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Abstract

We propose several deep-learning accelerated optimization solvers with convergence

guarantees. We use ideas from the analysis of accelerated forward-backward schemes

like FISTA, but instead of the classical approach of proving convergence for a choice

of parameters, such as a step-size, we show convergence whenever the update is chosen

in a specific set. Rather than picking a point in this set using some predefined method,

we train a deep neural network to pick the best update. Finally, we show that the

method is applicable to several cases of smooth and non-smooth optimization and

show superior results to established accelerated solvers.

1 Introduction

The tremendous growth in computing capacity of hardware and advances in
numerical methods has allowed for very large-scale and detailed simulations of
complex phenomena. Much focus is currently on embedding such simulation
techniques into procedures for design, control, data assimilation, and inverse
modeling (solving inverse problems/parameter estimation). These tasks are
often formalized as continuous variable optimization problems (i.e. nonlinear
programs).

An essential characteristic of the resulting optimization problems is their very
large problem size, both in the number of state variables and decision variables.
This is dictated by the approximation and discretization of the underlying con-
tinuous problem and the number of state variables and state equations, which in
many scientific and industrial problems easily reaches the millions. Another fur-
ther complicating factor is that the objective involved in the optimization may
not necessarily be differentiable, like when sparsity is used in inverse modeling.

For the above stated reasons, solving large-scale non-smooth optimization
problems is one of the key challenges in scientific computing. This has catalyzed
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a surge in research on methods that utilize specific structure in the problem
and take advantage of modern multicore or distributed computing architectures.
An example is decomposition algorithms that allow considerable computational
speedup in parallel computing environments while addressing memory require-
ments. Another is operator splitting techniques, which are designed to solve
optimization problems where the objective is a sum of two convex functions,
one differentiable with a Lipschitz continuous gradient and the other possibly
non-smooth but its proximal points are accessible. These are now very popu-
lar for addressing large-scale non-smooth optimization problems that arise in
processing massive datasets. The latest line of development seeks to further
improve upon computational feasibility by combining the aforementioned tech-
niques from convex analysis with contemporary techniques from deep learning.

1.1 Mathematical setting

Let X denote a Hilbert space with inner product 〈·, ·〉 and corresponding norm
‖·‖. Next, consider minimizing a differentiable convex function f : X → R

whose gradient ∇f : X → X is Lipschitz continuous with constant β−1 > 0.
This can be solved by gradient descent [16] or accelerated methods based on an
overshooting idea formulated by Nesterov [33].

The objective in the aforementioned minimization is smooth, but as already
mentioned, many applications involve minimizing a non-smooth objective func-
tion. To handle the latter, there has been significant effort to develop theory
and algorithms suitable for non-smooth optimization. These often utilize further
structure in the objective. In particular, splitting techniques have been devel-
oped to solve optimization problems where the (non-smooth) objective function
is a sum of two convex functions, one smooth and the other non-smooth. Stated
mathematically, this refers to optimization problems of the form

min
x∈X

f(x) + g(x) (1)

where f : X → R is a differentiable convex function and g : X → R is a proper,
convex and lower semi-continuous, but possibly non-smooth function. Algo-
rithms to solve eq. (1) include the forward-backward splitting method [22] and
its accelerated variants like fast ISTA (FISTA) [10]. Much attention has also
been directed towards approaches that use learning techniques to improve the
speed, like in learned ISTA (LISTA) [24], see the survey [17] and references
therein. However, the latter methods lack convergence guarantees. Another
approach is to learn the parameters of a general optimization solver [8], but in
this case there is a relatively small number of free parameters, which limits the
potential of the scheme to be adapted to a particular problem class. To address
this and increase the number of degrees of freedom in the learning, we will in
this paper consider a deviation-based approach. Instead of learning parameters
of a solver, we learn an entire updating function and then use that in an opti-
mization solver. To ensure convergence, we constrain the updating function to
sufficiently small deviations from known standard algorithms.

1.2 Related work

The overall principle that underlies application of machine learning for solving
optimization problems is to use principles from statistical decision theory to
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select the “best” solver by training against data. Solvers are parametrized and
“best” means selecting the solver parameters that lead to the smallest average
error when applied to a collection of similar optimization problems.

Several authors have investigated the idea of deriving optimization schemes
from statistical learning. One of the most notable schemes is LISTA introduced
in [24]. This scheme was inspired by the Iterative Shrinkage-Thresholding Al-
gorithm (ISTA), which is a popular algorithm for solving the optimization in
sparse coding. Each iteration of ISTA is a combination of matrix operations
followed by a thresholding function. Thus, when stopped after fixed number
of iterations, the algorithm resembles a forward pass through a neural network.
The idea in LISTA is to replace the handcrafted matrices in ISTA with learned
ones that are trained in a supervised manner, provided that the ground truth
solution to the optimization problem is available. In contrast, we follow [8] and
train the parameters of our optimization scheme using an unsupervised loss that
is equal to the value of the objective function attained after a fixed number of
iterations.

The above idea of learning a truncated optimization scheme in a unsuper-
vised manner is also studied in machine learning [6, 11, 27, 29, 41]. The main use
case here is to solve the non-convex optimization problem that arises when train-
ing neural networks. Here the objective is to replace conventional optimizers
with learned optimizers that are faster/better. This is achieved by parametriz-
ing updates at each iteration with recurrent neural networks and training the
associated hyper-parameters either by variants of stochastic gradient descent [6,
41], reinforcement learning [11, 27] or by using evolutionary strategies [32]. The
challenge is to ensure the learned optimizer generalizes from one optimization
task to another. A difficulty here is to identify a class of optimization problems
that share similar structure. We instead consider (large) classes of optimization
problems that naturally share similarities, like those in image reconstruction for
computed tomography (CT) and regularization of other inverse problems. This
makes it easier to specify the generalization requirement.

Convergence of the above mentioned learned optimization schemes is yet to
be mathematically proven. Instead, their usage relies on (very strong) heuristics,
so these data driven approaches can not be seen as optimization solvers in the
classical sense. As we consider convex problems, our approach is not applicable
for training neural networks, but we can on the other hand provide convergence
guarantees.

Some authors have investigated optimal parameter choices in FISTA when
iterations are truncated, see e.g. [28] and notably [18] that proves linear con-
vergence of a related scheme under some further assumptions (sparsity, finite
dimension, optimal training). Another approach is [8], which proves conver-
gence of a learned primal-dual scheme under weaker assumptions. The analysis
is however only performed in the parametric case, e.g. with an explicit form of
the updating operation.

A key element in the above approaches to optimization lies in using neural
networks obtained by unrolling an existing optimization scheme. This provides
the opportunity for domain adaptation and such network architectures have also
been successfully used to solve challenging inverse problems, but this typically
involves training them in a supervised manner [2, 3, 25, 42]. Note that even
though these networks have an architecture obtained by unrolling an optimiza-
tion solver, they are not themselves optimization solvers, see [7, Section 5] for
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further details. Another example from scientific computing is [26], which deals
with solving partial differential equations. Hence, unrolling should primarily be
seen as a way to assemble an appropriately domain adapted deep neural network
architecture [7, Section 4.9.1].

An attempt to analyze and interpret learned optimizers by considering linear
approximations of optimizers close to the stationary point is presented in [29].

1.3 Overview of the paper

Section 2 recalls the necessary notions from convex optimization. This is fol-
lowed by subsection 3.1, which establishes a worst-case convergence result for
a non-parametric gradient descent scheme for smooth optimization problems.
Next, subsection 3.2 establishes a slightly weaker convergence theorem for a
non-parametric forward-backward scheme applicable for non-smooth problems.
Section 4 discusses the details of learning a non-parametric optimization scheme.
Section 5 concludes with numerical experiments from an imaging application.

2 Background from optimization theory

The aim here is to introduce the notation and basic notions from optimization
theory that are used throughout the paper. The main reference is [9], but the
reader may also consult [34, 36] for related results.

A function f : X → R = R ∪ {±∞} is proper if its domain is nonempty and
it does not take the value −∞, i.e. if

dom f := {x ∈ X | f(x) < +∞} 6= ∅ and f(x) > −∞ for all x ∈ X .

It is convex if f((1 − λ)x + λy) ≤ (1 − λ)f(x)+λf(y) holds for all x, y ∈ X and
0 ≤ λ ≤ 1 and strictly convex if this inequality is strict for x 6= y and 0 < λ < 1.
A strictly convex function has at most one minimizer [9, Corollary 11.9]. Next,
the sub-differential of a convex function f : X → R is a (set-valued) mapping
∂f : X → 2X defined as

∂f(x) :=

{

{y ∈ X | ∀z ∈ X : f(z) ≥ f(x) + 〈y, z − x〉} if f(x) ∈ R

∅ otherwise.

If f is Fréchet differentiable at x, then ∂f(x) consists of a single element, namely
the gradient of f at x [9, Proposition 17.31], i.e. ∂f(x) = {∇f(x)}. Finally,
the proximal point of a proper, convex, and lower semi-continuous function
f : X → R at x ∈ X with step-size γ > 0 is defined as

Proxγ
f (x) := arg min

{

f(z) +
1

2γ
‖z − x‖2

∣

∣

∣

∣

z ∈ X

}

.

The proximal point can be used to characterize points in the sub-differential [9,
Proposition 16.44]:

p = Proxγ
f (x) ⇐⇒

1

γ
(x − p) ∈ ∂f(p).
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The operator Proxγ
f is then a firmly non-expansive single-valued mapping from

X to X [9, Proposition 12.28],

∥

∥

∥
Proxγ

f (x1) − Proxγ
f (x2)

∥

∥

∥

2

≤
〈

Proxγ
f (x1) − Proxγ

f (x2), x1 − x2

〉

for all x1, x2 ∈ X .

Furthermore, p = Proxγ
f (x) if and only if the following variational inequality

holds [9, Proposition 12.26]:

f(z) ≥ f(p) +
1

γ
〈x − p, z − p〉 for all z ∈ X . (2)

If ∇f is Lipschitz continuous with constant β−1, then the following inequal-
ity, which is sometimes called descent lemma (see [9, Theorem 18.15]), holds:

f(x + d) ≤ f(x) + 〈∇f(x), d〉 +
1

2β
‖d‖2

x, d ∈ X . (3)

Likewise, if f is in addition assumed to be convex [34, Theorem 2.1.5]:

f(x) + 〈∇f(x), y − x〉 +
β

2
‖∇f(x) − ∇f(y)‖2 ≤ f(y) for all x, y ∈ X , (4)

3 Deviation-based optimization schemes

We call an optimization scheme parameter-based if convergence criteria are ex-
pressed as constraints on its parameters. An example of a parameter-based
optimization scheme is the classical gradient descent method for minimizing a
convex differentiable function f : X → R where ∇f : X → X is β−1-Lipschitz.
To see this, note that such a method relies on an updating scheme of the follow-
ing form:

xn+1 := xn − β(1 + tn)∇f(xn). (5)

For convergence to a minimizer for f , tn is a parameter that needs to satisfy
−1 < tn < 1 and

∑∞
n=0 (1 + tn)(1 − tn) = +∞ [9, Proposition 4.39, Corol-

lary 5.16, and Corollary 18.17]. Thus, a convergence criterion for the above
scheme is expressible in terms of a specific choice of parameters, so we are
dealing with a parameter-based optimization method.

In fact, almost all methods in classical optimization theory are written as
schemes of this form. Furthermore, it has been considered a virtue to have as
few parameters as possible (preferably none). On the other hand, recent ad-
vancements in machine learning allow us to deal with extremely large numbers
of parameters while avoiding over-fitting effects and achieve significant improve-
ments over established methods. While optimization schemes can be formulated
using neural networks, and their convergence can be studied in terms of their
parameters, this is typically very cumbersome and restricts neural network ar-
chitectures to, e.g., one layer networks [8].

To allow for a wider range of neural network architectures, we need to move
away from convergence guarantees that involve the parameters of the scheme.
The idea is to give the network as much freedom as possible while still retaining
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the stability properties of the underlying optimization method. Such schemes
that do not impose an a-priori restriction on the number of parameters will be
referred to as deviation-based.

To introduce a deviation-based scheme for smooth optimization as in the
setting above, we modify the steepest descent method eq. (5) by introducing a
sequence (∆xn)n≥0 of deviations:

xn+1 := xn − β(∇f(xn) + ∆xn) for some deviation/offset ∆xn ∈ X . (6)

The classical convergence proof for the gradient descent implies convergence if
∆xn = t∇f(xn) for −1 < t < 1. This is, however, a one-dimensional set and
hardly interesting to do learning on, and in particular not deep learning. In
what follows, we consider schemes of the above form and prove convergence for
sets of updates ∆xn ∈ X that have full dimension, thus allowing for a much
greater degree of freedom in selecting the updates. The learning itself will be
discussed in section 4.

3.1 Deviation-based optimization schemes for smooth
optimization

In previous literature, the sequence (∆xn)n≥0 of deviations in eq. (6) was used
to model errors in the evaluation of the gradient, see for example [13, 19, 40].
In our setting, however, we are interested in consciously choosing ∆xn ∈ X
of eq. (5) which will preserve or, by a clever choice, might improve its conver-
gence properties.

As we show below the condition ‖∆xn‖ ≤ ‖∇f(xn)‖ guarantees that the
function value f(xn) is non-increasing, and it is the weakest condition which
guarantees this property. In particular, we will show that the function values
f(xn) converge to the minimal value of the function f . Special cases of the
following theorem are discussed in remark 3.1 below.

Theorem 3.1. Consider minimizing f : X → R that is convex and differentiable
with a gradient that is β−1-Lipschitz continuous for some β > 0. Next, consider
the iterative scheme

xn+1 := xn − β(∇f(xn) + ∆xn) for all n ≥ 0, (7)

where x0 ∈ X is some fixed initial point and (∆xn)n≥0 is any sequence in X
such that

‖∆xn‖ ≤ αn‖∇f(xn)‖ (8)

for some sequence (αn)n≥0 of positive numbers with αn ≤ 1 for all n ≥ 0.

1. Then (f(xn))n≥0 is a non-increasing sequence of objective function values.

2. The following inequality holds:

f(xn) − f(x̄) ≤
1

2β

(

n−1
∏

k=0

(

1 −
1 − α2

k

k + 2

)

)

‖x0 − x̄‖2 for all n ≥ 0, (9)

where x̄ denotes a global minimizer of f .
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3. If we further assume that

∞
∑

n=0

1 − αn

n + 2
= +∞. (10)

Then f(xn) → f(x̄) as n → +∞ with x̄ denoting a global minimizer of f .

Remark 3.1. Choosing αn = α for all n in theorem 3.1 simplifies eq. (9) to

f(xn) − f(x̄) ≤
1

2β

(

n−1
∏

k=0

(

k + 1 + α

k + 2

)

)

‖x0 − x̄‖2

=
Γ(n + α + 1)

2βΓ(n + 2)Γ(1 + α)
‖x0 − x̄‖2

.

(11)

Hence, using Stirling’s formula,

f(xn) − f(x̄)

‖x0 − x̄‖2 = O
(

n−(1−α)
)

as n → ∞.

When α = 0, i.e. if ∆xn = 0 for n = 0, 1, . . . , we get

f(xn) − f(x̄) =
1

2β(n + 1)
‖x0 − x̄‖2

.

Hence, we have (asymptotically) recovered the optimal rate from [20, Theorem
1] up to a constant of 2.

Note also that all the calculations work for a smaller 0 < β′ < β since
1/β′ will also be a Lipschitz constant of ∇f . In addition to the convergence of
the function values, we are also able to show the convergence of the iteration
sequence with stronger assumptions on the objective function f :

Corollary 3.1. If, in addition to the assumptions in item 3 of theorem 3.1, the
objective function f is coercive, i.e., f(x) → +∞ as ‖x‖ → +∞, and strictly
convex, then the sequence (xn)n≥0 converges weakly to the unique minimizer of
f .

Proof. The sequence (xn)n≥0 is bounded: by item 1 of theorem 3.1, the sequence
(f(xn))n≥0 is bounded from above by f(x0) ∈ R. The asserted boundedness then
follows from the coercivity of f .

If x ∈ X is a weak sequential cluster point, i.e., there exists a subsequence
(xnk

)k≥0 of (xn)n≥0 with xnk
⇀ x, then [9, Theorem 9.1] and item 3 of theo-

rem 3.1 give f(x) ≤ limn→∞ f(xnk
) = infx∈X f(x), i.e., x is the unique mini-

mizer of f . The statement of the corollary then follows from [9, Lemma 2.46].

Proof of theorem 3.1. For all n ≥ 0 we have, by eq. (4),

f(xn+1) − f(xn) ≤ 〈∇f(xn+1), xn+1 − xn〉 −
β

2
‖∇f(xn+1) − ∇f(xn)‖2

= −β〈∇f(xn+1), ∆xn〉 −
β

2
‖∇f(xn+1)‖2 −

β

2
‖∇f(xn)‖2

= −
β

2
‖∇f(xn+1) + ∆xn‖2 +

β

2

(

‖∆xn‖2 − ‖∇f(xn)‖2
)

. (12)
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The proof of item 1 now follows from the observation that

‖∆xn‖2 − ‖∇f(xn)‖2 ≤ −
(

1 − α2
n

)

‖∇f(xn)‖2.

We will next prove the formula in eq. (9) by proving the following stronger
relation:

f(xn) − f(x̄) ≤
1

2β

(

n−1
∏

k=0

(

1 −
1 − α2

k

k + 2

)

)

‖x0 − x̄‖2

−
1

2β(n + 1)
‖xn − x̄ − β∇f(xn)‖2 (13)

where x̄ ∈ X denotes a global minimizer of f , i.e. ∇f(x̄) = 0. To prove the
above, we proceed by induction and begin by considering the case n = 0. By
eq. (4), we have

f(x0) − f(x̄) ≤ 〈∇f(x0), x0 − x̄〉 −
β

2
‖∇f(x0)‖2

=
1

2β
‖x0 − x‖2 −

1

2β
‖x0 − x̄ − β∇f(x0)‖2

.

This proves the claim for n = 0, i.e. the induction basis holds. Next, assume
eq. (13) holds for some n ≥ 0 and we seek to prove that it holds for n + 1. Then

f(xn+1) − f(x̄) =
1 − α2

n

n + 2
(f(xn+1) − f(x̄))

+

(

1 −
1 − α2

n

n + 2

)

(f(xn+1) − f(xn)) +

(

1 −
1 − α2

n

n + 2

)

(f(xn) − f(x̄))

Here, we estimate the first two terms with eq. (4) and the last one with the
induction hypothesis eq. (13). This results in

f(xn+1) − f(x̄) ≤
1 − α2

n

n + 2

(

〈∇f(xn+1), xn+1 − x̄〉 −
β

2
‖∇f(xn+1)‖2

)

+

(

1 −
1 − α2

n

n + 2

)(

〈∇f(xn+1), xn+1 − xn〉 −
β

2
‖∇f(xn+1) − ∇f(xn)‖2

)

+
1

2β

(

n
∏

k=0

(

1 −
1 − α2

k

k + 2

)

)

‖x0 − x̄‖2

−

(

1 −
1 − α2

n

n + 2

)

1

2β(n + 1)
‖xn − x̄ − β∇f(xn)‖2

.

Using eq. (7) and reordering the terms gives

f(xn+1) − f(x̄) ≤ −β〈∇f(xn+1), ∆xn〉 −
β

2
‖∇f(xn+1)‖2

+
1 − α2

n

n + 2
〈∇f(xn+1), xn − x̄ − β∇f(xn)〉

−

(

1 −
1 − α2

n

n + 2

)(

β

2
‖∇f(xn)‖2 +

1

2β(n + 1)
‖xn − x̄ − β∇f(xn)‖2

)

+
1

2β

(

n
∏

k=0

(

1 −
1 − α2

k

k + 2

)

)

‖x0 − x̄‖2
. (14)
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On the other hand, using again eq. (7),

1

2β(n + 2)
‖xn+1 − x̄ − β∇f(xn+1)‖2

=
1

2β(n + 2)
‖xn − x̄ − β∇f(xn)‖2 +

β

2(n + 2)
‖∆xn + ∇f(xn+1)‖2

−
1

n + 2
〈xn − x̄ − β∇f(xn), ∆xn + ∇f(xn+1)〉.

Adding this to eq. (14), followed by a simple calculation, yields

f(xn+1) − f(x̄) +
1

2β(n + 2)
‖xn+1 − x̄ − β∇f(xn+1)‖2

≤
1

2β

(

n
∏

k=0

(

1 −
1 − α2

k

k + 2

)

)

‖x0 − x̄‖2 −
β(n + 1)

2(n + 2)

(

1 − α2
n

)

‖∇f(xn+1)‖2

−
α2

n

2β(n + 1)(n + 2)

∥

∥

∥

∥

xn − x̄ − β∇f(xn) +
β(n + 1)

α2
n

∆xn + β(n + 1)∇f(xn+1)

∥

∥

∥

∥

2

−
β

2

(

1 −
1 − α2

n

n + 2

)(

‖∇f(xn)‖2 −
1

α2
n

‖∆xn‖2

)

.

By eq. (8) and taking into account the non-negativity of norms, we get

f(xn+1) − f(x̄) +
1

2β(n + 2)
‖xn+1 − x̄ − β∇f(xn+1)‖2

≤
1

2β

(

n
∏

k=0

(

1 −
1 − α2

k

k + 2

)

)

‖x0 − x̄‖2,

which finishes the induction. Let us now prove the convergence f(xn) → f(x̄)
as n → +∞. Taking the logarithm in eq. (9) gives

log (f(xn) − f(x̄)) ≤
n−1
∑

k=0

log

(

1 −
1 − α2

k

k + 2

)

+ log ‖x0 − x̄‖2 − log (2β).

Since log is a concave function, log (1 − x) ≤ −x for all x ∈ R. Hence,

log (f(xn) − f(x̄)) ≤ −
n−1
∑

k=0

1 − α2
k

k + 2
+ log ‖x0 − x̄‖2 − log (2β)

≤ −
n−1
∑

k=0

1 − αk

k + 2
+ log ‖x0 − x̄‖2 − log (2β).

Because of the assumption in eq. (10), the right-hand side converges to −∞, so
f(xn) → f(x̄) as n → ∞.

3.2 Deviation-based schemes for non-smooth optimization

The theory in subsection 3.1 only applies to optimization problems with a
smooth objective. Theory for optimization with a non-smooth objective needs to
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be based on sub-differential calculus. Our focus is on minimizing a non-smooth
objective with an additional structure as in eq. (1).

The proposed deviation-based iterative scheme is inspired by the classical
forward-backward (or proximal-gradient/ISTA) scheme [22], but with deviations
in the spirit of the gradient method outlined in subsection 3.1. The next theorem
states the scheme and analyses its convergence properties for solving the non-
smooth minimization problem in eq. (1) where g is not necessarily differentiable.

Theorem 3.2. Consider minimizing f + g where f : X → R is convex and
differentiable with a gradient ∇f : X → X that is Lipschitz continuous with
constant β−1 for some β > 0, and g : X → R is a proper, convex and lower
semi-continuous function that is not necessarily differentiable. Next, consider
the iterative scheme

wn := xn + ∆x1
n, (15a)

xn+1 := Proxγn

g

(

xn − γn∇f(wn) +
γn

β
∆x1

n + ∆x2
n

)

. (15b)

where x0 ∈ X is some fixed initial point, 0 < γn < 2β for all n ≥ 0, and

1

2β

∥

∥∆x1
n

∥

∥

2
+

β

2γn(2β − γn)

∥

∥∆x2
n

∥

∥

2

≤
α

(1)
n (2β − γn−1)

2βγn−1

∥

∥

∥

∥

xn − xn−1 −
β

2β − γn−1
∆x2

n−1

∥

∥

∥

∥

2

+
βα

(2)
n

2

∥

∥

∥

∥

∇f(wn) − ∇f(wn−1) −
1

β
(xn − wn−1)

∥

∥

∥

∥

2

(16)

holds for all n ≥ 1. Then, the following holds:

1. For n ≥ 0, define

Vn := f(wn) + g(xn+1) + 〈∇f(wn), xn+1 − wn〉 +
1

2β
‖xn+1 − wn‖2

.

Then Vn ≥ f(xn+1) + g(xn+1) for all n ≥ 0 and the sequence
(

Vn +
2β − γn

2βγn

∥

∥

∥

∥

xn+1 − xn −
β

2β − γn

∆x2
n

∥

∥

∥

∥

2
)

n≥0

(17)

is monotonically non-increasing if α
(1)
n ≤ 1 and α

(2)
n ≤ 1 for all n ≥ 0;

2. If f + g is bounded from below and

0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn < 2β (18)

0 ≤ lim sup
n→∞

α(1)
n < 1 and 0 ≤ lim sup

n→∞
α(2)

n < 1 (19)

holds, then

∞
∑

n=0

‖xn − xn+1‖2
< +∞,

∞
∑

n=0

∥

∥∆x1
n

∥

∥

2
< +∞,

and
∞
∑

n=0

∥

∥∆x2
n

∥

∥

2
< +∞.
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3. Under the conditions of item 2, any weak sequential cluster point of (xn)n≥0

is a minimizer of f +g. If there are no such minimizers, then ‖xn‖ → +∞
as n → ∞. Conversely, a weak sequential cluster point exists whenever
the sequence (xn)n≥0 is bounded.

Corollary 3.2. If, in addition to the assumptions initem 3 of theorem 3.2, the
objective function f + g is coercive, i.e., f(x) + g(x) → +∞ as ‖x‖ → +∞,
and strictly convex, then the sequence (xn)n≥0 converges weakly to the unique
minimizer of f + g.

Proof. The sequence (xn)n≥0 is bounded: by item 1 of theorem 3.2, the non-
increasing real sequence in (24) guarantees that (Vn)n≥0 is bounded from above
and greater or equal to (f(xn+1) + g(xn+1))n≥0. The asserted boundedness
then follows from the coercivity of f + g.

The statement of the corollary then follows from [9, Lemma 2.46], taking
into account item 3 of theorem 3.2 and that the strict convexity of f +g ensures
the uniqueness of the minimizer of f + g.

Proof of theorem 3.2. We start by proving the claims in item 1. The first in-
equality follows from eq. (3), so we focus on proving the monotonic decrease of
the sequence in eq. (17). Note first that, for n ≥ 0, eq. (15b) is equivalent to

xn − xn+1

γn

− ∇f(wn) +
1

β
∆x1

n +
1

γn

∆x2
n ∈ ∂g(xn+1). (20)

This yields

g(xn) ≥ g(xn+1) +
1

γn

‖xn − xn+1‖2 − 〈∇f(wn), xn − xn+1〉

+
1

β

〈

∆x1
n, xn − xn+1

〉

+
1

γn

〈

∆x2
n, xn − xn+1

〉

. (21)

By eq. (4) we get the following inequality for all n ≥ 1:

f(wn−1) ≥ f(wn) + 〈∇f(wn), wn−1 − wn〉 +
β

2
‖∇f(wn) − ∇f(wn−1)‖2

. (22)

From eqs. (21) and (22) and the definition of Vn, we therefore obtain

Vn−1 − Vn = f(wn−1) − f(wn) + g(xn) − g(xn+1) + 〈∇f(wn−1), xn − wn−1〉

+
1

2β
‖xn − wn−1‖2 − 〈∇f(wn), xn+1 − wn〉 −

1

2β
‖xn+1 − wn‖2

≥ 〈∇f(wn) − ∇f(wn−1), wn−1 − xn〉 +
β

2
‖∇f(wn) − ∇f(wn−1)‖2

+
1

2β
‖xn − wn−1‖2 +

1

γn

‖xn − xn+1‖2 −
1

2β
‖xn+1 − wn‖2

+
1

β

〈

∆x1
n, xn − xn+1

〉

+
1

γn

〈

∆x2
n, xn − xn+1

〉

=
β

2

∥

∥

∥

∥

∇f(wn) − ∇f(wn−1) −
1

β
(xn − wn−1)

∥

∥

∥

∥

2

+
2β − γn

2βγn

∥

∥

∥

∥

xn+1 − xn −
β

2β − γn

∆x2
n

∥

∥

∥

∥

2

−
1

2β

∥

∥∆x1
n

∥

∥

2
−

β

2γn(2β − γn)

∥

∥∆x2
n

∥

∥

2
. (23)
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Using eq. (16), we then obtain the following inequality for all n ≥ 1:

Vn−1 +
2β − γn−1

2βγn−1

∥

∥

∥

∥

xn − xn−1 −
β

2β − γn−1
∆x2

n−1

∥

∥

∥

∥

2

≥ Vn +
2β − γn

2βγn

∥

∥

∥

∥

xn+1 − xn −
β

2β − γn

∆x2
n

∥

∥

∥

∥

2

+
β
(

1 − α
(2)
n

)

2

∥

∥

∥

∥

∇f(wn) − ∇f(wn−1) −
1

β
(xn − wn−1)

∥

∥

∥

∥

2

+

(

1 − α
(1)
n

)

(2β − γn−1)

2βγn−1

∥

∥

∥

∥

xn − xn−1 −
β

2β − γn−1
∆x2

n−1

∥

∥

∥

∥

2

. (24)

The claim that the sequence in eq. (17) is monotonically non-increasing now
follows from ignoring the two last terms in eq. (24), which are non-negative.
This concludes the proof of the claims in item 1.

We next turn our attention to proving the claim in item 2. First, let M ∈ R

such that f(x)+g(x) ≥ M > −∞ holds for all x ∈ X as f +g is (by assumption)
bounded from below. For fixed N ≥ 1, consider the sum over n = 1, . . . , N for
the terms in eq. (24):

V0 +
2β − γ0

2βγ0

∥

∥

∥

∥

x1 − x0 −
β

2β − γ0
∆x2

0

∥

∥

∥

∥

2

≥ VN +
2β − γN

2βγN

∥

∥

∥

∥

xN+1 − xN −
β

2β − γN

∆x2
N

∥

∥

∥

∥

2

+
N
∑

n=1

β
(

1 − α
(2)
n

)

2

∥

∥

∥

∥

∇f(wn) − ∇f(wn−1) −
1

β
(xn − wn−1)

∥

∥

∥

∥

2

+
N−1
∑

n=0

(

1 − α
(1)
n+1

)

(2β − γn)

2βγn

∥

∥

∥

∥

xn+1 − xn −
β

2β − γn

∆x2
n

∥

∥

∥

∥

2

.

By the claim in item 1, we know VN ≥ f(xN+1) + g(xN+1) ≥ M , so

N
∑

n=1

β
(

1 − α
(2)
n

)

2

∥

∥

∥

∥

∇f(wn) − ∇f(wn−1) −
1

β
(xn − wn−1)

∥

∥

∥

∥

2

+
N−1
∑

n=0

(

1 − α
(1)
n+1

)

(2β − γn)

2βγn

∥

∥

∥

∥

xn+1 − xn −
β

2β − γn

∆x2
n

∥

∥

∥

∥

2

≤ V0 +
2β − γ0

2βγ0

∥

∥

∥

∥

x1 − x0 −
β

2β − γ0
∆x2

0

∥

∥

∥

∥

2

− M.

Next, by eqs. (18) and (19), there exist some n0 ≥ 0, 0 < γ− ≤ γ+ < 2β,

0 ≤ α
(1)
+ < 1 and 0 ≤ α

(2)
+ < 1 such that

γ− ≤ γn ≤ γ+, 0 ≤ α(1)
n ≤ α

(1)
+ and 0 ≤ α(2)

n ≤ α
(2)
+ for all n ≥ n0.
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We therefore get

N
∑

n=n0

∥

∥

∥

∥

∇f(wn) − ∇f(wn−1) −
1

β
(xn − wn−1)

∥

∥

∥

∥

2

≤
2

β
(

1 − α
(2)
+

)

(

V0 +
2β − γ0

2βγ0

∥

∥

∥

∥

x1 − x0 −
β

2β − γ0
∆x2

0

∥

∥

∥

∥

2

− M

)

and

N−1
∑

n=n0

∥

∥

∥

∥

xn+1 − xn −
β

2β − γn

∆x2
n

∥

∥

∥

∥

2

≤
2βγ+

(

1 − α
(1)
+

)

(2β − γ+)

(

V0 +
2β − γ0

2βγ0

∥

∥

∥

∥

x1 − x0 −
β

2β − γ0
∆x2

0

∥

∥

∥

∥

2

− M

)

.

Since the right-hand side is finite and independent of N in both cases, we get

∞
∑

n=n0

∥

∥

∥

∥

∇f(wn) − ∇f(wn−1) −
1

β
(xn − wn−1)

∥

∥

∥

∥

2

< +∞,

∞
∑

n=n0

∥

∥

∥

∥

xn+1 − xn −
β

2β − γn

∆x2
n

∥

∥

∥

∥

2

< +∞.

Using eq. (16) and the fact that the convergence of the series does not depend
on the (finite) number of elements with indices below n0, we can immediately
conclude that

∞
∑

n=0

∥

∥∆x1
n

∥

∥

2
< +∞ and

∞
∑

n=0

∥

∥∆x2
n

∥

∥

2
< +∞.

The last assertion of item 2 follows from the observation below, which also
concludes the proof of the claims in item 2.

∞
∑

n=0

‖xn+1 − xn‖2

≤ 2
∞
∑

n=0

(

∥

∥

∥

∥

xn+1 − xn −
β

2β − γn

∆x2
n

∥

∥

∥

∥

2

+
β2

(2β − γn)2

∥

∥∆x2
n

∥

∥

2

)

< ∞.

We finally prove the claim in item 3. Let x be a weak sequential cluster
point of the sequence (xn)n≥0 with a sub-sequence (nk)k≥0 such that xnk

⇀ x
as k → ∞. By eq. (20), we have

xnk
− xnk+1

γnk

+∇f(xnk+1)−∇f(wnk
)+

∆x1
nk

β
+

∆x2
nk

γnk

∈ (∇f + ∂g)(xnk+1) (25)

for all k ≥ 0. The assertion in item 2 combined with the Lipschitz continuity of
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∇f yields the following as k → ∞:

0 ≤

∥

∥

∥

∥

xnk
− xnk+1

γnk

∥

∥

∥

∥

≤
‖xnk

− xnk+1‖

γ−
→ 0,

0 ≤ ‖∇f(xnk+1) − ∇f(wnk
)‖ ≤

1

β

(

‖xnk+1 − xnk
‖ +

∥

∥∆x1
nk

∥

∥

)

→ 0,

0 ≤

∥

∥

∥

∥

∆x2
nk

γnk

∥

∥

∥

∥

≤
1

γ−
‖∆xnk

‖2 → 0.

Hence, the left-hand side of eq. (25) converges to 0 as k → ∞. Thus, by [9,
Proposition 20.38] we get xnk+1 = (xnk+1 − xnk

) + xnk
⇀ x, 0 ∈ (∇f + ∂g)(x),

i.e. x is a minimizer of f + g. The last statement follows from the fact that
if ‖xn‖ 6→ +∞, then there exists a bounded sub-sequence that has a weakly
convergent sub-sequence whose weak limit is a minimizer of f+g. This concludes
the proof of the claim in item 3.

Remark 3.2. if g = 0 on X , then eq. (15) reads as

wn+1 = wn − γn∇f(wn) + ∆x1
n+1 +

γn − β

β
∆x1

n + ∆x2
n.

This is equivalent with the algorithm in subsection 3.1, provided that γn = β
for all n ≥ 0 and

∥

∥∆x2
n + ∆x1

n+1

∥

∥ ≤ β‖∇f(wn)‖. (26)

On the other hand, when g = 0 the condition in eq. (16) becomes

1

2β

∥

∥∆x1
n

∥

∥

2
+

β

2γn(2β − γn)

∥

∥∆x2
n

∥

∥

2

≤
α

(1)
n (2β − γn−1)

2βγn−1

∥

∥

∥

∥

γn−1∇f(wn−1) −
γn−1

β
∆x1

n−1 −
β − γn−1

2β − γn−1
∆x2

n−1

∥

∥

∥

∥

2

+
βα

(2)
n

2

∥

∥

∥

∥

∇f(wn) −
β − γn−1

β
∇f(wn−1) −

γn−1 − β

β2
∆x1

n−1 −
1

β
∆x2

n−1

∥

∥

∥

∥

2

.

In the case that γn = β for all n ≥ 0, this simplifies to the following inequality
that is different from the one in eq. (26):

∥

∥∆x1
n

∥

∥

2
+
∥

∥∆x2
n

∥

∥

2

≤ α(1)
n

∥

∥β∇f(wn−1) − ∆x1
n−1

∥

∥

2
+ α(2)

n

∥

∥β∇f(wn) − ∆x2
n−1

∥

∥

2
.

Remark 3.3. Setting ∆x1
n = ∆x2

n = 0 recovers the classical forward-backward
algorithm [22]. Likewise, the FISTA algorithm [10] can be obtained by setting

∆x1
n :=

tn − 1

tn+1
(xn − xn−1) and ∆x2

n :=
β − γn

β
∆x1

n for all n ≥ 0‚

with (tn)∞
n=0 defined recursively as tn+1 := 1

2 (1 +
√

1 + 4t2
n) for n ≥ 1 and

t0 := 1.
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4 Deep-learning accelerated optimization

Subsections 3.1 and 3.2 introduced deviation-based iterative schemes for solving
smooth and non-smooth minimization problems that contain many traditional
iterative schemes as special cases. These schemes rely on a rule for selecting devi-
ations as iterates progress. Selection rules that give rise to convergent sequences
will be referred to as convergent and theorems 3.1 and 3.2 provide criteria that
imply convergence.

A natural next step is to look for a selection rule that has “optimal” conver-
gence. This requires one to formalize the notion of “optimal”. Such a selection
rule will most likely be problem dependent, i.e. we cannot expect to have a single
selection rule that is optimal for all minimization problems. One approach is to
search for the optimization method that is optimal on average when applied to
a specific class of minimization problems.

Based on the above, we adopt principles from statistical decision theory
to learn an optimal convergent selection rule from suitable example data. It
is clearly unfeasible to search over all possible convergent selection rules, so
attention is restricted to those that are encoded by a (deep) neural network.
A key issue is to select a neural network architecture that yields a convergent
selection rule. The following sections provide details of this approach.

4.1 Optimization parametrized by an additional input

The first task is to specify the class of minimization problems. Here we simply
consider minimizing an objective function on X that is parametrized by an
additional input y ∈ Y, i.e.

min
x∈X

Fy(x) for y ∈ Y. (27)

Fy : X → R above is a proper, convex and lower semi-continuous function and Y
is the set containing the additional input for the objective, i.e., the input data.
For simplicity, we will assume that X is finite-dimensional and that each Fy is
strictly convex and coercive so that corollaries 3.1 and 3.2 are applicable and
provide conditions for strong convergence of the respective iteration sequences.
Such problems naturally arise in many applications, e.g., when using variational
regularization to solve ill-posed inverse problems (see section 5).

Next is to formalize the notion of optimal convergence for a optimization
scheme that aims to solve problems of the form in eq. (27), which in turn dictates
how to train the neural network. Computational feasibility was earlier stated
as our main concern, so we consider a setting where the computational budget
is limited in terms of a fixed number of iterations N , other possible choices are
discussed in remark 4.1. Consider an iterative scheme with parameters θ ∈ Θ
applied for N ∈ N iterations when the initial point x0 ∈ X is fixed, this defines
a function of the input y ∈ Y for the objective:

RN,θ : Y → X

Next, the aforementioned optimality means we look for the optimization
method, which on average (as y ∈ Y varies) renders an iterate after N steps
that is as close as possible to the true minimal value of the objective in eq. (27).
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Stated mathematically, let Y denote a Y-valued random variable generating
y ∈ Y. For optimality we look for R

N,θ̂
( · ) : Y → X where

θ̂ ∈ arg min
θ∈Θ

EY

[

FY

(

RN,θ(Y )
)

]

. (28)

In practice, the distribution of Y is not available, instead one has samples
{yi}m

i=1 ⊂ Y generated by Y . We therefore consider its empirical counterpart:

θ̂ ∈ arg min
θ∈Θ

1

m

m
∑

i=1

Fyi

(

RN,θ(yi)
)

. (29)

The unsupervised learning problem4 eq. (29) results in a scheme that pro-
vides an output which is on average closest to minimizing the objective in eq. (27)
after N iterations. Combining this with convergence means ensuring the follow-
ing holds for all y ∈ Y:

lim
n→∞

R
n,θ̂

(y) = x∗(y) (30)

where x∗(y) ∈ X solves eq. (27). Hence, a solver given by θ̂ that is trained to
be optimal for N iterates will converge to a solution of eq. (27) if we run more
iterations, even when it is not trained for this scenario.

The next two sections provide further details on how to define a deviation-
based iterative solver RN,θ : Y → X in terms of a parametrized selection rule
Ψθ for θ ∈ Θ. The optimal scheme is obtained by training as in eq. (29) and
convergence is ensured by an appropriate choice of neural network architecture.

Remark 4.1. The topic of how to define “optimal convergence” is of high impor-
tance to optimization, but the choice becomes especially apparent in learning-
based schemes. In the classical optimization literature [4, 5, 23, 35] the most
widely used definition is upper bounds on the worst-case performance as the
number of iterations go to infinity. For learning this is not an attractive def-
inition since it is hard to evaluate computationally. In this work we chose to
optimize the average function value after a fixed number of steps, but it would
also be possible to optimise e.g. the average number of steps needed for conver-
gence.

4.2 Smooth convex objective

Assume that Fy : X → R in eq. (27) is differentiable with a β−1-Lipschitz contin-
uous gradient. Next, consider iterates (xn(y))n≥0 ⊂ X generated by an iterative
scheme for solving eq. (27). The mapping RN,θ : Y → X is defined as the N -th
term in that sequence, i.e. RN,θ(y) = xN (y).

A natural approach is to consider the deviation-based scheme in eq. (7),
which, when applied to the Y-parametrized minimization in eq. (27), reads as

xn+1(y) := xn(y) − β
(

∇Fy

(

xn(y)
)

+ ∆xn(y)
)

for all n ≥ 0.

The selection rule for setting the deviations ∆xn(y) above is defined as

∆xn(y) := Ψθ

(

xn(y), ∇Fy

(

xn(y)
)

, ∆xn−1(y)
)

. (31)

4 This is unsupervised learning since training data only consists of yi’s and not the x∗
i
(y)’s

that minimize x 7→ Fyi
(x).
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where Ψθ : X × X × X → X is an updating function that ensures that the
resulting deviations satisfy the conditions in eq. (8). The above completes the
definition of RN,x0

: Y × Θ → X and the optimal solver can be obtained from
example data by training as in eq. (29).

The updating function Ψθ will be given by a (deep) neural network that is
parametrized by θ ∈ Θ. We construct the neural network Ψθ by composing a
conventional neural network Ψ̃θ : X × X × X → X with a normalizing function
N : X × X → X , which ensures that the outcome is a feasible deviation. More
precisely, we define

Ψθ

(

xn(y), ∇Fy

(

xn(y)
)

, ∆xn−1(y)
)

:= N
(

hn, ∇Fy

(

xn(y)
)

)

where

N
(

hn, ∇Fy

(

xn(y)
)

)

:= α
hn

√

‖hn‖2 + 1

∥

∥

∥
∇Fy

(

xn(y)
)

∥

∥

∥
, (32)

hn := Ψ̃θ

(

xn(y), ∇Fy

(

xn(y)
)

, ∆xn−1(y)
)

. (33)

Here α ∈ [0, 1) controls the size of the learned deviations within the feasible
region. Subsection 5.6 presents performance for different values of α in ablation
experiments. Regarding the choice of N , the essential property is that its range
is contained in the ball that guarantees that the iterative scheme is convergent
as formalized in eq. (8) with αn = α. Thus, one can essentially replace N with
any transformation with this property.

Remark 4.2. In eq. (31) we use a current iterate, gradient at that iterate, and
previous deviation as input for the network Ψθ that defines the selection rule
for the deviations. This choice is largely heuristic and often (as in the problem
discussed in subsection 5.2), the objective function naturally consists of two
parts Fy = fy + gy. Here one has the option to evaluate gradients of both parts
separately instead of taking the gradient of the objective. This corresponds to
a selection rule of the form

∆xn(y) := Ψθ

(

xn(y), ∇fy

(

xn(y)
)

, ∇gy

(

xn(y)
)

, ∆xn−1(y)
)

(34)

for some neural network Ψθ : X × X × X × X → X . Moreover, it is possible to
incorporate information from previous iterations even though we did not pursue
this approach in our experiments.

4.3 Non-smooth convex objective

Here Fy : X → R in eq. (27) is convex, but not necessarily differentiable. We
specialize to the case Fy = fy +gy where fy : X → R and gy : X → R are convex
but only fy is differentiable and ∇fy : X → X is β−1-Lipschitz continuous, we
seek to solve

min
x∈X

fy(x) + gy(x) (35)

A natural approach is to consider the deviation-based scheme in eqs. (15a)
and (15b) for solving the above problem. Similarly as in subsection 4.2, the
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selection rules for the updates ∆x1
n(y) and ∆x2

n(y) are given by neural networks
Ψ1 and Ψ2, i.e.

∆x1
n(y) := Ψ1

θ1

(

xn(y), ∇fy

(

wn−1(y)
)

, ∆x1
n−1(y)

)

(36a)

∆x2
n(y) := Ψ2

θ2

(

xn(y), ∇fy

(

wn−1(y)
)

, ∆x2
n−1(y), ∆x1

n(y)
)

. (36b)

The optimal solver is now obtained by training RN,x0
: Y ×Θ → X as in eq. (29).

To ensure convergence as in eq. (30), the resulting learned updates need to satisfy
eq. (16) in theorem 3.2 according to corollary 3.2. Similar to the smooth case
in subsection 4.2, we achieve this by normalizing the output of the last hidden
layers h1

n and h2
n in the two neural networks:

∆x1
n =

√

α(1)(2β − γ)

γ

h1
n

√

‖h1
n‖2 + 1

∥

∥

∥

∥

xn − xn−1 −
β

2β − γ
∆x2

n−1

∥

∥

∥

∥

, (37a)

∆x2
n =

√

γ(2β − γ)α(2)
h2

n
√

‖h2
n‖2 + 1

∥

∥

∥

∥

∇fy(wn) − ∇fy(wn−1) −
1

β
(xn − wn−1)

∥

∥

∥

∥

.

(37b)

As before, α(1), α(2) ∈ [0, 1) control the sizes of the learned deviations in the
feasible region.

5 Numerical experiments

This section evaluates performance of the proposed learned optimizers for solv-
ing minimization problems arising in tomographic image reconstruction.

5.1 Variational regularization in tomographic imaging

Tomography is a collection of techniques that seek to visualize the interior struc-
ture of an object by probing it with penetrating particles/waves from different
directions. The most well-known example is computed tomography (CT) in
medical imaging. A patient is here scanned by X-rays from different directions
and the aim is to recover a 2D/3D image of the interior anatomy.

Tomographic imaging inevitably leads to an inverse problem since the inte-
rior structure x ∈ X (2D/3D image) is only indirectly observed through data
y ∈ Y. This can be formalized as solving an equation

y = Ax + noise (38)

where A : X → Y models how data is generated in absence of noise. A can be
taken as a linear operator (ray transform) if one adopts a simplified model for
how X-rays interact with tissue and properly pre-processes raw sensor data.

Tomographic imaging problems are unfortunately often ill-posed. This means
that a solution procedure that seeks to maximize data consistency, e.g. by min-
imizing x 7→ ‖Ax − y‖2, will be unstable. Variational regularization addresses
these issues by adjusting the need for data consistency against the need to sup-
press unwanted features (over-fitting). Stated formally, instead of trying to solve
eq. (38), one solves

x̂ ∈ arg min
x∈X

{

‖Ax − y‖2 + Sλ(x)
}

. (39)
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Here, Sλ : X → R (regularization functional) stabilizes the recovery procedure,
typically by enforcing certain regularity.

Remark 5.1. Much effort over the last three decades has been devoted to
determining mathematical properties of solutions to eq. (39) for various choices
of Sλ. Such analysis is typically performed in a non-discretized setting where
both x (2D/3D image) and y (data) resides in infinite-dimensional function
spaces, see [12, 14, 38] for extensive surveys.

Characteristics of eq. (39) The minimization in eq. (39) is of the form in
eq. (27) with tomographic data y ∈ Y as the additional variable. In our case,
the objective in eq. (39) has a natural decomposition Fy = fy + g where

fy(x) := ‖Ax − y‖2 and g(x) := Sλ(x).

Note here that fy : X → R is differentiable whenever A is differentiable, which
in particular is the case when A is linear. Properties of g : X → R will depend
on the choice of regularization functional, but it will be proper, convex and
lower semi-continuous.

Next, in tomographic imaging, both x and y are high-dimensional arrays
after discretization. In the 2D setting that is considered in subsection 5.6, x
represents 512 × 512 pixel 2D coronal image slices. These are obtained from
normal-dose CT scans of the human abdomen provided by Mayo Clinic for the
AAPM Low Dose CT Grand Challenge [31] and used as input for simulating
X-ray parallel-beam tomographic data. The latter is from 1000 equidistributed
source positions and 1000 detector elements with 5% additive Gaussian noise,
i.e. data y is a 106-dimensional array. In summary, even though we consider a
2D setting, eq. (39) is a large-scale optimization problem.

An additional aspect to consider is that most clinical imaging studies are
performed in a time-critical setting. An informal rule of thumb for CT imaging is
that reconstructed images need to be available within 5 minutes after scanning5.
Hence, applicability of variational regularization in clinical CT rests to large
extent on the ability to (approximately) solve eq. (39) within this time-frame,
so one can typically only afford about 10 evaluations of A and A⊤.

5.2 Smoothed total-variation regularization

Total-variation regularization corresponds to choosing Sλ(x) := λ‖∇x‖1 in
eq. (39) for some λ > 0. Using such a regularization functional is popular
since it preserves edges [15, 37]. When x is discretized, the gradient ∇ is typi-
cally replaced by the linear operator D : X → X × X that computes differences
in pixel values along vertical and horizontal directions.

A computational drawback with total variation regularization is that it re-
sults in minimizing a non-smooth objective. A common remedy is therefore to
replace the 1-norm with the Huber function, i.e., choosing Sλ(x) := λHδ(Dx)

5 This would exclude usages of CT in trauma where reconstructions need to be available
instantaneously.
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where δ > 0, x = (xi)i∈I , and

Hδ(x) :=
∑

i∈I

hδ(xi), with hδ(xi) :=











1

2δ
x2

i if |xi| < δ

|xi| −
δ

2
otherwise.

(40)

This results in a smooth objective as eq. (39) now reads as

x̂ := arg min
x∈X

‖Ax − y‖2 + λHδ(Dx), (41)

which corresponds to eq. (27) with Fy(x) = fy(x) + g(x) where

fy(x) := ‖Ax − y‖2 and g(x) := λHδ(Dx), (42)

so

∇Fy(x) = ∇fy(x) + ∇g(x) = 2A⊤(Ax − y) + λD⊤∇(H)δ(Dx). (43)

One may furthermore normalize the linear operator A, i.e., ‖A‖ = 1. Then,
∇Fy is Lipschitz continuous with constant β−1 = 2‖A‖2 + λ

δ
‖D‖2 = 2 + 8λ/δ.

The tests in subsection 5.6 compare various deviation-based schemes for solv-
ing eq. (41) with δ = 0.01 (Huber parameter) and λ = 0.0015 (regularization
parameter). The performance of the learned deviation-based scheme in subsec-
tion 4.2 is evaluated for different values of the normalization parameter α in
eq. (32).

5.3 Sparsity-promoting regularization

Sparsity is another powerful method for regularizing ill-posed inverse problems,
and in particular those that are under-sampled [21]. A typical choice as regu-
larizing functional in eq. (39) is to pick Sλ(x) = λ‖Wx‖1 where λ > 0, so we
end up with the following non-smooth minimization problem:

x̂ := arg min
x

‖Ax − y‖2 + λ‖Wx‖1. (44)

In the above, x 7→ Wx is a compression that preserves essential features (spar-
sifying transform). For the tests in subsection 5.6, we select it as an orthogonal
wavelet transform given by Symlets with filter length 10 and 5 scale levels. The
regularization parameter is set to λ = 0.0005.

The minimization in eq. (44) corresponds to eq. (27) with a non-smooth
objective Fy(x) = fy(x) + g(x) where

fy(x) := ‖Ax − y‖2 and g(x) := ‖Wx‖1. (45)

As in subsection 5.2, A is normalized, so ‖A‖ = 1, and ∇fy(x) = 2A⊤(Ax −
y) is Lipschitz continuous with constant β−1 = 2. Hence, fy and g satisfy
the assumptions in subsection 3.2 and one can solve the problem by using the
method proposed in subsection 4.3. To proceed, we use [9, Proposition 24.14]
to compute the proximal in eq. (15b):

Proxλγn

g (x) = x +
1

µ
W ⊤

(

Proxµλγn

‖·‖1

(Wx) − Wx
)

(46)
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where Proxγ

‖·‖1

(x) = sign(x) · max(|x| − γ, 0) is a proximal of l1 norm and µ is

such that µ Id = WW ⊤.
The tests in subsection 5.6 compare various deviation-based schemes for

solving eq. (44) with gradient descent step-size γn = 1/(2‖A‖2) = 0.5. The
performance of the learned deviation-based scheme in subsection 4.3 is evaluated
for different values of the normalization parameters α(1) = α(2) = α in eq. (37).

5.4 Baseline methods

In the case of smooth optimization (i.e. solving eq. (41)), we compare our method
to the steepest gradient descent and Nesterov’s accelerated scheme [33]. For the
steepest gradient descent, the updates are the same as in eq. (7), but with
∆xn = 0:

xn+1 := xn − β∇f(xn) (47)

In Nesterov’s method the updates are:

xn := wn − β∇f(wn), (48a)

tn+1 :=
1 +

√

(1 + 4t2
n)

2
, (48b)

wn+1 := xn +
tn − 1

tn+1
(xn − xn−1), (48c)

where t0 := 1.
In the non-smooth case (i.e. solving eq. (44)), we compare our method against

ISTA [22] and FISTA [10]. Iterates in ISTA are updated according to

xn+1 := Proxγn

g (xn − γn∇f(xn)). (49a)

This is equivalent to updates in eqs. (15a) and (15b) with ∆x1
n = ∆x2

n = 0. In
FISTA, updates are given as

xn := Proxγn

g (wn − γn∇f(wn)), (50a)

tn+1 :=
1 +

√

(1 + 4t2
n)

2
, (50b)

wn+1 := xn +
tn − 1

tn+1
(xn − xn−1), (50c)

where t0 := 1. Finally, we do not provide a comparison to LISTA [24], because
an input of dimension n it requires training n2 parameters. The memory require-
ments for this method are prohibitively large for the examples in subsection 5.6
since n = 512 × 512.

5.5 Implementation

The architecture for the neural networks in eqs. (31) and (36) is similar to the
networks representing the learned updates in [2]. Thus, it consists of three con-
volutional layers (two hidden and one output layer) with 3 × 3 convolutional
kernels. The hidden layers have 32 filters that are followed by instance nor-
malization and leaky ReLU as an activation function. Instead of performing
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explicit pre-processing of the input data, we use additional instance normal-
ization before the hidden layers. This results in a network with a total of
1 · 10 · 32 + 32 · 10 · 32 + 32 · 10 · 1 = 10 880 free parameters that need to be set
during training.

To train the networks, we use the unsupervised loss function F (xN ), where N
is the total number of iterations. However, during the evaluation, we run much
more iterations to verify the convergence, despite the fact that the network
was not trained for this scenario. During the training, we sample N uniformly
between 10 and 20. Randomizing the number of iterations is necessary to ensure
a smooth transition between the scenario for which the model is trained and
for which it is not. Since the loss function F (xn) is not guaranteed to decrease
monotonically, we observed that fixing the number of iterations to 10 during
the training results in a slight increase of the loss after 10 iterations, before it
starts to decrease again.

The neural networks are implemented in Tensorflow [30] and trained for 105

iterations using the Adam optimizer with learning rate 10−3 and batch size 1.
This takes about three days on a workstation with a single GeForce RTX 2080 Ti
GPU. However, for most presented models 3·104 training iterations are sufficient.
Tomography-related operations necessary for evaluating the data consistency
along with bindings to TensorFlow are implemented in ODL [1] with ASTRA
[39] as the computational back-end. We make the code publicly available6.

5.6 Results

All the solution algorithms initialize iterations to zero image x0 = 0. Next, all
deviation-based schemes with learned selection rules have been trained on data
from nine of ten patients. The 210 images corresponding to the last patient are
used for testing.

5.6.1 Smoothed total variation regularization (smooth optimization)

In figure 1 we visualize the performance of different methods averaged over the
set of test images. We identify the minimal objective value F ∗ achieved among
all the methods and plot the difference F (xn) − F ∗ to the minimal value in
logarithmic scale depending on the iteration.

We present results for the following methods: the gradient descent, Nes-
terov’s accelerated method, and the learned scheme described in subsection 4.2
with the normalization parameter α = 0.9. For comparison, we also include a
variant of the learned scheme without the normalization given by eq. (32).

We use 32-bit single-precision floating-point numbers in our experiments
(that represents about 7 decimal digits) and we average over 210 images. The
final loss for each image is in most cases a 3 digit number. Therefore we expect
the results be precise only up to 5 digits, which is up to and including 10−2.

As we can see, learned schemes perform better than the baseline methods
during the first 10 iterations (marked with a grey vertical line). This result
is expected since it corresponds to the objective set during the training. We
also evaluate a variant of the learned scheme that uses a network without the
normalization in eq. (32) and, hence, does not have convergence guarantees. Not

6 github.com/JevgenijaAksjonova/Deep-Optimization

https://github.com/JevgenijaAksjonova/Deep-Optimization
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10−3
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103

Gradient Descent
Nesterov
Learned, α = 0.9
Learned w/o convergence
O(1/n)

O(1/n2)

Fig. 1: Plot of F (xn) − F ∗ as a function of the iteration number for gradient
descent, Nesterov’s accelerated method, the learned scheme in subsec-
tion 4.2 with α = 0.9, and a variant of latter without the normalization
given by eq. (32).

100 101 102 103
10−6

10−3

100

103

Gradient Descent
Learned, α = 0.999
Learned, α = 0.9
Learned, α = 0.5
O(1/n)

O(1/n2)

Fig. 2: Plot of F (xn) − F ∗ as a function of the iteration number for gradient de-
scent and the learned scheme in subsection 4.2 that enforces convergence
through eq. (32) for different values of α.

only does it achieve a worse performance during the first 10 iterations, but it
also quickly diverges afterwards.

In figure 2, we evaluate the performance of the learned scheme for different
choices of the normalization parameter α, which controls the size of the learned
deviation ∆xn. The largest value α = 0.999 leads to the best performance
during the first 10 iterations, however, α = 0.9 performs almost as good and
converges much faster. Decreasing α further makes the method approach the
steepest gradient descent, by enforcing convergence and sacrificing performance
during the first 10 iterations.

5.6.2 Sparsity-promoting regularization (non-smooth optimization)

Figure 3 visualizes the performance of different methods averaged over the set
of test images. We identified the minimal objective value F ∗ achieved among
all the methods and plot the difference F (xn) − F ∗ to the minimal value in
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Learned w/o convergence
O(1/n)

O(1/n2)

Fig. 3: Plot of F (xn) − F ∗ as a function of the iteration number for ISTA [22],
FISTA [10], the learned scheme in subsection 4.3 with α = 0.5, and a
variant of latter without the normalization given by eq. (37).
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10−6

10−3

100

103
ISTA
Learned, α = 0.999
Learned, α = 0.5
O(1/n)

O(1/n2)

Fig. 4: Plot of F (xn) − F ∗ as a function of the iteration number for ISTA [22]
and the learned scheme in subsection 4.3 with convergent updates by
eq. (37) for different values of α.

logarithmic scale depending on the iteration.
We can see that, during the first 10 iterations (marked with a grey vertical

line), the learned methods perform significantly better than the two baseline
methods: ISTA [22] and FISTA [10]. Moreover, the normalization step eq. (37)
not only ensures convergence, it also improves the performance after 10 itera-
tions.

Next, we show the effect of choosing different normalization parameters α
in figure 4. As in smooth optimization, decreasing α improves convergence.
Moreover, in this case α = 0.5 leads to the best performance among the tested
methods during the first 10 iterations as well.

6 Conclusion

Our goal was to construct deep-learning accelerated algorithms for convex op-
timization, and we began by noting that these heavily over-parametrized al-
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gorithms do not fit into classical optimization schemes, which only use a few
parameters.

To do this, we proved convergence of two convex optimization algorithms,
one for smooth optimization and one for non-smooth. Instead of showing their
convergence under some specific parameter choice, we showed convergence when-
ever the updates are chosen in particular sets of full dimension. Given that these
sets are rather large, there is hence an enormous number of options to choose
from. To make the best choice in any situation we used a neural network and
trained it to pick the updates for optimal convergence speed.

We applied our algorithms to the problem of regularized image reconstruc-
tion in CT and showed that our algorithm out-performs classical algorithms,
especially when only a few iterations are applied. Furthermore, our algorithm
converged to the exact solution, as expected.

We hope that this work will open new venues in combining deep learning
with provable convergence, and we see several interesting open problems arising
from it. For one, our algorithms are only applicable to a subset of all convex
problems and it would be particularly interesting to find a primal-dual scheme
which can be combined with deep learning. Another interesting research direc-
tion is to investigate other definitions of the best optimization algorithm, for
example one highly sought-after feature is the ability to train our network to
converge to a given accuracy as quickly as possible. Finally, one could com-
bine the deterministic acceleration in the spirit of Nesterov [33] or [10] with the
deep learning techniques introduced in this paper and find an optimal trade-off
between the two.
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