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Abstract. In recent years a great deal of attention has been paid to discretizations of the
incompressible Stokes equations that exactly preserve the incompressibility constraint. These are
of substantial interest because these discretizations are pressure-robust, i.e. the error estimates for
the velocity do not depend on the error in the pressure. Similar considerations arise in nearly
incompressible linear elastic solids. Conforming discretizations with this property are now well
understood in two dimensions, but remain poorly understood in three dimensions. In this work we
state two conjectures on this subject. The first is that the Scott–Vogelius element pair is inf-sup
stable on uniform meshes for velocity degree k ≥ 4; the best result available in the literature is for
k ≥ 6. The second is that there exists a stable space decomposition of the kernel of the divergence for
k ≥ 5. We present numerical evidence supporting our conjectures.

1. Introduction. We consider two closely related problems for a bounded Lip-
schitz domain Ω ⊂ Rd, d ∈ {2, 3}. The first is the incompressible Stokes equations:
given f ∈ L2(Ω;Rd), find the velocity u : Ω → Rd and pressure p : Ω → R such that

−∇ · εu+∇p = f in Ω,(1.1a)

∇ · u = 0 in Ω,(1.1b)

u = 0 on ∂Ω,(1.1c)

where εu = 1/2
(
∇u+ (∇u)T

)
is the symmetric gradient of u. The second is the

Navier–Cauchy equation of linear elasticity: given f ∈ L2(Ω;Rd) and γ > 0, find the
displacement u : Ω → Rd that satisfies

−∇ · εu− γ∇∇ · u = f in Ω,(1.2a)

u = 0 on ∂Ω.(1.2b)

Here γ = 2λ/µ, where λ and µ are the Lamé parameters. As γ → ∞, the material
is said to be nearly incompressible. The term −∇∇ · u in (1.2a) is connected to the
incompressibility constraint (1.1b); it arises in the Stokes momentum equation (1.1a)
when employing an augmented Lagrangian approach [6] to enforcing the divergence-zero
constraint (1.1b).

When discretizing (1.1), it is highly desirable to choose spaces Vh for the velocity
and Πh for the pressure such that all discretely divergence free functions are pointwise
divergence free, i.e. the incompressibility constraint (1.1b) is satisfied exactly on the
discrete level [27]. Achieving this is difficult; no element pair for exact enforcement is
known that is simultaneously inf-sup stable, low-order, conforming, has polynomial
basis functions, and is effective on general meshes. On simplicial grids with special mesh
structure, it is possible to use the conforming Scott–Vogelius finite element pair [CGk]

d-
DGk−1 [48, 49] for k ≥ d (for Alfeld splits [39, 22, 17, 52]) or k ≥ d−1 (for Powell–Sabin
splits [20, 53, 55, 21]). The approach of Guzmán and Neilan [22] is conforming, works for
arbitrary degree and on general meshes, but requires the use of piecewise polynomial
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Fig. 2.1. Unit cube for a structured mesh in three dimensions used for computational experiments.
Given N ∈ N, a N ×N ×N mesh of cubes is generated, each of which is subdivided into 6 tetrahedra
as shown. Vertex labels correspond to the vertices enumerated in Appendix A.

basis functions on each cell (instead of standard polynomials). Non-conforming
divergence-free discretizations are reviewed in John et al. [27, §4.4]. Finally, another
approach is to consider the use of high-order discretizations, which are attractive for
their advantageous computational properties on modern architectures [49, 48, 37, 54].
Another alternative is to modify the right-hand side of the problem with an operator
that maps discretely divergence-free test functions to exactly divergence-free ones [30].

In this paper we state two conjectures regarding the discretization and multigrid
solution of (1.1) and (1.2) on structured uniform tetrahedral meshes (Freudenthal
meshes [7]). We focus on Freudenthal meshes since some theoretical results are known
in this case. For concreteness we briefly describe the Freudenthal triangulation of the
unit cube in Appendix A. The first is that the Scott–Vogelius element pair is inf-sup
stable on Freudenthal meshes for k ≥ 4; the best available result is that of Zhang,
who proved that the pair is stable for k ≥ 6 [54]. We conjecture this on the basis
of numerical calculations of the inf-sup constant for varying k. These rely on a new
algorithm that can compute the inf-sup constant for elements that are divergence-free
when an exact characterization of the pressure space is not known. The second is
that on the same meshes the subspace Zh ⊂ Vh of divergence-free functions admits a
local basis defined on the vertex-centred patches for k ≥ 5, and that the associated
space decomposition is stable. This is significant because identifying a local basis
for the kernel of the divergence operator is crucial for multigrid algorithms applied
to (1.2). We conjecture this on the basis of observed γ-robustness of a multigrid
solution algorithm for (1.2), for which the local kernel decomposition is essential [43].
The existence of a local basis is known in three dimensions for Alfeld splits [17] and
Worsey–Farin splits [21], but remains an open question for general meshes, and in
particular for the Freudenthal meshes considered here.

2. Inf-sup stability of the Scott–Vogelius element. The mixed formulation
of (1.1) is to find (u, p) ∈ V ×Π := H1

0 (Ω;Rd)× L2
0(Ω) such that

(2.1) (εu, εv)L2 − (p,∇· v)L2 − (q,∇·u)L2 = (f, v)L2(Ω) for all (v, q) ∈ V ×Π.

Define (T,U)L2(Ω) = (T,U)L2 for any scalar-, vector-, or tensor-valued functions T,U .
The inf-sup condition determines whether or not a pair of spaces Vh ⊂ V , Πh ⊂ Π

in a mixed finite element method provide a compatible discretization [9], since the
symmetric gradient term is coercive on V . In the context of (2.1), this condition
encapsulates a constraint between the divergence of the velocity space Vh and the
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pressure space Πh: there exists β > 0 such that

(2.2) β
√
(q, q)L2(Ω) ≤ sup

v∈Vh
v ̸=0

(∇· v, q)L2(Ω)√
(∇v,∇v)L2(Ω)

∀q ∈ Πh.

In this section we make the following conjecture:

Conjecture 1. Let Vh be constructed with continuous Lagrange elements of
degree k, and choose Πh = ∇·Vh. For k ≥ 4, the inf-sup condition (2.2) holds on
structured tetrahedral meshes of the form in Figure 2.1, known as the Freudenthal
triangulation [7], with a constant that depends only on k.

We conjecture this on the basis of numerical computations with a new algorithm
for calculating the inf-sup constant, which we now describe.

2.1. Computing the inf-sup constant. There are several methods to estimate
computationally the inf-sup constant β for various spaces and variational problems [39,
41, 4]. In [18], approximation of the corresponding Ladyzhenskaya inf-sup constant for
the continuous problem is studied. All of these are based on solving eigenproblems.

In [41], an automated system ASCoT was introduced for computing inf-sup
constants. It takes as input Vh and Πh. However, when Πh = ∇·Vh, it is advantageous
to exploit this structure in the calculation of the inf-sup constant. More importantly,
the space ∇·Vh may not be known a priori, and so a different algorithm is needed
that does not require Πh as input.

A technique was developed by one of the authors in [46] that deals specifically
with the Πh = ∇·Vh case and casts this as an eigenvalue problem, as follows. Define
the bilinear forms

(2.3) a(u, v) =

∫
Ω

∇u : ∇v dx, b(v, q) =

∫
Ω

(∇· v)q dx.

First define

(2.4) Zh = {v ∈ Vh : b(v, q) = 0 ∀q ∈ Πh} ,

which is the set of divergence-free functions in Vh since Πh = ∇·Vh. Define κ by

(2.5) κ = min
0 ̸=v∈Vh, v⊥aZh

(∇· v,∇· v)L2

a(v, v)
= min

0̸=v∈Z⊥
h

(∇· v,∇· v)L2

a(v, v)
,

where v ⊥a Zh means that a(v, w) = 0 for all w ∈ Zh and

(2.6) Z⊥
h = {v ∈ Vh : a(v, w) = 0 ∀w ∈ Zh} .

We recall the following lemma from [46, Lemma 26.1].

Lemma 2.1. Suppose that ∥v∥V =
√
a(v, v) and Πh = ∇·Vh. Then

(2.7) β = inf
q∈Πh
q ̸=0

sup
v∈Vh
v ̸=0

b(v, q)

∥v∥V ∥q∥L2

= inf
q∈Πh
q ̸=0

sup
v∈Z⊥

h
v ̸=0

b(v, q)

∥v∥V ∥q∥L2

≥
√
κ ≥ 1

2β,

where κ is defined in (2.5).



4 P. E. FARRELL, L. MITCHELL, AND L. R. SCOTT

This result holds also for the bilinear form

(2.8) a(u, v) = (εu, εv)L2(Ω),

with possibly different constants.
Computing κ is equivalent to finding the smallest eigenvalue λ of the following

eigenproblem: find 0 ̸= uh ∈ Z⊥
h such that

(2.9) (∇·uh,∇· vh)L2(Ω) = λ a(uh, vh) ∀vh ∈ Z⊥
h ,

which is equivalent to the Rayleigh quotient minimization (2.5). Note that κ > 0 since
κ = 0 leads to the contradiction ∇·uh = 0, that is, uh ∈ Zh ∩ Z⊥

h . Thus there are no
spurious modes when Πh = ∇·Vh.

We can write (2.9) in operator form as

(2.10) Buh = λAuh.

The equation (2.10) is a symmetric generalized eigenvalue problem [50], and its
eigenvalues are all real. There are many algorithms for solving symmetric generalized
eigenvalue problems [19, 42, 50]. However, we do not have an explicit basis for the
space Z⊥

h , so we choose to use matrix-free methods. Here we focus on a simple method
related to the power method.

Since A is invertible on all of Vh, it would be attractive to utilize an iteration in
which we invert A, and not B. We introduce a shift σ:

(2.11) (B − σA)uh = λσAuh.

If λ1 ≤ λ2 ≤ · · · ≤ λN are the eigenvalues of the symmetric problem (2.10), that is,
for the operator A−1B, and λσ1 ≤ λσ2 ≤ · · · ≤ λσN are the eigenvalues of the shifted
problem (2.11), then λσi = λi−σ for all i = 1, . . . , N . Moreover, λσi are the eigenvalues
for the operator A−1B − σI, and the eigenvectors uih for λσi and λi are the same, for
all i = 1, . . . , N .

2.2. Using the power method. We can solve for certain eigenvalues and
eigenvectors uh via the power method [45] for (2.11), namely to find un ∈ Z⊥

h such
that

a(un, vh) = (∇· ûn−1,∇· vh)L2(Ω) − σ a(ûn−1, vh) ∀ vh ∈ Z⊥
h

λn+1 =
(∇·un,∇·un)L2(Ω)

a(un, un)
, ûn = (∥un∥V )−1un.

(2.12)

The choices of initial iterate and termination criterion are discussed subsequently.
We now consider how to compute this, despite the fact that the space Z⊥

h is not
explicitly known. Suppose that û0 ∈ Z⊥

h is given and that we solve for u1 ∈ Vh via

a(u1, vh) = (∇· û0,∇· vh)L2(Ω) − σ a(û0, vh) ∀ vh ∈ Vh,

which we can do since a(·, ·) is coercive on Vh. Then for all vh ∈ Zh

a(u1, vh) = (∇· û0,∇· vh)L2(Ω) − σ a(û0, vh) = 0

since both terms vanish. Thus u1 ∈ Z⊥
h . Moving on, we can solve for un ∈ Vh via

(2.13) a(un, vh) = (∇· ûn−1,∇· vh)L2(Ω) − σ a(ûn−1, vh) ∀ vh ∈ Vh.
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By induction, a(un, vh) = 0 for all vh ∈ Zh, so that un ∈ Z⊥
h for all n > 0.

To start the process, we can solve for u0 ∈ Vh via

(2.14) a(u0, v) = (∇·w,∇· v)L2(Ω) ∀ v ∈ Vh,

where we must pick some w where ∇·w ̸= 0. In practice, we chose

(2.15) w = (sin(ωx), cos(ωy)),

for ω ∈ Z, although other initializations worked as well. We then set

(2.16) û0 = (∥u0∥V )−1u0.

Note that a(u0, v) = 0 for all v ∈ Zh, which means that u0 ∈ Z⊥
h . The division in

(2.16) provides a natural check that u0 ̸= 0.

2.3. Eigenvalue bounds. The eigenvalues λi are bounded above since

∥∇· vh∥2L2 ≤ Ca(vh, vh) ∀ vh ∈ V.

This is obvious for the gradient form (2.3) with C ≤ d, where d is the dimension of Ω.
For the ε form (2.8), it follows by the Korn inequality [9, §11.2]. A good estimate of
C can be obtained computationally since it is the largest eigenvalue of (2.9). In all
computational examples here, using the gradient form (2.3), C = 1, apparently due to
the homogeneous Dirichlet boundary conditions in V . Using the ε form (2.8), which
is equivalent to (2.3) by Korn’s inequality, would change the computational results
here by at most a constant factor. When homogeneous Dirichlet boundary conditions
are enforced, it is known [46, (13.12)] that the forms (2.8) and (2.3) produce identical
values for divergence-free functions.

Thus we can shift by a constant σ independent of h to ensure that λσi < 0 for all
i. The algorithm (2.12) is the power method for A−1B − σI, and it will generically
converge to the eigenvector associated with the most negative eigenvalue, provided
σ > 1

2λN , and so it will generically converge to λσ1 . Taking σ = 0 will converge to the
largest eigenvalue λN , since 0 < λ1. We found that taking σ = 0.6 gave acceptable
convergence.

2.4. Effect of round-off error. It is essential to start the iteration (2.12) with
û0 ∈ Z⊥

h . To see what goes wrong otherwise, write the algorithm in (2.12) as

uk+1 = ck(A
−1B − σI)uk,

where ck = 1/∥uk∥V . Suppose that u0 = v0 + w0 where v0 ∈ Z⊥
h and w0 ∈ Zh. Then

uk = vk + wk where vk ∈ Z⊥
h and wk ∈ Zh, and

vk+1 = ck(A
−1B − σI)vk, wk+1 = ck(−σI)wk.

The reason is that A−1B maps Z⊥
h into itself and Zh to the zero vector. Define

Ck =
∏k−1

i=0 ci. Then

vk = Ck(A
−1B − σI)kv0, wk = Ck(−σI)kw0.

In seeking the smallest eigenvalue λ1, we will need to take σ as large as at least half
of the largest eigenvalue λN . Thus wk can become significant even if w0 is on the
order of round-off error. Once wk becomes dominant, the Rayleigh quotient in (2.12)
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Type I Type II

Fig. 2.2. Two types of regular meshes in two dimensions. The Type II mesh is also known as
the Malkus split.

defining λk will go to zero. Thus it is necessary to monitor the projection zk of uk onto
Zh and to project uk onto Z⊥

h (by simply subtracting zk) when the divergence-zero
component is too large. This may need to be done for k = 0 as well.

The projection zk ∈ Zh satisfies

a(zk, v) = a(uk, v) ∀ v ∈ Zh.

The projection zk can be computed via the iterated penalty method. Some care is
required in using the iterated penalty method to do this, since it will be slow to
converge if the inf-sup constant is small. But this appears to work well in practice,
albeit with a large number of iterations required when the inf-sup constant is smaller.

2.5. Full algorithm. We now summarize the full algorithm. First we compute
û0 via (2.14) and (2.16), where w is given in (2.15). Next, we solve for un via (2.13),
n ≥ 1. Then we project un onto Zh using the iterated penalty method [9, §13.1]. To
compute the projection of un onto Zh, we solve for zℓ, wℓ ∈ Vh such that

a(zℓ, v) + ρ(∇· zℓ,∇· v) = a(un, v)− (∇·wℓ,∇· v) ∀ v ∈ Vh

wℓ+1 = wℓ+1 + ρzℓ,
(2.17)

where we start with w0 = 0. The parameter ρ is the penalty parameter enforcing the
incompressibility constraint; in our computations we set ρ = 104. We terminate the
iteration on ℓ when

(2.18) ∥∇· zℓ∥L2(Ω) ≤ τ,

where we picked τ = 10−14 in our computations. Then zℓ ≈ ΠZh
un, and if

∥∇zℓ∥L2(Ω) ≥ ζ∥∇un∥L2(Ω),

we update un = un− zℓ. In our computations, we picked ζ = 10−12. Once un has been
computed, we define

λn+1 =
(∇·un,∇·un)
a(un, un)

, ûn = (∥un∥V )−1un.(2.19)

This iteration is continued while |λn+1 − λn| > ϵ, where ϵ is a pre-specified tolerance,
with ϵ = 10−8 in our computations.

2.6. 2D tests. To verify the algorithm, we compare with known results. We
summarize some known results in two and three dimensions in Table 2.1. In Table 2.2,
we give results for Lagrange elements of degree k = 1, 2 in two dimensions on Malkus
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Table 2.1
Mesh restrictions for Vh constructed with continuous piecewise polynomials of degree k, and

Πh = ∇·Vh. Here d is the dimension of Ω. In the lowest-order case k = 1 in two dimensions, the
velocity approximation is optimal order despite the fact that the inf-sup constant deteriorates.

d k inf-sup mesh restrictions

2 1 no, but optimal velocity approximation on Malkus splits [33, 40]
2 1 yes Powell–Sabin splits [13, 20, 53]
2 2 yes some crossed triangles required [39] or Alfeld splits [22, 17]
2 3 yes under certain conditions [23]
2 ≥ 4 yes p-robust when no nearly singular vertices [48, 49, 24, 1]

3 ≥ 1 yes Worsey–Farin splits [13]
3 ≥ 3 yes Alfeld splits [52, 22, 17]
3 ≥ 6 yes only one family of meshes known [54]

Table 2.2
Computation of inf-sup constants on Malkus splits (Type II meshes) in two dimensions. The

shift parameter in (2.11) was set to σ = 0.6. The mesh size N refers to the N × N mesh of
quadrilaterals before subdivision. The parameter ω determines the initial eigenvector approximation
defined in (2.15). Iterations were continued until the change in eigenvalue was less than 10−7.

degree k N ω iterations inf-sup λ1 restarts

1 5 5 47 4.08× 10−1 0
1 5 10 40 4.08× 10−1 0
1 5 100 51 4.08× 10−1 1
1 10 10 258 1.13× 10−2 1
1 20 10 642 2.98× 10−3 1

2 10 10 193 1.49× 10−1 13
2 20 10 189 1.48× 10−1 14
2 40 10 187 1.48× 10−1 19

splits (Type II meshes in the nomenclature of [28] as shown in Figure 2.2), for various
mesh sizes. A Malkus split mesh starts with a quadrilateral subdivision and creates a
triangulation by subdividing each quadrilateral by adding the two diagonals connecting
opposite vertices. On Malkus splits, for k ≥ 2, the inf-sup constant is bounded and
converges relatively rapidly in our tests, but for k = 1, the inf-sup constant goes to zero
with a rate equal to one over the mesh size parameter [39]. The column “iterations”
lists the number of iterations of the power method required to achieve a change in λ
less than 10−8. The column “restarts” lists the number of times the projection zℓ was
subtracted from un.

In Table 2.3, we give results for Lagrange elements of degree k = 2, 3, 4 in two
dimensions on Type I meshes, that is, meshes consisting of 45-degree right triangles
(Figure 2.2). The results match the theory indicated in Table 2.1: the inf-sup constant
degenerates for k = 2, 3, but does not for k = 4. There is renewed interest in
the low order cases due to the emergence of the grad-div penalized Taylor–Hood
method [10, 31, 32]. The approximations from these methods tend to divergence free
functions as the penalty is increased, and the low-order Taylor–Hood methods are
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Table 2.3
Computation of inf-sup constants on Type I meshes (see Figure 2.2) in two dimensions. The

shift parameter in (2.11) was set to σ = 0.6. The mesh size N refers to the N × N mesh of
quadrilaterals before subdivision. The parameter ω determines the initial eigenvector approximation
defined in (2.15). Iterations were continued until the change in eigenvalue was less than 10−7 for
k = 3 and k = 4, but we had to continue iterations until the change in eigenvalue was less than
10−10 for k = 2 to obtain a reliable second digit.

degree k N ω iterations inf-sup λ1 restarts

2 8 10 13577 1.60× 10−3 29
2 16 10 50690 4.08× 10−4 129
2 32 10 19851 1.07× 10−4 19397
2 64 10 54650 2.75× 10−5 54649

3 3 10 790 8.46× 10−3 11
3 5 10 768 3.52× 10−3 8
3 10 10 1858 9.50× 10−4 15

4 5 10 585 2.59× 10−2 12
4 10 10 789 2.60× 10−2 17
4 20 10 1265 2.60× 10−2 28

widely used. It has been known that divergence-free quadratics on Type I meshes
have reduced approximation order (this is equivalent to reduced approximation for
C1 piecewise cubic approximation for scalar functions [12]). But so far we know of no
estimates for controlled degeneration of the inf-sup constants on general meshes.

2.7. 3D tests. Mesh restrictions in three dimensions for Scott–Vogelius elements
are not fully understood. Our computations for Freudenthal meshes are summarized
in Table 2.4. They reveal a surprising fact: on this mesh family, the inf-sup constant
is bounded for degrees k ≥ 4, whereas Zhang [54] was able to prove inf-sup stability
only for k ≥ 6. Neilan [36, Proposition 6.5] extends this to more general meshes that
satisfy a special condition, which he states as a conjecture, but still for k ≥ 6. The
results in Table 2.4 lead us to make Conjecture 1.

2.8. Size of ∇·V k
h . In general, ∇·V k

h ⊂ DGk−1
h , the latter space being all

discontinuous piecewise polynomials of degree k−1. In two dimensions, these spaces can
be very close in size, differing because of singular vertices and the mean zero constraint
due to the homogeneous boundary conditions on V k

h . But in three dimensions, much
less is known. The difference between ∇·V k

h and DGk−1
h is known to be quite large

for Freudenthal meshes. The constraints on the latter space required to be satisfied to
be in the former space are listed in [54, page 691]. For a single cube subdivided by 6
tetrahedra, the dimension of the quotient space is 67 for k = 6. We should note that
there is a typographical error in equation (3.67) in [54], which should read instead [56]

dimPh = n3(k + 2)(k + 1)k − 3kn(n2 + n+ 2) + 5.

Note that dimDGk−1
h = n3(k+2)(k+1)k, so the number of constraints (the dimension

of the quotient space) is 3kn(n2 + n+ 2)− 5. The algorithm proposed by Rognes [41]
can be used to compute the number of constraints on general meshes.

2.9. More general elements. The algorithm described and tested here can
be used more generally for computing inf-sup constants. The only restriction is that
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Table 2.4
Computation of inf-sup constants for various polynomial degrees k in three dimensions on the

Freudenthal meshes depicted in Figure 2.1. The shift parameter in (2.11) was set to σ = 0.6. The
mesh size N refers to the N ×N ×N mesh of cubes before subdivision. Iterations were continued
until the change in eigenvalue was less than 10−7 for k = 4 and k = 5, but we had to continue
iterations until the change in eigenvalue was less than 10−8 for k = 3.

degree k N iterations inf-sup λ1 restarts

3 2 1026 5.75× 10−4 4
3 3 3400 4.26× 10−4 14
3 4 4445 2.93× 10−4 29
3 5 6044 2.11× 10−4 2048
3 6 7732 1.59× 10−4 4863

4 2 802 4.28× 10−3 7
4 3 2067 4.13× 10−3 16
4 4 1961 4.22× 10−3 16
4 5 1325 4.27× 10−3 12
4 6 1380 4.26× 10−3 12

5 2 1004 6.46× 10−3 12
5 3 1003 6.59× 10−3 13
5 4 877 6.34× 10−3 12
5 5 938 6.26× 10−3 13
5 6 978 6.23× 10−3 13

Πh = ∇·Vh.

3. Space decompositions for the kernel of the divergence. Our second
conjecture relates to multigrid solvers for (1.2). In the nearly incompressible regime,
the equation becomes nearly singular, and standard multigrid methods break down. A
key breakthrough for such problems was made by Schöberl [43], who devised conditions
on the relaxation and prolongation operators that guarantee that a multigrid method
is parameter-robust in the nearly-singular regime.

3.1. Background. The key condition for the relaxation is best stated in terms of
space decompositions and subspace corrections [51]. The multigrid relaxation method
we employ will be induced by a space decomposition

(3.1) Vh =

J∑
i=1

Vi

where an equation for an approximation to the error is solved over each subspace Vi and
the updates combined additively or multiplicatively. Each Vi is assumed small enough
so that direct solvers can be afforded. For example, if Vh = span{ϕ1, ϕ2, . . . , ϕN}, and
each Vi is chosen to be Vi = span{ϕi}, then combining the updates additively would
yield the Jacobi relaxation, while combining multiplicatively would yield the Gauss–
Seidel relaxation. In a domain decomposition approach, each Vi could be taken as the
functions supported on one subdomain of a given parallel decomposition of the mesh,
combined with a suitable global coarse space. Another important example is to define
each Vi as the functions with support on the patch of cells surrounding each vertex,
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the so-called vertex-star space decomposition: this arises in k-robust preconditioners
for symmetric and coercive problems [38, 44], as the Arnold–Falk–Winther (AFW)
relaxation for H(div) and H(curl) [3], and in Reynolds-robust preconditioners for the
Navier–Stokes equations [6, 16].

Let us consider an abstract nearly singular problem, following Lee et al. [29]. For
ε > 0, consider the finite-dimensional linear variational problem: find u ∈ Vh such that

(3.2) a0(u, v) + ε−1a1(u, v) = (f, v) for all v ∈ Vh,

where a0 is symmetric and coercive, and a1 is symmetric but only positive semi-definite.
In the context of (1.2), a1(u, v) = (∇ · u,∇ · v)L2 . Define the kernel

(3.3) N = {u ∈ Vh : a1(u, v) = 0 for all v ∈ Vh}.

In our context, these are divergence-free functions in the finite element space. A key
condition that must be satisfied by the space decomposition for parameter-robustness
in ε is [29, Assumption (A1)]:

(3.4) N =

J∑
i=1

(N ∩ Vi) .

In other words, when challenged with a divergence-free function, it must be possible
to decompose this as the sum of functions with the ith summand drawn from the
divergence-free functions in Vi

1. The space decomposition that induces Jacobi or
Gauss–Seidel relaxation does not generally satisfy (3.4), because the intersection
N ∩ Vi = {0} for typical finite element methods where the standard bases used are
not divergence-free.

3.2. Space decompositions from de Rham complexes. One way to devise
space decompositions that satisfy (3.4) is by inspecting discrete subcomplexes of a
suitable underlying Hilbert complex. For concreteness, consider Ω ⊂ R2, with Ω simply
connected. The Stokes complex [27] is given by

R id−→ H2(Ω)
curl−−→ [H1(Ω)]2

div−−→ L2(Ω)
null−−→ 0.(3.5)

This complex is discretized with a discrete subcomplex

(3.6) R id−→ Σh
curl−−→ Vh

div−−→ Qh
null−−→ 0,

where Σh ⊂ H2(Ω), Vh ⊂ [H1(Ω)]2, and Qh ⊂ L2(Ω). These complexes have the
property that the kernel of an operator curl,div, or null is a subspace of the range
of the preceding operator, e.g. that ker(div) ⊂ range(curl) [2]. The complex is called
exact if the kernel of an operator is precisely the range of the preceding operator. The
Stokes complex is exact if the domain Ω is simply connected, and this property is
inherited by (3.6) if constructed appropriately (with bounded cochain projections).

In our context, these complexes are useful because they offer a crisp characterization
of N = ker(div). Let Σh = span{ψ1, . . . , ψM} and Vh = span{ϕ1, . . . , ϕN}. If uh ∈ N ,
then uh = curlΨh for Ψh ∈ Σh by exactness of (3.6). Expanding Ψh in terms of its
basis functions

(3.7) Ψh =

M∑
i=1

ciψi

1This decomposition must also be stable, but we shall not elaborate here.
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yields an expression for uh

(3.8) uh =

M∑
i=1

ci curlψi.

Suppose the space decomposition (3.1) is chosen as J = N +M with

(3.9) Vi =

{
span(curlψi) i = 1, . . . ,M

span(ϕi−M ) i =M + 1, . . . ,M +N.

This decomposition would satisfy (3.4), with Vi ∩N = Vi for i ≤M or Vi ∩N = {0}
for i > M2.

Solving the problem (3.2) over span{curlψi} reduces to solving a problem in a
locally-supported subspace of Σh, as described in Hiptmair [25] and Hiptmair–Xu [26]
for the L2 de Rham complex. However, for the Stokes complex in three dimensions,
explicit constructions of Σh are poorly understood. The alternative approach (which
we refer to as Pavarino–Arnold–Falk–Winther, PAFW) is to construct the space
decomposition using only knowledge of the supports of the basis functions ψi. For
example, if Σh exists with the property that each basis function ψi is a polynomial
of degree k + 1 supported on a certain region of the domain supp(ψi), then we may
choose {Vj} so that each Vj captures all polynomials of degree k on one supp(ψi). In
this way, ∀i = 1, . . . ,M ∃ j s.t. curlψi ∈ Vj , and (3.4) will also be satisfied, without
needing to explicitly construct Σh or {ψi}Mi=1. Only knowledge (or conjecture) of the
supports is required.

To illustrate the PAFW construction, consider the case of the Scott–Vogelius
element pair with k ≥ 4 and d = 2. This element constructs Vh with [CGk]

d and Qh

with DGk−1 on a mesh Th. The corresponding C1-conforming finite element for Σh is
the Morgan–Scott element of degree k + 1 [34], which is not implemented in general
purpose finite element software, preventing the application of (3.9). The Morgan–Scott
element employs (among others) degrees of freedom at the vertices of the mesh, and
the basis function associated with such a degree of freedom will have support over
the patch of cells sharing that vertex. This suggests the following vertex-star space
decomposition, which we now describe. Let ν1, . . . , νJ be the vertices of Th. The
subspaces are given by

(3.10) Vj = {vh ∈ Vh : supp(vh) ⊂ star(νj)},

where the star operation of a simplex p returns the union of all simplices containing p as
a subsimplex [35, §2]. In other words, when applied to a vertex νj , the star is the union
of the cells and edges (and faces in d = 3) containing νj , as well as νj itself. In [34],
it is proven that the Morgan–Scott basis functions are each supported in star(νj) for
some j, provided k ≥ 4. Thus (3.10) also satisfies the kernel decomposition (3.4).
Numerical experiments indicate that (3.10) does indeed yield ε-robust convergence
for k ≥ 4, as expected from the Morgan–Scott theory, while it does not for k < 4 [14,
§4.2].

There are other examples where the vertex-star space decomposition does not
yield ε-robust convergence. For k = 1 on Malkus splits, the basis with small-
est possible support has support that is larger than star(νj), although it is in

2This space decomposition relates to that proposed by Hiptmair [25]. As written it is not robust
in k, but (experimentally) can be made so by applying suitable block Jacobi methods in Vh and Σh.
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star(closure(star(νj))) [47], where the star of a set of simplices is the union of their
stars, and closure is defined in [14].

3.3. Second conjecture. The preceding discussion indicates that one may
experimentally investigate whether Σh permits a basis with support captured by the
stars of the vertices, by applying the multigrid algorithm and observing whether the
convergence is ε-robust or not.

The continuous Stokes complexes in 3D [15] is given by

(3.11) R id−→ H2(Ω)
grad−−−→ H1(curl,Ω)

curl−−→ [H1(Ω)]3
div−−→ L2(Ω)

null−−→ 0.

Here

(3.12) H1(curl,Ω) := {v ∈ [H1(Ω)]3 : curl v ∈ [H1(Ω)]3}.

This complex is discretized with a discrete subcomplex

(3.13) R id−→ Sh
grad−−−→ Σh

curl−−→ Vh
div−−→ Πh

null−−→ 0.

The space Sh consists of C1 piecewise polynomials of degree k + 2. The space Σh

consists of continuous vector-valued piecewise polynomials of degree k + 1 which have
a continuous curl. Note that (Sh)

3 ⊂ Σh.
The potential space Σh is known on special meshes (Alfeld or Worsey–Farin splits)

in three dimensions [17, 21, 8]. We are not aware of any results that characterize Σh

on Freudenthal meshes.
Based on the numerical experiments we will report, we make the following conjec-

ture:

Conjecture 2. Let Vh ⊂ [H1(Ω)]3 be constructed with continuous Lagrange
elements of degree k, and let Σh ⊂ H1(curl,Ω) be the space preceding Vh in a subcomplex
of the three-dimensional Stokes complex.

(a) For k = 4, there does not exist a local basis for Σh, supported on the stars of
vertices, on the Freudenthal meshes depicted in Figure 2.1.

(b) For k ≥ 5, there exists a local basis for Σh, supported on the stars of vertices,
on the Freudenthal meshes depicted in Figure 2.1.

Our evidence for Conjecture 2(b) is not as strong as for Conjecture 2(a). For
example, the results of Schöberl [43] are not necessary and sufficient, so robustness
could occur for some other reason. But lack of robustness implies lack of a suitable
local basis.

3.4. Numerical experiments. We provide numerical evidence for Conjecture 2.
We solve the problem: find u ∈ Vh ⊂ [H1

0 (Ω)]
3 such that:

(3.14) (∇u,∇v)L2(Ω) + γ(∇·u,∇· v)L2(Ω) = (1, v)L2(Ω) ∀v ∈ Vh.

The problem becomes nearly singular as γ → ∞. Here Vh is constructed with continu-
ous Lagrange elements of degree k. We employ the solver denoted in Figure 3.1. The
relaxation on each level is one application of damped Richardson iteration precondi-
tioned by the additive Schwarz method with vertex-star subspaces chosen as (3.10).
The damping factor is set to 1/M where M is the maximum number of patches that a
given vertex is contained in. Here M = 3 for d = 2 and M = 4 for d = 3. The coarse
grid solve was computed with CHOLMOD [11] via PETSc [5]. The code was run in
serial.
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Krylov solver: CG

Two-grid V-cycle

Relaxation: damped additive vertex-star iteration

Coarse grid: Cholesky factorization

Fig. 3.1. Solver diagram for (3.14).

Table 3.1
Iteration counts for (3.14) on a uniform refinement of a Type I 4×4 mesh. The iteration counts

are γ-robust for k ≥ 4, but not for k < 4.

k\γ 100 101 102 103 104 105

2 11 17 35 54 87 100
3 10 13 23 49 62 83
4 9 10 13 13 13 12
5 9 10 11 12 11 10

3.5. Two dimensions. The convergence results for the solver depicted in Fig-
ure 3.1 are shown in Table 3.1, as a function of k and γ. The Krylov method was
terminated when the unpreconditioned residual was reduced by 8 orders of magnitude.
The coarse mesh was a Type I mesh [28] of size 4× 4. The main observation is that
k ≥ 4 is required for γ-robust performance. This matches well with the existing
theory described above: the key property that changes between these two cases is the
existence of the Morgan–Scott element for Σh with a basis supported on vertex-stars
for k ≥ 4.

3.6. Three dimensions. In three dimensions we again choose Vh = [CGk]
d. We

employ an analog of a Type I coarse mesh of size 4× 4× 4, with one refinement. We
show iteration counts for the solution of the problem of (3.14) in Table 3.2. As in
two dimensions, the solver was terminated when the unpreconditioned residual was
reduced by 8 orders of magnitude. These results lead us to Conjecture 2.

Table 3.2
Iteration counts for (3.14) on 2 uniform refinements of a Type I 4× 4× 4 mesh. The iteration

counts are γ-robust for k ≥ 5, but not for k < 5.

k\γ 100 101 102 103 104 105

2 14 23 52 118 300 849
3 11 16 29 66 173 458
4 11 13 19 26 54 110
5 11 12 16 19 20 19
6 10 11 14 15 16 15
7 10 11 13 14 14 13

Note that our Conjecture 1 is that the global inf-sup condition holds on this mesh
family for k ≥ 4. Thus there is a gap for k = 4: we conjecture that the global inf-sup
condition holds, but that there is not a basis for the potential space supported on
vertex-stars.
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4. Conclusions. Our computational experiments have suggested two conjectures
regarding the three-dimensional Stokes complex on Freudenthal meshes. We conjecture
that the inf-sup condition holds for a velocity space Vh consisting of continuous
piecewise polynomials of degree k and pressure space ∇·Vh for k ≥ 4, and that there
is a local basis for the associated potential space Σh for k ≥ 5.

5. Acknowledgements. The authors would like to thank Michael Neilan, Charles
Parker, Florian Wechsung, Umberto Zerbinati, and Shangyou Zhang for useful discus-
sions.

Appendix A. Freudenthal triangulation of the unit cube.
For concreteness we describe the Freudenthal triangulation of the unit cube [0, 1]3.

Define vertices with coordinates

v1 = (0, 0, 0), v2 = (1, 0, 0), v3 = (1, 1, 0), v4 = (1, 1, 1),

v5 = (0, 1, 0), v6 = (1, 0, 1), v7 = (0, 1, 1), v8 = (0, 0, 1).

Then the six cells (tetrahedra) ci have vertices

c1 = [v1,v2,v3,v4], c2 = [v1,v3,v4,v5], c3 = [v1,v2,v4,v6],

c4 = [v1,v4,v5,v7], c5 = [v1,v4,v6,v8], c6 = [v1,v4,v7,v8].

It is well known [54, Figure 2] that a standard multigrid subdivision of a Freudenthal
triangulation of the unit cube [0, 1]3 yields eight subcubes, each subdivided by a
Freudenthal triangulation. In particular, the subdivision of the Freudenthal triangula-
tion of the unit cube [0, 1]3 consists of cutting by the three planes x = 1/2, y = 1/2,
and z = 1/2. See [54, section 4] for more information regarding multigrid for these
meshes.
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