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Abstract. We study the global linear convergence of policy gradient (PG) methods for finite-
horizon continuous-time exploratory linear-quadratic control (LQC) problems. The setting in-
cludes stochastic LQC problems with indefinite costs and allows additional entropy regularisers
in the objective. We consider a continuous-time Gaussian policy whose mean is linear in the state
variable and whose covariance is state-independent. Contrary to discrete-time problems, the cost
is noncoercive in the policy and not all descent directions lead to bounded iterates. We propose
geometry-aware gradient descents for the mean and covariance of the policy using the Fisher ge-
ometry and the Bures-Wasserstein geometry, respectively. The policy iterates are shown to satisfy
an a-priori bound, and converge globally to the optimal policy with a linear rate. We further pro-
pose a novel PG method with discrete-time policies. The algorithm leverages the continuous-time
analysis, and achieves a robust linear convergence across different action frequencies. A numerical
experiment confirms the convergence and robustness of the proposed algorithm.
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1 Introduction

In recent years, the policy gradient (PG) method and its variants have become an effec-
tive tool in seeking optimal polices to control stochastic systems (see e.g., [19, 28, 17, 24, 25]).
These algorithms parametrise the policy as a function of the system state, and update the policy
parametrisation based on the gradient of the control objective. Most of the progress, especially
the convergence analysis of PG methods, has been in discrete-time Markov decision processes
(MDPs) (see e.g., [6, 12, 20, 36, 18]). However, most real-world control systems, such as those
in aerospace, the automotive industry and robotics, are naturally continuous-time dynamical sys-
tems, and hence do not fit in the MDP setting.

One of the most fundamental stochastic control problems is the finite-horizon linear-quadratic
control (LQC) problem. It aims to control a linear stochastic differential equation over a given
time horizon, subject to a quadratic cost. This problem is important as it provides a reason-
able approximation of many nonlinear control problems, and has been used in a wide range of
applications, including portfolio optimisation [38, 32], algorithmic trading [5] and production man-
agement of exhaustible resources [9]. Moreover, the optimal policy of an LQC problem admits a
natural parameterisation as a (time-dependent) linear function of the state, and hence it suffices
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to determine the coefficients of this linear function. All these properties make the LQC problem
an important theoretical benchmark for studying learning-based control.

Issues and challenges from continuous-time models. It is insufficient and improper to rely
solely on the analysis and algorithms for discrete-time MDPs to solve continuous-time problems,
including LQC problems. There is a mismatch between the algorithm timescale for the former
and the underlying systems timescale for the latter. This model mismatch can make conventional
discrete-time algorithms very sensitive to the discretisation stepsize. For instance, the empirical
studies in [21, 22] suggest that standard PG methods exhibit degraded performance as the agent’s
action frequency increases (see Section 4 for more details). Similar performance degradation
has been observed in [30] for Q-learning methods. Recently, [14] and [15] extend PG and Q-
learning methods, respectively, to continuous-time problems without time discretisation, in order
to develop algorithms that are robust across different timescales. Nevertheless, the convergence
of these algorithms has not been studied, even for LQC problems.

There are technical reasons behind the limited theoretical progress of PG methods for continuous-
time LQC problems. The objective of a LQC problem is typically nonconvex with respect to the
policies (see Proposition 2.4), analogous to its discrete-time counterpart [6, 36]. This links the con-
vergence analysis of PG methods to the analysis of gradient search for nonconvex objectives, which
has always been one of the formidable challenges in optimisation theory. The time-dependent na-
ture of the optimal policy for finite-horizon LQC problems poses new challenges. It requires
analysing the optimisation landscape over a suitable infinite-dimensional policy space, instead of
in a finite-dimensional parameter space.

One significant new feature of LQC problems with continuous-time policies, in contrast to
discrete-time policies, is the noncoercivity of the cost function (see Proposition 2.4). Coercivity of
the cost means that each sublevel set of the cost is bounded, and this implies that the iterates of
a discrete-time algorithm remain bounded as long as the cost decreases along the iteration. This
can be ensured by updating the policies along any descent direction of the cost with a sufficiently
small stepsize. The lack of coercivity of the continuous-time cost function complicates the analysis
of PG methods, since for a given descent direction, there may not exist a constant stepsize such
that the iterates remain bounded as the algorithm proceeds.

Our contributions. This paper proposes convergent PG methods to solve finite-horizon ex-
ploratory LQC problems, which generalise classical LQC problems by allowing an entropy regu-
lariser in the objective.

• We reformulate the exploratory LQC problem into a minimisation over Gaussian polices.
Each Gaussian policy is parameterised by two time-dependent functions (K,V ): the mean
is linear in the state with the coefficient K, and the covariance is the function V . The
policy gradient of the cost is characterised by the Pontryagin optimality principle. The
cost is shown to satisfy a non-uniform  Lojasiewicz condition and a non-uniform smoothness
condition (Propositions 2.2 and 2.3). We then prove that the cost is neither coercive nor
quasiconvex in K, even in a one-dimensional deterministic setting (Proposition 2.4).

• We propose a geometry-aware PG method to solve the LQC problem in continuous time.
The gradient for K adapts to the geometry induced by the Fisher information metric (also
known as the natural gradient), while the gradient for V adapts to the geometry induced
by the Bures-Wasserstein metric. These geometry-aware gradient directions are proved to
enjoy an implicit regularisation property, i.e., they preserve an L2-bound of K, and pointwise
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upper and lower bounds of V without an explicit projection step (Proposition 2.5). This
allows for exploiting the local regularity of the cost, and proving the PG method converges
globally to the optimal policy with a linear rate (Theorem 2.6).

• By leveraging the continuous-time analysis, we propose practically implementable PG meth-
ods that take actions at discrete time points, and achieve a linear convergence guarantee
independent of the action frequency. Our analysis shows that scaling the discrete-time gra-
dients linearly with respect to action frequency is critical for a robust performance of the
algorithm in different timescales (Remark 2.4). The theoretical property is verified through
a numerical experiment on an exploratory LQC problem arising from mean-variance port-
folio selection problems. This shows that the number of required iterations for conventional
PG methods grows linearly in the number of action time points, while the proposed PG
methods achieve a robust linear convergence rate over a wide range of action frequencies.

Our approaches and related works. Most existing theoretical works of PG methods for LQC
problems consider the setting of infinite horizon and deterministic dynamics (see e.g., [6, 3]). For
the case with noisy dynamics, existing works focus on discrete-time problems. This includes the
setting of infinite horizon and additive noise [16, 36], finite horizon and additive noise [12], and
infinite horizon and multiplicative noise [10]. We further refer the reader to [11, 33, 37] for LQ
games. In all of these settings, the optimal policy admits a finite-dimensional parameterisation.

Compared to existing works, our technical difficulties are three-fold. First, analysing the
optimisation landscape over infinite-dimensional continuous-time policies requires continuous-time
control theory. For instance, the policy gradient is derived via Pontryagin’s maximum principle.
The cost regularity (such as  Lojasiewicz and smoothness conditions) is proved by using partial
differential equation techniques. The lack of cost coercivity also adds complexity to the choice of
appropriate descent directions, as discussed in Remark 2.3. Notably, the noncoercivity of the cost
function in this context primarily stems from the fact that a policy can have an infinite number of
changes in values, occurring at arbitrary time points. This characteristic distinguishes our problem
from aforementioned discrete-time scenarios, in which policies change solely at predetermined time
points.

Second, the finite-horizon continuous-time setting requires more advanced techniques for the
nondegeneracy of the state covariance than the discrete-time setting. In [12, 36], the state covari-
ance is lower bounded by the minimum eigenvalue of the covariance of system noises, uniformly
over all policies. This bound vanishes as the time discretisation stepsize tends to zero, as the
covariance of noise increment typically scales linearly to the stepsize. Moreover, in the present
setting, the system noise can degenerate due to a controlled diffusion coefficient. We overcome
this difficulty by establishing the positive definiteness of the state covariance along the policy iter-
ates. This is possible by a) first estimating the state covariance explicitly using the magnitude of
policies, but independent of the system noise (Lemma 3.7), and b) then proving that the geometry-
aware gradient directions induce a uniform bound of the iterates. This approach is different from
the contraction argument in [23] for problems with uncontrolled diffusion coefficients.

Finally, the possible degeneracy of cost matrices requires sharper estimate of the cost regularity.
All existing works assume a running cost of the form f(x, a) = x⊤Qx+a⊤Ra, with positive definite
matrices Q and R, and estimate optimisation landscape using minimum eigenvalues of Q and R.
However, for many applications of stochastic LQC problems, the cost can involve the product
of state and control variables [5], or an indefinite weight R [38, 32]. Here, we derive tighter
 Lojasiewicz and smoothness bounds of the cost using solutions to Lyapunov equations, instead of
the cost coefficients. This allows us to consider a general setting where both the drift and diffusion

3



coefficients of the state are controlled, and all cost weights can be negative definite.

Notation. For each Euclidean space E, we denote by ⟨·, ·⟩ its usual inner product and | · | the
norm induced by ⟨·, ·⟩. For each A ∈ Rn×m, we denote by A⊤ the transpose of A, by tr(A) the
trace of A, and by ∥A∥2 the spectral norm of A. For each n ∈ N, we denote by In the n×n identity
matrix, by Sn, Sn+ and Sn+ the space of n × n symmetric, symmetric positive semidefinite, and
symmetric positive definite matrices, respectively, and by λmax(A) and λmin(A) the largest and
smallest eigenvalues of A ∈ Sn, respectively. We equip Sn with the Loewner (partial) order such
that for each A,B ∈ Sn, A ⪰ B if A−B ∈ Sn+. For every measurable functions F,G : [0, T ] → Sn,
F ⪰ G stands for F (t) −G(t) ∈ Sn+ for a.e. t ∈ [0, T ].

For each T > 0, filtered probability space (Ω,F ,F,P) satisfying the usual condition (of right
continuity and completeness) and Euclidean space (E, | · |), we introduce the following spaces:
• B(0, T ;E) is the space of Borel measurable functions ϕ : [0, T ] → E.
• Lp(0, T ;E), p ∈ [1,∞], is the space of Borel measurable functions ϕ : [0, T ] → E satisfying

∥ϕ∥Lp = (
∫ T
0 |ϕt|p dt)1/p < ∞ if p ∈ [1,∞) and ∥ϕ∥L∞ = ess supt∈[0,T ] |ϕt| < ∞.

• C([0, T ];E) is the space of continuous functions ϕ : [0, T ] → E endowed with the norm ∥ · ∥L∞ .
• S2(0, T ;E) is the space of F-progressively measurable càdlàg processes X : Ω × [0, T ] → E

satisfying ∥X∥S2 = E[ess supt∈[0,T ] |Xt|2]1/2 < ∞;
• M(E) is the set of measures on E, P(E) is the set of probability measures on E, and P2(E) is

the set of square integrable probability measures on E endowed with the 2–Wasserstein distance.
For each µ ∈ Rn and Σ ∈ Sn+, we denote by N (µ,Σ) the Gaussian measure on Rn with mean µ
and covariance matrix Σ. We also write N0 = N ∪ {0} for notation simplicity.

2 Problem formulation and main results

This section introduces exploratory LQC problems, proposes a class of geometry-aware PG
algorithms to seek the optimal policy, and presents their convergence properties.

2.1 Regularised stochastic LQ control problems with indefinite costs

This section recalls the regularised LQC problem introduced in [31, 32] and its optimal feedback
controls. Let T > 0 be a finite time horizon, (Ω,F ,P) be a complete filtered probability space on
which a d-dimensional standard Brownian motion W = (Wt)t≥0 is defined, and F = (Ft)t≥0 be
the natural filtration of W augmented by an independent σ-algebra F0.

We first introduce the admissible controls and the associated state dynamics. Let A be the set
of (relaxed) controls m : Ω → M([0, T ] × Rk) such that mt(dt,da) = mt(da)dt for a.e. t ∈ [0, T ],

where mt : Ω → P(Rk) is Ft-measurable for all t ∈ [0, T ] and E[
∫ T
0

∫
Rk |a|2mt(da)dt] < ∞. For

each m ∈ A, consider the following controlled dynamics:

dXt = Φt(Xt,mt) dt + Γt(Xt,mt) dWt, t ∈ [0, T ]; X0 = ξ0, (2.1)

where ξ0 ∈ L2(Ω;Rd) is a given F0-measurable random variable, and the functions Φ : [0, T ] ×
Rd×P2(Rk) → Rd and Γ : [0, T ]×Rd×P2(Rk) → Sd+ satisfy for all (t, x,m) ∈ [0, T ]×Rd×P2(Rk),

Φt(x,m) =

∫
Rk

(Atx+Bta)m(da), Γt(x,m) =

(∫
Rk

(Ctx + Dta)(Ctx + Dta)⊤m(da)

) 1
2

, (2.2)
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where (·)
1
2 : Sd+ → Sd+ is the matrix square root such that M

1
2 (M

1
2 )⊤ = M for all M ∈ Sd+,

and A,B,C,D are measurable functions such that (2.1) admits a unique strong solution Xm ∈
S2(0, T ;Rd) (see (H.1) for precise conditions).

The state dynamics (2.1) is commonly referred to as an exploratory dynamics (see, e.g., [31,
32, 26]). It models interacting with the system by repeatedly sampling random actions according
to a given measure-valued control m. As a consequence of these random actions, the system’s
state evolves with the aggregated coefficients (2.2), which indicates that the infinitesimal change
of the state at t has a mean and variance integrated with respect to the sampling distribution mt.
In the special case where mt(dt,da) = δαt(da)dt for some αt : Ω × [0, T ] → Rk, with δa being the
Dirac measure on a ∈ Rk, (2.1) simplifies into

dXt = (AtXt + Btαt) dt + (CtXt + Dtαt) dWt, t ∈ [0, T ]; X0 = ξ0, (2.3)

which is the dynamics studied in the classical LQC problem [34]. See the end of Section 2.4 for
more details on the connection between an exploratory state dynamics and controlling (2.3) with
random actions.

We now consider minimising the following cost functional over all m ∈ A, which is known as
the exploratory/entropy-regularised control problem [31, 32, 26, 14, 15]:

E
[ ∫ T

0

∫
Rk

(
1

2

〈(
Qt S⊤

t

St Rt

)(
Xm

t

a

)
,

(
Xm

t

a

)〉
mt(da) + ρH(mt∥mt)

)
dt +

1

2
(Xm

T )⊤GXm
T

]
, (2.4)

where Xm satisfies the state dynamics (2.1). Here Q,S,R are given matrix-valued functions of
proper dimensions, G ∈ Rd×d and ρ ≥ 0 are given constants, (mt)t∈[0,T ] are given measures on Rk,

and for each t ∈ [0, T ], H(·∥mt) : P(Rk) → [0,∞] is the relative entropy with respect to mt such
that for all m ∈ P(Rk),

H(m∥mt) =

{∫
R ln

(m(da)
mt(da)

)
m(da), m is absolutely continuous with respect to mt,

∞, otherwise.

Note that the cost (2.4) is aggregated with respect to the control distribution mt from which the
random actions are sampled. The entropy H(·∥mt) serves as a regularisation term to encourage
the minimiser of (2.4) to be close to the provided reference measures (mt)t∈[0,T ], and the weight
parameter ρ ≥ 0 controls the strength of this regularisation.

The entropy-regularised control problem (2.4), initially introduced in [31], represents a natural
extension of the well-established regularised MDPs (see e.g., [8, 20]) into the continuous domain.
Common choices of (mt)t∈[0,T ] in the existing literature include Gibbs measures [26] and the
Lebesgue measure [31, 32, 7].

The following assumptions on the coefficients of (2.1)-(2.4) are imposed throughout this paper.

H.1. (1) T > 0, ξ0 ∈ L2(Ω;Rd), A ∈ L1(0, T ;Rd×d), B ∈ L2(0, T ;Rd×k), C ∈ L2(0, T ;Rd×d),
D ∈ L∞(0, T ;Rd×k), Q ∈ L1(0.T ; Sd), S ∈ L2(0.T ;Rk×d), R ∈ L∞(0, T ;Sk) and G ∈ Sd.

(2) ρ > 0, mt = N (0, V̄t) for all t ∈ [0, T ], V̄ ∈ L∞(0, T ;Sk+) and V̄ ⪰ δIk for some δ > 0.

Remark 2.1. Condition (H.1(1)) ensures that for all m ∈ A, (2.1) admits a unique strong solution
in S2(0, T ;Rd) (see Proposition A.2), and the associated regularised cost is well-defined. Note that
(H.1(1)) allows the coefficients Q,S,R and G to be indefinite or even negative definite (provided
that (H.2) holds). Such a control problem is often called indefinite stochastic LQ problem (see
e.g. [27] and the references therein) and has important applications in optimal liquidation [5] and
mean-variance portfolio selection [38] in finance.
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Condition (H.1(2)) assumes that for each t ∈ [0, T ], the reference measure mt in (2.4) is a
Gaussian measure. This ensures that the optimal strategy of (2.1)-(2.4) is Gaussian (see (2.6)),
which in turn implies that (2.1)-(2.4) can be reformulated as an optimisation problem over Gaus-
sian policies. A similar reformulation also holds if mt is the Lebesgue measure [31, 32, 7], and our
proposed policy descent algorithm and its convergence analysis can be naturally extended to this
case.

We also impose the following well-posedness condition of the corresponding Riccati equation
for the closed-loop solvability of the (possibly indefinite) control problem (2.1)-(2.4).

H.2. There exists P ⋆ ∈ C([0, T ];Sd) satisfing the following Riccati equation: for a.e. t ∈ [0, T ],
( d
dtP )t + A⊤

t Pt + PtAt + C⊤
t PtCt + Qt

− (B⊤
t Pt + D⊤

t PtCt + St)
⊤(D⊤

t PtDt + Rt + ρV̄ −1
t )−1(B⊤

t Pt + D⊤
t PtCt + St) = 0;

PT = G,

(2.5)

and D⊤P ⋆D + R + ρV̄ −1 ⪰ δ̃Ik for some δ̃ > 0.

Remark 2.2. Condition (H.2) is called the strongly regular solvability of (2.5) in [27] and ensures
that (2.1)-(2.4) admits an optimal feedback control. Note that it suffices to assume the existence
of a strongly regular solution, as the uniqueness of a strongly regular solution to (2.5) follows
directly from Gronwall’s inequality (see [27] and also [34, Proposition 7.1, p. 319]). One can easily
show that (H.2) holds if the unregularised (2.5) is strongly regular solvable, i.e., (2.5) with ρ = 0
admits a solution P ⋆,0 ∈ C([0, T ];Sn) and D⊤P ⋆,0D + R ⪰ δ̃Ik. This is due to the fact that
P ⋆ ⪰ P ⋆,0 (see [27, Theorem 5.3]), and hence D⊤P ⋆D + R + ρV̄ −1 ⪰ D⊤P ⋆,0D + R by (H.1(2)).

Moreover, by virtue of the regularisation term ρV̄ −1, (H.2) may hold even when the un-
regualised LQ problem (with ρ = 0) is not closed-loop solvable. This indicates that the entropy
term ρH(·∥mt) indeed regularises the cost landscape. Such a regularisation effect may not hold
if the reference measure mt, t ∈ [0, T ], is chosen as the Lebesgue measure Lk on Rk. In fact, as
shown in [31, 32, 7], if mt = Lk for all t ∈ [0, T ], then the closed-loop solvability of the regularised
problem is equivalent to that of the unregularised problem, and the entropy term will not modify
the cost landscape over policies.

Under (H.1) and (H.2), standard verification arguments (see, e.g., [34]) show that the optimal
control m⋆ ∈ A of (2.4) is of the form m⋆

t = ν⋆t (Xm⋆

t ), where ν⋆ : [0, T ]×Rd → P2(Rk) satisfies for
all (t, x) ∈ [0, T ] × R, ν⋆t (x) = N (K⋆

t x, V
⋆
t ) and

K⋆
t = −(D⊤

t P
⋆
t Dt + Rt + ρV̄ −1

t )−1(B⊤
t P

⋆
t + D⊤

t P
⋆
t Ct + St),

V ⋆
t = ρ(D⊤

t P
⋆
t Dt + Rt + ρV̄ −1

t )−1.
(2.6)

By (H.1) and (H.2), K⋆ ∈ L2(0, T ;Rk×d), V ⋆ ∈ L∞(0, T ; Sk+) and V ⋆ ⪰ εIk for some ε > 0. Note
that the optimality of m⋆ in A implies that the policy ν⋆ is optimal among all Markovian feedback
controls ν : [0, T ] × Rd → P2(Rk) for which the resulting open-loop control m· = ν·(X

ν
· ) is square

integrable. Here, Xν denotes the state dynamics controlled by ν, as defined in (2.8).

2.2 Optimisation over Gaussian policies and landscape analysis

Motivated by the optimal Gaussian policy ν⋆ in (2.6), this section reformulates (2.1)-(2.4) as
an equivalent minimisation problem over Gaussian policies, and presents key properties of the
optimisation landscape C : Θ → R. The proofs of these properties will be given in Section 3.1.
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Policy optimisation. Let Θ be the following parameter space

Θ :=
{
θ = (K,V ) ∈ B(0, T ;Rk×d × Sk+)

∣∣∣ ∥K∥L2 < ∞, εIk ⪯ V ⪯ 1
εIk for some ε > 0

}
,

and V be the space of Gaussian policies parameterised by Θ:

V :=
{
νθ : [0, T ] × Rd ∋ (t, x) 7→ N (Ktx, Vt) ∈ P(Rk)

∣∣∣ θ = (K,V ) ∈ Θ
}
.1 (2.7)

We shall identify νθ ∈ V with its parameter θ = (K,V ) ∈ Θ. For each νθ ∈ V, consider the
associated controlled dynamics (cf. (2.1)):

dXt = Φt(Xt, ν
θ
t (Xt)) dt + Γt(Xt, ν

θ
t (Xt)) dWt, t ∈ [0, T ]; X0 = ξ0, (2.8)

with Φ and Γ defined in (2.2), and let Xθ ∈ S2(0, T ;Rd) be the unique solution to (2.8) (see
Proposition A.2). Then we consider minimising the following cost functional:

C(θ) :=E
[ ∫ T

0

∫
Rk

(
1

2

〈(
Qt S⊤

t

St Rt

)(
Xθ

t

a

)
,

(
Xθ

t

a

)〉
νθt (Xθ

t ; da) + ρH(νθt (Xθ
t )∥mt)

)
dt

+
1

2
(Xθ

T )⊤GXθ
T

] (2.9)

over all θ ∈ Θ, or equivalently all νθ ∈ V. It is clear that the cost C is minimised at θ⋆ = (K⋆, V ⋆)
defined in (2.6), and the minimum value infθ∈Θ C(θ) is the minimum cost of (2.1)-(2.4).

Optimisation landscape. To investigate the regularity of the map C : Θ → R, we introduce
two important quantities: for each θ = (K,V ) ∈ Θ, let P θ ∈ C([0, T ];Sd) be the solution to
following (backward) Lyapunov equation:

( d
dtP )t+(At + BtKt)

⊤Pt + P⊤
t (At + BtKt) + (Ct + DtKt)

⊤Pt(Ct + DtKt)

+K⊤
t (Rt + ρV̄ −1

t )Kt + S⊤
t Kt + K⊤

t St + Qt = 0, a.e. t ∈ [0, T ]; PT = G,
(2.10)

and let Σθ ∈ C([0, T ];Sd+) be the solution to the following Lyapunov equation: for a.e. t ∈ [0, T ],

( d
dtΣ)t =(At + BtKt)Σt + Σt(At + BtKt)

⊤ + (Ct + DtKt)Σt(Ct + DtKt)
⊤ + DtVtD

⊤
t ,

Σ0 =E[ξ0ξ
⊤
0 ].

(2.11)

Under (H.1), P θ and Σθ are well-defined by standard well-posedness results of linear differential
equations. Note that P θ depends only on K and is independent of V . Moreover, let Xθ be the
state process governed by (2.8), then Σθ

t = E[Xθ
t (Xθ

t )⊤] for all t ∈ [0, T ],2due to a straightforward
application of Itô’s formula to t → Xθ

t (Xθ
t )⊤ and the definition (2.2) (see also Lemma 3.1).

Based on the notation P θ and Σθ, the following proposition characterises the Gateaux deriva-
tives of C at each θ ∈ Θ. The proof relies on first reformulating the minimisation problem (2.9)
into a deterministic control problem for Σθ, and then applying the Pontryagin optimality principle.

1As ρ > 0, we require the Gaussian policies in V to have nondegenerate covariances. If ρ = 0, one can restrict
admissible policies to be νθ

t (x) = N (Ktx, 0). Our analysis and results can be naturally extended to this setting.
2Given a state variable Xt, the second-moment matrix Σt = E[XtX

⊤
t ] is often referred to as the state covariance

matrix in the reinforcement learning literature (see e.g., [6, 12]). We follow this convention throughout this paper.
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Proposition 2.1. Suppose (H.1) holds. For each θ ∈ Θ, let P θ ∈ C([0, T ];Sd) satisfy (2.10), and

let Σθ ∈ C([0, T ];Sd+) satisfy (2.11). Then for all θ, θ′ ∈ Θ,

d

dε
C(K + εK ′, V )

∣∣∣
ε=0

=

∫ T

0
⟨DK(θ)tΣ

θ
t ,K

′
t⟩dt,

d

dε
C(K,V + ε(V ′ − V ))

∣∣∣
ε=0

=

∫ T

0
⟨DV (θ)t, V

′ − V ⟩ dt,

where for a.e. t ∈ [0, T ],

DK(θ)t := B⊤
t P

θ
t + D⊤

t P
θ
t (Ct + DtKt) + St + (Rt + ρV̄ −1

t )Kt, (2.12)

DV (θ)t :=
1

2
(D⊤

t P
θ
t Dt + Rt + ρ(V̄ −1

t − V −1
t )). (2.13)

We then estimate the regularity of C : Θ → R by using the gradient terms DK(θ) and DV (θ).
The following proposition proves that the functional C satisfies a non-uniform  Lojasiewicz condi-
tion in θ. As C is typically nonconvex in K (see Proposition 2.4), such a  Lojasiewicz condition is
critical for the global convergence of gradient-based algorithms.

Proposition 2.2. Suppose (H.1) and (H.2) hold. Let θ⋆ ∈ Θ be defined by (2.6). For each θ ∈ Θ,

let P θ ∈ C([0, T ];Sd) satisfy (2.10), let Σθ ∈ C([0, T ];Sd+) satisfy (2.11), and let DK(θ) and DV (θ)
be defined by (2.12) and (2.13), respectively. Then for all θ ∈ Θ,

C(θ) − C(θ⋆) ≤
∫ T

0

(
1

2
⟨(D⊤

t P
θ
t Dt + Rt + ρV̄ −1

t )−1DK(θ)t,DK(θ)tΣ
θ⋆

t ⟩

+
1

ρ
max(∥V ⋆

t ∥22, ∥Vt∥22)|DV (θ)t|2
)

dt.

(2.14)

The next proposition proves that for any θ, θ′ ∈ Θ, the cost difference C(θ′) − C(θ) can be
upper bounded by the first and second order terms in θ′ − θ. Such a property is often referred to
as the “almost smoothness” condition in the literature on PG methods (see e.g., [6, 12, 36]).

Proposition 2.3. Suppose (H.1) holds. For each θ ∈ Θ, let P θ ∈ C([0, T ];Sd) satisfy (2.10),

let Σθ ∈ C([0, T ];Sd+) satisfy (2.11), and let DK(θ) and DV (θ) be defined by (2.12) and (2.13),
respectively. Then for all θ, θ′ ∈ Θ,

C(θ′) − C(θ) ≤
∫ T

0

(
⟨K ′

t −Kt,DK(θ)tΣ
θ′
t ⟩ +

1

2
⟨K ′

t −Kt, (D
⊤
t P

θ
t Dt + Rt + ρV̄ −1

t )(K ′
t −Kt)Σ

θ′
t ⟩

+ ⟨DV (θ)t, V
′
t − Vt⟩ +

ρ

4

|V ′
t − Vt|2

min(λ2
min(Vt), λ2

min(V ′
t ))

)
dt.

Note that the  Lojasiewicz condition in Proposition 2.2 and the smoothness condition in Propo-
sition 2.3 are local properties. The estimates therein depend explicitly on P θ and Σθ, which
admit no uniform bound over the unbounded parameter set Θ. For PG methods with finite-
dimensional parameter spaces, this difficulty is often overcome by first proving the sublevel set
{θ ∈ Θ | C(θ) < β} is bounded for any β > 0, and then designing algorithms whose iterates
remain in a fixed sublevel set (see e.g., [6, 10, 12]). However, the following example shows that in
the setting with continuous-time policies, the cost is typically noncoercive,3 and hence the above
argument cannot be applied. The proof follows from a straightforward computation, and is given
in Appendix A.

3Let (X, ∥ · ∥) be a normed space. A function f : X → R is called coercive if lim∥x∥→∞ f(x) = ∞.
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Proposition 2.4. Let C : L2(0, 1;R) → R be such that for all K ∈ L2(0, 1;R),

C(K) :=

∫ 1

0
(KtXt)

2 dt, with Xt = 1 +

∫ t

0
KsXs ds, t ∈ [0, 1]. (2.15)

Then C : L2(0, 1;R) → R is neither coercive nor quasiconvex. In particular, let Kε ∈ L2(0, 1;R),
ε > 0, be such that Kε

t = −(1 + ε − t)−1 for all t ∈ [0, 1]. Then limε→0 ∥Kε∥L1 = ∞ and
supε>0 C(Kε) = 1. Moreover, there exists ε0 > 0 such that for all ε ∈ (0, ε0], C(0.5Kε) >
max{C(0), C(Kε)}, with 0 being the zero function.

2.3 Policy gradient method and its convergence analysis

This section proposes a geometry-aware PG method for (2.6) that preserves an a-priori bound,
and proves its global linear convergence based on the landscape properties in Section 2.2.

Geometry-aware policy gradient method. For each initial guess θ0 = (K0, V 0) ∈ Θ and
stepsize τ > 0, consider (θn)n∈N ⊂ B(0, T ;Rk×d × Sk) such that for all n ∈ N0,

Kn+1
t = Kn

t − τDK(θn)t, V n+1
t = V n

t − τDbw
V (θn)t, a.e. t ∈ [0, T ], (2.16)

with
Dbw

V (θn)t = DV (θn)tV
n
t + V n

t DV (θn)t,
4 (2.17)

where DK(θ) and DV (θ) are defined by (2.12) and (2.13), respectively. Here we update K and V
with the same stepsize τ for the clarity of presentation, but the results can be naturally extended
to the setting where different constant stepsizes are adopted to update K and V .

Algorithm (2.16) normalises the (Fréchet) derivatives of θn (cf. Proposition 2.1) to incorporate
the local geometry of the parameter space. Specifically, it updates (Kn)n∈N by the steepest descent
on the manifold of Gaussian policies endowed with the Fisher information metric (also known as
the natural gradient). To see this, for each n ∈ N0, consider the following natural gradient update
for Kn (see [17]):

Kn+1
t = Kn

t − τI(θn)−1
t ∇KC(θn)t,

5 a.e. t ∈ [0, T ], (2.18)

where ∇KC(θn) = DK(θn)Σθn is the derivative in Kn, I(θn)t ∈ Rkd×kd is the Fisher information
matrix satisfying for all i, i′ ∈ {1, . . . , k} and j, j′ ∈ {1, . . . , d},

(I(θn)t)ij,i′j′ := E
[∫

Rk

[
∂(Kn

t )ij
ln
(
ν̂θ

n

t (Xθn

t ; a)
)
∂(Kn

t )i′j′
ln
(
ν̂θ

n

t (Xθn

t ; a)
)]

ν̂θ
n

t (Xθn

t ; a) da

]
,

and ν̂θ
n

t (Xθn
t ; ·) is the density of N (Kn

t X
θn
t , Ik). Then by a similar computation as in [6, 11],

I(θn)−1
t ∇KC(θn)t = ∇KC(θn)t(Σ

θn
t )−1 = DK(θn)t.

On the other hand, (2.16) updates (V n)n∈N by the steepest descent on the matrix manifold Sk+
endowed with the Bures-Wasserstein metric [13]. It corresponds to the geometry induced by the 2-
Wasserstein metric over the space of centered nondegenerate Gaussian measures. By normalising
DV according to V , the Riemannian gradient Dbw

V in (2.17) preserves a pointwise upper and lower
bound of (V n)n∈N without the use of projection (see Remark 2.3).

4For an arbitrary stepsize τ > 0, (V n)n∈N may not be positive definite and hence may not be invertiable. In this
case, DV is defined by replacing V −1

t in (2.13) with the (symmetric) Moore-Penrose inverse of Vt. We prove that
(θn)n∈N ⊂ Θ for all sufficiently small stepsizes (see Proposition 2.5).

5For each A ∈ Rkd×kd and B ∈ Rk×d, indexed by Aij,i′j′ and Bij with i, i′ ∈ {1, . . . , k} and j, j′ ∈ {1, . . . , d}, we
define AB ∈ Rk×d with (AB)ij =

∑
k,l Aij,klBkl. This is equivalent to reshaping B (with row-major ordering) into

a vector, performing the standard matrix-vector multiplication, and reshaping the result into a matrix.
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Convergence analysis. The key challenge in the convergence analysis of (2.16) is to establish
a uniform bound for the corresponding (P θn)n∈N and (Σθn)n∈N, as shown in Proposition 2.5.
This is achieved by proving a uniform bound of the iterates (θn)n∈N and quantifying the explicit
dependence of Σθ on θ. The proof is given in Section 3.2 (Propositions 3.5, 3.6, and 3.8).

Proposition 2.5. Suppose (H.1) and (H.2) hold. For each θ ∈ Θ, let P θ ∈ C([0, T ];Sd) satisfy

(2.10) and let Σθ ∈ C([0, T ];Sd+) satisfy (2.11). Let θ0 ∈ Θ and λ0 > 0 such that λ0Ik ⪰
D⊤P θ0D+R+ρV̄ −1. For each τ > 0, let (θn)n∈N ⊂ B(0, T ;Rk×d×Sk) be defined in (2.16). Then

(1) There exists C̃, λV , λV > 0 such that for all τ ∈ (0, 1/λ0], n ∈ N0, ∥Kn∥L2 ≤ C̃ and
λV Ik ⪯ V n ⪯ λV Ik.

(2) For all τ ∈ (0, 2/λ0], n ∈ N0, P
θn ⪰ P θn+1 ⪰ P ⋆, with P ⋆ ∈ C([0, T ];Sd) in (H.2),

(3) Assume further that E[ξ0ξ
⊤
0 ] ≻ 0. Then there exists λX , λX > 0 such that for all τ ∈ (0, 1/λ0]

and n ∈ N0, λXId ⪯ Σθn ⪯ λXId.

Remark 2.3 (Implicit regularisation). The uniform bounds of (Kn)n∈N and (V n)n∈N are achieved
by an implicit regularisation feature of the geometry-aware gradient directions DK and Dbw

V . Here,
“implicit regularisation” means that the iterates preserve certain constraints without an explicit
projection step. Note that applying projection to enforce a pointwise lower bound for minimum
eigenvalues of (V n)n∈N is computationally expensive. It requires performing an eigenvalue decom-
position of V n

t for every time t ∈ [0, T ] and iteration n ∈ N.
A similar implicit regularisation property holds if (Kn)n∈N is updated by a preconditioned

natural gradient descent: for all n ∈ N0,

Kn+1
t = Kn

t − τHn
t DK(θn)t, with 1

LIk ⪯ Hn ⪯ LIk for some L > 0 independent of n.

This includes the Gauss-Newton method with Hn =
(
D⊤PnD + R + ρV̄ −1

)−1
as a special case

(see [6, 10]). However, due to the noncoercivity of C, it is unclear whether an implicit regularisation
holds for an arbitrary descent direction of C in K (e.g., the vanilla gradient direction ∇KC(θ) =
DK(θ)Σθ), in contrast with PG methods for discrete-time problems [6, 11]; see the discussion
above Proposition 2.4.

It is noteworthy that an implicit regularisation feature of natural policy gradient algorithms
was observed in [36]. In their study, an agent optimises over stationary linear policies to stablise a
linear system with additive noise over an infinite horizon while adhering to robustness constraints
on the sup-norm of the input-output transfer matrix. They show that a natural policy gradient al-
gorithm naturally preserves the transfer matrix’s sup-norm throughout the iterations, eliminating
the need for explicit projection.

The challenges faced in the current setting differ from those in [36]. Firstly, as Proposition 2.4
shows, the cost of a finite-horizon continuous-time LQC problem is already noncoercive without
any robustness constraints. This is primarily because a policy can have an infinite number of
changes in values, occurring at arbitrary time points. Such a feature is not present in the sce-
narios studied in [36], where stationary policies are considered. Secondly, instead of optimising a
deterministic policy, we optimise both the mean and covariance of a Gaussian policy, for which
we derive natural gradient updates with respect to different geometries. Our result implies that
Wasserstein gradient descent of negative entropy preserves a-priori bounds on the variance of
Gaussian measures, which is novel and of independent interest. Lastly, the possible degeneracy of
the system noise and the cost coefficients (Remark 2.1) necessitates a more precise quantification
of the desired implicit regularisation within appropriate function spaces.
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Proposition 2.5 implies that the functional C satisfies uniform  Lojasiewicz and smoothness
conditions along the iterates (θn)n∈N. Based on this local regularity, the following theorem estab-
lishes the global linear convergence of (2.16) for all sufficiently small stepsizes τ . The proof is
given in Section 3.3.

Theorem 2.6. Suppose (H.1) and (H.2) hold, and E[ξ0ξ
⊤
0 ] ≻ 0. Let θ0 ∈ Θ, and for each τ > 0,

let (θn)n∈N ⊂ B(0, T ;Rk×d × Sk) be defined in (2.16). Then there exists τ0, C1, C2 > 0 such that
for all τ ∈ (0, τ0] and n ∈ N0,

(1) C(θn+1) ≤ C(θn) and C(θn+1) − C(θ⋆) ≤ (1 − τC1)(C(θn) − C(θ⋆)), with θ⋆ defined in (2.6),

(2) ∥Kn −K⋆∥2L2 + ∥V n − V ⋆∥2L2 ≤ C2(1 − τC1)
n.

The precise expressions of the constants τ0, C1 and C2 can be found in the proof of the
statement. These constants depend on the regularisation weight ρ in (2.4), the constant δ̃ in
(H.2), the initial guess θ0, and the a-priori bounds λX , λX , λV , λV in Proposition 2.5. Achieving
more precise dependencies in terms of model parameters is challenging. It would entail deriving
precise a-priori bounds of solutions to (2.5) and (2.10) in terms of the coefficients given in (H.1(1)).
This remains an open problem, particularly when the diffusion coefficient is controlled (D ̸= 0)
and when cost coefficients Q, R, and G are not positive definite.

2.4 Mesh-independent linear convergence with discrete-time policies

By leveraging Theorem 2.6, this section proposes PG methods that take actions at discrete
time points and achieve a robust convergence behaviour across different mesh sizes. Our analysis
shows that a proper scaling of the discrete-time gradients in terms of mesh size is critical for a
robust performance of the algorithm.

More precisely, let P[0,T ] be the collection of all partitions of [0, T ]. For each π = {0 = t0 <
· · · < tN = T} ∈ P[0,T ], let |π| = maxi=0,...,N−1(ti+1 − ti) be the mesh size of π, and let Θπ ⊂ Θ
be the set of piecewise constant policies on π:

Θπ = {θ ∈ Θ | θt = θti , a.e. t ∈ [ti, ti+1) and all i ∈ {0, . . . , N − 1}} . (2.19)

Then define the minimum cost C over Θπ:

C⋆
π = inf

θ∈Θπ
C(θ). (2.20)

Note that by Θπ ⊂ Θ, C⋆
π ≥ infθ∈Θ C(θ) = C(θ⋆) > −∞.

We now introduce a family of gradient descent schemes for (2.20). Let θπ,0 ∈ Θπ be an initial
guess and τ > 0 be a stepsize. Consider the following sequence (θπ,n)n∈N0 ⊂ Θπ (cf. (2.16)) such
that for all n ∈ N0,

Kπ,n+1
t = Kπ,n

t − τDπ
K(θπ,n)t, V π,n+1

t = V π,n
t − τDπ

V (θπ,n)t, a.e. t ∈ [0, T ], (2.21)

where (Dπ
K ,Dπ

V ) : Θπ → Θπ approximates the gradient operators (DK ,Dbw
V ) in (2.16) as |π| → 0;

see (H.3) for the precise condition.
The convergence behaviour of (2.21) is measured by the number of required iterations Nπ(ε)

to achieve a certain accuracy ε > 0: let (θπ,n)n∈N0 be generated by (2.21) (with some θπ,0 ∈ Θπ

and τ > 0), and for each ε > 0, define

Nπ(ε) := min

{
n ∈ N0

∣∣∣ C(θπ,n) − inf
θ∈Θπ

C(θ) < ε

}
∈ N0 ∪ {∞}. (2.22)
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Note that Nπ is defined for a fixed mesh π, and hence the residual is defined using the minimum
cost C⋆

π over piecewise constant policies Θπ. Similarly, let (θn)n∈N0 be a sequence generated by
(2.16) (with some θ0 ∈ Θ and τ > 0), and for each ε > 0, define

N(ε) := min

{
n ∈ N0

∣∣∣ C(θn) − inf
θ∈Θ

C(θ) < ε

}
∈ N0 ∪ {∞}. (2.23)

The main result of this section shows that if the gradient operators (Dπ
K ,Dπ

V )π in (2.21) satisfy
the consistency condition (H.3), then for all sufficiently fine grids π, Nπ(ε) is essentially equal to
N(ε).

H.3. For every θ ∈ L2(0, T ;Rk×d) × C([0, T ];Sk+), every sequence (πm)m∈N ⊂ P[0,T ] such that
limm→∞ |πm| = 0, and every (θm)m∈N ⊂ Θ such that θm ∈ Θπm for all m ∈ N and limm→∞ ∥θm−
θ∥L2×L∞ = 0, we have

lim
m→∞

∥Dπm
K (θm) −DK(θ)∥L2 = 0, and lim

m→∞
∥Dπm

V (θm) −Dbw
V (θ)∥L∞ = 0.

Theorem 2.7. Suppose (H.1), (H.2) and (H.3) hold, E[ξ0ξ
⊤
0 ] ≻ 0, D ∈ C([0, T ];Rd×k), R ∈

C([0, T ];Sk) and V̄ ∈ C([0, T ];Sk+). Let θ0 ∈ L2(0, T ;Rk×d) ×C([0, T ];Sk+), let (πm)m∈N ⊂ P[0,T ]

be such that limm→∞ |πm| = 0 and let (θπm,0)m∈N ⊂ Θ be such that θπm,0 ∈ Θπm for all m ∈ N
and limm→∞ ∥θπm,0 − θ0∥L2×L∞ = 0. Then there exists τ0 > 0 such that for all τ ∈ (0, τ0) and
ε > 0, there exists m ∈ N such that

N(ε) − 1 ≤ Nπm(ε) ≤ N(ε), ∀m ∈ N ∩ [m,∞). (2.24)

The proof of Theorem 2.7 is given in Section 3.4.
Theorem 2.7 indicates that (2.21) achieves linear convergence uniformly across different timescales.

Indeed, by Theorem 2.6, there exists τ0, C1 > 0 such that for all τ ∈ (0, τ0] and n ∈ N0,

C(θn+1) − C(θ⋆) ≤ (1 − τC1)
n(C(θ0) − C(θ⋆)). This implies that N(ε) ≤

ln
(

ε
C(θ0)−C(θ⋆)

)
ln(1−τC1)

for all

ε > 0. By the identity that limx→0
ln(1+x)

x = 1, Nπm(ε) ≈ 1
C1τ

ln
(
C(θ0)−C(θ⋆)

ε

)
for all m ≥ m and

sufficiently small τ and ε.
To design a concrete gradient methods satisfying (H.3), for each π = {0 = t0 < · · · < tN =

T} ∈ P[0,T ], we identify Θπ with (Rk×d × Sk+)N by the natural parameterisation:

(Rk×d × Sk+)N ∋ (Ki, Vi)
N−1
i=1 7→

(
N−1∑
i=0

Ki1[ti,ti+1)(t),
N−1∑
i=0

Vi1[ti,ti+1)(t)

)
t∈[0,T ]

∈ Θπ, (2.25)

and by abuse of notation, write C : (Rk×d × Sk+)N → R as the cost of a Gaussian policy induced
by the parameterisation (2.7) and (2.25). Then for each θπ,0 ∈ Θπ and τ > 0, consider the
following sequence (θπ,n)n∈N0 ⊂ Θπ such that for all n ∈ N0 and i ∈ {0, . . . , N − 1}, θπ,n+1

t =
(Kπ,n+1

i , V π,n+1
i ) for all t ∈ [ti, ti+1), with

Kπ,n+1
i = Kπ,n

i − τ

∆i
∇KiC(θπ,n)

(
Σθπ,n

ti

)−1
,

V π,n+1
i = V π,n

i − τ

∆i
(V π,n

i ∇ViC(θπ,n) + ∇ViC(θπ,n)V π,n
i ) ,

(2.26)

where ∆i = ti+1 − ti, Σθπ,n

ti = E[Xθπ,n

ti (Xθπ,n

ti )⊤], and ∇KiC (resp. ∇ViC) is the partial derivative
of C with respect to the matrix Ki (resp. Vi). The practical implementation of the algorithm is
further discussed at the end of this section.

The following corollary shows that (2.26) satisfies (H.3), whose proof is given in Section 3.4.
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Corollary 2.8. Suppose (H.1) and (H.2) hold, E[ξ0ξ
⊤
0 ] ≻ 0, D ∈ C([0, T ];Rd×k), R ∈ C([0, T ];Sk)

and V̄ ∈ C([0, T ];Sk+). Then Theorem 2.7 holds for (2.26).

Remark 2.4 (Scaling hyper-parameters with timescales). It is critical to scale the stepsize
τ in (2.26) with respect to ∆i for the robustness of (2.26) for all small mesh sizes. Indeed,
standard discrete-time natural PG methods correspond to setting ∆i = 1 in (2.26) for all grids.
For sufficiently fine grids, this is equivalent to adopting a vanishing stepsize τ∆i in (2.16), as

∇KiC(θ)
(
Σθ
ti

)−1 ≈ DK(θ)ti∆i and ∇ViC(θπ,n) ≈ DV (θ)ti∆i (see Proposition 2.1). This explains
the degraded performance of conventional discrete-time PG methods for small mesh sizes. In
contrast, by normalising the stepsize with ∆i, (2.26) admits a continuous-time limit (2.16) as the
time stepsize |π| vanishes., and achieves mesh-independent convergence; see Section 4 for more
details.

Remark 2.5 (Extensions to discrete-time models). Corollary 2.8 can be extended to incor-
porate time discretization of the underlying system. Here we provide a heuristic explanation of
such an extension. Consider a sequence of time grids (πm)m∈N with limm→∞ |πm| = 0. For each
m ∈ N, let Xm be the discrete-time state dynamics resulting from the Euler–Maruyama dis-
cretization of (2.8) on the grid πm, and let Cπm : Θπm → R be the associated cost functional (2.9).
Introduce an analogue of (2.26), where ∇KiC(θπ,n) and ∇ViC(θπ,n) are replaced by ∇KiCπm(θπ,n)
and ∇ViCπm(θπ,n), respectively, and Σθπ,n

ti is replaced by the covariance of the discrete-time state
Xm controlled by θπm,n. If the coefficients in (H.1(1)) are sufficiently regular in time, one can
show that these discrete-time gradients converge to the continuous-time gradients in (2.16) as
m → ∞, due to the weak convergence of the Euler–Maruyama scheme. This would verify Con-
dition (H.3), which along with Theorem 2.7 implies that these discrete-time algorithms achieve
mesh-independent linear convergence uniformly in m.

Similar analyses can be carried out for various time discretizations of the state system. Making
these arguments precise for general time discretizations would require accurately quantifying the
regularity conditions of the coefficients for the weak convergence of the discretization, and is left
for future work.

We end this section by describing a possible practical implementation of the algorithm (2.26)
which allows for unknown coefficients in (2.8) and (2.9). Recall that, as shown in [29], for a
given Gaussian policy νθ, the aggregated dynamics (2.8) and the associated cost (2.9) can be
approximated by interacting with the linear dynamics (2.3) with random actions. More precisely,
let π̃ = {0 = t̃0 < · · · < t̃M = T} be a time mesh at which random actions are sampled. Consider
Xθ,ζ governed by the following dynamics:

dXt = (AtXt + Btϕ
θ
t (Xt)) dt + (CtXt + Dtϕ

θ
t (Xt)) dWt, t ∈ [0, T ]; X0 = ξ0, (2.27)

where

ϕθ
t (x) = Ktx + V

1/2
t ϑt, with ϑt :=

M−1∑
i=0

ζi1[t̃i,t̃i+1)
(t),

and (ζi)
M−1
i=0 are mutually independent standard normal vectors that are independent of ξ0 and

W . The associated cost with fixed realisations of ϑ, ξ0 and W is defined as:

Ĉ(θ) :=

∫ T

0

(
1

2

〈(
Qt S⊤

t

St Rt

)(
Xθ,ζ

t

ϕt(X
θ,ζ
t )

)
,

(
Xθ,ζ

t

ϕt(X
θ,ζ
t )

)〉
+ ρH(νθt (Xθ,ζ

t )∥mt)

)
dt +

1

2
(Xθ,ζ

T )⊤GXθ,ζ
T ,

(2.28)
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where by mt = N (0, V̄t) (see Lemma 3.1),

H(νθt (Xθ,ζ
t )∥mt) =

1

2

(
tr
(
K⊤

t V̄ −1
t KtX

θ,ζ
t (Xθ,ζ

t )⊤ + V̄ −1
t Vt

)
− k + ln

(
det(V̄t)

det(Vt)

))
.

In (2.27), the linear dynamics (2.3) is controlled by sampling actions from νθ
π

using the injected
noises (ζi)

M−1
i=0 , and (2.28) is the quadratic cost induced by these random actions. Then, by

arguments similar to those in [29, Theorem 2.2], |E[Xθ,ζ
t (Xθ,ζ

t )⊤] − Σθ
t | ≤ C|π̃| for all t ∈ [0, T ],

and |E[Ĉ(θ)] − C(θ)| ≤ C|π̃|, with a constant C independent of π̃. One can also establish an error
bound of the order O(

√
|π̃|) in the high-probability sense with respect to the noise process ϑ.

The above observation suggests that, at each iteration of (2.26), the gradients ∇KiC(θπ,n),
∇ViC(θπ,n) and the state covariance Σθπ,n

ti at all grid points of π can be estimated using Monte
Carlo methods without relying on knowledge of the coefficients in (2.8) and (2.9). By choosing
a sufficiently fine randomisation grid π̃, the covariance Σθπ,n

ti can be estimated by the empirical
covariance of Xθπ,n,ζ corresponding to different realisations of ϑ, W and ξ0. The gradients of
the cost C(θπ,n) can be approximated by suitable zero-order optimisation methods based on tra-
jectories of the cost (2.28) (see e.g., [6, 12, 2]). It would be interesting to quantify the precise
sample efficiency of such a model-free implementation of (2.26). This would entail estimating the
approximation errors of ∇KiC(θπ,n), ∇ViC(θπ,n) and Σθπ,n

ti in terms of the sample frequency |π̃|−1

and the sample size, and quantifying the precise error propagation through the gradient descent
iteration. We leave a rigorous analysis of such a model-free algorithm for future research.

3 Proofs

3.1 Analysis of optimisation landscape

This section proves the regularity of the cost functional C in (2.9) given in Section 2.2.
We start by proving several technical lemmas. The following lemma expresses the coefficients of

(2.8) and the cost function (2.9) in terms of θ = (K,V ). The proof follows from a straightforward
computation and hence is omitted.

Lemma 3.1. Suppose (H.1) holds. Then for all νθ ∈ V and (t, x) ∈ [0, T ] × Rd,

Φt(x, ν
θ
t (x)) = (At + BtKt)x,

Γt(x, ν
θ
t (x)) =

(
(Ct + DtKt)xx

⊤(Ct + DtKt)
⊤ + DtVtD

⊤
t

) 1
2
,∫

Rk

〈(
Qt S⊤

t

St Rt

)(
x
a

)
,

(
x
a

)〉
νθt (x; da) =

〈(
Qt S⊤

t

St Rt

)(
x

Ktx

)
,

(
x

Ktx

)〉
+ tr(RtVt),

H(νθt (x)∥mt) =
1

2

(
(Ktx)⊤V̄ −1

t Ktx + tr(V̄ −1
t Vt) − k + ln

(
det(V̄t)

det(Vt)

))
.

The next lemma represents the cost C(θ) in terms of P θ defined in (2.10).

Lemma 3.2. Suppose (H.1) holds. For each θ ∈ Θ, let P θ ∈ C([0, T ];Sd) satisfy (2.10), let
φθ ∈ C([0, T ];Rd) satisfy for a.e. t ∈ [0, T ],

( d
dtφ)t+

1
2tr
(

(D⊤
t P

θ
t Dt + Rt + ρV̄ −1

t )Vt

)
+ ρ

2

(
−k + ln

(
det(V̄t)
det(Vt)

))
= 0; φT = 0,
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and let uθ : [0, T ] × Rd → R be such that uθt (x) = 1
2x

⊤P θ
t x + φθ

t for all (t, x) ∈ [0, T ] × Rd. Then
for all θ ∈ Θ and x ∈ Rd,

( d
dtu

θ)t +
1

2
tr
(

Γt(x, ν
θ
t (x))Γt(x, ν

θ
t (x))⊤(∇2

xu
θ)t(x)

)
+ Φt(x, ν

θ
t (x))⊤(∇xu

θ)t(x)

+
1

2

(
x⊤Qtx + x⊤S⊤

t Ktx + (Ktx)⊤Stx + (Ktx)⊤RtKtx + tr(RtVt)
)

+
ρ

2

(
(Ktx)⊤V̄ −1

t Ktx + tr(V̄ −1
t Vt) − k + ln

(
det(V̄t)

det(Vt)

))
= 0, a.e. t ∈ [0, T ],

(3.1)

and uθT (x) = 1
2x

⊤Gx, where ∇xu
θ and ∇2

xu
θ are the gradient and Hessian of uθ in x, respectively.

Moreover, it holds that C(θ) = E[uθ0(ξ0)].

Proof. Let Xθ ∈ S2(0, T ;Rd) be the solution to (2.8). For notational simplicity, we omit θ in the
superscripts of all variables.

By Lemma 3.1 and the definition of u, for all (t, x) ∈ [0, T ],

Φt(x, ν
θ
t (x))⊤(∇xu

θ)t(x) = 1
2x

⊤
(

(At + BtKt)
⊤Pt + Pt(At + BtKt)

)
x,

tr
(

Γt(x, ν
θ
t (x))Γt(x, ν

θ
t (x))⊤(∇2

xu
θ)t(x)

)
= tr

((
(Ct + DtKt)xx

⊤(Ct + DtKt)
⊤ + DVtD

⊤
)
Pt

)
.

Then one can easily see from the definitions of P and φ that u satisfies (3.1) for a.e. t ∈ [0, T ] and
all x ∈ Rd, and uT (x) = 1

2x
⊤Gx.

Now applying Itô’s formula to t 7→ ut(Xt) implies that

uT (XT ) = u0(X0) +

∫ T

0

(
( d
dtu)t(Xt) +

1

2
tr
(

Γt(Xt, νt(Xt))Γt(Xt, νt(Xt))
⊤(∇2

xu)t(Xt)
)

+ Φt(Xt, νt(Xt))
⊤(∇xu)t(Xt)

)
dt +

∫ T

0
(∇xu)t(Xt)

⊤Γt(Xt, νt(Xt)) dWt.

(3.2)

By the identity ∇xut = Ptx and the integrability of C,D, θ and X,
∫ ·
0(∇xu)t(Xt)

⊤Γt(Xt, νt(Xt)) dWt

is a martingale. Hence taking expectations on both sides of (3.2) and using (3.1) give that

E[u0(ξ0)] = E
[

1

2
X⊤

T GXT

]
+ E

[ ∫ T

0

{
1

2

(〈(
Qt S⊤

t

St Rt

)(
Xt

KtXt

)
,

(
Xt

KtXt

)〉
+ tr(RtVt)

)
+

ρ

2

(
(KtXt)

⊤V̄ −1
t KtXt + tr(V̄ −1

t Vt) − k + ln

(
det(V̄t)

det(Vt)

))}
dt

]
,

(3.3)

which along with Lemma 3.1 leads to the desired identity C(θ) = E[u0(ξ0)].

The following lemma quantifies the difference of value functions for two policies.

Lemma 3.3. Suppose (H.1) holds. For each θ ∈ Θ, let P θ ∈ C([0, T ];Sd) satisfy (2.10), and let

Σθ ∈ C([0, T ];Sd+) satisfy (2.11). Then for all θ, θ′ ∈ Θ,

C(θ′) − C(θ) =

∫ T

0

(
⟨K ′

t −Kt,DK(θ)tΣ
θ′
t ⟩ +

1

2
⟨K ′

t −Kt, (D
⊤
t P

θ
t Dt + Rt + ρV̄ −1

t )(K ′
t −Kt)Σ

θ′
t ⟩

+ ℓt(V
′
t , P

θ
t ) − ℓt(Vt, P

θ
t )

)
dt,

where DK(θ)t is defined by (2.12), and ℓ : [0, T ] × Sk+ × Rd×d → R is given by

ℓt(V,Z) =
1

2

(
⟨D⊤

t ZDt + Rt + ρV̄ −1
t , V ⟩ − ρ ln(det(V ))

)
∀(t, V, Z) ∈ [0, T ] × Sk+ × Rd×d. (3.4)
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Proof. Throughout this proof, let θ, θ′ ∈ Θ be given, let (P,Σ) = (P θ,Σθ), (P ′,Σ′) = (P θ′ ,Σθ′),
u = uθ and u′ = uθ

′
, where for each θ ∈ Θ, uθ : [0, T ] × Rd → R is defined as in Lemma 3.2. By

(3.1), for all x ∈ Rd, (u′ − u)T (x) = 0,

( d
dt(u

′ − u))t +
1

2
tr
(

Γt(x, ν
θ′
t (x))Γt(x, ν

θ′
t (x))⊤(∇2

x(u′ − u))t(x)
)

+ Φt(x, ν
θ′
t (x))⊤(∇x(u′ − u))t(x) + Ft(x) = 0, a.e. t ∈ [0, T ],

(3.5)

where F : [0, T ] × Rd → R is given by

Ft(x) =
1

2
tr
(

Γt(x, ν
θ′
t (x))Γt(x, ν

θ′
t (x))⊤(∇2

xu)t(x)
)

+ Φt(x, ν
θ′
t (x))⊤(∇xu)t(x)

−1

2
tr
(

Γt(x, ν
θ
t (x))Γt(x, ν

θ
t (x))⊤(∇2

xu)t(x)
)
− Φt(x, ν

θ
t (x))⊤(∇xu)t(x)

+
1

2

[(
x⊤Qtx + x⊤S⊤

t K
′
tx + (K ′

tx)⊤Stx + (K ′
tx)⊤RtK

′
tx + tr(RtV

′
t )
)

−
(
x⊤Qtx + x⊤S⊤

t Ktx + (Ktx)⊤Stx + (Ktx)⊤RtKtx + tr(RtVt)
)]

+
ρ

2

[(
(K ′

tx)⊤V̄ −1
t K ′

tx + tr(V̄ −1
t V ′

t ) − ln
(
det(V ′

t )
))

−
(

(Ktx)⊤V̄ −1
t Ktx + tr(V̄ −1

t Vt) − ln (det(Vt))
)]

.

Applying Itô’s formula to t 7→ (u′ − u)t(X
θ′
t ) (recall the definition of uθ in Lemma 3.2) and using

(3.5) yield that

E[(u′ − u)T (Xθ′
T )] − E[(u′ − u)0(X

θ′
0 )] = E

[∫ T

0
−Ft(X

θ′
t ) dt

]
,

which along with C(θ) = E[uθ0(ξ0)] (see Lemma 3.2) and (u′ − u)T = 0 implies that

C(θ′) − C(θ) = E
[∫ T

0
Ft(X

θ′
t ) dt

]
. (3.6)

We now simplify the expression of Ft(x) for any given (t, x) ∈ [0, T ] × Rd. To this end, let
H : [0, T ] × Rd × Rk × Rd × Rd×d → R be a modified Hamiltonian such that (t, x, a, y, z) ∈
[0, T ] × Rd × Rk × Rd × Rd×d,

Ht(x, a, y, z) = 1
2tr
(

(Ctx + Dta)(Ctx + Dta)⊤z
)

+ ⟨Atx + Bta, y⟩

+ 1
2

(
x⊤Qtx + x⊤S⊤

t a + a⊤Stx + a⊤(Rt + ρV̄ −1
t )a

)
,

and let ℓ : [0, T ] × Sk+ × Rd×d → R be defined as in (3.4). Recall that (∇xu)t(x) = Ptx and
(∇2

xu)t(x) = Pt. Hence by Lemma 3.1,

Ft(x) = Ht(x,K
′
tx, Ptx, Pt) −Ht(x,Ktx, Ptx, Pt) + ℓt(V

′
t , Pt) − ℓt(Vt, Pt). (3.7)

Observe that for all (t, x, y, z) ∈ [0, T ] × Rk × Rd × Sd, a 7→ Ht(x, a, y, z) is a quadratic function,
and hence Taylor’s expansion shows that for all a, a ∈ Rk,

Ht(x, a
′, y, z) −Ht(x, a, y, z) = ⟨a′ − a, ∂aHt(x, a, y, z)⟩ +

1

2
⟨a′ − a, ∂2

aHt(x, a, y, z)(a′ − a)⟩,
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where ∂aHt(x, a, y, z) and ∂2
aHt(x, a, y, z) are given by

∂aHt(x, a, y, z) = D⊤
t z(Ctx + Dta) + B⊤

t y + Stx + (Rt + ρV̄ −1
t )a,

∂2
aHt(x, a, y, z) = D⊤

t zDt + Rt + ρV̄ −1
t .

Substituting the above identities into (3.7) yields

Ft(x) = ℓt(V
′
t , Pt) − ℓt(Vt, Pt)

+ ⟨(K ′
t −Kt)x,D

⊤
t Pt(Ctx + DtKtx) + B⊤

t Ptx + Stx + (Rt + ρV̄ −1
t )Ktx⟩

+
1

2
⟨(K ′

t −Kt)x, (D
⊤
t PtDt + Rt + ρV̄ −1

t )(K ′
t −Kt)x⟩,

which along with (3.6), the definition of DK(θ) in (2.12), and Σ′
t = E[Xθ′

t (Xθ′
t )⊤] leads to the

desired conclusion.

Proof of Proposition 2.1. For each θ ∈ Θ, by (3.3),

C(θ) =
1

2

∫ T

0

(
tr
(

(Qt + K⊤
t St + S⊤

t Kt + K⊤
t (Rt + ρV̄ −1

t )Kt)Σ
θ
t

)
+ tr(RtVt) + ρ

(
tr(V̄ −1

t Vt) − k + ln

(
det(V̄t)

det(Vt)

)))
dt +

1

2
tr(GΣθ

T ),

(3.8)

where Σθ ∈ C([0, T ];Sd+) satisfies (2.11). We then apply [4, Corollary 4.11] to characterise the

Gateaux derivatives. Let H : [0, T ]×Sd+×Rk×d×Sk+×Rd → R be the Hamiltonian of (3.8)-(2.11)

such that for all (t,Σ,K, V, Y ) ∈ [0, T ] × Sd+ × Rk×d × Sk+ × Rd×d,

Ht(Σ,K, V, Y ) = ⟨(At + BtK)Σ + Σ(At + BtK)⊤ + (Ct + DtK)Σ(Ct + DtK)⊤ + DtV D⊤
t , Y ⟩

+
1

2

{
tr
(

(Qt + K⊤St + S⊤
t K + K⊤(Rt + ρV̄ −1

t )K)Σ
)

+ tr(RtV )

+ ρ

(
tr(V̄ −1

t V ) − k + ln

(
det(V̄t)

det(V )

))}
,

and for each θ ∈ Θ, let Y θ ∈ C([0, T ];Rd×d) be the adjoint process satisfying

( d
dtY )t = −∂ΣHt(Σ

θ
t ,Kt, Vt, Yt), a.e. t ∈ [0, T ]; YT = 1

2G.

Then by [4, Corollary 4.11], for all θ, θ ∈ Θ,

d

dε
C(K + εK ′, V )

∣∣∣
ε=0

=

∫ T

0
⟨∂KHt(Σ

θ
t ,Kt, Vt, Y

θ
t ),K ′

t⟩ dt,

d

dε
C(K,V + ε(V ′ − V ))

∣∣∣
ε=0

=

∫ T

0
⟨∂V Ht(Σ

θ
t ,Kt, Vt, Y

θ
t ), V ′

t − Vt⟩dt.

Observe that Y θ = 1
2P

θ ∈ C([0, T ];Sd), and for all (t,Σ,K, V, Y ) ∈ [0, T ] × Sd+ ×Rk×d × Sk+ × Sd,

∂KHt(Σ,K, V, Y ) =
(

2B⊤
t Y + 2D⊤

t Y (Ct + DtK) + St + (Rt + ρV̄ −1
t )K

)
Σ,

∂V Ht(Σ,K, V, Y ) = D⊤
t Y Dt + 1

2(Rt + ρ(V̄ −1
t − V −1)).

This proves the desired claims.
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Proof of Proposition 2.2. Observe from a direct computation that for all Z,Γ ∈ Rk×d, Σ ∈ Sk+
and M ∈ Sk+,

⟨Z,ΓΣ⟩ +
1

2
⟨Z,MZΣ⟩ =

1

2

〈
Z + M−1Γ,M

(
Z + M−1Γ

)
Σ
〉
− 1

2
⟨M−1Γ,ΓΣ⟩

≥ −1

2
⟨M−1Γ,ΓΣ⟩,

(3.9)

where the last inequality uses the fact that tr(AB) ≥ 0 if A,B ∈ Sd+. Hence for all θ ∈ Θ and t ∈
[0, T ], substituting (3.9) with Z = K⋆

t −Kt, Γ = DK(θ)t, Σ = Σθ⋆
t and M = D⊤

t P
θ
t Dt +Rt +ρV̄ −1

t

yields that∫ T

0

(
⟨K⋆

t −Kt,DK(θ)tΣ
θ⋆

t ⟩ +
1

2
⟨K⋆

t −Kt, (D
⊤
t P

θ
t Dt + Rt + ρV̄ −1

t )(K⋆
t −Kt)Σ

θ⋆

t ⟩
)

dt

≥ −1

2

∫ T

0
⟨(D⊤

t P
θ
t Dt + Rt + ρV̄ −1

t )−1DK(θ)t,DK(θ)tΣ
θ⋆

t ⟩ dt.

(3.10)

Then by Lemma 3.3 and (3.10):

C(θ⋆) − C(θ)

=

∫ T

0

(
⟨K⋆

t −Kt,DK(θ)tΣ
θ⋆

t ⟩ +
1

2
⟨K⋆

t −Kt, (D
⊤
t P

θ
t Dt + Rt + ρV̄ −1

t )(K⋆
t −Kt)Σ

θ⋆

t ⟩

+ ℓt(V
⋆
t , P

θ
t ) − ℓt(Vt, P

θ
t )

)
dt

≥
∫ T

0

(
−1

2
⟨(D⊤

t P
θ
t Dt + Rt + ρV̄ −1

t )−1DK(θ)t,DK(θ)tΣ
θ⋆

t ⟩ + ℓt(V
⋆
t , P

θ
t ) − ℓt(Vt, P

θ
t )

)
dt.

(3.11)

Now by (3.4), for all (t, Z) ∈ [0, T ] × Rd×d and V, V ′ ∈ Sk+,

ℓt(V
′, Z) − ℓt(V,Z)

= ⟨∂V ℓt(V,Z), V ′ − V ⟩ +

∫ 1

0

(
d
dsℓt(V + s(V ′ − V ), Z) − ⟨∂V ℓt(V,Z), V ′ − V ⟩

)
ds

= ⟨∂V ℓt(V,Z), V ′ − V ⟩ +

∫ 1

0
⟨∂V ℓt(V + s(V ′ − V ), Z) − ∂V ℓt(V,Z), V ′ − V ⟩ds.

Recall that ∂V ℓt(V,Z) = 1
2(D⊤

t ZDt +Rt + ρV̄ −1
t − ρV −1), and A−1 −B−1 = B−1(B −A)A−1 for

all A,B ∈ Sk+. Then for all (t, Z) ∈ [0, T ] × Rd×d and V, V ′ ∈ Sk+,

ℓt(V
′, Z) − ℓt(V,Z)

= ⟨∂V ℓt(V,Z), V ′ − V ⟩ +
ρ

2

∫ 1

0
⟨V −1

(
s(V ′ − V )

)
(V + s(V ′ − V ))−1, V ′ − V ⟩ ds.

(3.12)

Hence for all θ, θ′ ∈ Θ and t ∈ [0, T ], by using (2.13), the fact that tr(AB) ≥ 0 for all A,B ∈ Sd+,
and (3.9) (with Z = V ′

t − Vt, Γ = DV (θ)t, Σ = Ik, M = ρ
2Λ(V ′

t , Vt)
2Ik),

ℓt(V
′
t , P

θ
t ) − ℓt(Vt, P

θ
t )

= ⟨∂V ℓt(Vt, P
θ
t ), V ′

t − Vt⟩ +
ρ

2

∫ 1

0
⟨V −1

t

(
s(V ′

t − Vt)
)
(Vt + s(V ′

t − Vt))
−1, V ′

t − Vt⟩ds

≥ ⟨DV (θ)t, V
′
t − Vt⟩ +

ρ

4
Λ(V ′

t , Vt)
2⟨V ′

t − Vt, V
′
t − Vt⟩ ≥ − 1

ρΛ(V ′
t , Vt)2

|DV (θ)t|2,

(3.13)
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with Λ(V ′
t , Vt) > 0 defined as

Λ(V ′
t , Vt) := min

s∈[0,1]
λmin

(
(Vt + s(V ′

t − Vt))
−1
)

=
1

maxs∈[0,1] λmax (Vt + s(V ′
t − Vt))

=
1

max(λmax(Vt), λmax(V ′
t ))

=
1

max(∥Vt∥2, ∥V ′
t ∥2)

,

due to the convexity of [0, 1] ∋ s 7→ λmax (Vt + s(V ′
t − Vt)) ∈ R, and ∥V ∥2 = λmax(V ) for all

V ∈ Sk+. Substituting (3.13) with V ′ = V ⋆ and using (3.11) yield the desired estimate (2.14).

Proof of Proposition 2.3. By (2.13) and (3.12), for all θ, θ′ ∈ Θ and t ∈ [0, T ],

ℓt(V
′
t , P

θ
t ) − ℓt(Vt, P

θ
t )

= ⟨∂V ℓt(Vt, P
θ
t ), V ′

t − Vt⟩ +
ρ

2

∫ 1

0
⟨V −1

t

(
s(V ′

t − Vt)
)
(Vt + s(V ′

t − Vt))
−1, V ′

t − Vt⟩ ds

≤ ⟨DV (θ)t, V
′
t − Vt⟩ +

ρ

4
Λ(V ′

t , Vt)
2⟨V ′

t − Vt, V
′
t − Vt⟩,

where Λ(V ′
t , Vt) > 0 is given by

Λ(V ′
t , Vt) := max

s∈[0,1]
λmax

(
(Vt + s(V ′

t − Vt))
−1
)

=
1

mins∈[0,1] λmin (Vt + s(V ′
t − Vt))

=
1

min(λmin(Vt), λmin(V ′
t ))

.

Combining this and Lemma 3.3 yields the desired estimate.

3.2 Proof of Proposition 2.5

The following lemma compares solutions to (2.10) for different θ, θ′ ∈ Θ.

Lemma 3.4. Suppose (H.1) holds. For each θ ∈ Θ, let P θ ∈ C([0, T ];Sd) satisfy (2.10). Then
for all θ, θ′ ∈ Θ, ∆P := P θ′ − P θ satisfies for a.e. t ∈ [0, T ],

( d
dt∆P )t + (At + BtK

′
t)
⊤∆Pt + ∆P⊤

t (At + BtK
′
t) + (Ct + DtK

′
t)
⊤∆Pt(Ct + DtK

′
t)

+ (K ′
t −Kt)

⊤DK(θ)t + DK(θ)⊤t (K ′
t −Kt)

+ (K ′
t −Kt)

⊤(D⊤
t P

θ
t Dt + Rt + ρV̄ −1

t )(K ′
t −Kt),= 0; ∆PT = 0,

where DK(θ)t is defined in (2.12).

Proof. By (2.10), ∆PT = 0 and for a.e. t ∈ [0, T ],

( d
dt∆P )t + (At + BtK

′
t)
⊤∆Pt + ∆P⊤

t (At + BtK
′
t) + (Ct + DtK

′
t)
⊤∆Pt(Ct + DtK

′
t)

+ qt(K
′
t) − qt(Kt) = 0,

where for all K ∈ Rk×d,

qt(K) := (At + BtK)⊤P θ
t + (P θ

t )⊤(At + BtK) + (Ct + DtK)⊤P θ
t (Ct + DtK)

+ S⊤
t K + K⊤St + K⊤(Rt + ρV̄ −1

t )K.
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Observe that for any K1,K2 ∈ Rk×d and P ∈ Sd,

K⊤
1 PK1 −K⊤

2 PK2 = (K1 −K2)
⊤PK2 + K⊤

2 P (K1 −K2) + (K1 −K2)
⊤P (K1 −K2).

Thus for a.e. t ∈ [0, T ],

qt(K
′
t) − qt(Kt) = (K ′

t −Kt)
⊤
(
B⊤

t P
θ
t + D⊤

t P
θ
t (Ct + DtKt) + St + (Rt + ρV̄ −1

t )Kt

)
+
(
B⊤

t P
θ
t + D⊤

t P
θ
t (Ct + DtKt) + St + (Rt + ρV̄ −1

t )Kt

)⊤
(K ′

t −Kt)

+ (K ′
t −Kt)

⊤(D⊤
t P

θ
t Dt + Rt + ρV̄ −1

t )(K ′
t −Kt),

which along with the definition of DK(θ)t leads to the desired identity.

Based on Lemma 3.4, we establish a uniform bound of (P θn)n∈N and (Kn)n∈N.

Proposition 3.5. Suppose (H.1) and (H.2) hold. For each θ ∈ Θ, let P θ ∈ C([0, T ];Sd) satisfy
(2.10). Let θ0 ∈ Θ, λ0 > 0 be such that λ0Ik ⪰ D⊤P θ0D + R + ρV̄ −1, and for each τ > 0, let
(Kn)n∈N ⊂ B(0, T ;Rd×k) be defined in (2.16). Then

(1) for all τ ∈ (0, 2/λ0] and n ∈ N0, P
θn ⪰ P θn+1 ⪰ P ⋆, and δ̃Ik ⪯ D⊤P θnD+R+ρV̄ −1 ⪯ λ0Ik,

with P ⋆ ∈ C([0, T ];Sd) and δ̃ > 0 in (H.2);

(2) there exists C̃(θ0) ≥ 0 such that for all τ ∈ (0, 1/λ0] and n ∈ N0, ∥Kn∥L2 ≤ C̃(θ0).

Proof. We write Pn = P θn for notational simplicity. For each n ∈ N, applying (2.16) and Lemma
3.4 with θ′ = θn and θ = θn−1, ∆P := Pn − Pn−1 ∈ C([0, T ];Sd) satisfies ∆PT = 0, and for
a.e. t ∈ [0, T ],

( d
dt∆P )t + (At + BtK

n+1
t )⊤∆Pt + ∆P⊤

t (At + BtK
n+1
t ) + (Ct + DtK

n+1
t )⊤∆Pt(Ct + DtK

n+1
t )

= −(Kn+1
t −Kn

t )⊤DK(θn)t −DK(θn)⊤t (Kn+1
t −Kn

t )

− (Kn+1
t −Kn

t )⊤(D⊤
t P

n
t Dt + Rt + ρV̄ −1

t )(Kn+1
t −Kn

t )

= 2τDK(θn)⊤t

(
Ik − τ

2 (D⊤
t P

n
t Dt + Rt + ρV̄ −1

t )
)
DK(θn)t.

Now suppose that τ ∈ (0, 2/λ0], then Ik − τ
2 (D⊤

t P
0
t Dt + Rt + ρV̄ −1

t ) ⪰ 0, which implies that
P 1 ⪯ P 0 (see e.g., [34, Lemma 7.3, p. 320]), and hence

Ik − τ
2 (D⊤P 1D + R + ρV̄ −1) ⪰ Ik − τ

2 (D⊤P 0D + R + ρV̄ −1) ⪰ 0.

An induction argument shows that Pn ⪰ Pn+1 for all n ∈ N0. Moreover, observe from (2.5) and
(2.6) that DK(θ⋆) = 0 and P ⋆ = P θ⋆ . By applying Lemma 3.4 with θ′ = θn and θ = θ⋆, one can
deduce from similar arguments that Pn ⪰ P θ⋆ for all n ∈ N0. Consequently, by (H.2),

λ0Ik ⪰ D⊤P 0D + R + ρV̄ −1 ⪰ D⊤PnD + R + ρV̄ −1 ⪰ D⊤P ⋆D + R + ρV̄ −1 ⪰ δ̃Ik.

This proves Item (1).
Item (1) implies that there exists C̃(θ0) > 0 such that ∥Pn∥L∞ ≤ C̃(θ0) for all n ∈ N0. Then

for all n ∈ N0, by (2.12) and (2.16),

|Kn+1
t | =

∣∣∣Kn
t − τ

(
(B⊤

t P
n
t + D⊤

t P
n
t Ct + St) + (D⊤

t P
n
t Dt + Rt + ρV̄ −1

t )Kn
t

)∣∣∣
≤ |Ik − τ(D⊤

t P
n
t Dt + Rt + ρV̄ −1

t )||Kn
t | + τ |B⊤

t P
n
t + D⊤

t P
n
t Ct + St|.
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Thus for all τ ∈ (0, 1/λ0] and n ∈ N0,

∥Kn+1∥L2 ≤ (1 − τλ0)∥Kn∥L2 + τ∥B⊤Pn + D⊤PnC + S∥L2

≤ ∥K0∥L2 + sup
n∈N0

1

λ0

∥B⊤Pn + D⊤PnC + S∥L2 < ∞,

where the last inequality follows from a straightforward induction argument.

The next proposition proves a uniform upper and lower bound of (V n)n∈N.

Proposition 3.6. Suppose (H.1) and (H.2) hold. Let θ0 ∈ Θ, and for each τ > 0, let (θn)n∈N ⊂
B(0, T ;Rk×d × Sk) be defined in (2.16). Let λ0 > 0 be such that λ0Ik ⪰ D⊤P θ0D + R + ρV̄ −1

with P θ0 ∈ C([0, T ];Sd) defined in (2.10), let λV = min
(

mint∈[0,T ] λmin(V 0
t ), ρ

λ0

)
, and let λV =

max
(

maxt∈[0,T ] λmax(V 0
t ), ρ

δ̃

)
. Then for all τ ∈ (0, 1/λ0] and n ∈ N0, λV Ik ⪯ V n ⪯ λV Ik.

Proof. For each n ∈ N0, let Mn = D⊤P θnD + R + ρV̄ −1. By (2.13), for each n ∈ N0 and
a.e. t ∈ [0, T ],

V n+1
t = V n

t − τ

(
1

2

(
Mn

t − ρ(V n
t )−1

)
V n
t + V n

t

1

2

(
Mn

t − ρ(V n
t )−1

))
=

1

2
(Ik − τMn

t )V n
t +

1

2
V n
t (Ik − τMn

t ) + ρτIk.

Let τ ∈ (0, 1/λ0]. By Proposition 3.5 Item (1), for all n ∈ N0, δ̃Ik ⪯ Mn ⪯ λ0Ik, and hence
0 ⪯ (1 − τλ0)Ik ⪯ Ik − τMn ⪯ (1 − τ δ̃)Ik. Thus for all n ∈ N0 and a.e. t ∈ [0, T ],

λmin(V n+1
t ) ≥ λmin (Ik − τMn

t )λmin(V n
t ) + ρτ ≥

(
1 − τλ0

)
λmin(V n

t ) + ρτ.

Setting vnt = λmin(V n
t ) for all n ∈ N0. An induction argument shows that

vnt ≥
(
1 − τλ0

)n
v0t + ρτ

n−1∑
i=0

(
1 − τλ0

)i
=

(
v0t −

ρ

λ0

)(
1 − τλ0

)n
+

ρ

λ0

≥ min

(
v0t ,

ρ

λ0

)
.

Similarly, for all n ∈ N0 and a.e. t ∈ [0, T ],

λmax(V n+1
t ) ≤ λmax (Ik − τMn

t )λmax(V n
t ) + ρτ ≤

(
1 − τ δ̃

)
λmax(V n

t ) + ρτ,

which implies that λmax(V n
t ) ≤ max

(
λmax(V 0

t ), ρ
δ̃

)
.

The following lemma establishes an upper and lower bounds of the state covariance matrices
for any θ ∈ Θ, which is crucial for the convergence analysis of (2.16).

Lemma 3.7. Suppose (H.1) and (H.2) hold. For each θ ∈ Θ, let Σθ ∈ C([0, T ];Sd+) satisfy (2.11).

Then there exists C̃ > 0 such that for all θ ∈ Θ,

λmin(E[ξ0ξ
⊤
0 ]) exp

(
−C̃(1 + ∥K∥2L2)

)
Id ⪯ Σθ ⪯ C̃ (|Σ0| + ∥V ∥L1) exp

(
C̃(1 + ∥K∥2L2)

)
Id.

21



Proof. Let θ ∈ Θ be fixed. We omit the superscript of Σθ to simplify the notation. To estimate
λmax(Σt), by (2.11), for all t ∈ [0, T ],

∥Σt∥2 ≤ ∥Σ0∥2 +

∫ t

0

(
(2∥Ãs∥2 + ∥C̃s∥22)∥Σs∥2 + ∥Ds∥22∥Vs∥2

)
ds,

where Ãt = At + BtKt and C̃t = Ct + DtKt. Then by (H.1(1)) and Gronwall’s inequality,

∥Σ∥L∞ ≤ C̃ (|Σ0| + ∥V ∥L1) exp
(
C̃(1 + ∥K∥2L2)

)
for some C̃1 > 0.

Now we obtain a lower bound of λmin(Σt). As (C+DK)Σ(C+DK)⊤+DVD⊤ ⪰ 0, by (2.11),

Σ ⪰ Σ̃, where Σ̃ ∈ C([0, T ];Sd+) satisfies for a.e. t ∈ [0, T ],

( d
dtΣ)t =(At + BtKt)Σt + Σt(At + BtKt)

⊤; Σ0 = E[ξ0ξ
⊤
0 ]. (3.14)

Note that for all t ∈ [0, T ], Σ̃t = Ψ⊤
t E[ξ0ξ

⊤
0 ]Ψt, where Ψ ∈ C([0, T ];Rd×d) satisfies Ψ0 = Id and

for a.e. t ∈ [0, T ], dΨt = ΨtÃ
⊤
t dt, with Ã = A + BK ∈ L1(0, T ;Rd×d). For each t ∈ [0, T ], let

xt ∈ Rd be such that |xt| = 1 and λmin(Σ̃t) = x⊤t Σ̃txt, and let yt = Ψtxt. Then

λmin(Σt) ≥ λmin(Σ̃t) = x⊤t

(
(Ψt)

⊤E[ξ0ξ
⊤
0 ]Ψt

)
xt =

y⊤t E[ξ0ξ
⊤
0 ]yt

|yt|2
|yt|2 ≥

λmin(E[ξ0ξ
⊤
0 ])∥∥Ψ−1

t

∥∥2
2

,

where the last inequality uses 1 = |xt| ≤ ∥(Ψt)
−1∥2|yt|, with the spectral norm ∥ · ∥2. Observe

that Ψ−1 ∈ C([0, T ];Rd×d) be such that Ψ−1
0 = Id and for a.e. t ∈ [0, T ], dΨ−1

t = −Ã⊤
t Ψ−1

t dt.
Hence for all t ∈ [0, T ],

∥Ψ−1
t ∥2 ≤ 1 +

∫ t

0
∥Ãs∥2∥Ψ−1

s ∥2 ds ≤ 1 +

∫ t

0
|Ãs|∥Ψ−1

s ∥2 ds,

which along with Gronwall’s inequality shows that ∥Ψ−1
t ∥L∞ ≤ exp

(
∥Ã∥L1

)
. Consequently,

inft∈[0,T ] λmin(Σt) ≥ λmin(E[ξ0ξ
⊤
0 ]) exp

(
−2∥Ã∥L1

)
, which along with (H.1(1)) leads to the desired

lower bound of λmin(Σt).

A direct consequence of Proposition 3.6 and Lemma 3.7 are the following uniform bounds of
the state covariance matrices along the iterates (θn)n∈N generated by (2.16).

Proposition 3.8. Suppose (H.1) and (H.2) hold, and E[ξ0ξ
⊤
0 ] ≻ 0. For each θ ∈ Θ, let P θ ∈

C([0, T ];Sd) satisfy (2.10), and let Σθ ∈ C([0, T ];Sd+) satisfy (2.11). Let θ0 ∈ Θ, let λ0 > 0 be

such that λ0Ik ⪰ D⊤P θ0D + R + ρV̄ −1, and for each τ ∈ (0, 1/λ0], let (θn)n∈N ⊂ Θ be defined in
(2.16). Then there exists λX , λX > 0, depending on θ0, such that for all τ ∈ (0, 1/λ0] and n ∈ N0,
λXId ⪯ Σθn ⪯ λXId.

Proof. By Proposition 3.5, for all τ ∈ (0, 1/λ0], supn∈N0
∥Kn∥L2 ≤ C̃(θ0) for some C̃(θ0) > 0. The

uniform lower and upper bounds of (Σθn)n∈N0 follow from Proposition 3.6 and Lemma 3.7.

3.3 Proof of Theorem 2.6

The following proposition compares the value functions of two consecutive iterates.
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Proposition 3.9. Suppose (H.1) and (H.2) hold, and E[ξ0ξ
⊤
0 ] ≻ 0. Let θ0 ∈ Θ, and λ0 > 0

be such that λ0Ik ⪰ D⊤P θ0D + R + ρV̄ −1 with P θ0 ∈ C([0, T ];Sd) defined in (2.10). For each
τ ∈ (0, 1/λ0], let (θn)n∈N ⊂ Θ be defined in (2.16), let λV , λV > 0 be such that λV Ik ⪯ V n ⪯ λV Ik
for all n ∈ N0 (cf. Proposition 3.6), and let λX , λX > 0 be such that λXIk ⪯ Σθn ⪯ λXIk for all
n ∈ N0 (cf. Proposition 3.8). Then for all τ ∈ (0, 1/λ0] and n ∈ N0,

C(θn+1) − C(θn) ≤ −τ

∫ T

0

((
λX − τ

2
λ0λX

)
|DK(θn)t|2 +

(
2λV − ρτλ

2
V

λ2
V

)
|Dn

V (θn)t|2
)

dt.

Proof. For each n ∈ N0, let Σn = Σθn , Pn = P θn , ∆Kn = Kn+1 − Kn, ∆V n = V n+1 − V n,
Dn

K = DK(θn), and Dn
V = DV (θn). By using Proposition 2.3 and the fact that λV Ik ⪯ V n ⪯ λV Ik

for all n ∈ N0,

C(θn+1) − C(θn) ≤
∫ T

0

(
⟨∆Kn

t ,Dn
K,tΣ

n+1
t ⟩ +

1

2
⟨∆Kn

t , (D
⊤
t P

n
t Dt + Rt + ρV̄ −1

t )(∆Kn
t )Σn+1

t ⟩

+ ⟨Dn
V,t,∆V n

t ⟩ +
ρ

4λ2
V

|∆V n
t |2
)

dt

≤
∫ T

0

(
⟨−τDn

K,t,Dn
K,tΣ

n+1
t ⟩ +

τ2

2
⟨Dn

K,t, (D
⊤
t P

n
t Dt + Rt + ρV̄ −1

t )Dn
K,tΣ

n+1
t ⟩

− τ

[
⟨Dn

V,t, {Dn
V,tV

n
t }S⟩ −

ρτ

4λ2
V

|{Dn
V,tV

n
t }S |2

])
dt

with {Dn
V,tV

n
t }S := Dn

V,tV
n
t + V n

t Dn
V,t, where the last inequality used (2.16). Recall that for all

S1, S2 ∈ Sk+, λmin(S1)tr(S2) ≤ tr(S1S2) ≤ λmax(S1)tr(S2). Hence ⟨Dn
V,t, {Dn

V,tV
n
t }S⟩ ≥ 2λV |Dn

V,t|2,
and |{Dn

V,tV
n
t }S |2 ≤ 4λ

2
V |Dn

V,t|2. Hence for all n ∈ N0,

C(θn+1) − C(θn) ≤
∫ T

0

(
− τ

(
λmin(Σn+1

t ) − τ

2
λmax((D⊤

t P
n
t Dt + Rt + ρV̄ −1

t ))λmax(Σn+1
t )

)
|Dn

K,t|2

− τ

(
2λV − ρτλ

2
V

λ2
V

)
|Dn

V,t|2
)

dt.

The desired inequality then follows from Propositions 3.5 and 3.8.

The next proposition establishes a uniform  Lojasiewicz property of the cost C : Θ → R along
the iterates (2.16).

Proposition 3.10. Suppose (H.1) and (H.2) hold, and E[ξ0ξ
⊤
0 ] ≻ 0. Let θ⋆ ∈ Θ be defined in

(2.6). For each θ ∈ Θ, let P θ ∈ C([0, T ];Sd) satisfy (2.10), and let Σθ ∈ C([0, T ];Sd+) satisfy

(2.11). Let θ0 ∈ Θ and λ0 > 0 such that λ0Ik ⪰ D⊤P θ0D + R + ρV̄ −1. For each τ ∈ (0, 1/λ0], let
(θn)n∈N0 ⊂ Θ be defined in (2.16). Then for all τ ∈ (0, 1/λ0] and n ∈ N0,

C(θn) − C(θ⋆) ≤ max

(
λ
⋆
X

2δ̃
,

max(λV , λ
⋆
V )2

ρ

)∫ T

0

(
|DK(θn)t|2 + |DV (θn)t|2

)
dt,

where δ̃ > 0 is the same as in (H.2), λ
⋆
X > 0 satisfies Σθ⋆ ⪯ λ

⋆
XId, λ

⋆
V > 0 satisfies V ⋆ ⪯ λ

⋆
V Ik,

and λV > 0 satisfies V n ⪯ λV Ik for all n ∈ N0.
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Proof. Let λ
⋆
V > 0 be such that V ⋆ ⪯ λ

⋆
V Ik. For each n ∈ N0, let Σn = Σθn , Pn = P θn , Dn

K =
DK(θn), and Dn

V = DV (θn). Recall that there exists λV , λV > 0 such that λV Ik ⪯ V n ⪯ λV Ik for

all n ∈ N0. Then for all n ∈ N0, Proposition 3.5 shows that D⊤
t P

n
t Dt + Rt + ρV̄ −1

t ⪰ δ̃Ik, which
along with Proposition 2.2 shows that

C(θn) − C(θ⋆) ≤
∫ T

0

(
1

2
⟨(D⊤

t P
n
t Dt + Rt + ρV̄ −1

t )−1Dn
K,t,Dn

K,tΣ
θ⋆

t ⟩ +
max(λV , λ

⋆
V )2

ρ
|Dn

V,t|2
)

dt

≤
∫ T

0

(
λ
⋆
X

2δ̃
|Dn

K,t|2 +
max(λV , λ

⋆
V )2

ρ
|Dn

V,t|2
)

dt,

with λ
⋆
X > 0 such that Σθ⋆ ⪯ λ

⋆
XId (cf. Lemma 3.7). This proves the desired estimate.

Proof of Theorem 2.6. Let λ0 > 0 be such that λ0Ik ⪰ D⊤P θ0D + R + ρV̄ −1, where P θ0 ∈
C([0, T ];Sd) satisfies (2.10) with θ = θ0. Then by Proposition 3.9, for all τ ∈ (0, 1/λ0] and n ∈ N0,

C(θn+1) − C(θn) ≤ −τ

∫ T

0

((
λX − τ

2
λ0λX

)
|DK(θn)t|2 +

(
2λV − ρτλ

2
V

λ2
V

)
|Dn

V (θn)t|2
)

dt,

with the constants λX , λX > 0 in Proposition 3.8. Hence by setting C̃1 = max(λ0,
2ρλ

2
V

3λ3
V
, λ0λX

λX
), it

holds for all τ ∈ (0, 1/C̃1] and n ∈ N0,

C(θn+1) − C(θn) ≤ −τ

∫ T

0

(
λX

2
|DK(θn)t|2 +

λV

2
|DV (θn)t|2

)
dt

≤ −τ
1

2
min(λX , λV )

∫ T

0

(
|DK(θn)t|2 + |DV (θn)t|2

)
dt

≤ −τC1 (C(θn) − C(θ⋆)) , with C1 :=
min(λX , λV )

2 max
(
λ
⋆
X

2δ̃
, max(λV ,λ

⋆
V )2

ρ

) ,

where the last inequality used Proposition 3.10. Thus, for all τ ∈ (0, τ0] with τ0 > 0 satisfying

1

τ0
≥ max

(
λ0,

2ρλ
2
V

3λ3
V

,
λ0λX

λX

,
min(λX , λV )

2 max
(
λ
⋆
X

2δ̃
, max(λV ,λ

⋆
V )2

ρ

)),
we have for all n ∈ N0, C(θn+1) ≤ C(θn) and

C(θn+1) − C(θ⋆) ≤ C(θn+1) − C(θn) + C(θn) − C(θ⋆) ≤ (1 − τC1)
(
C(θn) − C(θ⋆)

)
. (3.15)

To prove Item (2), observe that DK(θ⋆) = 0 and DV (θ⋆) = 0. Hence by Lemma 3.3 and (3.13),
for all n ∈ N0,

C(θn) − C(θ⋆)

≥
∫ T

0

(
1

2
⟨Kn

t −K⋆
t , (D

⊤
t P

⋆
t Dt + Rt + ρV̄ −1

t )(Kn
t −K⋆

t )Σθn

t ⟩ +
ρ

4

|V n
t − V ⋆

t |2

max(∥V n
t ∥22, ∥V ⋆

t ∥22)

)
dt

≥
∫ T

0

(
1

2
δ̃λX |Kn

t −K⋆
t |2 +

ρ

4λ
2
V

|V n
t − V ⋆

t |2
)

dt,

where the last inequality used (H.2), Proposition 3.8 and V ⋆, V n ⪯ λV Ik. This along with Item

(1) proves Item (2) with C2 = 1/min

(
1
2 δ̃λX , ρ

4λ
2
V

)
.
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3.4 Proofs of Theorem 2.7 and Corollary 2.8

The following lemma proves the optimal costs of piecewise constant policies converges to the
optimal cost of continuous-time policies as |π| → 0.

Lemma 3.11. Suppose (H.1) and (H.2) hold. Let (πm)m∈N ⊂ P[0,T ] be such that limm→∞ |πm| =
0. Then limm→∞C⋆

πm
= infθ∈Θ C(θ).

Proof. For each m ∈ N, by Θπm ⊂ Θ, C⋆
πm

= infθ∈Θπm C(θ) ≥ infθ∈Θ C(θ), which implies that
lim infm→∞ C⋆

πm
≥ infθ∈Θ C(θ). On the other hand, let θ⋆ = (K⋆, V ⋆) be defined in (2.6), and

for each m ∈ N, let θm,⋆ = (Km,⋆, V m,⋆) be the L2 projection of θ⋆ onto Θm such that Km,⋆
t =∑Nm−1

i=0 K
⋆
ti1[ti,ti+1)(t) and V m,⋆

t =
∑Nm−1

i=0 V
⋆
ti1[ti,ti+1)(t) for a.e. t ∈ [0, T ], where

K
⋆
ti =

1

ti+1 − ti

∫ ti+1

ti

K⋆
t dt, V

⋆
ti =

1

ti+1 − ti

∫ ti+1

ti

V ⋆
t dt, ∀i ∈ {0, . . . , Nm − 1}.

A standard mollification argument shows that limm→∞ ∥θm,⋆ − θ⋆∥L2 = 0. Moreover, the fact
that εIk ⪯ V ⋆ ⪯ 1

εIk for some ε > 0 implies that εIk ⪯ V m,⋆ ⪯ 1
εIk for all m ∈ N. By the

uniform L2-bound of (Km,⋆)m∈N and the L∞-bound of (V m,⋆)m∈N, there exists C ≥ 0 such that
Σθm,⋆ ⪯ CId for all m ∈ N due to Lemma 3.7. Then by Proposition 2.3, for all m ∈ N,

C(θm,⋆) − C(θ⋆) ≤
∫ T

0

(
1

2
⟨Km,⋆

t −K⋆
t , (D

⊤
t P

θ⋆

t Dt + Rt + ρV̄ −1
t )(Km,⋆

t −K⋆
t )Σθm,⋆

t ⟩

+
ρ

4

|V m,⋆
t − V ⋆

t |2

min(λ2
min(V ⋆

t ), λ2
min(V m,⋆

t ))

)
dt,

which along with limm→∞ ∥θm,⋆ − θ⋆∥L2 = 0 and V m,⋆ ⪰ εIk, Σθm,⋆ ⪯ CId for all m ∈ N implies
that limm→∞ C(θm,⋆) = infθ∈Θ C(θ). As C⋆

πm
≤ C(θm,⋆) for all m ∈ N,

inf
θ∈Θ

C(θ) ≤ lim inf
m→∞

C⋆
πm

≤ lim sup
m→∞

C⋆
πm

≤ lim sup
m→∞

C(θm,⋆) = inf
θ∈Θ

C(θ).

This leads to the desired convergence result.

The following proposition proves that when the mesh size |π| are sufficiently small, the policies
from (2.21) have similar costs as those from (2.16).

Proposition 3.12. Suppose (H.1), (H.2) and (H.3) hold. Assume further that D ∈ C([0, T ];Rd×k),
R ∈ C([0, T ];Sk) and V̄ ∈ C([0, T ];Sk+). Let θ0 ∈ L2(0, T ;Rk×d) × C([0, T ];Sk+), let (πm)m∈N ⊂
P[0,T ] be such that limm→∞ |πm| = 0, and let (θπm,0)m∈N ⊂ Θ be such that θπm,0 ∈ Θπm for all

m ∈ N, limm→∞ ∥θπm,0 − θ0∥L2×L∞ = 0. Let λ0 > 0 be such that λ0Ik ⪰ D⊤P θ0D + R + ρV̄ −1,
with P θ0 ∈ C([0, T ];Sd) defined in (2.10), and for each τ > 0, let (θn)n∈N and (θπm,n)m,n∈N be
defined in (2.16) and (2.21), respectively. Then for all τ ∈ (0, 1/λ0] and N ∈ N0,

lim
m→∞

sup
n=0,...,N

|C(θπm,n) − C(θn)| = 0.

Proof. For each L > 0, define ΘL =
{
θ = (K,V ) ∈ Θ

∣∣∣ 1
LIk ⪯ V ⪯ LIk

}
. Let τ ∈ (0, 1/λ0] be

fixed. By Proposition 3.6, there exists λV , λV > 0 such that λV Ik ⪯ V n ⪯ λV Ik for all n ∈ N0.
Moreover, by the continuity of D, R and V̄ , and the expressions (2.13) and (2.16), a straightforward
induction argument shows that V n ∈ C([0, T ];Sk+) for all n ∈ N0.
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We first prove by induction that for all n ∈ N0, there exists L > 0,m0 ∈ N such that

lim
m→∞

∥θπm,n − θn∥L2×L∞ = 0, and θπm,n ∈ ΘL ∩ Θπm , ∀m ≥ m0. (3.16)

Note that as θ0 ∈ Θ and limm→∞ ∥V πm,0 − V 0∥L∞ = 0, there exists L > 0 such that 1
LIk ⪯

V πm,0 ⪯ LIk for all large m ∈ N. This proves (3.16) for n = 0. Now suppose that the induction
statement (3.16) holds for some n ∈ N0. As V n ∈ C([0, T ];Sk+), by (2.16) and (H.3), the triangle
inequality shows that limm→∞ ∥θπm,n+1−θn+1∥L2×L∞ = 0, which subsequently implies that there
exists L > 0 such that 1

LIk ⪯ V πm,n+1 ⪯ LIk for all sufficiently large m. This proves the statement
(3.16) for n + 1.

By (3.16), for each n ∈ N, supm∈N ∥Kπm,n∥L2 < ∞ and lim supm∈N ∥V πm,n∥L∞ < ∞. Thus by
Lemma 3.7, there exists C ≥ 0 such that 0 ⪯ Σθπm,n ⪯ CId for all m ∈ N. Then limm→∞ |C(θπm,n)−
C(θn)| = 0 follows from Proposition 2.3 and limm→∞ ∥θπm,n − θn∥L2×L∞ = 0. This implies the
desired convergence result for any given N ∈ N.

Proof of Theorem 2.7. Let C⋆ = infθ∈Θ C(θ) = C(θ⋆), and for each τ > 0 and m ∈ N, let (θn)n∈N
and (θπm,n)n∈N be defined by (2.16) and (2.21) with stepsize τ , respectively. Then by Theorem 2.6
and Proposition 3.12, there exists τ0 > 0 such that for all τ ∈ (0, τ0] and n ∈ N0, C(θn+1) ≤ C(θn),
C(θn+1) − C⋆ ≤ η(C(θn) − C⋆) for some η ∈ [0, 1) (independent of n), and limm→∞ |C(θπm,n) −
C(θn)| = 0. Moreover, for all ε > 0, N(ε) = C̃

τ log( C̃ε ) for some C̃ > 0 independent of τ and ε.
We first prove for all τ ∈ (0, τ0] and all ε, γ > 0, there exists mε,γ ∈ N such that for all

m ≥ mε,γ ,
N(ε + γ) ≤ Nπm(ε) ≤ N(ε). (3.17)

To prove Nπm(ε) ≤ N(ε), by Lemma 3.11 and the choice of τ0, for all n ∈ N0, limm→∞(C(θπm,n)−
C⋆
πm

) = C(θn) − C⋆. Hence, for all ε > 0 and n ∈ N0, if C(θn) − C⋆ < ε, then there exists mε ∈ N
such that for all m ≥ mε, C(Kπm,n) − C⋆

πm
< ε, which implies Nπm(ε) ≤ N(ε) for all m ≥ mε. We

then prove N(ε + γ) ≤ Nπm(ε) with a given γ > 0. The convergence of (C(θn))n∈N implies that
N(ε + γ) ∈ N0, which along with Lemma 3.11 and Proposition 3.12 shows that

lim
m→∞

max
0≤n≤N(ε+γ)

∣∣(C(θπm,n) − C⋆
πm

) − (C(θn) − C⋆)
∣∣ = 0. (3.18)

The definition of N(ε + γ) implies that C(θn) − C⋆ ≥ ε + γ for all n < N(ε + γ). Moreover, by
(3.18), there exists mγ ∈ N such that for all m ≥ mγ ,

max
0≤n<N(ε+γ)

∣∣(C(θπm,n) − C⋆
πm

) − (C(θn) − C⋆)
∣∣ ≤ γ.

Hence for all m ≥ mγ and n < N(ε + γ),

C(θπm,n) − C⋆
πm

= (C(θπm,n) − C⋆
πm

) − (C(θn) − C⋆) + (C(θn) − C⋆)

≥ (C(θn) − C⋆) −
∣∣(C(θπm,n) − C⋆

πm
) − (C(θn) − C⋆)

∣∣
≥ (C(θn) − C⋆) − max

0≤n<N(ε+γ)

∣∣(C(θπm,n) − C⋆
πm

) − (C(θn) − C⋆)
∣∣ ≥ ε.

This implies that Nπm(ε) ≥ N(ε + γ) for all m ≥ mγ . Taking mε,γ = max(mε,mγ) completes the
proof of (3.17).

Now we are ready to establish (2.24) for fixed τ ∈ (0, τ0] and ε > 0. By the choice of τ0, there
exists η ∈ [0, 1), independent of ε, such that for all n ∈ N0, C(θn+1) − C⋆ ≤ η(C(θn) − C⋆). Then,
by the definition of N(ε), C(θn) − C⋆ ≥ ε for all n < N(ε), which yields the estimate

ηN(ε)−1−n(C(θn) − C⋆) ≥ C(θN(ε)−1) − C⋆ ≥ ε, ∀n < N(ε) − 1.
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This implies that C(θn) − C⋆ ≥ ε
η > ε for all n < N(ε) − 1. Now let γε := min{C(θn) − C⋆ − ε |

n < N(ε) − 1}. Note that γε > 0 as N(ε) < ∞. By the definition of γε, for all n < N(ε) − 1,
C(θn) − C⋆ ≥ ε + γε, which implies that N(ε + γε) ≥ N(ε) − 1. Hence, by (3.17), there exists
mε ∈ N such that

N(ε) − 1 ≤ N(ε + γε) ≤ Nπm(ε) ≤ N(ε), ∀m ≥ mε.

This proves the desired estimate (2.24).

Proof of Corollary 2.8. By Proposition 2.1 and (2.25), for all π ∈ P[0,T ], θ ∈ Θπ and i ∈
{0, . . . , N − 1},

∇KiC(θ) =

∫ ti+1

ti

DK(θ)tΣ
θ
t dt, ∇ViC(θ) =

∫ ti+1

ti

DV (θ)t dt,

where DK(θ) and DV (θ) are defined by (2.12) and (2.13), respectively. Hence (Dπ
K ,Dπ

V ) : Θπ → Θπ

in (2.26) satisfies for all θ ∈ Θπ, and a.e. t ∈ [0, T ],

Dπ
K(θ)t =

N−1∑
i=0

(
1

ti+1 − ti

∫ ti+1

ti

DK(θ)tΣ
θ
t dt

)(
Σθ
ti

)−1
1[ti,ti+1)(t),

Dπ
V (θ)t =

N−1∑
i=0

(
1

ti+1 − ti

∫ ti+1

ti

(VtiDV (θ)t + DV (θ)tVti) dt

)
1[ti,ti+1)(t).

(3.19)

To simplify the notation, for each Euclidean space E, let PCπ(E) be the space of piecewise constant
functions f : [0, T ] → E on π, let Ππ : L2(0, T ;E) → PCπ(E) be such that for all f ∈ L2(0, T ;E),

Ππ(f)t :=
∑N−1

i=0

(
1

ti+1−ti

∫ ti+1

ti
ft dt

)
1[ti,ti+1)(t) for all t ∈ [0, T ], and let T π : C([0, T ];E) →

PCπ(E) be such that for all f ∈ C([0, T ];E), T π(f)t :=
∑N−1

i=0 fti1[ti,ti+1)(t) for all t ∈ [0, T ]. Note
that Ππm is the orthogonal projection with respect to the ∥ · ∥L2 norm, and hence is 1-Lipschitz
continuous with respect to the ∥ · ∥L2 norm. Moreover, by (3.19), for all θ ∈ Θπ,

Dπ
K(θ) = Ππ

(
DK(θ)Σθ

(
T π
(
Σθ
))−1

)
, Dπ

V (θ) = Ππ (T π(V )DV (θ) + DV (θ)T π(V )) . (3.20)

The definition of (Dπ
K ,Dπ

V ) in (3.20) can be naturally extended to all θ ∈ L2(0, T ;Rk×d) ×
C([0, T ];Sk+). Note that Σθ is pointwise invertible due to E[ξ0ξ

⊤
0 ] ≻ 0 (see Lemma 3.7).

We are now ready to verify (H.3) for (3.20). Let θ ∈ L2(0, T ;Rk×d)×C([0, T ];Sk+), (πm)m∈N ⊂
P[0,T ] be such that limm→∞ |πm| = 0, and (θm)m∈N ⊂ Θ be such that θm ∈ Θπm for all m ∈ N
and limm→∞ ∥θm − θ∥L2×L∞ = 0. Then for all m ∈ N, by the Lipschitz continuity of Ππm ,

∥Dπm
K (θm) −DK(θ)∥L2

≤ ∥Dπm
K (θm) − Ππm (DK(θ)) ∥L2 + ∥Ππm (DK(θ)) −DK(θ)∥L2

≤
∥∥∥∥DK(θm)Σθm

(
T πm

(
Σθm

))−1
−DK(θ)

∥∥∥∥
L2

+ ∥Ππm (DK(θ)) −DK(θ)∥L2 . (3.21)

The density of (PCπ(Rk×d))m∈N in L2(0, T ;Rk×d) shows that the second term of (3.21) tends
to zero as m → ∞. Standard stability results of (2.10) and (2.11) (see, e.g., Lemma 3.4)
show that limm→∞ ∥P θm − P θ∥L∞ = 0 and limm→∞ ∥Σθm − Σθ∥L∞ = 0. Thus by (H.1) and
(2.12), limm→∞ ∥DK(θm) −DK(θ)∥L2 = 0. Moreover, as inft∈[0,T ] λmin(Σθ

t ) > 0 (see Lemma 3.7),
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Σθm
(
T πm

(
Σθm

))−1
tends to the identity function in L∞ as m → ∞. Consequently, the first term

of (3.21) tends to zero as m → ∞, which proves limm→∞ ∥Dπm
K (θm) −DK(θ)∥L2 = 0.

We then prove the convergence of (Dπm
V (θm))m∈N. Note that for each m ∈ N and Euclidean

space E, ∥Ππm(f)∥L∞ ≤ ∥f∥L∞ if f ∈ L∞(0, T ;E), and limm→∞ ∥Ππm(f) − f∥L∞ = 0 if f ∈
C([0, T ];E). The same property also holds for the operator T πm . Then for all m ∈ N,

∥Dπm
V (θm) −Dbw(θ)∥L∞

≤ ∥Dπm
V (θm) − Ππm(Dbw

V (θ))∥L∞ + ∥Ππm(Dbw
V (θ)) −Dbw

V (θ)∥L∞ .
(3.22)

By the continuity of D, R, V̄ and V , Dbw
V (θ) ∈ C([0, T ];Sk+) (cf. (2.13) and (2.17)), and hence the

second term in (3.22) tends to zero as m → ∞. To show the first term tends to zero, by (2.17)
and (3.20), it suffices to prove limm→∞ ∥DV (θm) −DV (θ)∥L∞ = 0. This follows directly from the
facts that limm→∞ ∥P θm − P θ∥L∞ = 0, limm→∞ ∥V m − V ∥L∞ = 0 and V ∈ C([0, T ];Sk+). This
verifies (H.3) for (3.20).

4 Numerical experiments

In this section, we test the theoretical findings through a numerical experiment on an ex-
ploratory LQC problem arising from mean-variance portfolio selection. Our experiments confirm
that the proposed iteration (2.26) converges linearly to the optimal policy. They also show that
conventional PG methods exhibit a degraded performance for small timesteps in the policy up-
dates, while our algorithm demonstrates robustness across different step sizes.

Problem setup. We minimise the following cost C : Θ → R (cf. (2.9)):

C(θ) = E
[

1

2
µ (Xθ

T )2 + ρ

∫ T

0
H(νθt (Xθ

t )∥mt) dt

]
, (4.1)

where mt = N (0, V̄ ) with V̄ ∈ S3+, and for each θ ∈ Θ, Xθ ∈ S2(0, T ;R) satisfies for all t ∈ [0, T ],

dXt =

∫
R3

(
Bta ν

θ
t (Xt; da)

)
dt +

(∫
R3

3∑
j=1

(
D(j)a

)2
νθt (Xt; da)

) 1
2

dWt, X0 = ξ0, (4.2)

for some B : [0, T ] → R1×3 and D(j) ∈ R1×3, j = 1, 2, 3. The coefficients are chosen as follows:
T = 1, µ = 0.5, ρ = 0.01, V̄ = 0.1I3, ξ0 ∼ N (0.5, 0.01), Bt = (0.4, 0.8, 0.4) + 0.2 sin(2πt)13 for all

t ∈ [0, T ], and D =

(
D(1)

D(2)

D(3)

)
with D⊤D =

( 0.5 0.25 −0.125
0.25 1 −0.25

−0.125 −0.25 0.5

)
. Note that D⊤D ∈ S3+, and hence

(H.2) holds for all ρ ≥ 0 (see [38] and Remark 2.2).
The problem (4.1)-(4.2) arises from an exploratory mean-variance portfolio selection problem,

where the agent allocates their wealth among three risky assets by sampling from the policy νθ

(see [32]). Indeed, as illustrated at the end of Section 2.4, for each θ = (K,V ) ∈ Θ, C(θ) can be
approximated by replacing (4.2) with the following dynamics: X0 = ξ0, and for all t ∈ [0, T ],

dXt = Bt

(
KtXt + V

1
2
t ξt

)
dt +

3∑
j=1

D(j)

(
KtXt + V

1
2
t ξt

)
dW

(j)
t (4.3)

with ξt =
∑n

i=1 ζi1[ti,ti+1)(t), where (W (j))3j=1 are independent Brownian motions, (ζi)
n
i=1 are

independent standard normal random vectors, and (ti)
n
i=1 is a sufficiently fine time mesh.
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Linear convergence. We first implement (2.26) on the uniform time mesh πc with mesh size
1/128, and examine its convergence. The scheme is initialised with K0 ≡ (1/3, 1/3, 1/3) and
V 0 ≡ 0.1D⊤D. For each n ∈ N0, given θn ⊂ Θπc , we simulate 105 independent trajectories of
(4.3) (with θ = θn) using the Euler–Maruyama method on the mesh πc, evaluate the approximate
value Ĉ(θn) and state covariance Σ̂n using the empirical distribution of these sample paths, and

compute an approximate gradient (∇̂θni
C)127i=0 using automatic differentiation. The iterate θn is

updated by (2.26) with Σ̂n, ∇̂θnC and the stepsize τ = 0.01. The performance of the scheme is
measured by the errors (Ĉ(θn)−C⋆)n∈N0 , where C⋆ is the optimal cost of (4.1) obtained by Riccati
equations. Further implementation details are given in Appendix B.

Figure 1 (left) exhibits the decay of (Ĉ(θn)−C⋆)n∈N0 with respect to the number of iterations,
where the solid line and the shaded area indicate the sample mean and the spread over 10 re-
peated experiments, respectively. It clearly shows the linear convergence of (2.26), as indicated
in Theorems 2.6 and 2.7. The seemingly higher noise for larger iteration numbers results from
the small errors in this case, so that the fluctuations appear larger on the log scale. The variance
could be reduced by increasing the number of samples.

Robustness in action frequency. We then compare the performance of (2.26) with a standard
PG method for different policy discretisation timescales. The former (termed “scaled PG”) scales
the gradients with the discretisation mesh size, while the latter (termed “unscaled PG”) updates
the policy with unscaled gradients. More precisely, let θ0 = (K0, V 0) be a fixed initial guess
given as above, and πm = {i 1

m}mi=0, m ∈ {8, 16, 32, 64, 128} be a family of time meshes. For
each m ∈ {8, 16, 32, 64, 128}, the scaled PG method generates the iterates (θπm,n)n∈N0 ⊂ Θπm

according to (2.26) with τ = 0.01 and ∆i = 1/m, where the required gradients for each iteration
are computed as above. The unscaled PG method follows (2.26) with τ = 0.08 and ∆i = 1 for
all m. Here, a larger stepsize has been adopted for the unscaled PG method so that the two
algorithms coincide for the coarsest mesh π8.

Figure 1 (right) compares, for different discretisation timescales, the numbers of required
iterations Nπm(0.01) for both schemes to achieve an accuracy of ϵ = 0.01 (cf. (2.22)). One can
observe clearly that the number of required iterations for the unscaled PG method exhibits a linear
growth in the number of action time points. In constrast, the number of iterations for the scaled
PG method remains constant for all meshes. This confirms the theoretical result in Theorem 2.7,
and shows that the scaled PG method outperforms conventional PG methods for fine meshes.
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Figure 1: Convergence and robustness of the PG method (2.26).
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A Proofs of technical results

The following lemma establishes the well-posedness of stochastic differential equations, whose
coefficients are Lipschitz continuous in state with time-dependent Lipschitz constants. The proof
follows essentially the lines of Theorems 3.2.2 and 3.3.1 (Method 2) in [35], and hence is omitted.

Lemma A.1. Let T > 0, (Ω,F ,F,P) be a filtered probability space satisfying the usual condition,
b : Ω × [0, T ] × Rd → Rd and σ : Ω × [0, T ] × Rd → Rd×d be progressively measurable functions
such that b·(·, 0) ∈ L1(Ω × [0, T ];Rd) and σ·(·, 0) ∈ L2(Ω × [0, T ];Rd×d). Assume that there
exists A ∈ L1(0, T ;R) and C ∈ L2(0, T ;R) such that for all (ω, t) ∈ Ω × [0, T ] and x, x′ ∈ Rd,
|bt(ω, x) − bt(ω, x

′)| ≤ |At||x − x′| and |σt(ω, x) − σt(ω, x
′)| ≤ |Ct||x − x′|. Then for all ξ0 ∈

L2(F0;Rd), there exists a unique strong solution X ∈ S2(0, T ;Rd) to the following equation

dXt = bt(Xt) ds + σt(Xt) dWt, t ∈ [0, T ]; X0 = ξ0. (A.1)

Proposition A.2. Suppose (H.1(1)) holds. Then

(1) for all m ∈ A, (2.1) admits a unique strong solution Xm ∈ S2(0, T ;Rd).

(2) for all νθ ∈ V, (2.8) admits a unique strong solution Xθ ∈ S2(0, T ;Rd).

Proof. Let E = [0, T ]×Rk. We verify that the coefficients of (2.1) and (2.8) satisfy the conditions
of Lemma A.1.

To prove Item (1), let m ∈ A be given, and define Φm : Ω × [0, T ] × Rd → Rd and Γm :

Ω × [0, T ] × Rd → Sd+ such that for all (ω, t, x) ∈ Ω × [0, T ] × Rd, Φm
t (ω, x) = Φt(x,mt(ω))

and Γm
t (ω, x) = Γt(x,mt(ω)), with Φ and Γ defined in (2.2). By Fubini’s theorem and Hölder’s

inequality,

E
[∫ T

0
|Φm

t (·, 0)|
]

dt ≤
∫ T

0

(
E
[∫

Rk

|a|mt(da)

]
|Bt|

)
dt ≤ ∥B∥L2

(
E
[∫

E
|a|2mt(dt,da)

]) 1
2

< ∞,

E
[∫ T

0
|Γm

t (·, 0)|2 dt

]
≤ C̃∥D∥2L∞E

[∫
E
|a|2mt(dt,da)

]
< ∞.

For all (ω, t) ∈ Ω × [0, T ], using mt(ω) ∈ P(Rk), |Φm
t (ω, x) − Φm

t (ω, x′)| ≤ |At||x − x′| for all
x, x′ ∈ Rd. To prove the Lipschitz continuity of Γm, observe that for all (t, x,m) ∈ [0, T ] × Rd ×
P2(Rk), Γt(x,m) = (Mm,t(x)Mm,t(x)⊤ + Nm,tN

⊤
m,t)

1/2, where Mm,t(x) := Ctx + Dt

∫
Rk am(da)

and Nm,t := Dt

(∫
Rk aa

⊤m(da)
)1/2

. This implies that(
Γt(x,m) 0d×d

0d×d 0d×d

)
=

(
Mm,t(x)Mm,t(x)⊤ + Nm,tN

⊤
m,t 0d×d

0d×d 0d×d

) 1
2

=

∣∣∣∣(Mm,t(x) Nm,t

0d×1 0d×1

)∣∣∣∣
mat

,

where 0m×n is m × n zero matrix, and | · |mat is the matrix absolute value defined by |M |mat =
(MM⊤)1/2 for any matrix M . Then, for all (t,m) ∈ [0, T ] × P2(Rk) and x, x′ ∈ Rd,

|Γt(x,m) − Γt(x
′,m)|

=

∣∣∣∣(Γt(x,m) − Γt(x
′,m) 0d×d

0d×d 0d×d

)∣∣∣∣ =

∣∣∣∣(Γt(x,m) 0d×d

0d×d 0d×d

)
−
(

Γt(x
′,m) 0d×d

0d×d 0d×d

)∣∣∣∣
=

∣∣∣∣∣∣∣∣(Mm,t(x) Nm,t

0d×1 0d×1

)∣∣∣∣
mat

−
∣∣∣∣(Mm,t(x

′) Nm,t

0d×1 0d×1

)∣∣∣∣
mat

∣∣∣∣
≤

√
2

∣∣∣∣(Mm,t(x) Nm,t

0d×1 0d×1

)
−
(
Mm,t(x

′) Nm,t

0d×1 0d×1

)∣∣∣∣ =
√

2|Mm,t(x) −Mm,t(x
′)|,

(A.2)
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where the last inequality used the Lipschitz continuity of the matrix absolute value | · |mat (see
[1]). Therefore, by the definition of Mm,t(x), for all (ω, t) ∈ Ω × [0, T ] and x, x′ ∈ Rd,

|Γm
t (ω, x) − Γm

t (ω, x′)| ≤
√

2|Mmt(ω),t(x) −Mmt(ω),t(x
′)| ≤

√
2|Ct||x− x′|.

As A ∈ L1(0, T ;Rd×d) and C ∈ L2(0, T ;Rd×d), the coefficients of (2.1) satisfy the conditions of
Lemma A.1, which subsequently implies the well-posedness of (2.1).

To prove Item (2), let νθ ∈ V be given, and define Φθ : [0, T ]×Rd → Rd and Γθ : [0, T ]×Rd →
Sd+ such that for all (t, x) ∈ [0, T ] × Rd, Φθ

t (x) = Φt(x, ν
θ
t (x)) and Γθ

t (x) = Γt(x, ν
θ
t (x)), with Φ

and Γ defined in (2.2). Then by Lemma 3.1, Φθ
· (0) = 0 and Γθ

· (0) = DV
1
2· ∈ L2(0, T ;Rd×d).

Moreover, for all (t, x) ∈ [0, T ] × Rd, |Φθ
t (x) − Φθ

t (x
′)| ≤ (|At| + |BtKt|)|x − x′| and by (A.2),

|Γθ
t (x) − Γθ

t (x
′)| ≤ (|Ct| + |DtKt|)|x − x′|. By (H.1(1)) and K ∈ L2(0, T ;Rd×k), |A| + |BK| ∈

L1(0, T ;R) and |C| + |DK| ∈ L2(0, T ;R). This proves that the coefficients of (2.8) satisfy the
conditions of Lemma A.1, and hence the well-posedness of (2.8).

Proof of Proposition 2.4. For each ε > 0, let Xε = XKε
be such that Xε

t = exp(−
∫ t
0 (1 + ε −

s)−1 ds) = 1+ε−t
1+ε for all t ∈ [0, 1]. Thus for all ε > 0, C(Kε) = 1

(1+ε)2
but ∥Kε∥L1 = log

(
1+ε
ε

)
.

Now let K̃ε = 0.5Kε, and X̃ε be such that X̃ε
t = exp(−0.5

∫ t
0 (1 + ε − s)−1 ds) =

√
1+ε−t
1+ε for

all t ∈ [0, 1]. Thus for all ε > 0,

C(K̃ε) = 0.52
∫ 1

0
(Kε

t X̃
ε
t )2 dt =

0.25

1 + ε

∫ 1

0
(1 + ε− t)−1 dt =

0.25

1 + ε
log

(
1 + ε

ε

)
> 0.

Hence C(K̃ε) > C(0) and limε→0
C(K̃ε)
C(K) = limε→0 0.25(1 + ε) log

(
1+ε
ε

)
= ∞.

B Experiment details

This section presents additional details for the numerical experiments in Section 4.

Optimal cost. Let P ⋆ ∈ C([0, T ];R) solve the following Riccati equation: for all t ∈ [0, T ],

(
dP
dt

)
t
−Bt

(
Pt
∑3

j=1(D
(j))⊤D(j) + ρV̄ −1

)−1
B⊤

t P
2
t = 0; PT = µ

2 . (B.1)

Then the optimal policy of (4.1)-(4.2) satisfies ν⋆t (x) = N (K⋆
t x, V

⋆
t ) for all (t, x) ∈ [0, T ] × R,

where

K⋆
t = −

(
P ⋆
t

∑3
j=1(D

(j))⊤D(j) + ρV̄ −1
)−1

B⊤
t P

⋆
t , V ⋆

t = ρ
(
P ⋆
t

∑3
j=1(D

(j))⊤D(j) + ρV̄ −1
)−1

.

Moreover, let φ⋆ ∈ C([0, T ];R) satisfy for all t ∈ [0, T ],

( d
dtφ)t+

1
2tr
((

P ⋆
t

∑3
j=1(D

(j))⊤D(j) + ρV̄ −1
)
V ⋆
t

)
+ ρ

2

(
−3 + ln

(
det(V̄ )
det(Vt)

))
= 0; φT = 0, (B.2)

Then the optimal cost of (4.1)-(4.2) is given by C⋆ = 1
2E[ξ⊤0 ξ0]P

⋆
0 + φ⋆

0.
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Implementation details. The numerical experiments are coded by using Tensorflow. To ex-
amine the linear convergence, the scheme (2.26) is implemented on the uniform time grid πc with
mesh size ∆t = 1/128. Indeed, let K0 ≡ (1/3, 1/3, 1/3) and V 0 ≡ 0.1D⊤D be the initial guess.
For each n ∈ N0, given θn = (Kn

i , V
n
i )127i=0, consider the Euler–Maruyama discretisation of (4.3):

X0 = ξ0 and for all i = 0, . . . , 127,

Xi+1 = Xi + Bi∆t

(
Kn

i Xi + (V n
i )

1
2 ζi

)
∆t +

3∑
j=1

D(j)
(
Kn

i Xi + (V n
i )

1
2 ζi

)
∆W

(j)
i , (B.3)

where (∆W
(j)
i )i=0,...,127,j=1,...3 are independent normal random variables with mean zero and vari-

ance 1/128, and (ζi)
127
i=0 are independent standard normal random vectors in R3. We simulate

NMC = 105 independent trajectories of (B.3) and approximate C(θn) as follows (cf. (3.3)):

Ĉ(θn) :=
1

NMC

NMC∑
l=1

1

2

(
µX2

128,l + ρ

127∑
i=0

(
(Kn

i )⊤V̄ −1Kn
i X

2
i,l + tr(V̄ −1V n

i ) − 3 + ln
(

det(V̄ )
det(V n

i )

))
∆t

)
,

where (Xi,l)
128
i=0, l = 1, . . . , NMC, represents the l-th trajectory of (B.3). The required gradients

(∇̂Kn
i
C, ∇̂V n

i
C)127i=1 are computed using automatic differentiation along these paths, and for each

i = 0, . . . , 127, the state covariance Σθn

i∆t is estimated by Σ̂n
i := 1

NMC

∑NMC
l=1 X2

i,l. The policy is then
updated as follows (cf. (2.26)): for all i = 0, · · · , 127,

Kn+1
i = Kn

i − τ

∆tΣ̂n
i

∇̂Kn
i
C, V n+1

i = V n
i − τ

∆t

(
∇̂V n

i
C V n

i + V n
i ∇̂V n

i
C
)
.

The optimal cost of (4.1)-(4.2) is computed by solving (B.1) and (B.2) with the explicit Euler
scheme on πc, which leads to the value C⋆ = 0.0402.

To examine the robustness of (2.26) in time discretisation, a family of coarser time grids
πm = {i 1

m}mi=0 ⊂ πc, m ∈ {8, 16, 32, 64, 128}, have been introduced. The PG scheme only updates
policy parameters at the grid points of these coarser grids. However, to mimic a continuous-time
environment, the performance of each policy iterate is still evaluated by simulating (B.3) on the
fine grid πc (with mesh size ∆t = 1/128). In particular, let (K0, V 0) be given as above. For
each m ∈ {8, 16, 32, 64, 128} and n ∈ N0, given θn = (Kn

j , V
n
j )m−1

j=0 , consider the following Euler-
Maruyama discretisation of (4.3): X0 = ξ0 and for all j = 0, . . . ,m−1, and all i = 0, . . . , 127 such
that j

m ≤ i∆t < j+1
m ,

Xi+1 = Xi + Bi∆t

(
Kn

j Xi + (V n
j )

1
2 ζi

)
∆t +

3∑
j=1

D(j)
(
Kn

j Xi + (V n
j )

1
2 ζi

)
∆W

(j)
i , (B.4)

where (∆W
(j)
i )i=0,...,127,j=1,...3 and (ζi)

127
i=0 are independent random variables as in (B.3). We

shall sample 105 independent trajectories of (B.4), and use them to approximate the gradients in
(Kn

j , V
n
j )m−1

j=0 and the state covariance (Σθn

j/m)m−1
j=0 with similar methods as above. The scaled PG

method (2.26) then updates the parameters by: for all j = 0, . . . ,m− 1,

Kn+1
j = Kn

j − mτ

Σ̂n
j

∇̂Kn
j
C, V n+1

j = V n
j −mτ

(
∇̂V n

j
C V n

j + V n
j ∇̂V n

j
C
)
, with τ = 0.01, (B.5)

while the unscaled PG method updates the parameters by: for all j = 0, . . . ,m− 1,

Kn+1
j = Kn

j − τ

Σ̂n
j

∇̂Kn
j
C, V n+1

j = V n
j − τ

(
∇̂V n

j
C V n

j + V n
j ∇̂V n

j
C
)
, with τ = 0.08. (B.6)
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Let (θπm,n)n∈N0 be the policy iterate generated by (B.5), define Nπm(0.01) by

Nπm(0.01) := min
{
n ∈ N0 | Ĉ(θπm,n) − C⋆

πm
) < 0.01

}
,

where C⋆
πm

:= 1
50

∑1000
n=951 Ĉ(θπm,n) approximates the optimal cost among all piecewise constant

polices on πm. The quantity Nπm(0.01) is defined similarly for the iterates generated by (B.6).
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