(x) = ΦH(x,XH)Φ−1
H yH ,(4.4)

where yH := fH |XH
is the response vector simulated at fidelity level H. The following corollary

shows a similar cost complexity result for this high-fidelity RKHS interpolator:

Corollary 4.2. Assume that

1. there exist some ξH > 0 and 0 < ϵ < 1 for which (ϵ/2)
1+ αd

2νβ ≤ c1ξ
α
H ≤ ϵ/2, where c1 =

supx∈Ω c1(x),
2. the high-fidelity response surface fH ∈ NΦH

(Ω) and the extended function (fH)e ∈ H2ν+d(Rd),
3. there exists a positive constant c2 such that the kernel length-scale parameter is bounded as
∥Θ−1

H ∥2 < c2.
There then exists a sample size nH for which the high-fidelity emulator (4.4) achieves the
desired prediction bound

|f∞(x)− f̂H(x)| ≤ ϵ, x ∈ Ω,

with a total computational cost CH bounded by

(4.5) CH ≤ chϵ
− β

α
− d

2ν ,

where ch is a positive constant.

By comparing the above rate with the complexity rate (4.1) for the multi-level interpolator
(Theorem 4.1), one can gain illuminating insights on when multi-fidelity emulation improves

14

upon standard high-fidelity RKHS interpolators. When α/β < 2ν/d (the same ratio compared
earlier), the multi-level interpolator rate improves upon the high-fidelity interpolator rate,
and conversely when α/β ≥ 2ν/d, the high-fidelity rate is quicker than the multi-level rate.
Such a condition is intuitive and can be reasoned from the rate parameters α and β. For α,
take the limiting setting of α→∞, such that the simulation error (3.10) decreases rapidly to
zero as fidelity increases. In this setting, it is intuitive that a high-fidelity interpolator (which
relies solely on such high-accuracy runs) would outperform the multi-level interpolator; this is
then affirmed by the fact that the condition α/β ≥ 2ν/d is satisfied. For β, take the limiting
setting of β → 0, such that the computational cost Cl grows slowly as fidelity increases. In
this case, it makes sense that a high-fidelity interpolator (which would not be costly) would
outperform the multi-level interpolator given a fixed budget; this is again affirmed by the
condition α/β ≥ 2ν/d. Similar conclusions also hold in reverse: when α→ 0 or β →∞, i.e.,
when the simulation error (3.10) decreases rapidly to zero or the cost Cl grows rapidly as
fidelity increases, analogous reasoning can be used to explain why the multi-level interpolator
would be more preferable than the high-fidelity interpolator given a fixed cost budget. In this
view, Theorem 4.1 provides a novel perspective on when multi-fidelity modeling improves upon
high-fidelity modeling for emulation. We note that the analysis is based on the assumption
of a small error ϵ that satisfies ϵ < 2c1ξ

α
1 , which ensures the necessity of at least two fidelity

levels for the multi-fidelity computer experiments in Theorem 4.1.
It should be noted that, in the above analysis, it is assumed that one knows the high-

fidelity fidelity parameter ξH such that Condition 1 in Corollary 4.2 is satisfied. For practical
implementation, such a fidelity parameter is typically not known, and a misspecification of
this ξH can lead to a worse cost complexity rate than what is guaranteed by Corollary 4.2 for
the high-fidelity interpolator. The proposed stacking design gets around this issue of “fidelity
misspecification”, by employing a sequential sampling approach for determining the number of
levels L and corresponding sample sizes n1, . . . , nL to achieve the desired error tolerance.

Finally, we note that the above analysis is based on the established upper bound on
computational cost Ctot in (4.1). This might be made more concrete with a matching lower
bound on Ctot; this would preclude the existence of designs with same accuracy but lower cost
complexity, and provide a tight cost complexity bound for analysis. However, such a lower
bound does not appear to be straight-forward, and we thus defer this as future work. The
employed upper-bound cost analysis has been widely used in the analysis of multi-level Monte
Carlo methods [15, 16], where useful insights have been gleaned; our analysis above to do the
same for the related problem of multi-level emulation.

5. Numerical Experiments. We now investigate a suite of numerical experiments to
examine the proposed stacking designs, in particular, its predictive performance and its ability
to achieve a desired error tolerance. Section 5.1 explores a synthetic example, Section 5.2
investigates an application to Poisson’s equation, and Section 5.3 considers an application for
thermal stress analysis of a jet engine turbine blade. The latter two problems involve partial
differential equation (PDE) systems which are numerically solved via finite element modeling.
These experiments are all initialized with an initial design X0 of size n0 = 5d. All experiments
are performed on a MacBook Pro laptop with Apple M1 Max Chip and 32Gb of RAM.

15

x1

0.0

0.2

0.4

0.6
0.8
1.0

x2

0.0

0.2
0.4

0.6
0.8

1.0

f(x1,x2)

−5

0

5

10

15

20

l = 1

x1

0.0

0.2

0.4

0.6
0.8
1.0

x2

0.0

0.2
0.4

0.6
0.8

1.0

f(x1,x2)

−5

0

5

10

15

20

l = 2

x1

0.0

0.2

0.4

0.6
0.8
1.0

x2

0.0

0.2
0.4

0.6
0.8

1.0

f(x1,x2)

−5

0

5

10

15

20

l = 3

x1

0.0

0.2

0.4

0.6
0.8
1.0

x2

0.0

0.2
0.4

0.6
0.8

1.0

f(x1,x2)

−5

0

5

10

15

20

l → ∞

Figure 3. Visualizing the multi-fidelity Currin function fl(x1, x2) for l = 1, 2, 3 and the limiting (highest-
fidelity) Currin function f∞(x1, x2).

5.1. Multi-fidelity Currin function. We first consider the following two-dimensional multi-
fidelity Currin function:

(5.1) fl(x1, x2) = f∞(x1, x2) + ξαl exp(−1.4x1) cos(3.5πx2).

Here, f∞(x1, x2) is the Currin test function [8] which we take to be our limiting highest-fidelity
setting:

f∞(x1, x2) =

[
1− exp

(
− 1

2x2

)]
2300x31 + 1900x21 + 2092x1 + 60

100x31 + 500x21 + 4x1 + 20
, (x1, x2) ∈ [0, 1]2 = Ω.

The remaining term in (5.1) is the discrepancy term, which converges to zero as fidelity
parameter ξl increases and makes (5.1) satisfy the inequality of (3.10). In the following, we
set α = 1 and ξl = ξ0T

−l = 16 × 2−l, and set the computational cost to be Cl = 4l. We
assume that α is unknown which needs to be estimated. Figure 3 shows the synthetic functions
fl(x1, x2) for fidelity levels l = 1, 2, 3 and the limiting function f∞(x1, x2). With this, we then
applied the stacking design algorithm from Section 3.3, with the desired prediction accuracy is
set as ϵ = 1 in L2 norm.

The stacking design begins with L = 1, which requires n1 = 23 design points on the
lowest fidelity simulator f1 (left panel of Figure 4) to ensure that the estimated emulation
error bound (3.8) of ∥f1 − f̂1∥L2(Ω) is smaller than ϵ/2 = 0.5; this is summarized in the L = 1
column in Table 1. In the next step with L = 2, we then add on an additional 42 design
points for the lower-fidelity simulator f1, yielding a total of n1 = 65 runs on f1. We then
add n2 = 25 design points on a higher-fidelity simulator f2 (i.e., fidelity level l = 2), which
is then “stacked” on top of the lower-fidelity design (second panel from the left of Figure
4). With the designs conducted at these two fidelity levels, the estimated emulation error
bound ∥f2 − f̂2∥L2(Ω) comes to 0.455, which is again less than ϵ/2 = 0.5. We then repeat this
iteratively for increasing fidelity levels L = 3 and L = 4, after which the stopping rule (3.14) is
satisfied and the procedure is terminated. Figure 4 visualizes the experimental designs and
corresponding samples sizes at each step.

16

n1

n2

n3

n4

0 20 40 60 80
sample size

stage 1 2 3 4

L = 1

x1

x2

L = 2

x1

x2

L = 3

x1

x2

L = 4

x1

x2

1

1

l = 1

l = 2

l = 3

l = 4

23n1

n2

n3

n4

0 50 100
sample size

65

25

n1

n2

n3

n4

0 50 100
sample size

91

44

22

n1

n2

n3

n4

0 50 100
sample size

125

53

25

14

n1

n2

n3

n4

0 50 100
sample size

Figure 4. (Top) The proposed stacking designs at L = 4 fidelity levels, over four batch sequential design
stages (from left to right). (Bottom) The corresponding sample sizes at the L = 4 fidelity levels, over four batch
sequential design stages (from left to right).

To evaluate the simulation error bound in the stopping rule (3.14), the rate parameter α
needs to be estimated from data; this can be done via (3.15) when L ≥ 3. The estimates of α
(reported in Table 1) are precisely equal to the true parameter α = 1. With the estimate of α
at L = 3, the simulation error bound (3.14) gives 0.798, which is greater than ϵ/2 and thus
the batch sequential design continues. With the estimate of α at L = 4, the simulation error
estimate is less than ϵ/2 = 0.5, thus the stopping rule is satisfied and the design procedure
stops. Table 1 shows the estimated upper bounds for simulation and emulation errors, both
of which need to be smaller than ϵ/2 = 0.5 for the procedure to stop. The L2-error of the
final multi-level interpolator (estimated via Monte Carlo integration) is ∥f∞ − f̂4∥L2(Ω) = 0.53,
which is indeed smaller than the desired prediction accuracy of ϵ = 1. This shows that the
proposed stacking designs, by increasing fidelity levels and stacking design points in a sequential
fashion, can indeed satisfy the desired error bound.

To benchmark against the state-of-the-art, we further implemented the sequential design
strategy in [25] using the above set-up, with code provided in the Supplementary Materials of
their paper. This comparison serves solely as a benchmark for gauging predictive accuracy
of our approach; the above existing sequential design does not target a desired predictive
accuracy ϵ > 0, which is the key focus of our method. As the provided code was specifically
designed for two fidelity levels (and is difficult to generalize for more levels), we uniformly
sampled two values of ξl (from 1 to 8) as the two fidelity levels for simulations, then performed
the sequential design using the same total computational cost as our method (which is 6532)

17

L = 1 L = 2 L = 3 L = 4

Fidelity parameter ξ1 = 8 ξ2 = 4 ξ3 = 2 ξ4 = 1
Cost per run C1 = 4 C2 = 16 C3 = 64 C4 = 256

Bound of ∥f∞ − fL∥L2(Ω) NA NA 0.798 0.448

(α̂ = 1) (α̂ = 1)

Bound of ∥fL − f̂L∥L2(Ω) 0.483 0.455 0.324 0.474

Table 1
The estimated simulation and emulation error bounds (see (3.14) and (3.8), respectively) at each design

stage for the multi-fidelity Currin experiment, with estimated rate parameter α̂ at stages L = 3 and L = 4.
Bolded numbers indicate the error is less than ϵ/2, where ϵ = 1 is the desired error tolerance.

as a stopping criterion. This experiment was replicated 100 times. The average emulation
L2-error using the above existing sequential designs is 1.59 (with standard deviation of 0.73),
which is higher than the error using the proposed stacking designs (0.53); thus, our approach
appears to offer better (or at least comparable) predictions to this state-of-the-art approach.

Finally, we explore the performance of stacking designs for different choices of error tolerance
ϵ, using both L2 and L∞ norms. Figure 5 visualizes the sample sizes (at each fidelity level)
and the corresponding errors of the final multi-level interpolator. We see that, for different
ϵ and different norms, the proposed stacking designs can consistently yield prediction errors
which are smaller than the desired error tolerance ϵ, which is as desired.

0

50

100

150

200

0.0

0.5

1.0

1.5

2.0

(a)

sa
m

pl
e

si
ze error

L2 norm

epsilon

test error

meshsize

8

4

2

1

0.5 0

50

100

150

200

0

1

2

3

4

5

(b)

sa
m

pl
e

si
ze error

L∞ norm

epsilon

test error

meshsize

8

4

2

1

0.5

Figure 5. Visualizing the allocated sample sizes from stacking designs and the corresponding L2 (left)
and L∞ (right) test errors (marked ♢) at various error tolerances (marked +) for the multi-fidelity Currin
experiment.

5.2. Poisson’s equation. Next, we explore the performance of stacking designs for emulat-
ing an elliptical PDE system. The system of interest is modeled using Poisson’s equation on
a square membrane [12], which has broad applicability in electrostatics and fluid mechanics.
This can be represented by the PDE:

(5.2) ∆u = (x2 − 2π2)exz1 sin(πz1) sin(πz2) + 2xπexz1 cos(πz1) sin(πz2), (z1, z2) ∈ D,

where u(z1, z2) is the solution of interest, ∆ = ∂2/∂z21 + ∂2/∂z22 is the Laplace operator,
D ∈ [0, 1]× [0, 1], and x ∈ Ω = [−1, 1]. One then imposes the Dirichlet boundary condition

18

Figure 6. Visualizing the FEM solutions of Poisson’s equation (5.2) with three different mesh sizes.

u = 0 on the boundary ∂D. Following [49], FEM is used to solve this system numerically. In
our implementation, we make use of the Partial Differential Equation Toolbox of [31] to create
the geometry and mesh. In the toolbox, one can specify the mesh size for the numerical solver;
Figure 6 visualizes the numerical solutions of (5.2) with three different choices of mesh sizes.

Here, the response of interest is taken as the integral of the solution f∞(x) =
∫
u(z1, z2)dz1dz2.

It can be shown that this solution has the analytical form [49]:

f∞(x) =
2(ex + 1)

x2 + π2
.

Of course, in practical problems, one does not typically have such closed-form solutions; this
framework was chosen to allow for easy validation of the fitted emulator model. For the
stacking designs, we again define a geometric sequence of fidelity parameters (here, mesh sizes)
ξl = ξ0T

−l = 0.4× 2−l, l = 1, 2, We then set a desired prediction accuracy of ϵ = 0.05 for
the L∞-norm.

Figure 7 shows the fitted multi-level interpolator and pointwise error intervals (upper
panels) obtained via (3.16), with its corresponding sample sizes at each fidelity level (bottom
panels) at each step of the stacking design process. Table 2 shows the estimated emulation
and simulation error bounds. In the first step with L = 1, the lowest fidelity simulation (with
mesh size 0.2) is run with a design of size n1 = 5. From the left panels in Figure 7, the
resulting fitted multi-level interpolator f̂1 appears to be biased with very wide error bounds.
In the third step (L = 3), additional design points are stacked on fidelity levels 2 and 3
(n1 = 5, n2 = 5, n3 = 5), and the simulation error rate parameter α is then estimated via
(3.15). With this estimated parameter, the estimated simulation error bound (3.14) evaluates
to 0.047 (see Table 2), which is being greater than ϵ/2 = 0.025. The process thus continues
until the fifth step (L = 5), in which both the simulation and emulation error bounds become
smaller than ϵ/2. From the right panels in Figure 7, the resulting fitted emulator f̂5 appears to
yield an accurate prediction with narrow error bounds. The L∞-error of this final multi-level
interpolator (estimated via grid search optimization) is ∥f∞ − f̂5∥L∞(Ω) = 0.013, which is
smaller than the desired prediction accuracy ϵ = 0.05. This again shows that the proposed
stacking designs, by iteratively increasing fidelity levels and stacking design runs, can yield the

19

−1.0 −0.5 0.0 0.5 1.0

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

l = 1

x

y

−1.0 −0.5 0.0 0.5 1.0

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

l = 2

x

y

−1.0 −0.5 0.0 0.5 1.0

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

l = 3

x
y

−1.0 −0.5 0.0 0.5 1.0

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

l = 4

x

y

−1.0 −0.5 0.0 0.5 1.0

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

l = 5

x

y

1

1

l = 1

l = 2

l = 3

l = 4

l = 5

f∞

ML emulator

5n1

n2

n3

n4

n5

0 2 4 6 8
sample size

5

5
n1

n2

n3

n4

n5

0 2 4 6 8
sample size

5

5

5

n1

n2

n3

n4

n5

0 2 4 6 8
sample size

5

5

5

5

n1

n2

n3

n4

n5

0 2 4 6 8
sample size

5

5

5

5

5

n1

n2

n3

n4

n5

0 2 4 6 8
sample size

n1

n2

n3

n4

n5

0 2 4 6 8
sample size

stage 1 2 3 4 5

−1.0 −0.5 0.0 0.5 1.0

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

L = 1

x

y

−1.0 −0.5 0.0 0.5 1.0

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

L = 2

x

y

−1.0 −0.5 0.0 0.5 1.0

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

L = 3

x

y

−1.0 −0.5 0.0 0.5 1.0

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

L = 4

x

y

−1.0 −0.5 0.0 0.5 1.0

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

L = 5

x

y

1

1

l = 1

l = 2

l = 3

l = 4

l = 5

f∞

ML emulator

Figure 7. Visualizing the stacking design procedure for the Poisson’s equation experiment. (Top) The
stacking design points (dots) and the fitted multi-level interpolator with pointwise error intervals obtained
via (3.16) (gray shaded region) over five batch sequential design stages (from left to right). (Bottom) The
corresponding sample sizes at the L = 5 fidelity levels, over five batch sequential design stages (from left to right).

desired error tolerance. We again compare with the sequential design in [25]. The experimental
setup is similar to that described in Section 5.1. The results indicate that, at the same
computational cost, the L∞-error of the emulator using the sequential designs is 0.058 (with
standard deviation of 0.035), which is higher than ours (which is 0.013).

L = 1 L = 2 L = 3 L = 4 L = 5

Mesh size ξ1 = 0.2 ξ2 = 0.1 ξ3 = 0.05 ξ4 = 0.025 ξ5 = 0.0125
Cost per run (sec.) C1 = 0.18 C2 = 0.19 C3 = 0.23 C4 = 0.27 C5 = 0.55

Bound of ∥f∞ − fL∥L∞(Ω) NA NA 0.047 0.029 0.007

(α̂ = 0.92) (α̂ = 0.84) (α̂ = 1.07)

Bound of ∥fL − f̂L∥L∞(Ω) 0.008 0.011 0.014 0.015 0.015

Table 2
The estimated simulation and emulation error bounds (see (3.14) and (3.8), respectively) at each design

stage for the Poisson’s equation experiment, with estimated rate parameter α̂ at stages L = 3, 4 and 5. Bolded
numbers indicate the error is less than ϵ/2, where ϵ = 0.05 is the desired error tolerance.

As before, we further explore the stacking designs for this problem with different error
tolerances ϵ using both L2 and L∞ norms. Figure 8 shows the sample sizes (at each fidelity
level) and the corresponding errors of the final multi-level interpolator. We see again that
the proposed designs can indeed consistently satisfy the desired error tolerance ϵ. It is worth
noting that, in this problem, a majority of the computational budget is expended on higher

20

fidelity runs (i.e., with denser mesh densities), since the sample sizes are equally allocated over
each fidelity level (see Figure 8). This is not too surprising: the fitted function is quite smooth
(ν̂ = 3.5), and with estimated rate parameters α̂ ≈ 1 and β̂ ≈ 0.37, the condition α/β < 2ν/d
can be shown to be satisfied (see earlier discussion of this condition in Section 4 and the cost
complexity theorem).

0

5

10

−0.04

0.00

0.04

0.08

(a)

sa
m

pl
e

si
ze error

L2 norm

epsilon

test error

meshsize

0.2

0.1

0.05

0.025

0.0125 0

5

10

−0.05

0.00

0.05

0.10

(b)

sa
m

pl
e

si
ze error

L∞ norm

epsilon

test error

meshsize

0.2

0.1

0.05

0.025

0.0125

Figure 8. Visualizing the allocated sample sizes from stacking designs and the corresponding L2 (left) and
L∞ (right) test errors (marked ♢) at various error tolerances (marked +) for the Poisson’s equation experiment.

5.3. Thermal Stress Analysis of Jet Engine Turbine Blade. Finally, we investigate the
performance of the proposed designs on a thermal stress analysis application for a jet turbine
engine blade in steady-state operating condition. Here, the turbine is a component of the
jet engine, composed of a radial array of blades typically made from nickel alloys that resist
extremely high temperatures. To avoid mechanical failure and friction between the tip of
the blade and the turbine casing, it is crucial that the blade design can withstand stress and
deformations. See [53] and [7] for more details. We thus wish to study here the effect of thermal
stress and pressure of the surrounding gases on turbine blades. As before, this problem can be
analyzed as a static structural model, which can be numerically solved using finite element
modeling. The d = 2 input variables are the pressure load on the pressure (x1) and suction (x2)
sides of the blade, both of which range from 0.25 to 0.75 MPa, i.e., x1, x2 ∈ Ω = [0.25, 0.75]2.
The response of interest is taken as the integral of the solution over the thermal stress profile.
FEM simulations are performed using the Partial Differential Equation Toolbox in MATLAB
[31]. Figure 9 visualizes the blade structure and the simulated thermal stress profiles at three
choices of mesh sizes.

For stacking designs, we make use of a geometric sequence of fidelity parameters (here,
mesh sizes) ξl = ξ0T

−l = 0.1 × 2−l, l = 1, 2, · · · . The desired prediction accuracy is then
set to ϵ = 5 in L2-norm. Figure 1 shows the proposed stacking designs over each iteration,
Table 3 summarizes the corresponding emulation and simulation error bounds. Here, we see
that the multi-level interpolator requires L = 4 iterations (resulting in L = 4 fidelity levels
for the final emulator) to achieve the desired prediction accuracy. Unlike in Section 5.2, the
true function f∞(x) cannot be expressed in closed form; we thus perform validation runs at
20 uniformly sampled input settings with a small mesh size of ξ5 = 3.125× 10−3. Figure 10
visualizes the final multi-level interpolator f̂L(x1, x2) as in (2.2) with the out-of-sample test
points (red points), as well as the pointwise error bounds (3.16) over the input space. We see

21

(Mpa)

Figure 9. Visualizing the FEM solutions for three choices of mesh sizes in the turbine blade application.

L = 1 L = 2 L = 3 L = 4

Mesh size ξ1 = 0.05 ξ2 = 0.025 ξ3 = 0.0125 ξ4 = 0.00625
Cost per run (sec.) C1 = 0.75 C2 = 1.07 C3 = 2.13 C4 = 11.51

Bound of ∥f∞ − fL∥L2(Ω) NA NA 2.969 0.956

(α̂ = 0.81) (α̂ = 1.09)

Bound of ∥fL − f̂L∥L2(Ω) 2.324 2.408 2.481 2.491

Table 3
The estimated simulation and emulation error bounds (see (3.14) and (3.8), respectively) at each design

stage for the turbine blade application, with estimated rate parameter α̂ at stages L = 3 and L = 4. Bolded
numbers indicate the error is less than ϵ/2, where ϵ = 5 is the desired error tolerance.

that the predicted response surface quite closely mimics the test data, which is as desired.
This is confirmed by the empirical L2-norm of prediction error on the test data (1.60), which is
smaller than the desired error tolerance of ϵ = 5. This again shows that the proposed stacking
designs can indeed achieve the desired prediction accuracy via iterative multi-fidelity modeling.
Similar to previous subsections, we compare with the sequential design in [25] with a similar
experimental setup. The results indicate that, at the same computational cost, the L2-error of
the emulator using the sequential designs is 2.12 (with standard deviation of 0.83), which is
higher than ours (which is 1.60).

6. Concluding Remarks. In this work, we proposed a novel stacking design approach for
multi-fidelity modeling, which provides a sequential approach for designing multi-fidelity runs
to achieve a desired prediction error ϵ > 0. This addresses a key limitation of existing design
methods, and allows for confident and cost-efficient predictive computing for a broad range
of scientific and engineering problems. We then proved a cost complexity theorem which,
under the employed multi-level RKHS interpolator, establishes a bound on computational
cost (of training data simulation) needed to ensure a desired prediction error tolerance of ϵ.

22

0.3

0.4
0.5

0.6
0.7

0.3
0.4

0.5
0.6

0.7

f(x1,x2)

0

10

20

30

40

50

suction (MPa) pr
es

su
re

 (M
Pa

)

0.3 0.4 0.5 0.6 0.7

0.
3

0.
4

0.
5

0.
6

0.
7

pressure (MPa)

su
ct

io
n

(M
P

a)

0

5

10

15

20

25

Figure 10. (Left) Visualizing the fitted multi-level interpolator with the test design points in red. (Right)
Visualizing the pointwise error bounds (3.16) over the design space.

A corollary then provides new insight on when the presented multi-level interpolator yields
improved predictive performance over a single-fidelity RKHS interpolator. A suite of numerical
experiments, including an application to jet turbine blade analysis, shows that the proposed
method can efficiently and accurately emulate multi-fidelity computer experiments with some
notion of confidence.

It is worth noting that alternative models, such as the one proposed by [49], offer interesting
possibilities for addressing the challenges of multi-fidelity emulation. This model, which
incorporates the rate at which the error with respect to the ideal/exact solution decreases,
presents a different approach that could potentially enhance the efficiency of the emulation
process. Future research can explore the utilization of this model to derive a similar error
bound and develop a corresponding design methodology. In addition, we have identified recent
studies, such as [51, 47, 55], which consider the impact of parameter misspecifications in the
GPs and provide important extensions of stacking designs from a Bayesian perspective. In
particular, these bounds can be used to investigate the emulation error in a GP assumption
and determine sample sizes under the constraints of a given computational budget (instead
of a given target error tolerance), as demonstrated in [11]. Future research directions could
involve exploring the optimal number of fidelity levels L within a given computational budget.
Finally, the development of potentially matching lower bounds for our cost-complexity theory
would be useful in strengthening the insightful conclusions in Section 4; we will investigate
this as future work.

Supplemental Materials Additional supporting materials can be found in Supplemental
Materials, including the detailed proofs of Proposition 3.1, Theorem 4.1, and Corollary 4.2,
the detailed algorithm for Section 3.3, and the R code for reproducing the results in Section 5.

REFERENCES

[1] R. Ahlswede and I. Wegener, Search Problems, John Wiley & Sons, Inc., 1987.

23

[2] J. Bect, S. Zio, G. Perrin, C. Cannamela, and E. Vazquez, On the quantification of discretization
uncertainty: comparison of two paradigms, in 14th World Congress in Computational Mechanics and
ECCOMAS Congress 2020 (WCCM-ECCOMAS), 2021.

[3] A. Breger, M. Ehler, and M. Gräf, Points on manifolds with asymptotically optimal covering radius,
Journal of Complexity, 48 (2018), pp. 1–14.

[4] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods (Third Edition),
New York: Springer., 2007.

[5] R. E. Caflisch, Monte Carlo and quasi-Monte Carlo methods, Acta Numerica, 7 (1998), pp. 1–49.
[6] S. Cao, Y. Chen, J. Coleman, J. Mulligan, P. Jacobs, R. Soltz, A. Angerami, R. Arora, S. Bass,

L. Cunqueiro, et al., Determining the jet transport coefficient q̂ from inclusive hadron suppression
measurements using Bayesian parameter estimation, Physical Review C, 104 (2021), p. 024905.

[7] T. J. Carter, Common failures in gas turbine blades, Engineering Failure Analysis, 12 (2005), pp. 237–247.
[8] C. Currin, T. Mitchell, M. Morris, and D. Ylvisaker, A Bayesian approach to the design and

analysis of computer experiments, tech. report, Oak Ridge National Lab., TN (USA), 1988.
[9] C. Currin, T. Mitchell, M. Morris, and D. Ylvisaker, Bayesian prediction of deterministic functions,

with applications to the design and analysis of computer experiments, Journal of the American Statistical
Association, 86 (1991), pp. 953–963.

[10] J. Dick, F. Y. Kuo, and I. H. Sloan, High-dimensional integration: the quasi-monte carlo way, Acta
Numerica, 22 (2013), pp. 133–288.

[11] A. Ehara and S. Guillas, An adaptive strategy for sequential designs of multilevel computer experiments,
International Journal for Uncertainty Quantification, 13 (2023), pp. 61–98.

[12] L. C. Evans, Partial Differential Equations (Second Edition), vol. 19, American Mathematical Society,
2010.

[13] D. Everett, W. Ke, J.-F. Paquet, G. Vujanovic, S. Bass, L. Du, C. Gale, M. Heffernan,
U. Heinz, D. Liyanage, et al., Multisystem Bayesian constraints on the transport coefficients of
QCD matter, Physical Review C, 103 (2021), p. 054904.

[14] K.-T. Fang and Y. Wang, Number-Theoretic Methods in Statistics, vol. 51, CRC Press, 1993.
[15] M. B. Giles, Multilevel monte carlo path simulation, Operations research, 56 (2008), pp. 607–617.
[16] M. B. Giles, Multilevel monte carlo methods, Acta Numerica, 24 (2015), pp. 259–328.
[17] R. B. Gramacy, Surrogates: Gaussian Process Modeling, Design, and Optimization for the Applied

Sciences, Chapman and Hall/CRC, 2020.
[18] B. Haaland and P. Z. G. Qian, Accurate emulators for large-scale computer experiments, The Annals

of Statistics, 39 (2011), pp. 2974–3002.
[19] W. H. Hundsdorfer and J. G. Verwer, Numerical Solution of Time-dependent Advection-diffusion-

reaction Equations, vol. 33, Springer, 2003.
[20] Y. Ji, S. Mak, D. Soeder, J.-F. Paquet, and S. A. Bass, A graphical multi-fidelity Gaussian process

model, with application to emulation of expensive computer simulations, 2022, https://arxiv.org/abs/
2108.00306.

[21] Y. Ji, H. S. Yuchi, D. Soeder, J.-F. Paquet, S. A. Bass, V. R. Joseph, C. Wu, and S. Mak,
Multi-stage multi-fidelity Gaussian process modeling, with application to heavy-ion collisions, arXiv
preprint arXiv:2209.13748, (2022).

[22] M. Kanagawa, P. Hennig, D. Sejdinovic, and B. K. Sriperumbudur, Gaussian processes and kernel
methods: A review on connections and equivalences, arXiv preprint arXiv:1807.02582, (2018).

[23] M. C. Kennedy and A. O’Hagan, Predicting the output from a complex computer code when fast
approximations are available, Biometrika, 87 (2000), pp. 1–13.

[24] L. Le Gratiet, Bayesian analysis of hierarchical multifidelity codes, SIAM/ASA Journal on Uncertainty
Quantification, 1 (2013), pp. 244–269.

[25] L. Le Gratiet and C. Cannamela, Cokriging-based sequential design strategies using fast cross-validation
techniques for multi-fidelity computer codes, Technometrics, 57 (2015), pp. 418–427.

[26] L. Le Gratiet and J. Garnier, Recursive co-kriging model for design of computer experiments with
multiple levels of fidelity, International Journal for Uncertainty Quantification, 4 (2014).

[27] M. Lukić and J. Beder, Stochastic processes with sample paths in reproducing kernel hilbert spaces,
Transactions of the American Mathematical Society, 353 (2001), pp. 3945–3969.

[28] S. Mak and V. R. Joseph, Minimax and minimax projection designs using clustering, Journal of

24

https://arxiv.org/abs/2108.00306
https://arxiv.org/abs/2108.00306

Computational and Graphical Statistics, 27 (2018), pp. 166–178.
[29] S. Mak and V. R. Joseph, Support points, The Annals of Statistics, 46 (2018), pp. 2562–2592.
[30] S. Mak, C.-L. Sung, X. Wang, S.-T. Yeh, Y.-H. Chang, V. R. Joseph, V. Yang, and C. F. J. Wu,

An efficient surrogate model for emulation and physics extraction of large eddy simulations, Journal of
the American Statistical Association, 113 (2018), pp. 1443–1456.

[31] MATLAB, MATLAB version 9.11.0.1769968 (R2021b), The Mathworks, Inc., Natick, Massachusetts,
2021.

[32] S. Müller, Komplexität und Stabilität von kernbasierten Rekonstruktionsmethoden, PhD thesis,
Niedersächsische Staats-und Universitätsbibliothek Göttingen, 2009.

[33] S. Myren and E. Lawrence, A comparison of Gaussian processes and neural networks for computer
model emulation and calibration, Statistical Analysis and Data Mining, 14 (2021), pp. 606–623.

[34] W. L. Oberkampf and C. J. Roy, Verification and Validation in Scientific Computing, Cambridge
university press, 2010.

[35] P. Perdikaris, M. Raissi, A. Damianou, N. D. Lawrence, and G. E. Karniadakis, Nonlinear
information fusion algorithms for data-efficient multi-fidelity modelling, Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 473 (2017), p. 20160751.

[36] P. Z. G. Qian and C. F. J. Wu, Bayesian hierarchical modeling for integrating low-accuracy and
high-accuracy experiments, Technometrics, 50 (2008), pp. 192–204.

[37] L. F. Richardson, The approximate arithmetical solution by finite differences of physical problems
involving differential equations, with an application to the stresses in a masonry dam, Philosophical
Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or
Physical Character, 210 (1911), pp. 307–357.

[38] J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn, Design and analysis of computer experiments,
Statistical Science, 4 (1989), pp. 409–423.

[39] T. J. Santner, B. J. Williams, and W. I. Notz, The Design and Analysis of Computer Experiments
(Second Edition), Springer New York, 2018.

[40] M. Scheuerer, R. Schaback, and M. Schlather, Interpolation of spatial data–a stochastic or a
deterministic problem?, European Journal of Applied Mathematics, 24 (2013), pp. 601–629.

[41] I. M. Sobol’, On the distribution of points in a cube and the approximate evaluation of integrals, Zhurnal
Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 7 (1967), pp. 784–802.

[42] M. L. Stein, Interpolation of Spatial Data: Some Theory for Kriging, Springer Science & Business Media,
2012.

[43] R. Stroh, J. Bect, S. Demeyer, N. Fischer, D. Marquis, and E. Vazquez, Sequential design of multi-
fidelity computer experiments: maximizing the rate of stepwise uncertainty reduction, Technometrics,
64 (2022), pp. 199–209.

[44] A. L. Teckentrup, Convergence of Gaussian process regression with estimated hyper-parameters and
applications in Bayesian inverse problems, SIAM/ASA Journal on Uncertainty Quantification, 8 (2020),
pp. 1310–1337.

[45] J. A. Templeton, M. L. Blaylock, S. P. Domino, J. C. Hewson, P. R. Kumar, J. Ling, H. N.
Najm, A. Ruiz, C. Safta, K. Sargsyan, et al., Calibration and forward uncertainty propagation for
large-eddy simulations of engineering flows, tech. report, Sandia National Lab.(SNL-CA), Livermore,
CA (United States); Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2015.

[46] R. K. Tripathy and I. Bilionis, Deep UQ: Learning deep neural network surrogate models for high
dimensional uncertainty quantification, Journal of Computational Physics, 375 (2018), pp. 565–588.

[47] R. Tuo and W. Wang, Kriging prediction with isotropic matérn correlations: Robustness and experimental
designs, The Journal of Machine Learning Research, 21 (2020), pp. 7604–7641.

[48] R. Tuo, Y. Wang, and C. F. J. Wu, On the improved rates of convergence for Matèrn-type kernel ridge
regression with application to calibration of computer models, SIAM/ASA Journal on Uncertainty
Quantification, 8 (2020), pp. 1522–1547.

[49] R. Tuo, C. F. J. Wu, and D. Yu, Surrogate modeling of computer experiments with different mesh
densities, Technometrics, 56 (2014), pp. 372–380.

[50] G. Wahba, Spline Models for Observational Data, SIAM, 1990.
[51] W. Wang, R. Tuo, and C. F. J. Wu, On prediction properties of kriging: Uniform error bounds and

robustness, Journal of the American Statistical Association, 115 (2020), pp. 920–930.

25

[52] H. Wendland, Scattered Data Approximation, vol. 17, Cambridge university press, 2004.
[53] L. M. Wright and J.-C. Han, Enhanced internal cooling of turbine blades and vanes, The Gas Turbine

Handbook, 4 (2006), pp. 1–5.
[54] Z.-m. Wu and R. Schaback, Local error estimates for radial basis function interpolation of scattered

data, IMA journal of Numerical Analysis, 13 (1993), pp. 13–27.
[55] G. Wynne, F.-X. Briol, and M. Girolami, Convergence guarantees for Gaussian process means with

misspecified likelihoods and smoothness, Journal of Machine Learning Research, 22 (2021), pp. 1–40.
[56] D. Xiu, Numerical methods for stochastic computations, in Numerical Methods for Stochastic Computations,

Princeton university press, 2010.
[57] S. Yakowitz, P. L’ecuyer, and F. Vazquez-Abad, Global stochastic optimization with low-dispersion

point sets, Operations Research, 48 (2000), pp. 939–950.

26

Supplementary Materials for “Stacking designs: designing
multi-fidelity computer experiments with target predictive

accuracy”

S1. Proof of Proposition 3.1. Since fL =
∑L

l=1(fl − fl−1) and f̂L =
∑L

l=1 Pl, it follows
that

|fL(x)− f̂L(x)| =

∣∣∣∣∣
L∑
l=1

(fl(x)− fl−1(x))−
L∑
l=1

Pl(x)

∣∣∣∣∣
=

∣∣∣∣∣
L∑
l=1

[(fl(x)− fl−1(x))− Pl(x)]

∣∣∣∣∣
≤

L∑
l=1

|(fl(x)− fl−1(x))− Pl(x)| ,(S1.1)

where the last inequality follows the triangle inequality.
By Theorem 11.4 of [52], it follows that

(S1.2) |(fl(x)− fl−1(x))− Pl(x)| ≤ σl(x)∥fl − fl−1∥NΦl
(Ω),

where σl(x) is the power function defined in (3.7). For a Matérn kernel Φl given by (2.3) with
the smoothness parameter νl, according to Lemma 2 of [51], which was derived from Theorem
5.14 of [54], there exist constants cl and hl such that

(S1.3) σl(x) ≤ clh
νl
Xl,Θl

provided that hXl,Θl
≤ hl, where hXl,Θl

:= supx∈Ωminxu∈Xl
∥Θ−1

l (x− xu)∥2. Since

(S1.4) ∥Θ−1
l (x− xu)∥2 ≤ ∥Θ−1

l ∥2∥x− xu∥2

for any x ∈ Ω and xu ∈ χl, it can be shown that

(S1.5) hXl,Θl
≤ ∥Θ−1

l ∥2hXl
,

where hXl
= supx∈Ωminxu∈Xl

∥x− xu∥2.
Combining (S1.1), (S1.2), (S1.4), and (S1.5), we have

|fL(x)− f̂L(x)| ≤ c0

L∑
l=1

∥Θ−1
l ∥

νl
2 h

νl
Xl
∥fl − fl−1∥NΦl

(Ω),

where c0 = maxl=1,...,L cl, whose finiteness is ensured by the assumption that νl ∈ [νmin, νmax],
and the boundedness of ∥Θl∥2 and ∥Θ−1

l ∥2.
1

S2. Algorithm for multi-level interpolator with stacking design.

Require: ϵ > 0
Ensure: ∥f∞ − f̂L∥ < ϵ
1: Set an initial sample X0 of size n0. ▷ n0 ≈ 5d ∼ 10d is recommended
2: L← 1
3: repeat
4: Evaluate fL(x) on initial design X0

5: Estimate parameters Θl and νl and RKHS norm ∥fl − fl−1∥NΦl
(Ω)

6: Set sample sizes nl via (3.5) and (3.9)
7: Construct design Xl of size nl satisfying X0 ⊆ XL ⊆ XL−1 ⊆ · · · ⊆ X1

8: Evaluate fl(x) on extra samples at each level as needed for new Xl

9: if L ≥ 3 then
10: Estimate rate parameter α via (3.15)
11: Test for error convergence via (3.14)
12: else
13: L← L+ 1
14: end if
15: until converged via (3.14)
16: return multi-level interpolator via (2.2)

S3. Proof of Theorem 4.1. Let c1 = supx∈Ω c1(x). We start by choosing L to be

(S3.1) L =

⌈
log(2c1ξ

α
0 ϵ

−1)

α log T

⌉
,

implying
log(2c1ξ

α
0 ϵ

−1)

α log T
≤ L <

log(2c1ξ
α
0 ϵ

−1)

α log T
+ 1,

so that

(S3.2)
1

2
T−αϵ < c1ξ

α
L ≤

1

2
ϵ,

and hence, by Condition 1,

(S3.3) |f∞(x)− fL(x)| ≤ c1(x)ξ
α
L ≤ c1ξ

α
L ≤

1

2
ϵ.

By Condition 2, it follows that

∥fl − fl−1∥2NΦl
(Ω) = ⟨fl − fl−1, fl − fl−1⟩NΦl

(Ω)

= ⟨fl − fl−1, vl⟩L2(Ω)

≤ ∥fl − fl−1∥L2(Ω)∥vl∥L2(Ω)

≤ v̄(∥f∞ − fl∥L2(Ω) + ∥f∞ − fl−1∥L2(Ω))

≤ c1v̄Vol(Ω)(ξ
α
l + ξαl−1) ≤ c1v̄Vol(Ω)(1 + Tα)ξαl ,(S3.4)

2

where Vol(Ω) is the volume of Ω. Then, combining (S3.4) and Conditions 3 and 4 with Theorem
3.1, it follows that

|fL(x)− f̂L(x)| ≤ c0

L∑
l=1

∥Θ−1
l ∥

ν
2h

ν
Xl
∥fl − fl−1∥NΦl

(Ω)

≤ c0c
1/2
1 cν2c

ν
3 v̄

1/2Vol(Ω)1/2(1 + Tα)1/2
L∑
l=1

n
− ν

d
l ξ

α/2
l .(S3.5)

Thus, by combining the equations (S3.3) and (S3.5), we have

|f∞(x)− f̂L(x)| ≤ |f∞(x)− fL(x)|+ |fL(x)− f̂L(x)|

≤ ϵ

2
+ c0c

1/2
1 cν2c

ν
3 v̄

1/2Vol(Ω)1/2(1 + Tα)1/2
L∑
l=1

n
− ν

d
l ξ

α/2
l .

The second term will be discussed separately given αd = 2βν, αd > 2βν and αd < 2βν. For

notational simplicity, we let c6 = c0c
1/2
1 cν2c

ν
3 v̄

1/2Vol(Ω)1/2(1 + Tα)1/2.

If αd = 2βν, we set nl =

⌈(
2Lϵ−1c6

) d
ν ξβl

⌉
so that

|f∞(x)− f̂L(x)| ≤
ϵ

2
+ c6

L∑
l=1

n
− ν

d
l ξ

α/2
l ≤ ϵ

2
+ c6

ϵ

2Lc6
Lξ

α
2
− νβ

d
L ≤ ϵ

2
+

ϵ

2
≤ ϵ.

To bound the computational cost Ctot, since the upper bound for nl is given by

nl ≤
(
2Lϵ−1c6

) d
ν ξβl + 1,

the computational cost is bounded by

Ctot ≤ c4

L∑
l=1

nlξ
−β
l ≤ c4

(
(2c6)

d
ν ϵ−

d
νL

d
ν

L∑
l=1

ξβ−β
l +

L∑
l=1

ξ−β
l

)

≤ c4

(
(2c6)

d
ν ϵ−

d
νL1+ d

ν +

L∑
l=1

ξ−β
l

)
.(S3.6)

By (S3.1), the upper bound on L is given by

L ≤ log ϵ−1

α log T
+

log(2c1ξ
α
0)

α log T
+ 1.

Given that 1 < log ϵ−1 for ϵ < e−1, it follows that

(S3.7) L ≤ c7 log ϵ
−1,

where

c7 =
1

α log T
+max

(
0,

log(2c1ξ
α
0)

α log T

)
+ 1.

3

Moreover, since ϵ−1/α ≤ ϵ
− d

βν for α ≥ βν
d and ϵ < e−1, by (S3.2) it follows

(S3.8) ξ−1
L < T

(
ϵ

2c1

)−1/α

< T21/αc
1/α
1 ϵ

− d
βν .

Then, by the standard result for a geometric series and the inequality in (S3.8),

L∑
l=1

ξ−β
l = ξ−β

L

L∑
l=1

(T−β)l−L < ξ−β
L (1− T−β)−1

< 2β/αc
β/α
1

T β

1− T−β
ϵ−

d
ν .(S3.9)

Thus, combining (S3.6), (S3.7), and (S3.9), and by the fact that 1 < log ϵ−1 for ϵ < e−1, it
follows that

Ctot ≤ c5ϵ
− d

ν log(ϵ−1)1+
d
ν ,

where c5 =

(
c42

d
ν c

d
ν
6 c

1+ d
ν

7 + c42
β
α c

β
α
1

Tβ

1−T−β

)
.

If αd > 2βν, we set nl =

⌈(
2ϵ−1c6ξ

αd−2βν
2(ν+d)

0 (1− T
−αd−2βν

2(ν+d))−1

) d
ν

ξ
(α+2β)d
2(ν+d)

l

⌉
so that

|f∞(x)− f̂L(x)| ≤
ϵ

2
+

ϵ

2
ξ
−αd−2βν

2(ν+d)

0

(
1− T

−αd−2βν
2(ν+d)

) L∑
l=1

ξ
α
2
− ν

d
(α+2β)d
2(ν+d)

l

=
ϵ

2
+

ϵ

2
ξ
−αd−2βν

2(ν+d)

0

(
1− T

−αd−2βν
2(ν+d)

) L∑
l=1

ξ
αd−2βν
2(ν+d)

0 T
−αd−2βν

2(ν+d)
l

≤ ϵ

2
+

ϵ

2

(
1− T

−αd−2βν
2(ν+d)

)(
1− T

−αd−2βν
2(ν+d)

)−1

= ϵ.

To bound the computational cost Ctot, since the upper bound for nl is given by

nl ≤
(
2ϵ−1c6ξ

αd−2βν
2(ν+d)

0 (1− T
−αd−2βν

2(ν+d))−1

) d
ν

ξ
(α+2β)d
2(ν+d)

l + 1,

the computational cost is bounded by

(S3.10) Ctot ≤ c4

L∑
l=1

nlξ
−β
l ≤ c4

(
c8ϵ

− d
ν

L∑
l=1

ξ
(α+2β)d
2(ν+d)

−β

l +

L∑
l=1

ξ−β
l

)
,

where c8 = (2c6ξ
αd−2βν
2(ν+d)

0 (1− T
−αd−2βν

2(ν+d))−1)
d
ν . By the standard result for a geometric series, we

have

L∑
l=1

ξ
(α+2β)d
2(ν+d)

−β

l =
L∑
l=1

ξ
αd−2βν
2(ν+d)

l = ξ
αd−2βν
2(ν+d)

0

L∑
l=1

T
−αd−2βν

2(ν+d)
l ≤ ξ

αd−2βν
2(ν+d)

0

(
1− T

−αd−2βν
2(ν+d)

)−1

.(S3.11)

4

Thus, combining (S3.10), (S3.11) and (S3.9), it follows that

Ctot ≤ c5ϵ
− d

ν ,

where

c5 = c4c8ξ
αd−2βν
2(ν+d)

0

(
1− T

−αd−2βν
2(ν+d)

)−1

+ c42
β
α c

β
α
1

T β

1− T−β
.

If αd < 2βν, we set nl =

⌈(
2ϵ−1c6ξ

αd−2βν
2(ν+d)

L (1− T
− 2βν−αd

2(ν+d))−1

) d
ν

ξ
(α+2β)d
2(ν+d)

l

⌉
. Because

L∑
l=1

ξ
− 2βν−αd

2(ν+d)

l = ξ
− 2βν−αd

2(ν+d)

L

L∑
l=1

(T
− 2βν−αd

2(ν+d))l−L < ξ
− 2βν−αd

2(ν+d)

L (1− T
− 2βν−αd

2(ν+d))−1,(S3.12)

it follows that

|f∞(x)− f̂L(x)| ≤
ϵ

2
+

ϵ

2
ξ
−αd−2βν

2(ν+d)

L (1− T
− 2βν−αd

2(ν+d))

L∑
l=1

ξ
α
2
− ν

d
(α+2β)d
2(ν+d)

l

=
ϵ

2
+

ϵ

2
ξ
−αd−2βν

2(ν+d)

L (1− T
− 2βν−αd

2(ν+d))
L∑
l=1

ξ
− 2βν−αd

2(ν+d)

l

≤ ϵ

2
+

ϵ

2
= ϵ.

To bound the computational cost Ctot, since the upper bound for nl is given by

nl ≤
(
2ϵ−1c6ξ

αd−2βν
2(ν+d)

L (1− T
− 2βν−αd

2(ν+d))−1

) d
ν

ξ
(α+2β)d
2(ν+d)

l + 1,

the computational cost is bounded by

(S3.13) Ctot ≤ c4

L∑
l=1

nlξ
−β
l ≤ c4

(
c9ϵ

− d
ν

L∑
l=1

ξ
(α+2β)d
2(ν+d)

−β

l +
L∑
l=1

ξ−β
l

)
,

where c9 = (2c6ξ
αd−2βν
2(ν+d)

L (1− T
− 2βν−αd

2(ν+d))−1)
d
ν . Because (S3.2) gives

ξ−1
L < T

(
ϵ

2c1

)−1/α

< T21/αc
1/α
1 ϵ−1/α,

combining with (S3.12), it follows that

L∑
l=1

ξ
(α+2β)d
2(ν+d)

−β

l =
L∑
l=1

ξ
αd−2βν
2(ν+d)

l ≤ ξ
− 2βν−αd

2(ν+d)

L (1− T
− 2βν−αd

2(ν+d))−1 ≤ c10ϵ
− 2βν−αd

2α(ν+d) ,(S3.14)

where

c10 = T
2βν−αd
2(ν+d) 2

2βν−αd
2α(ν+d) c

2βν−αd
2α(ν+d)

1 (1− T
− 2βν−αd

2(ν+d))−1.

5

Thus, combining (S3.13), (S3.14), and (S3.9), and by the fact ϵ−
d
ν < ϵ

− d
ν
− 2βν−αd

2α(ν+d) for ϵ < e−1,
it follows that

Ctot ≤ c5ϵ
− d

ν
− 2βν−αd

2α(ν+d) ,

where

c5 = c4c9c10 + c42
β
α c

β
α
1

T β

1− T−β
.

S4. Proof of Corollary 4.2. By Condition 1 of Theorem 4.1 and Condition 1, it follows
that

(S4.1) |f∞(x)− fH(x)| ≤ c1(x)ξ
α
H ≤ c1ξ

α
H ≤ ϵ/2.

Similar to Theorem 3.1,

(S4.2) |fH(x)− f̂H(x)| ≤ cH∥Θ−1
H ∥

ν
2h

ν
XH
∥fH∥NΦH

(Ω)

with a positive constant cH . Given Condition 2, similar to (S3.4), it can be shown that

∥fH∥NΦH
(Ω) ≤ c11ξ

α/2
H with a positive constant c11. Combining with (S4.1), (S4.2), by

Condition 4 of Theorem 4.1 and Condition 3, it follows

|f∞(x)− f̂H(x)| ≤ |f∞(x)− fH(x)|+ |fH(x)− f̂H(x)| ≤ ϵ

2
+ c12n

− ν
d

H ξ
α/2
H

with a positive constant c12. Let nH =

⌈(
2ϵ−1c12ξ

α/2
) d

ν

⌉
, then it can be shown that

c12n
− ν

d
H ξ

α/2
l ≤ ϵ/2 which leads to |f∞(x)− f̂H(x)| ≤ ϵ.

The bound the computational cost Ctot, since the upper bound for nH is given by

nH ≤
(
2ϵ−1c12ξ

α/2
) d

ν
+ 1,

the computational cost is bounded by

(S4.3) Ctot ≤ c4nHξ−β
H ≤ c13ϵ

− d
ν ξ

αd
2ν

−β

H + ξ−β
H ,

where c13 = (2c12)
d/ν . By Condition 1, it follows that

ξ
αd
2ν

−β

H ≤
(

ϵ

2c1

) d
2ν

− β
α

and

ξ−β
H ≤ c

− β
α

1

(ϵ
2

)− β
α
− d

2ν
,

and combining the two inequalities with (S4.3), we have

Ctot ≤ c13ϵ
− d

ν ξ
αd
2ν

−β

H + ξ−β
H ≤ c14ϵ

− d
ν
+ d

2ν
− β

α + c15ϵ
− β

α
− d

2ν ≤ c16ϵ
− β

α
− d

2ν ,

where c16 = c14 + c15, c14 = c13(2c1)
β/α−d/(2ν), and c15 = c13c

−β/α
1 2d/(2ν)−β/α. This finishes

the proof.

6

	Introduction
	Multi-Level RKHS Interpolator
	Stacking designs
	Emulation error control
	Simulation error control via stacking
	Stacking design algorithm

	Cost complexity theorem
	Numerical Experiments
	Multi-fidelity Currin function
	Poisson's equation
	Thermal Stress Analysis of Jet Engine Turbine Blade

	Concluding Remarks
	Proof of Proposition 3.1
	Algorithm for multi-level interpolator with stacking design
	Proof of Theorem 4.1
	Proof of Corollary 4.2

