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LOCAL EXISTENCE OF SMOOTH SOLUTIONS FOR THE SEMIGEOSTROPHIC

EQUATIONS ON CURVED DOMAINS

LAURO SILINI

Abstract. We prove local-in-time existence of smooth solutions to the semigeostrophic equations in

the general setting of smooth, bounded and simply connected domains of R2 endowed with an arbitrary

conformally flat metric and non-vanishing Coriolis term. We present a construction taking place in

Eulerian coordinates, avoiding the classical reformulation in dual variables, used in the flat case with

constant Coriolis force, but lacking in this general framework.

1. Introduction

1.1. Background and motivations. In meteorology, the semigeostrophic equations are believed to
constitute a good approximation of the atmospheric flow dynamics in the large scale setting (see for
instance Cullen [5] and Hoskins [7]). The form of these equations in the flat case is

(1.1)







(∂t + u · ∇)uG + f(u− uG)
⊥ = 0,

uG = 1
f∇

⊥p,

div(u) = 0,

where u, f , p and uG are respectively the velocity of the fluid, the Coriolis term, the pressure and
semigeostrophic wind (that is the virtual component of the velocity that takes into account the action
of the large Coriolis effect against the material derivative). The local-in-time existence of smooth so-
lutions has been obtained by Loeper (see [8]). The global-in-time existence of weak solution has been
proved by Ambrosio, Colombo, De Philippis and Figalli in [3]. Those two achievements suppose the
Coriolis term constant and the domain flat, since in this case it is possible to formulate a dual version of
the semigeostrophic equation which is formed by a continuity equation coupled with a Monge-Ampère
equation







∂tρt + div(ρtUt) = 0,

Ut(y) = (y −∇P ∗(y, t))⊥,

det(D2P ∗(y, t)) = ρt(y).

About this reformulation, see Benamou and Brenier [4]. At this stage the classical theory of optimal
transport allows the construction of a solution for the dual system. For the global-in-time weak solutions,
a careful application of the regularity theory for uniformly bounded Monge-Ampère equations, developed
by De Philippis and Figalli in [10], makes the transition to the original system possible.

The initial motivation of this work is the study of the incompressible semigeostrophic equations over
its natural setting: a rotating sphere. At our knowledge, there is no clear generalization of the elegant
machinery mentioned before to more physically accurate frameworks, even for the simple periodic case
with varying Coriolis term. For this reason, a natural question is whether the passage to dual coordinates
can be avoided in order to gain information on the existence in more geometrically interesting domains.
This article constitutes a first result in this direction. More precisely, we study the local-in-time ex-
istence of smooth solutions. Our method, which was originally customized for the upper (and lower)
hemisphere stereographically projected, is robust with respect to the geometry of the underlying domain,
and generalizes to any smooth, simply connected, conformally flat domain in R

2. As a remark at the end
of the paper, we will show that the method can be adapted to the non-simply connected model case of
the flat torus. For what concerns the Coriolis force, we assume it to be non-vanishing on the closure of
the whole domain. Considering that the Coriolis force on a rotating sphere is proportional to the height
function, and hence vanishes along the equator, this is a restrictive assumption. However, as we will see
heuristically in Section 1.2 (or simply by looking at the definition of uG in (1.1)), there are evident issues
of regularity where f vanishes. In fact, it is not clear whether the semigeostrophic equations make any
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sense at all along the equator. We decided to avoid this delicate problem for now, focusing (in the case
of the spherical geometry) on the existence of solutions compactly supported in the upper (or lower)
hemisphere. We decided to prescribe the velocity vector field u tangent to the boundary of the domain,
which corresponds to the natural condition for mass preservation. The only given data at time zero is
the pressure gradient ∇p0, and we suppose it satisfies a stability condition coming from the derivation
of an elliptic PDE for the velocity in terms of the pressure. In the flat setting, this corresponds to the
well celebrated Cullen stability principle (see [5, Chapter 3]), that asks D2p0 + I to be convex.

1.2. Derivation. We start by briefly describing the derivation of the semigeostrophic equation starting
from the classical Euler equation governing the evolution of an inviscid fluid on the surface of a rotating
sphere. The generalization to conformally flat domains follows naturally after projecting everything
stereographically. Consider the two dimensional sphere rotating on itself with constant velocity ω. The
canonical Riemannian metric is given in spherical coordinates (θ, φ) by

g = dθ2 + sin(θ)dφ2,

where θ ∈ (0, π) represents the latitude and φ ∈ (0, 2π) the longitude. Denoting with Dg, divg and ∇g

the Levi-Civita connection, the divergence and the gradient operator associated to g, and with (·)⊥ the
counter-clockwise rotation of π/2 radians, the evolution of a two dimensional inviscid fluid on this sphere
is described by

(1.2)

{

(∂t +Dg
u)u + fu⊥ +∇gp = 0,

divg(u) = 0,

where u and p represent respectively the velocity and the pressure of the fluid, and f is the Coriolis
term which equal to f = 2ω cos(θ). In the large scale setting it is believed that the force induced by the
rotation dominates the advection term (at least far form the equator). This induces the definition of a
new quantity uG, called the geostrophic wind, which represents the balance

fu⊥G +∇gp = 0.

The semigeostrophic approximation consists into neglecting the action of the material derivative on the
difference u− uG (called the ageostrophic component of the wind), but preserving all information about
the fluid velocity in the remaining terms of the equation. This means that we are asking

∂tuG +Dg
uuG + fu⊥ +∇gp = 0.

In a more compact form, we finally have the semigeostrophic equation

(1.3)







(∂t +Dg
u)uG + f(u− uG)

⊥ = 0,

uG = 1
f∇

⊥
g p,

divg(u) = 0,

in its essential formulation (see [5, Chapter 2] for the spherical case, and [5, Chapter 1], [7] and [8] for
the flat periodic one). Operating a stereographic projection pointed at the South Pole, we can see (1.3)
as taking place in the two dimensional plane endowed with the conformal metric and Coriolis term

(1.4) g =
4

(1 + |x|2)2
(
(dx1)2 + (dx2)2

)
, f = 2ω

1− |x|2

1 + |x|2
,

in canonical Cartesian coordinates (x1, x2).

To summarise, we can give the general statement of this problem: let Ω be a sufficiently smooth,
bounded and simply connected domain of R2, and let V, ϕ be two given smooth functions defined on Ω̄.
Set

(1.5) g := e−2V
(
(dx1)2 + (dx2)2

)
, and f = e−ϕ,

and define the endomorphism of tangent bundle

J = (·)⊥ : TΩ → TΩ, J = −dx2 ⊗
∂

∂x1
+ dx1 ⊗

∂

∂x2
,
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to be the counter-clockwise rotation of π/2-radians. Given an initial pressure gradient ∇gp0 we ask
ourselves if it is possible to find a local-in-time smooth solution of the semigeostrophic system

(1.6)







(∂t +Dg
u)
(
eϕ∇⊥

g p
)
+ e−ϕ

(
u− eϕ∇⊥

g p
)⊥

= 0, in Ω,

divg(u) = 0, in Ω,

g(u, ν) = 0, on ∂Ω,

∇gpt |t=0= ∇gp0,

where ν denotes the outer pointing normal vector to ∂Ω. In particular, when ϕ and V are as in (1.4)
and (1.5) we are in the spherical case, and when V = ϕ = 0, we are in the classic flat case.

1.3. Main result. For any vector field ξ ∈ C1(Ω,R2) we define the stability matrix Q as

Q = Q[Dξ, ξ] := e2V+2ϕ
(

DξT + (∇V +∇ϕ/2)⊗ ξ + ξ ⊗ (∇V +∇ϕ/2)− 〈ξ,∇V 〉I
)

,

where I denotes the identity matrix. For matrices A and B, we will write

A ≥ B, whenever 〈Aξ, ξ〉 ≥ 〈Bξ, ξ〉 for all ξ ∈ R
2 \ {0}.

The main result of this paper is the following.

Theorem 1.3.1. Let k ≥ 4 be fixed, and let Ω be an open, simply connected and bounded subset of R2

with Ck+1 boundary. Let ∇p0 ∈ Hk(Ω,R2), and suppose that there exists µ0 < 1 such that

I+Q[D2p0,∇p0] ≥ (1− µ0)I > I.

Then, there exists a constant C = C(Ω, V, ϕ, k) > 0 such that, setting

t∗ := C

(

1− µ0

‖∇p0‖Hk(Ω) + 1

)(k+1)k+2

,

for all t′ < t∗ and α ∈ (0, 1) there exist

∇pt ∈ C(0, t′;Ck−2,α(Ω,R2)) ∩ C1(0, t′;Ck−3,α(Ω,R2)),

and

ut = −e2V∇⊥ψt ∈ C(0, t′;Ck−2,α(Ω,R2)),

solving the semigeostrophic Equation (1.6) in [0, t′]. Moreover, in [0, t′] the constant of uniform ellipticity
of I+Q[D2pt,∇pt] is bounded away from zero, and ut,∇pt ∈ L∞(0, t′;Hk(Ω,R2)).

1.4. Structure of the paper and strategy of the proof. In Section 2 we start by developing the
estimates of general elliptic partial differential equations with Dirichlet boundary condition in the form

(1.7)

{

div(A∇φ) + b · ∇φ = div(F), in Ω

φ = 0, on ∂Ω,

where A = A(x) is supposed uniformly elliptic, that is A(x) ≥ λI for some λ > 0 and all x ∈ Ω. We
will take advantage of the classic regularity theory in the Sobolev space Hk(Ω) = {f ∈ L2(Ω) : Dαf ∈
L2(Ω), |α| ≤ k}, k ≥ 4, to find an explicit upper bound on the constant C > 0 realizing

‖∇φ‖Hk(Ω) ≤ C
(

‖∇φ‖L2(Ω) + ‖F‖Hk(Ω)

)

,

in terms of the Hk−1-norm of A, div(A), b and the elliptic constant λ. The key observation here is that
if div(A) shares the same regularity as A, then we gain two derivatives for the solution φ instead of one.

Section 3 is devoted entirely to the construction of an approximate solution. We start by taking
advantage of the conformal nature of the metric to "flatten" the Riemannian operators and see (1.3)
as a lower order perturbation of the equation in (R2, dx). Then, we formally obtain an elliptic partial
differential equation for the potential of the velocity (recall that Ω is simply connected and the fluid is
incompressible) of the form (1.7) "killing" the time derivative on the rotated gradient ∂t∇

⊥p by applying
the divergence operator on both sides of the semigeostrophic equation. In particular A has the form
I+Cof(Q), and here is where the stability condition comes from as a necessary requirement of solvability.
A very nice cancellation property of the cofactor matrix ensures ‖Q‖Hk−1(Ω) ∼ ‖div(Cof(Q))‖Hk−1(Ω),
allowing us to take full advantage of the previous general elliptic estimates. We then construct a sequence
of approximate solutions regularizing the semigeostrophic equation and discretizing the time in little
steps.
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In order to prove uniform existence of a sequence of regularized solutions, in Section 4 we operate an
Energy Estimate on the Sobolev norm of the pressure gradient and the elliptic constant λ of I+Q. Here
the elliptic regularity estimate on the velocity plays a role to prove that

∣
∣
∣
∣

d

dt
(−λ)

∣
∣
∣
∣
+

∣
∣
∣
∣

d

dt
‖∇p‖Hk(Ω)

∣
∣
∣
∣
.
(‖∇p‖Hk(Ω)+1

λ

)M(k)

,

for some exponent M(k) > 0. A Grönwall-type argument on a well chosen function completes the proof
of uniform existence local-in-time of the approximate solutions.

In Section 5 we extract a smooth solution of the semigeostrophic equations by applying a suitable
argument of compactness.

Acknowledgments. The author would like to thank Professor A. Figalli for his guidance and con-
stant support. The author has received funding from the European Research Council under the Grant
Agreement No. 721675 “Regularity and Stability in Partial Differential Equations (RSPDE)”.

2. Explicit elliptic estimates

We refer to [2] and [6] for the classical elliptic regularity methods that we will employ. We start by
stating two useful interpolation results.

Lemma 2.0.1. Let Ω ⊂ R
n be any bounded and smooth domain. Then, for every 0 ≤ k ≤ m there exists

a constant c = c(k,m,Ω) > 0 such that

‖v‖Hk(Ω) ≤ c‖v‖
1− k

m

L2(Ω)‖v‖
k
m

Hm(Ω),

for every v ∈ Hm(Ω).

Proof. The proof can be found in [1, Chapter 5]. �

Lemma 2.0.2. Let Ω ⊂ R
2 be any smooth and bounded domain, and let v, w be functions in Hr(Ω).

Then, there exists C = C(r,Ω) > 0 such that

(2.1) ‖Dα(vw)‖L2(Ω) ≤ C
(

‖v‖L∞(Ω)‖w‖Hr(Ω) + ‖w‖L∞(Ω)‖v‖Hr(Ω)

)

,

for all multi-index |α| = r. In particular, the following inequalities

(2.2) ‖Dα(vw) − vDαw‖L2(Ω) ≤ Cr

(

‖∇v‖L∞(Ω)‖w‖Hr−1(Ω) + ‖v‖Hr(Ω)‖w‖L∞(Ω)

)

,

and

(2.3) ‖Dα(vw) − vDαw − wDαv‖L2(Ω) ≤ Cr

(

‖∇v‖L∞(Ω)‖w‖Hr−1(Ω) + ‖v‖Hr−1(Ω)‖∇w‖L∞(Ω)

)

,

hold.

Proof. The proof can be found in [9, Lemma 3.4]. �

2.1. Set-up. Let Ω be an open, bounded subset of R2, and suppose we are given a symmetric matrix
A ∈ C∞(Ω̄)2×2 and vector fields b,F ∈ C∞(Ω̄)2, such that there exists λ > 0 satisfying

0 < λI ≤ A.

Define div(A) ∈ C∞(Ω̄)2 as

div(A)j :=

2∑

i=1

∂iAij ,

such that

div(A∇φ) = Tr(AD2φ) + div(A) · ∇φ, ∀φ ∈ C2(Ω).

Let φ ∈ C∞(Ω̄) be solution of

(2.4)

{

div(A∇φ) + b · ∇φ = div(F), in Ω,

φ = 0, on ∂Ω.

The goal of this section is to prove the following global estimate.
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Proposition 2.1.1 (Global estimates). Suppose that ∂Ω is of class Ck+1 for some k ≥ 4. Then, there
exists a universal constant Ck,Ω > 0 such that

(2.5) ‖∇φ‖Hk(Ω) ≤ CΩ,k

(

λ−(k+1)k
M

(k+1)k‖∇φ‖L2(Ω) + λ−(k+1)
M

k‖F‖Hk(Ω)

)

,

where

M :=
(

‖A‖Hk−1(Ω) + ‖div(A)‖Hk−1(Ω) + ‖b‖Hk−1(Ω)

)

.

Moreover, if b = ∇⊥f for some f ∈ C∞(Ω̄), then

(2.6) ‖∇φ‖Hk(Ω) ≤ CΩ,kλ
−(k+1)k−1

M
(k+1)k‖F‖Hk(Ω).

Remark 2.1.2. An important situation in which the particular case b = ∇⊥f of Proposition 2.1.1 arises
is when we symmetrize the elliptic matrix. In fact, suppose that the elliptic equation is of the form

div
(
(A+ Ã)∇φ

)
= div(F),

where Ã is an antisymmetric matrix. In this case we have that

div
(
Ã∇φ

)
= div(Ã) · ∇φ+Tr(ÃD2φ) = ∂1Ã12∂2φ+ ∂2Ã21∂1φ = ∂1Ã12∂2φ− ∂2Ã12∂1φ = ∇⊥Ã12 · ∇φ,

i.e. the coefficient b comes from the rotated potential f = Ã12.

2.2. Rescaled elliptic estimates. Fix k ≥ 4. To simplify the exposition of the following estimates, we
will write

a . b, (or a .r b),

if there exists some constant c = c(Ω, k) > 0 (respectively c = c(Ω, k, r) > 0), such that

|a| ≤ cb.

In this section, we will suppose that

(2.7) λ, ‖A‖Hk−1(Ω), ‖div(A)‖Hk−1(Ω), ‖b‖Hk−1(Ω) ≤ 1.

Consequently, by Sobolev embeddings, we also have that

‖A‖Wk−3,∞(Ω), ‖b‖Wk−3,∞(Ω) . 1.

We start by proving a local interior estimate.

Proposition 2.2.1 (Rescaled interior estimates). Fix x0 ∈ Ω and r > 0 such that Br := B(x0, r) ⊂ Ω.
Then, the interior estimate

(2.8) ‖∇φ‖Hk(Br/2) .r
1

λ

(

‖∇φ‖Hk−1(Br) + ‖F‖Hk(Br)

)

,

holds.

Proof. Let |α| = k be any multi-index. Then, differentiating α-times (2.4), we have that

0 = −div
(
∂α(A∇φ)

)
− ∂α(b∇φ) + div(∂αF),

which implies, adding div(A∂α∇φ) to both sides, that

div(A∂α∇φ) = div
(
A∂α∇φ− ∂α(A∇φ)

)
− ∂α(b∇φ) + div(∂αF)

= div
(
∂αA∇φ + A∂α∇φ− ∂α(A∇φ)

)
− ∂α(b∇φ) + div(∂αF)− div(∂αA∇φ),

(2.9)

where in the second line we simply add and subtract div(∂αA∇φ). Call

X := ∂αA∇φ+ A∂α∇φ− ∂α(A∇φ).

Fix x0 ∈ Ω and r > 0 such that Br := B(x0, r) ⊂ Ω. Choose η ∈ C∞
c (Br) such that η|Br/2

≡ 1,

η|R2\Br
≡ 0 and 0 ≤ η ≤ 1. Testing Equation (2.9) against ξ := η2∂αφ gives
ˆ

〈A∂α∇φ,∇ξ〉 dx =

ˆ

〈X+ ∂αF,∇ξ〉 dx +

ˆ

∂α(b∇φ)ξ dx+

ˆ

div(∂αA∇φ)ξ dx.

Since ∇ξ = η2∇∂αφ+ 2∂αφη∇η, taking advantage of the ellipticity of A we can estimate

λ

ˆ

η2|∂α∇φ|
2 dx ≤ −

ˆ

〈A∂α∇φ, 2∂αφη∇η〉 dx

︸ ︷︷ ︸

(I)

+

ˆ

〈X+ ∂αF,∇ξ〉 dx

︸ ︷︷ ︸

(II)

+

ˆ

∂α(b∇φ)ξ dx

︸ ︷︷ ︸

(III)

+

ˆ

div(∂αA∇φ)ξ dx

︸ ︷︷ ︸

(IV )

.

(2.10)
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We will now treat (I)-(IV) separately. By the Young inequality, since ‖A‖L∞(Ω) . 1, we have that

(I) .r
1

ǫ

ˆ

Br

|∂αφ|
2 dx+ ǫ

ˆ

η2|∇∂αφ|
2 dx,

for every ǫ > 0. Now, observe that for every smooth function h and 0 < ǫ ≤ 1, it holds that
ˆ

|h||∇ξ| dx ≤

ˆ

|h|
(

η2|∇∂αφ|+ 2η|∇η||∂αφ|
)

dx

.
1

ǫ

ˆ

Br

|h|2 dx + ǫ

ˆ

η2|∇∂αφ|
2 dx+

ˆ

|h|η|∇η||∂αφ| dx

.r
1

ǫ

ˆ

Br

|h|2 dx+ ǫ

ˆ

η2|∇∂αφ|
2 dx +

ˆ

Br

|∂αφ|
2 dx.

(2.11)

Also, recalling that k ≥ 4, by interpolation inequality (2.3) we can easily estimate

‖X‖L2(Br) .
(

‖A‖W 1,∞(Br)‖φ‖Hk−1(Br) + ‖A‖Hk−1(Br)‖D
2φ‖L∞(Br)

)

. ‖∇φ‖Hk−1(Br).

Therefore, we obtain that

(II) .r
1

ǫ
‖∇φ‖2Hk−1(Br)

+
1

ǫ
‖∂αF‖

2
L2(Br)

+ ǫ

ˆ

η2|∇∂αφ|
2 dx+

ˆ

Br

|∂αφ|
2 dx.

Finally, consider the terms (III) and (IV ). Recall that in (2.7) we assumed only the Hk−1(Ω)-norms
of A, div(A) and b to be controlled by 1. This means that we need to integrate by parts in such a way
that these terms are differentiated at most (k − 1)-times. Choose i ∈ {1, 2} such that ∂α = ∂β∂i, with
|β| = k − 1. Then

(III) = −

ˆ

∂β(b∇φ)∂iξ dx = −

ˆ (

∂β(b∇φ)− ∂βb∇φ
)

∂iξ dx−

ˆ

(∂βb∇φ)∂iξ dx,

which by (2.2) and (2.11) gives

(III) .r
1

ǫ
‖∇φ‖2Hk−1(Br)

+ ǫ

ˆ

η2|∇∂αφ|
2 dx.

Similarly we have that

(IV ) =

ˆ

∂idiv(∂βA∇φ)ξ − div(∂βA∂i∇φ)ξ dx = −

ˆ

div(∂βA∇φ)∂iξ − 〈∂βA∂i∇φ,∇ξ〉 dx

= −

ˆ

Tr(∂βAD
2φ)∂iξ + div(∂βA) · ∇φ∂iξ − 〈∂βA∂i∇φ,∇ξ〉 dx

≤

ˆ (

|Tr(∂βAD
2φ)|+ |∂βdiv(A) · ∇φ|+ |∂βA∂i∇φ|

)

|∇ξ| dx

.r
1

ǫ
‖∇φ‖2W 1,∞(Br)

+ ǫ

ˆ

η2|∇∂αφ|
2 dx+

ˆ

Br

|∂αφ|
2 dx

.r
1

ǫ
‖∇φ‖2Hk−1(Br)

+ ǫ

ˆ

η2|∇∂αφ|
2 dx+

ˆ

Br

|∂αφ|
2 dx.

Letting ǫ = crλ, for some small constant cr > 0, Equation (2.10) gives

‖∂α∇φ‖
2
L2(Br/2)

.r
1

λ2

(

‖∇φ‖2Hk−1(Br)
+ ‖F‖2Hk(Br)

)

,

as wished. �

Now, to obtain a similar estimate on the boundary, we start by treating the flat case.

Proposition 2.2.2 (Rescaled flat boundary estimates). Let Ω = B+
r := {x2 > 0} ∩B(0, r). Then,

(2.12) ‖∇φ‖Hk(B+

r/2
) .r

1

λk+1

(

‖∇φ‖Hk−1(B+
r ) + ‖F‖Hk(B+

r )

)

,

Proof. We first start by estimate the norm of the tangential derivatives. Fix k ≥ 4. Let η ∈ C∞
c (R2)

be a cutoff function such that η |Br/2
= 1, η |R2\Br

= 0 and 0 ≤ η ≤ 1. Then, since the test function

ξ := η2∂k1φ vanishes on ∂B+
r (recall that we prescribed φ = 0 on the segment (−r, r) × {0}), we can

repeat the proof of Proposition 2.2.1 for α = (k, 0) obtaining the estimate

‖∇∂αφ‖
2
L2(B+

r/2
)
= ‖∇∂k1φ‖

2
L2(B+

r/2
)
.r

1

λ2

(

‖∇φ‖2
Hk−1(B+

r )
+ ‖F‖2

Hk(B+
r )

)

.
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We now show that for all multi-index α = αl := (k − l, l) and l = 0, . . . k, we can estimate

‖∇∂αl
φ‖L2(B+

r/2
) .r

1

λ2(l+1)

(

‖∇φ‖2
Hk−1(B+

r )
+ ‖F‖2

Hk(B+
r )

)

.

We proceed by induction over l: we have already treated the case l = 0. Then, suppose the claim true
for all 0 ≤ l′ ≤ l, for some fixed 1 ≤ l < k. We have to check the case with αl+1 = (k − (l + 1), l + 1).
Let γ1 = (k − l, l− 1) and γ2 = (k − (l + 1), l), so that

∇∂αl+1
= ∂22(∂γ1 , ∂γ2).

We will now take advantage of Equation (2.4): after differentiation and suitable rearrangement, for
s = 1, 2 we have that

Tr(A∂γsD
2φ) =

(

Tr(A∂γsD
2φ)− ∂γsTr(AD

2φ)
)

− ∂γs

((
b+ div(A)

)
· ∇φ

)

− div(∂γsF),

which, developing the trace, becomes

A22∂22∂γsφ =
(

Tr(A∂γsD
2φ)− ∂γsTr(AD

2φ)
)

− ∂γs

((
b+ div(A)

)
· ∇φ

)

− div(∂γsF)

−
∑

(i,j) 6=(2,2)

Aij∂ij∂γsφ.

Since A is elliptic, then the coefficient A22 is controlled uniformly from below by the elliptic constant
λ. Therefore, applying the L2 norm over B+

r/2 on both sides, and taking advantage of interpolation

inequalities (2.1) and (2.2) we obtain the estimate

λ‖∇∂αl+1
φ‖L2(B+

r/2
) .r ‖A‖W 1,∞(B+

r/2
)‖D

2φ‖Hk−2(B+

r/2
) + ‖A‖Hk−1(B+

r/2
)‖D

2φ‖L∞(B+

r/2
)

+ ‖b+ div(A)‖L∞(B+

r/2
)‖∇φ‖Hk−1(B+

r/2
) + ‖b+ div(A)‖Hk−1(B+

r/2
)‖∇φ‖L∞(B+

r/2
)

+ ‖F‖Hk(B+

r/2
) + ‖A‖L∞(B+

r/2
)

∑

(i,j) 6=(2,2)

(

‖∂ij∂γ1φ‖L2(B+

r/2
) + ‖∂ij∂γ2φ‖L2(B+

r/2
)

)

.r ‖∇φ‖Hk−1(B+

r/2
) + ‖F‖Hk(B+

r/2
) +

∑

(i,j) 6=(2,2)

(

‖∂ij∂γ1φ‖L2(B+

r/2
) + ‖∂ij∂γ2φ‖L2(B+

r/2
)

)

.

Now, since

∇∂αl−1
= (∂11∂γ1 , ∂12∂γ1),

and

∇∂αl
= (∂11∂γ2 , ∂12∂γ2),

we can control
∑

(i,j) 6=(2,2)

(

‖∂ij∂γ1φ‖L2(B+

r/2
) + ‖∂ij∂γ2φ‖L2(B+

r/2
)

)

≤ 3
(

‖∇∂αl
φ‖L2(B+

r/2
) + ‖∇∂αl−1

φ‖L2(B+

r/2
)

)

,

which by induction gives

λ‖∇∂αl+1
φ‖L2(B+

r/2
) .r

(

1 +
1

λl
+

1

λl+1

)(
‖∇φ‖Hk−1(Br) + ‖F‖Hk(Br)

)
,

and hence

‖∇∂αl+1
φ‖L2(B+

r/2
) .r

1

λl+2

(

‖∇φ‖Hk−1(Br) + ‖F‖Hk(Br)

)

,

as wished, completing the induction. �

Now we prove that we can recover the same estimate for a domain with curved boundary.

Proposition 2.2.3 (Rescaled curved boundary estimates). Let Ω ⊂ R
2 be any open domain with

boundary of class Ck+1. Choose x0 ∈ ∂Ω and r > 0 sufficiently small such that there exists a Ck+1-
diffeomorphism

Φ : B(x0, r) ∩Ω → B+
r ,

with inverse Ψ = Φ−1, such that Φ(∂Ω ∩ B(x0, r)) = (−r, r) × {0}, and det(DΦ) = 1. Then, calling
U+
r := B(x0, r) ∩ Ω, we have that there exists CΦ > 0 such that

(2.13) ‖∇φ‖Hk(U+

r/2
) .r

CΦ

λk+1

(

‖∇φ‖Hk−1(U+
r ) + ‖F‖Hk(U+

r )

)

.
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Proof. One can check directly that

φ′(y) := φ(Ψ(y)),

A
′(y)rs :=

∑

ij

A(Ψ(y))ij∂xiΦ
r(Ψ(y))∂xjΦ

s(Ψ(y)),

b′(y)r :=
∑

i

b(Ψ(y))i∂xiΦ
r(Ψ(y)),

F′(y)r :=
∑

i

Fi(Ψ(y))∂xiΦ
r(Ψ(y)),

solves {

div(A′∇φ′) + b′ · ∇φ′ = div(F′), in B+
r ,

φ′ = 0, on (−r, r)× {0}.

and λI ≤ A′. We have to compute div(A′)(y)s =
∑

r ∂yrA
′(y)rs in terms of A and div(A). Now,

div(A′)(y)s =
∑

r

∂yrA
′(y)rs =

∑

r

∂yr

(∑

ij

A(Ψ(y))ij∂xiΦ
r(Ψ(y))∂xjΦ

s(Ψ(y))
)

=
∑

ijrs

∂xsA(Ψ(y))ij∂yrΨ
s(y)∂xiΦ

r(Ψ(y))∂xjΦ
s(Ψ(y))

+
∑

ijr

A(Ψ(y))ij∂yr

(

∂xiΦ
r(Ψ(y))∂xjΦ

s(Ψ(y))
)

,

and since
∑

r ∂yrΨ
s(y)∂xiΦ

r(Ψ(y)) = δsi, it follows that

div(A′)(y)s =
∑

ijs

∂xiA(Ψ(y))ij∂xjΦ
s(Ψ(y)) +

∑

ijr

A(Ψ(y))ij∂yr

(

∂xiΦ
r(Ψ(y))∂xjΦ

s(Ψ(y))
)

=
∑

js

div(A)(Ψ(y))j∂xjΦ
s(Ψ(y)) +

∑

ijr

A(Ψ(y))ij∂yr

(

∂xiΦ
r(Ψ(y))∂xjΦ

s(Ψ(y))
)

.

Therefore, there exists CΦ > 0 such that

‖div(A′)‖Hk−1(B+
r ) ≤ CΦ

(

‖A‖Hk−1(U+
r ) + ‖div(A)‖Hk−1(U+

r )

)

.

It suffices to apply Proposition 2.2.2 in order to complete the proof. �

By covering Ω with sufficiently small balls, we can prove a global estimate for the rescaled elliptic
equation.

Proposition 2.2.4 (Rescaled global estimates). There exists CΩ,k > 0 such that

(2.14) ‖∇φ‖Hk(Ω) ≤ CΩ,k

(

λ−(k+1)k‖∇φ‖L2(Ω) + λ−(k+1)‖F‖Hk(Ω)

)

.

Moreover, if there exists f ∈ C∞(Ω̄) such that b = ∇⊥f, then

(2.15) ‖∇φ‖Hk(Ω) ≤ CΩ,kλ
−(k+1)k−1‖F‖Hk(Ω).

Proof. Covering Ω by sufficiently many balls, combining Propositions 2.2.1 and 2.2.3, it follows that for
any k ≥ 4 there exists Ck,Ω > 0 such that

‖∇φ‖Hk(Ω) ≤
Ck,Ω
λk+1

(

‖∇φ‖Hk−1(Ω) + ‖F‖Hk(Ω)

)

.

We distinguish two cases: if ‖∇φ‖Hk−1(Ω) ≤ ‖F‖Hk(Ω), then

‖∇φ‖Hk(Ω) ≤
2Ck,Ω
λk+1

‖F‖Hk(Ω),

and we are done. Otherwise, since

‖∇φ‖Hk(Ω) ≤
2Ck,Ω
λk+1

‖∇φ‖Hk−1(Ω),

the interpolation inequality of Theorem 2.0.1 implies that there exist C′
k,Ω > 0 such that

‖∇φ‖Hk−1(Ω) ≤ C′
k,Ω‖∇φ‖

1−k−1

k

L2(Ω)

( 1

λk+1
‖∇φ‖Hk−1(Ω)

) k−1

k

,

and hence
‖∇φ‖Hk−1(Ω) ≤ (C′

k,Ω)
k‖∇φ‖L2(Ω)λ

−(k+1)(k−1).
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Finally, in both cases we have proven that there exists C′′
k,Ω > 0 such that

‖∇φ‖Hk(Ω) ≤ C′′
k,Ω

(

λ−(k+1)k‖∇φ‖L2(Ω) + λ−(k+1)‖F‖Hk(Ω)

)

.

If b = ∇⊥f, then one can get rid of the L2-norm of ∇φ simply testing (2.4) against φ and computing

λ‖∇φ‖2L2(Ω) ≤

ˆ

(∇⊥f · ∇φ)φdx +

ˆ

F · ∇φdx

=
1

2

ˆ

∇⊥f · ∇(φ2) dx+ ‖F‖L2(Ω)‖∇φ‖L2(Ω)

=
1

2

ˆ

∂Ω

φ2(∇⊥
f · ν) dx −

1

2

ˆ

div(∇⊥
f)φ2 dx+ ‖F‖L2(Ω)‖∇φ‖L2(Ω)

= ‖F‖L2(Ω)‖∇φ‖L2(Ω).

Hence, plugging λ‖∇φ‖L2(Ω) ≤ ‖F‖L2(Ω) in (2.14) we finally obtain that

‖∇φ‖Hk(Ω) ≤ Ck,Ω

(

λ−(k+1)k−1‖F‖L2(Ω) + λ−(k+1)‖F‖Hk(Ω)

)

,

finishing the proof of the proposition (recall that by hypothesis λ ≤ 1). �

We can now easily prove the main result of this section.

Proof of Proposition 2.1.1. Renormalizing Equation (2.4) by dividing both sides by M we obtain, ap-
plying Proposition (2.2.4), that

‖∇φ‖Hk(Ω) ≤ Ck,Ω

(( λ

M

)−(k+1)k

‖∇φ‖L2(Ω) +
( λ

M

)−(k+1)
∥
∥
∥
∥

F

M

∥
∥
∥
∥
Hk(Ω)

)

,

which gives (2.5). The same shows (2.6). �

3. Local-in-time existence of smooth solutions in Eulerian coordinates

3.1. Flattening. We would like to look at (1.6) as a perturbation of the semigeostrophic equation on
the flat plane. Since g is conformal, we know that

∇gh = e2V∇h, for all h ∈ C1(Ω),

and

(3.1) Dg
XY = (X · ∇)Y − dV (X)Y − dV (Y )X + 〈X,Y 〉∇V = DgY ·X, for all X,Y ∈ C1(Ω,R2),

where DgY := DY − Y ⊗∇V +∇V ⊗ Y − 〈Y,∇V 〉I. Since by hypothesis u is divergence free, tangent
to ∂Ω and Ω is simply connected, we can suppose that there exists some potential ψ such that

u = −∇⊥
g ψ = −e2V∇⊥ψ =: e2V v, and ψ |∂Ω= 0.

Converting all curved gradients into flat ones, substituting u with e2V v and multiplying Equation (1.6)
by e−ϕ−2V we obtain that

(3.2) ∂t∇
⊥p+ e−ϕDg

v(e
ϕ+2V∇⊥p) + e−2ϕv⊥ + e−ϕ∇p = 0.

Thanks to Equation (3.1) we can write

e−ϕDg
v(e

ϕ+2V∇⊥p) = e−ϕJ
(
eϕ+2VDg

v∇p+ eϕ+2V 〈∇ϕ+ 2∇V, v〉∇p
)

= e2V J
(
Dg∇p+∇p⊗ (∇ϕ+ 2∇V )

)
v

= e2VCof(Dg∇p+∇p⊗ (∇ϕ+ 2∇V ))∇ψ

= e2VCof(D2p+ B[∇p]),

where with Cof(·) we denote the cofactor matrix, which in two dimensions is simply given by

Cof(M) := −JMJ,

and for every vector field ξ we set

B[ξ] := ∇V ⊗ ξ + ξ ⊗∇V − 〈ξ,∇V 〉I+ ξ ⊗∇ϕ.

Plugging this in Equation (3.2) we finally obtain the semigeostrophic equation with flattened operators

(3.3)

{

∂t∇
⊥p+ e2VCof(D2p+ B[∇p])∇ψ + e−2ϕ∇ψ = −e−ϕ∇p, in Ω,

ψ = 0, on ∂Ω.
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3.2. An elliptic PDE for the velocity vector field. Applying the divergence operator on both sides
of Equation (3.3), we remove the explicit dependencies on the time variable, obtaining

div
(

e2VCof(D2p+ B[∇p] + e−2ϕ−2V
I)∇ψ

)

= −div(e−ϕ∇p).

In order to rewrite this as a classical elliptic equation in divergence form, we decompose B into its
symmetric and antisymmetric part as

B[ξ] = (∇V +∇ϕ/2)⊗ ξ + ξ ⊗ (∇V +∇ϕ/2)− 〈ξ,∇V 〉I
︸ ︷︷ ︸

=:Bs[ξ]

+
1

2
(ξ ⊗∇ϕ−∇ϕ⊗ ξ)
︸ ︷︷ ︸

=:Bas[ξ]

.

Hence, we obtain the equation

div
(

e2VCof(D2p+ Bs[∇p] + e−2ϕ−2V
I)∇ψ

)

+∇⊥(e2V Bas12[∇p]) · ∇ψ = −div(e−2ϕ∇p),

(see Remark 2.1.2). Finally, to simplify the exposition, define

Q[Dξ, ξ] := e2V+2ϕCof(DξT + Bs[ξ]),

f[ξ] := e2V Bas12[ξ],

F[ξ] := −e−ϕξ,

so that we can rewrite the equation as

(3.4)

{

div(e−2ϕ(I+ Q[D2p,∇p])∇ψ) +∇⊥(f[∇p]) · ∇ψ = div(F[∇p]), in Ω

ψ = 0, on ∂Ω.

Notice that in the definition of Q we decided to transpose the matrix Dξ. This has clearly no effect when
Dξ = D2p, but it will be important to obtain the suitable cancellation of terms in the following useful
lemma.

Lemma 3.2.1 (Basic estimates on the coefficients). For every k ≥ 0 there exists a constant C =
C(ϕ, V, k) > 0 such that for every smooth vector field ξ on Ω the following estimates hold:

‖B[ξ]‖Hk(Ω) + ‖F[ξ]‖Hk(Ω) + ‖f[ξ]‖Hk(Ω) ≤ C‖ξ‖Hk(Ω),

‖Q[Dξ, ξ]‖Hk(Ω) + ‖div(Q[Dξ, ξ])‖Hk(Ω) ≤ C‖ξ‖Hk+1(Ω).

Proof. The first four inequalities follow immediately from the definition of B[ξ]. To check the last one,
simply observe that the only problematic term in Q[Dξ, ξ] is Cof(DξT ). Conclude by noticing that the
cofactor matrix of the transpose jacobian matrix enjoys the following nice property

div
(

Cof(DξT )
)

=
∑

i,j

∂i(Cof(Dξ
T ))ij = ∂212ξ

2 − ∂212ξ
1 − ∂221ξ

2 + ∂221ξ
1 = 0.

�

3.3. Discrete construction and local-in-time uniformly existence of regularized solutions.

Before presenting the algorithm to construct an approximate solution, we need to fix some notation. For
all vector field X ∈ Hk(Ω,R2), consider the unique Helmholtz-Hodge orthogonal decomposition

X = w +∇q,

where div(w) = 0. From now on, we denote with

H(X) := ∇q,

the orthogonal complement of the classical Leray projector. Explicitly, q solves the Neumann-type elliptic
problem ∆q = div(X) in Ω, ∂νq = X · ν on ∂Ω. With Iǫ we denote the standard mollification

Iǫh := ηǫ ∗ h, ∀h ∈ L2(Ω), L2(Ω,R2), L2(Ω,R2×2), . . .

where ηǫ is any smooth convolution kernel. We address the reader to [6, Appendix C] and [9, Chapter
4] for a brief recall of the principal properties and definitions of Iǫ and H. Fix now k ≥ 4 and suppose
we are given ∇p0 ∈ Hk(Ω,R2) such that

I+ Q[D2p0,∇p0] ≥ (1− µ0)I > 0,
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for some µ0 < 1. Choose a coefficient of mollification ǫ > 0 and a time step τ > 0. We set ∇p00 := ∇p0
and solve for i = −1, 0, 1, . . . and s ∈ [0, τ ] the system
(3.5)
{

∂s∇p
i+1
s = F ǫ

ψi+1(∇pi+1
s ) := HIǫ

(

e2V (IǫD
2pi+1
s + B[Iǫ∇p

i+1
s ] + e−2ϕ−2V

I)∇⊥ψi+1 + e−ϕIǫ∇
⊥pi+1

s

)

,

∇pi+1
0 = ∇piτ .

where ψi+1 is given by
(3.6)
{

div
(

e−2ϕ(I+ Q[IǫD
2pi+1

0 , Iǫ∇p
i+1
0 ])∇ψi+1

)

+∇⊥(f[Iǫ∇p
i+1
0 ])∇ψi+1 = div

(
F[Iǫ∇p

i+1
0 ]

)
, in Ω

ψi+1 = 0, on ∂Ω.

Notice that (3.5) and (3.6) are nothing else than a regularized version of Equations (3.3) and (3.4),
where ∇pis evolves continuously on each time-step solving an ordinary differential equation of the form
ẏ = F (y) (we take the velocity constant on each interval [iτ, (i+ 1)τ)), and ψi+1 evolves discretely as a
solution of an elliptic equation. Our next goal is to prove that there exists a fixed interval of existence
[0, t∗) so that for every ǫ > 0 and τ = t∗/N , for N ∈ N big enough, the sequence {∇pis,∇ψ

i}N−1
i=0 exists.

Solvability of System (3.5) is ensured by the following proposition.

Proposition 3.3.1. Let k ≥ 2, and ǫ > 0. Then, for every ∇q0 in Hk(Ω,R2) and ∇φ ∈ L∞(Ω,R2),
there exists a global solution ∇qǫs ∈ C1(R, Hk(Ω,R2)) of the following partial differential equation

{

∂s∇q
ǫ
s = F ǫ

φ(∇qs) = HIǫ

(

e2V (IǫD
2qǫs + B[Iǫ∇q

ǫ
s] + e−2ϕ−2V

I)∇⊥φ+ e−ϕIǫ∇
⊥qǫs

)

,

∇qǫ0 = ∇q0.

Proof. This is a direct application of the Cauchy-Lipschitz Theorem in the Banach space

X :=
{

∇q : q ∈ Hk+1(Ω)
}

⊂ Hk(Ω,R2).

In fact, thanks to the Helmholtz-Hodge decomposition, it is clear that F ǫ
φ maps X into itself. We just

need to check that it is Lipschitz continuous. Let ∇q and ∇h elements in X . Then, thanks to the
properties of Iǫ and H, we can estimate

‖F ǫ
φ(∇q) −F ǫ

φ(∇h)‖Hk(Ω)

≤
C

ǫk
‖e2V

(
Iǫ(D

2q −D2h) + B[Iǫ(∇q −∇h)]
)
∇⊥φ+ e−ϕIǫ(∇q −∇h)⊥‖L2(Ω)

≤
C

ǫk
‖e2V ‖∞‖∇φ‖L∞(Ω)

(

‖D2q −D2h‖L2(Ω) + ‖B[Iǫ(∇q −∇h)]‖L2(Ω)

)

+
C

ǫk
‖e−ϕ‖∞‖∇q −∇h‖L2(Ω).

Now, thanks to Lemma 3.2.1 we know that B[·] is a continuous functional in L2(Ω,R2) implying that
there exists C′ = C′(V, ϕ,Ω) > 0 such that

Lip(F ǫ
φ) ≤

C′

ǫk

(

‖∇φ‖L∞(Ω) + 1
)

< +∞,

as wished. �

System (3.6) is solvable at the step (i+ 1) if the eigenvalue

−µi+1
s := inf

|ξ|=1,x∈Ω

{

〈Q[IǫD
2pi+1
s , Iǫ∇p

i+1
s ](x)ξ, ξ〉

}

,

is strictly greater than −1 at time s = 0. To analyse the behaviour of µi+1, define

−µi+1
s (x) := inf

|ξ|=1

{

〈Q[IǫD
2pi+1
s , Iǫ∇p

i+1
s ](x)ξ, ξ〉

}

, x ∈ Ω, s ∈ [0, τ ].

Since ∇pi+1
s ∈ C1([0, τ ], Hk(Ω,R2)) we have that fixing x, s 7→ µi+1

s (x) is a locally Lipschitz map, and
therefore µi+1

s , being the infimum over x ∈ Ω, is also locally Lipschitz and hence almost everywhere
differentiable.

Lemma 3.3.2 (Dynamics of the elliptic constant). There exists C = C(V, ϕ,Ω) > 0 such that

(3.7)
d

ds

∣
∣
∣
s=s0

(1− µi+1
s ) ≥ −C

(

‖∇pi+1
s0 ‖H4(Ω) + 1

)

‖∇ψi+1‖H3(Ω) − C‖∇pi+1
s0 ‖H3(Ω),

almost every s0 in (0, τ).
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Proof. Take δ 6= 0 small, x ∈ Ω and s0 ∈ (0, τ). Then, let ξδ ∈ R
2 be the unit vector realizing

−µi+1
s0+δ

(x) = 〈Q[IǫD
2pi+1
s0+δ

(x), Iǫ∇p
i+1
s0+δ

(x)]ξδ , ξδ〉.

Then,

µi+1
s0 (x)− µi+1

s0+δ
(x) ≥ 〈

(

Q[IǫD
2pi+1
s0+δ

(x), Iǫ∇p
i+1
s0+δ

(x)] − Q[IǫD
2pi+1
s0 (x), Iǫ∇p

i+1
s0 (x)]

)

ξδ, ξδ〉

= 〈

ˆ s0+δ

s0

∂tQ[IǫD
2pi+1
t (x), Iǫ∇p

i+1
t (x)] dt · ξδ, ξδ〉

≥ −

ˆ s0+δ

s0

‖Q[IǫD
2∂tp

i+1
t (x), Iǫ∇∂tp

i+1
t (x)]‖L∞(Ω).

By the Sobolev embedding of L∞(Ω) in H2(Ω) and by Lemma 3.2.1, we obtain that there exists C1 > 0
such that

µi+1
s0 (x) − µi+1

s0+δ
(x) ≥ −C1

ˆ s0+δ

s0

‖∂t∇p
i+1
t ‖H3(Ω) dt.

Finally, thanks to the discrete construction of the pressure gradient given by Equation (3.5), the fact
that H3(Ω) is a Banach Algebra, we conclude that there exists C > 0 such that

µi+1
s0 (x)− µi+1

s0+δ
(x) ≥ −C

ˆ s0+δ

s0

(

‖∇pi+1
t ‖H4(Ω) + 1

)

‖∇ψi+1‖H3(Ω) − C‖∇pi+1
t ‖H3(Ω) dt.

The result follows by dividing everything by δ, and letting δ go to zero. �

4. Energy estimates

Proposition 4.0.1 (Energy estimates). Let k ≥ 4. Then, there exists C = C(k,Ω, V, ϕ) > 0 such that

(4.1)
d

ds
‖∇pi+1

s ‖Hk(Ω) ≤ C
(

‖∇pi+1
s ‖Hk(Ω) + 1

)

‖∇ψi+1‖Hk(Ω) + C‖∇pi+1
s ‖Hk(Ω).

Proof. Fix any multi index |α| ≤ k. Since the operators Iǫ and H commute and are self-adjoint with
respect to the L2-product, we can compute

d

ds

1

2

ˆ

|∂α∇p
i+1
s |2 dx =

ˆ

〈∂α∇p
i+1
s , ∂α∂s∇p

i+1
s 〉 dx

=

ˆ

〈Iǫ∂α∇p
i+1
s , ∂α

(

e2V (IǫD
2pi+1
s + B[Iǫ∇p

i+1
s ] + e−2ϕ−2V

I)∇⊥ψi+1 + e−ϕIǫ∇
⊥pi+1

s

)

〉 dx.

Set Ps := Iǫ∇p
i+1
s . There exists Cϕ > 0 such that

d

ds

1

2

ˆ

|∂α∇p
i+1
s |2 dx =

ˆ

〈∂αPs, ∂α

(

e2V (DPs + B[Ps] + e−2ϕ−2V
I)∇⊥ψi+1 + e−ϕP⊥

s

)

〉 dx

≤

ˆ

〈∂αPs, ∂α

(

e2V (DPs + B[Ps] + e−2ϕ−2V
I)∇⊥ψi+1

)

〉 dx+ Cϕ‖∂αPs‖L2(Ω)‖Ps‖H|α|(Ω).

To estimate the remaining term, we argue by interpolation: subtracting and adding the term

R :=

ˆ

〈∂αPs, e
2V ∂α

(

DPs + B[Ps] + e−2ϕ−2V
I

)

∇⊥ψi+1〉 dx,

to
ˆ

〈∂αPs, ∂α

(

e2V (DPs + B[Ps] + e−2ϕ−2V
I)∇⊥ψi+1

)

〉 dx

applying Cauchy-Schwarz and interpolation (2.2), we obtain that there exists C1 = C1(Ω) > 0 such that
ˆ

〈∂αPs, ∂α

(

e2V (DPs + B[Ps] + e−2ϕ−2V
I)∇⊥ψi+1

)

〉 dx −R+R

≤ C1‖∂αPs‖L2(Ω)

(

‖e2V∇ψi+1‖W 1,∞(Ω)‖DPs + B[Ps] + e−2ϕ−2V
I‖Hk−1(Ω)

+ ‖DPs + B[Ps] + e−2ϕ−2V
I‖L∞(Ω)‖e

2V∇ψi+1‖Hk(Ω)

)

+R.

Taking advantage once again of Lemma 3.2.1 and suitable Sobolev embeddings, we just proved that there
exists C2 = C2(Ω, V, ϕ) > 0 such that
(4.2)
d

ds

1

2

ˆ

|∂α∇p
i+1
s |2 dx ≤ C2‖∂αPs‖L2(Ω)

(
‖Ps‖Hk(Ω) + 1

)
‖∇ψi+1‖Hk(Ω) + Cϕ‖∂αPs‖L2(Ω)‖Ps‖Hk(Ω) +R.
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We now estimate the contribution of R. First of all, it is easy to control the lower order terms simply
by Cauchy-Schwarz and Lemma 3.2.1, obtaining that

R =

ˆ

〈∂αPs, e
2V ∂α

(

DPs + B[Ps] + e−2ϕ−2V
I

)

∇⊥ψi+1〉 dx

≤

ˆ

〈∂αPs, e
2V ∂α(DPs)∇

⊥ψi+1〉 dx+ ‖∂αPs‖L2(Ω)‖e
2V∇ψi+1‖L∞‖B[Ps] + e−2ϕ−2V

I‖Hk(Ω)

≤

ˆ

〈∂αPs, e
2V ∂α(DPs)∇

⊥ψi+1〉 dx+ C3‖∂αPs‖L2(Ω)‖∇ψ
i+1‖Hk(Ω)(‖Ps‖Hk(Ω) + 1),

(4.3)

for some constant C3 = C3(Ω, V, ϕ) > 0. Finally we get rid of the higher order term integrating by parts:
ˆ

〈∂αPs, e
2V ∂α(DPs)∇

⊥ψi+1〉 dx =

ˆ

〈∇
( |∂αPs|

2

2

)

, e2V∇⊥ψi+1〉 dx

=

ˆ

div
(

e2V∇⊥ψi+1 |∂αPs|
2

2

)

−
|∂αPs|

2

2
div(e2V∇⊥ψi+1) dx

=

ˆ

∂Ω

e2V
|∂αPs|

2

2
∇⊥ψi+1 · ν dx−

ˆ

|∂αPs|
2

2

(

e2V div(∇⊥ψi+1) + e2V 〈2∇V,∇⊥ψi+1〉
)

dx

≤ C4‖∂αPs‖
2
L2(Ω)‖e

2V∇ψi+1‖L∞(Ω).

(4.4)

Combining (4.2), (4.3), (4.4), and summing over |α| = 0, . . . , k we obtain the desired result. �

Now that we have obtained a growth estimate on µi+1
s (x) and ‖∇pi+1

s ‖Hk(Ω), we need analyse the
behaviour of the velocity vector field. This last estimate is a direct consequence of the explicit regularity
results of Section 2.

Proposition 4.0.2 (Elliptic estimates on the velocity). For every k ≥ 4, there exists some constant
C = C(k,Ω, V ϕ) > 0 such that

(4.5) ‖∇ψi+1‖Hk(Ω) ≤ C(1− µi+1
0 )−(k+1)k−1

(
‖∇pi+1

0 ‖Hk(Ω) + 1
)(k+1)k

‖∇pi+1
0 ‖Hk(Ω).

Proof. It suffices to combine Proposition 2.2.4 and Lemma 3.2.1, recalling that in our case b comes from
a rotated gradient by construction. �

Combining the estimates on the pressure gradient (4.1) and on the velocity vector field (4.5) we have
that
(4.6)

d

ds
‖∇pi+1

s ‖Hk(Ω) ≤ C(‖∇pi+1
s ‖Hk(Ω) + 1)

(‖∇pi+1
0 ‖Hk(Ω) + 1)k(k+1)

(1− µi+1
0 )(k+1)k+1

‖∇pi+1
0 ‖Hk(Ω) + C‖∇pi+1

s ‖Hk(Ω),

and similarly by the estimate (3.7) on 1− µi+1
s it holds that

(4.7)
d

ds
(1−µi+1

s ) ≥ −C(‖∇pi+1
s ‖Hk(Ω)+1)

(‖∇pi+1
0 ‖Hk(Ω) + 1)k(k+1)

(1− µi+1
0 )(k+1)k+1

‖∇pi+1
0 ‖Hk(Ω)−C‖∇p

i+1
s ‖Hk(Ω),

a.e. in (0, τ). Define

Θi+1
s :=

(

‖∇pi+1
s ‖Hk(Ω) + 1

1− µi+1
s

)k(k+1)+2

,

together with the monotonically increasing Lipschitz function

Θ̃i+1
s := max

t∈[0,s]
Θi+1
t .

The next lemma will constitute the crucial step in the proof of the main Theorem.

Lemma 4.0.3. There exits C = C(Ω, V, ϕ, k) > 0 such that

(4.8)
d

ds
Θ̃i+1
s ≤ C(Θ̃i+1

s )2,

almost everywhere in [0, τ ].
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Proof. In this proof we omit the (i + 1) index in our notation. Also, set M = M(k) := k(k + 1) + 2.
First of all, by Sobolev embedding we have that there exists C1 = C1(Ω) > 0 such that

1 ≤
‖I+ Q[IǫD

2ps, Iǫ∇ps]‖L∞(Ω)

1− µs
≤

1 + C1‖∇ps‖H3(Ω)

1− µs
,

hence, up to multiplying all the following estimates by max{1, C1}, we can suppose without loss of
generality that

1 ≤
1 + ‖∇ps‖Hk(Ω)

1− µs
,

for all s ∈ [0, τ ]. In particular we have that

d

ds
‖∇ps‖Hk(Ω) ≤ C max

t∈[0,s]

{(
(‖∇pt‖Hk(Ω) + 1

1− µt

)k(k+1)+1

+ 1

)

‖∇pt‖Hk(Ω)

}

≤ 2C max
t∈[0,s]

{
(‖∇pt‖Hk(Ω) + 1

1− µt

)k(k+1)+1

‖∇pt‖Hk(Ω)

}

.

The same bound clearly holds also for µs. Therefore

d

ds
Θs =M

(‖∇ps‖Hk(Ω) + 1

1− µs

)M−1( 1

1− µs
+

‖∇ps‖Hk(Ω) + 1

(1− µs)2

) d

ds
‖∇ps‖Hk(Ω)

≤ 2CM max
t∈[0,s]

{
(‖∇pt‖Hk(Ω) + 1

1− µt

)M+k(k+1) ‖∇pt‖Hk(Ω)

1− µt

(

1 +
‖∇pt‖Hk(Ω) + 1

1− µt

)
}

≤ 4CM max
t∈[0,s]

{
(‖∇pt‖Hk(Ω) + 1

1− µt

)M+k(k+1)+2
}

.

This proves that

d

ds
Θs ≤ 4CMΘ̃2

s.

We distinguish two cases: if d
dsΘs ≤ 0, then clearly

d

ds
Θ̃s = 0,

and we are done. Otherwise
d

ds
Θ̃s =

d

ds
Θs ≤ 4CMΘ̃2

s,

completing the proof of the Lemma. �

We only need the following little observation before proving the main result of this section.

Lemma 4.0.4. Let (xi)i≥0 be any real sequence that satisfies for some c > 0 the recursive relation

xi+1 ≤
xi

1− cxi
.

If there exists N ∈ N such that x0 ≤ 1
cN , then

(4.9) xi+1 ≤
x0

1− c(i + 1)x0
, for every i ∈ {−1, . . . , N − 1}.

Proof. The statement clearly holds for i = −1. Suppose (4.9) holds for 0 ≤ i < N . Since for every C > 0
the map x 7→ x

1−Cx is monotonically increasing and continuous in (−∞, 1
C ), we have in particular that

xi ≤
x0

1− cix0
≤

1

cN

N

N − i
=

1

c(N − i)
<

1

c
,

and therefore

xi+1 ≤
xi

1− cxi
≤

x0
1− cix0

1− cix0
1− c(i+ 1)x0

=
x0

1− c(i + 1)x0
,

completing the induction. �
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We are now ready to prove uniform local-in-time existence for Systems (3.5) and (3.6). To simplify
the statement, we glue together the piecewise approximated solution, naturally defining

∇pτ,ǫt := ∇pis, if t = iτ + s,

and

∇ψτ,ǫt := ∇ψi, if t ∈ [iτ, (i+ 1)τ).

Theorem 4.0.5. Let Ω be a bounded subset of R2 with boundary fo class Ck+1 and ∇p0 ∈ Hk(Ω,R2)
such that

Q[D2p0,∇p0] ≥ −µ0I > −I,

for some µ0 < 1 and k ≥ 4. Then, there exists a constant C = C(Ω, V, ϕ, k) > 0 and t∗ > 0 such that
for every τ = t∗/N , N ∈ N big enough and ǫ > 0, there exists an approximate solution

{∇pis,∇ψ
i}N−1
i=0 ∈ C1([0, τ ], Hk(Ω,R2))×Hk(Ω,R2),

of Systems (3.5) and (3.6), where t∗ can be taken equal to

t∗ := C

(

1− µ0

‖∇p0‖Hk(Ω) + 1

)(k+1)k+2

.

In particular, for every 0 < t′ < t∗, there exists C′ = C′(Ω, V, ϕ, k) > 0 such that

‖∇pτ,ǫt ‖Hk(Ω), ‖∇ψ
τ,ǫ
t ‖Hk(Ω) ≤ C′,

for all t ∈ [0, t′].

Proof. Integrating for s ∈ [0, τ ] Equation(4.8) of Lemma 4.0.3 at time i, and recalling that Θ̃i+1
0 = Θ̃iτ ,

we obtain the recursive relation

Θ̃i+1
0 ≤

Θ̃i0
1− CτΘ̃i0

,

which, applying Lemma 4.0.4 gives the bound

(4.10) Θ̃i+1
0 ≤

Θ̃0
0

1− Cτ(i + 1)Θ̃0
0

,

for every i = {−1, 0, 1, . . . , N − 1} provided

Θ̃0
0 = Θ0

0 ≤
1

CτN
,

for some N ∈ N. Hence, setting

t∗ :=
1

CΘ0
0

,

we ensure the local existence of an approximate solution in [0, t∗) uniformly in ǫ > 0 and for every
τ = t∗/N , N ∈ N big enough. In particular, (4.10) implies that for any interval of time [0, t′] with t′ < t∗

the uniform bound

Θ̃is ≤ C′,

holds, where C′ > 0 can be taken such that

t′ =
1

C

( 1

Θ0
0

−
1

C′

)

.

�

5. Compactness argument and proof of the main Theorem

Fix any 0 < t′ < t∗, and N0 ∈ N large. For every N ≥ N0 define

∇pNt := ∇p
t′/2N ,t′/2N

t ,

and

∇ψNt := ∇ψ
t′/2N ,t′/2N

t .

Then, by Theorem 4.0.5, the sequence (∇pNt )N≥N0
is uniformly bounded in the space

W :=
{

∇qt ∈ L∞(0, t′;Hk(Ω,R2)), and ∂t∇qt ∈ L∞(0, t′;H1(Ω,R2)))
}

.
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Since the embedding of Hk(Ω) in Ck−2,α(Ω) is compact (see [1, Chapter 6]) and Ck−2,α(Ω) embeds
continuously in H1(Ω), by Aubin-Lions-Simons Lemma we have that

W →֒ C(0, t′;Ck−2,α(Ω,R2)),

is compact as well. Extracting a converging sub-sequence we obtain (after relabelling) that

∇pNt → ∇pt in C(0, t′;Ck−2,α(Ω,R2)),

for some ∇pt ∈ C(0, t′;Ck−2,α(Ω,R2)). Moreover, looking at (∇pNt )N≥N0
as bounded subset of the space

L2(0, t′;Hk(Ω,R2)), we can affirm that

∇pNt ⇀ ∇pt in L2(0, t′;Hk(Ω,R2)).

Let ∇ψt be solution of the System (3.4) associated to the limit ∇pt, i.e.

(5.1)

{

div(e−2ϕ(I+ Q[D2pt,∇pt])∇ψt) +∇⊥(f[∇pt]) · ∇ψt = div(F[∇pt]), in Ω

ψt = 0, on ∂Ω.

Observe that the lower bound on the uniform elliptic constants 1−µis proved in Theorem 4.0.5 propagates
to the limit, that we will denote with

−µt := inf
{

〈Q[D2pt,∇pt](x)ξ, ξ〉 : |ξ| = 1, x ∈ Ω
}

.

By qualitative elliptic regularity, we can affirm that ∇ψt ∈ C(0, t′;Ck−2,α(Ω,R2)). Fix t ∈ (0, t′) and let

tN := min{jt′/2N ≥ t : j = 0, . . . , N},

and observe that the difference ψt − ψNtN = ψt − ψNt solves the equation
{

div(e−2ϕ(I+ Q[D2pt,∇pt])∇(ψt − ψNt )) +∇⊥(f[∇pt]) · ∇(ψt − ψNt ) = XNt , in Ω

ψt − ψNt = 0, on ∂Ω,

where

XNt := div
(
F[∇pt −∇pNt ]

)
− div

(
e−2ϕQ[D2(pt − pNt ),∇(pt − pNt )]∇ψ

N
t

)
−∇⊥(f[∇(pt − pNt )]) · ∇ψNt .

We can argue as at the end of Proposition 2.1.1, to estimate

‖∇ψt −∇ψNt ‖L2(Ω) ≤
1

1− µt
‖XNt ‖L2(Ω) → 0,

uniformly in (0, t′) thanks to the bounds given by Theorem 4.0.5. Moreover, by weak compactness of
L2(0, t′;Hk(Ω,R2)), we have that

∇ψNt ⇀ ∇ψt ∈ L2(0, t′;Hk(Ω,R2)).

To summarise, we have the following proposition.

Proposition 5.0.1. Up to taking a subsequence of (∇pNt ,∇ψ
N
t )N≥N0

there exist

∇pt,∇ψt ∈ C(0, t′;Ck−2,α(Ω,R2)) ∩ L2(0, t′;Hk(Ω,R2)),

such that

∇pNt → ∇pt,

strongly in C(0, t′;Ck−2,α(Ω,R2)) and weakly in L2(0, t′;Hk(Ω,R2)), and

∇ψNt → ∇ψt,

strongly in L∞(0, t′;Ck−2,α(Ω,R2)) and weakly in L2(0, t′;Hk(Ω,R2)).

We are now ready to prove the main result of this paper.

Proof of Theorem 1.3.1. We have to show that our candidates (∇pt,∇ψt) form a solution of the semi-
geostrophic equation (3.3). We first prove that (∇pt,∇ψt) is a weak solution, the conclusion follows from
the additional regularity showed before. Let ξt ∈ C1

c ([0, t
′), C∞(Ω,R2)) be any test function, denote with

{·, ·} the standard inner product of L2(0, t′;L2(Ω,R2)) and with IN := Ij′/N . Then, testing (3.5) against
ξt we have that

0 = {∇pNt , ∂tξt}−{∇p0, ξ0}+ {HINξt, e
2V
(

I
ND2pNt +B[IN∇pNt ]+ e−2ϕ−2V

I

)

∇⊥ψNt + e−ϕIN∇⊥pNt }.
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Then, we can write

{∇pt, ∂tξt} − {∇p0, ξ0}+ {Hξt, e
2V
(

D2pt + B[∇pt] + e−2ϕ−2V
I

)

∇⊥ψt + e−ϕ∇⊥pt} =

{∇(pt − pNt ), ∂tξt}+ {Hξt − I
N
Hξt, e

2V
(

D2pt + B[∇pt] + e−2ϕ−2V
I

)

∇⊥ψt + e−ϕ∇⊥pt}

+ {HINξt, e
2V
(

D2(pt − I
NpNt ) + B[∇(pt − I

Npt)]
)

∇⊥ψt + e−ϕ∇⊥(pt − I
NpNt )}

+ {HINξt, e
2V
(

I
ND2pNt + B[IN∇pNt ] + e−2ϕ−2V

I

)

∇⊥(ψNt − ψt)},

which goes to zero as N goes to +∞, thanks to the uniforms bounds of Theorem 4.0.5 and Proposition
5.0.1. Therefore, we have that (∇pt,∇ψt) solves weakly

∂t∇pt = H

(

e2V (D2pt + B[∇pt] + e−2ϕ−2V
I)∇⊥ψt + e−ϕ∇⊥pt

)

=: H(Xt).

We now take advantage of the elliptic equation solved by ψt in order to get rid of the Hodge-Helmholtz
decomposition in the right-hand side. Here is the only point in the proof where we need to assume Ω sim-
ply connected (see Remark 5.0.2 for the periodic case Ω = R

2/Z2 = T
2). The orthogonal complementary

of H(·)
wt := Xt − H(Xt),

is tangent to ∂Ω and divergence free by construction of H(Xt). Moreover, since

curl(wt) = −div(X⊥) = −div
(
e−2ϕ(I+ Q[D2pt,∇pt])∇ψt +∇⊥(f[∇pt]) · ∇ψ − F[∇pt]

)
= 0,

by construction of ∇ψt, we conclude that wt in an harmonic vector field, and hence equal to zero since
Ω is simply connected. Therefore, Xt = H(Xt). �

Remark 5.0.2. With some minor adjustments, it is possible to include the not simply connected flat
periodic case Ω = T

2 = R
2/Z2, V = ϕ = 0. We have to substitute in Equation (3.4) the boundary

condition ψ = 0 on ∂Ω with
´

T2 ψ dx = 0, and impose periodicity conditions on ψi+1
s , p0 and pi+1

s . We
need also to adjust the operator H(X) = ∇q, defined now to be the inverse operator of the problem

{

∆q = div(X),
´

T2 q dx = 0.

Existence of an uniform regularized solution that converges on [0, t′] to (∇pt,∇ψt) still holds. The only
problem to fix is that there exist non-trivial harmonic fields on T

2. However, they do not play any role
in our problem, and this can be showed with a direct computation: recall that we are in the situation

∂t∇pt = H

(

(D2pt + I) · ∇⊥ψt +∇⊥pt

)

= H(Xt),

and we want to get rid of H. Write

Xt = H(Xt) + wt = ∇qt + wt,

where div(wt) = curl(wt) = 0 thanks to the construction of ∇ψt and H(X). Therefore, by duality we can
see wt as an element of the de Rahm Cohomology H1

dR(T
2) ∼= R

2, which is generated by the two covector
fields dx1 and dx2, which are closed but not exact since x 7→ x1 and x 7→ x2 are not periodic functions.
Hence, there exist α1

t , α
2
t ∈ R such that

wt = α1
t

∂

∂x1
+ α2

t

∂

∂x2
.

Now, choose k ∈ {1, 2}, and observe that
ˆ

T2

〈Xt,
∂

∂xk
〉 dx =

ˆ

T2

〈∇qt + wt,
∂

∂xk
〉 dx = αkt ,

Hence, taking advantage of the explicit form of Xt and integrating by parts we conclude that

αkt =

ˆ

T2

〈(D2pt + I) · ∇⊥ψt +∇⊥pt,
∂

∂xk
〉 dx =

ˆ

T2

〈D2pt · ∇
⊥ψt,

∂

∂xk
〉 dx =

ˆ

T2

〈∇(∂kpt),∇
⊥ψt〉 dx

=

ˆ

T2

div(∂kpt∇
⊥ψt) + ∂kpt · div(∇

⊥ψt) dx = 0.

This shows H(Xt) = Xt as wished.
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