Packing and covering a given directed graph in a directed graph

Raphael Yuster *

Abstract

For every fixed $k \geq 4$, it is proved that if an n-vertex directed graph has at most t pairwise arc-disjoint directed k-cycles, then there exists a set of at most $\frac{2}{3} k t+o\left(n^{2}\right)$ arcs that meets all directed k-cycles and that the set of k-cycles admits a fractional cover of value at most $\frac{2}{3} k t$. It is also proved that the ratio $\frac{2}{3} k$ cannot be improved to a constant smaller than $\frac{k}{2}$. For $k=5$ the constant $2 k / 3$ is improved to $25 / 8$ and for $k=3$ it was recently shown by Cooper et al. that the constant can be taken to be $9 / 5$. The result implies a deterministic polynomial time $\frac{2}{3} k$-approximation algorithm for the directed k-cycle cover problem, improving upon a previous ($k-1$)-approximation algorithm of Kortsarz et al.

More generally, for every directed graph H we introduce a graph parameter $f(H)$ for which it is proved that if an n-vertex directed graph has at most t pairwise arc-disjoint H-copies, then there exists a set of at most $f(H) t+o\left(n^{2}\right)$ arcs that meets all H-copies and that the set of H-copies admits a fractional cover of value at most $f(H) t$. It is shown that for almost all H it holds that $f(H) \approx|E(H)| / 2$ and that for every k-vertex tournament H it holds that $f(H) \leq\left\lfloor k^{2} / 4\right\rfloor$.

AMS subject classifications: $05 \mathrm{C} 20,05 \mathrm{C} 35,05 \mathrm{C} 38,68 \mathrm{R} 10$
Keywords: cycle; approximation; covering; packing

1 Introduction

Let H be a directed or undirected graph. For a directed (or undirected) multigraph G, let $\nu_{H}(G)$ denote the maximum number of pairwise arc-disjoint (edge-disjoint) copies of H in G and let $\tau_{H}(G)$ denote the minimum number of arcs (edges) whose removal from G results in a subgraph with no copies of H. The fractional versions of these parameters (see Section 2 for a definition) are denoted by $\nu_{H}^{*}(G)$ and $\tau_{H}^{*}(G)$, respectively. It is readily observed that $\tau_{H}(G) \geq \tau_{H}^{*}(G)=\nu_{H}^{*}(G) \geq \nu_{H}(G)$ and that $\tau_{H}(G) \leq|E(H)| \nu_{H}(G)$. These parameters can also be naturally extended to the weighted setting where each arc (edge) of G is assigned a non-negative weight (see Section 2 for a definition).

The undirected case has substantial literature. The starting point of these problems is the well-known and yet unsolved conjecture of Tuza [14] asserting that $\tau_{C_{3}}(G) \leq 2 \nu_{C_{3}}(G)$ for every

[^0]undirected graph G. Stated equivalently, the conjecture asserts that if a graph has at most t pairwise edge-disjoint triangles, then it can be made triangle-free by removing at most $2 t$ edges. The best known upper bound is by Haxell [8] who proved that $\tau_{C_{3}}(G) \leq 2.87 \nu_{C_{3}}(G)$. Krivelevich [11] proved a fractional version of Tuza's conjecture, namely that $\tau_{C_{3}}(G) \leq 2 \nu_{C_{3}}^{*}(G)$ (he also proved that $\tau_{C_{3}}^{*}(G) \leq 2 \nu_{C_{3}}(G)$). It was later observed in [18] that using a method of Haxell and Rödl [9], Krivelevich's result implies that Tuza's conjecture asymptotically holds in the dense setting, specifically $\tau_{C_{3}}(G) \leq 2 \nu_{C_{3}}(G)+o\left(n^{2}\right)$ where n is the number of the vertices of G. There are examples showing that the constant 2 in Tuza's conjecture cannot be replaced with a smaller one, even in the dense setting [3].

The aforementioned results concerning C_{3} have some nontrivial generalizations to additional graphs. In [18] the author proved that $\tau_{K_{k}}(G) \leq\left\lfloor k^{2} / 4\right\rfloor \nu_{K_{k}}^{*}(G)$ and that $\tau_{K_{k}}(G) \leq\left\lfloor k^{2} / 4\right\rfloor \nu_{K_{k}}(G)+$ $o\left(n^{2}\right)$. This is presently the best known upper bound for the case of K_{k}. Kortsarz, Langberg, and Nutov [10] proved that $\tau_{C_{k}}(G) \leq(k-1) \nu_{C_{k}}^{*}(G)$. Their main motivation came from the related well-known natural optimization problem.

Definition 1.1 (The H-cover problem). Let H be a fixed (directed) graph. Given a (directed) graph G, find a minimum size subset of edges (arcs) of G whose removal results in an H-free subgraph of G.

It is well-known [16] that H-cover is NP-hard already for some small H (e.g. $H=K_{3}$) thus we seek a polynomial time approximation algorithm. One may similarly define the H-cover problem in the weighted setting where the goal is to find a subset of edges (arcs) that covers all H-copies and whose total weight is the minimum possible. The proof in [10], as well as Krivelevich's proof for C_{3}, give a polynomial time $(k-1)$-approximation algorithm for C_{k}-cover. Similarly, the proof in [18] can be shown to give a polynomial time $\left\lfloor k^{2} / 4\right\rfloor$-approximation algorithm for K_{k}-cover.

In this paper we consider the directed case, which has recently gained attention. Already when posing his conjecture, Tuza [14] asked whether $\tau_{\overrightarrow{C_{3}}}(D) \leq 2 \nu_{\overrightarrow{C_{3}}}(D)$ where $\overrightarrow{C_{k}}$ denotes the directed cycle on k vertices and D is a directed graph. McDonald, Puleo and Tennenhouse [12] answered Tuza's question affirmatively proving that $\tau_{\overrightarrow{C_{3}}}(D) \leq 2 \nu_{\overrightarrow{C_{3}}}(D)-1$ for any directed multigraph D. In fact, they conjectured that a significantly stronger variant of Tuza's conjecture holds in the $\overrightarrow{C_{3}}$ case. Specifically, they conjectured that $\tau_{\overrightarrow{C_{3}}}(D) \leq 1.5 \nu_{\overrightarrow{C_{3}}}(D)$ for any directed multigraph D. They also gave an example showing that if true, the constant 1.5 is best possible. Recently, Cooper et al. 5] proved that the fractional version for $\overrightarrow{C_{3}}$ satisfies a factor better than 2. Specifically, $\tau_{\overrightarrow{C_{3}}}(D) \leq 1.8 \nu_{\overrightarrow{C_{3}}}^{*}(D)$ for any arc-weighted directed multigraph D. As in the undirected cases mentioned above, this also implies that $\tau_{\overrightarrow{C_{3}}}(D) \leq 1.8 \nu_{\overrightarrow{C_{3}}}(D)+o\left(n^{2}\right)$ for any unweighted directed graph D. In their paper 10 mentioned above, Kortsarz, Langberg, and Nutov stated and showed that $\tau_{\overrightarrow{C_{k}}}(D) \leq(k-1) \nu_{\overrightarrow{C_{k}}}(D)$ for all $k \geq 3$ and that the $\overrightarrow{C_{k}}$-cover problem admits a polynomial time ($k-1$)-approximation algorithm.

Our main result gives a general upper bound for $\tau_{H}(D)$ in terms of $\nu_{H}^{*}(D)$ that applies to any fixed directed graph H and to any directed weighted multigraph D. However, as a special case of our result implies an improvement of the aforementioned result for $\overrightarrow{C_{k}}$ for all $k \geq 4$, we prefer to first state our results for directed k-cycles. To simplify some notation we use the subscript k instead of the subscript $\overrightarrow{C_{k}}$ in the parameter definitions.

Theorem 1.2. If D is an arc-weighted directed multigraph, then $\tau_{k}(D) \leq(2 k / 3) \nu_{k}^{*}(D)$. For $k=5$ we further have $\tau_{5}(D) \leq(25 / 8) \nu_{5}^{*}(D)$.

Note that for $k=3$ the result in [5] gives a better constant, but already for $k \geq 4$ this improves upon the state of the art. Our proof implies a deterministic approximation algorithm.
Corollary 1.3. The $\overrightarrow{C_{k}}$-cover problem (also in the weighted multigraph setting) admits a deterministic polynomial time (2k/3)-approximation algorithm. For $k=5$ the approximation ratio is 25/8.

As in (5), this will also imply a non-fractional result in the dense setting.
Corollary 1.4. If D is an n-vertex directed graph, then $\tau_{k}(D) \leq(2 k / 3) \nu_{k}(D)+o\left(n^{2}\right)$ and $\tau_{5}(D) \leq$ $(25 / 8) \nu_{5}(D)+o\left(n^{2}\right)$.

Given Theorem 1.2 and its corollaries, it is of interest to ask whether the constant $2 k / 3$ (and $25 / 8$ when $k=5$) can be improved. We conjecture that it can.

Conjecture 1.5. Let $k \geq 3$ be fixed. For all n sufficiently large, if D is an n-vertex directed graph, then $\tau_{k}(D) \leq(k / 2) \nu_{k}(D)$.

Note that the case $k=3$ of Conjecture 1.5 is the aforementioned conjecture of McDonald, Puleo and Tennenhouse [12]. The constant $k / 2$ in Conjecture 1.5 cannot be made smaller. In fact, it cannot be made smaller even if the host graph is a regular tournament.

Theorem 1.6. Let $k \geq 3$ be fixed. For all n sufficiently large satisfying $n \equiv 1(\bmod 2 k)$ there is a regular n-vertex tournament T such that $\nu_{k}(T)=\nu_{k}^{*}(T)=n(n-1) / 2 k$ and $\tau_{k}(T)=n^{2} / 4-o\left(n^{2}\right)$.

Generalizing Theorem 1.2 to arbitrary H requires introducing a graph parameter. For a directed graph L, the blowup of L, denoted by $B(L)$, is obtained by replacing each vertex $v \in V(L)$ with a countably infinite independent set I_{v}, and having all possible arcs from I_{a} to I_{b} whenever $(a, b) \in$ $E(L)$. Let $\operatorname{disc}_{H}(L)$ denote the minimum number of arcs that should be added to $B(L)$ so that a copy of H is obtained. Let

$$
\begin{align*}
f(H, L) & =\max \left\{|E(H)|\left(1-\frac{|E(L)|}{|V(L)|^{2}}\right),|E(H)|-\operatorname{disc}_{H}(L)\right\} \tag{1}\\
f(H) & =\inf _{L} f(H, L) \tag{2}
\end{align*}
$$

where the infimum is taken over all nonempty directed graphs L. Notice that $f(H)$ is a certain measure of how much H embeds in a blowup of any possible directed graph. Our main result follows.

Theorem 1.7. If D is an arc-weighted directed multigraph, then $\tau_{H}(D) \leq f(H) \nu_{H}^{*}(D)$.
It is possible to provide good upper bounds, and sometimes determine $f(H)$ for some particular H or certain families of directed graphs. In fact, in many cases (but not all cases) the infimum in (2) is a minimum, so that $f(H)=f(H, L)$ is attained by some L. As we show in Section 3, $f\left(\overrightarrow{C_{k}}\right)=2 k / 3$ except when $k=2$ in which case $f\left(\overrightarrow{C_{2}}\right)=1$ or $k=5$ in which case $f\left(\overrightarrow{C_{5}}\right)=25 / 8$. Thus, Theorem 1.2 is a corollary of Theorem 1.7. As another example, $f(H) \leq\left\lfloor k^{2} / 4\right\rfloor$ for all k vertex tournaments. As we show, this implies the known undirected results $\tau_{K_{k}}(G) \leq\left\lfloor k^{2} / 4\right\rfloor \nu_{K_{k}}^{*}(G)$ [11, 18] also for the weighted multigraph setting. In all of these cases, the values are attained by some L. The following proposition shows that almost all oriented graphs have $f(H)$ no larger than about half of the size of their arc set.

Proposition 1.8. Let G be an undirected graph with n vertices and $\Omega(n \ln n)$ edges. Let H be a randomly chosen orientation of G. Then, asymptotically almost surely, $f(H)=\left(1+o_{n}(1)\right)|E(H)| / 2$. In particular, $\tau_{H}(D) \leq\left(1+o_{n}(1)\right)|E(H)| \nu_{H}^{*}(D) / 2$ asymptotically almost surely.

Finally, Corollaries 1.3 and 1.4 are, in fact, special cases of the following more general corollaries of Theorem 1.7 .

Corollary 1.9. The problem of determining $\tau_{H}(D)$ admits a deterministic polynomial time $f(H)$ approximation algorithm. For any nonempty directed graph L, the H-cover problem (also in the weighted multigraph setting) admits a deterministic polynomial time $f(H, L)$-approximation algorithm. In particular, if $f(H)=f(H, L)$ for some L, then the H-cover problem admits a deterministic polynomial time $f(H)$-approximation algorithm.

Corollary 1.10. If D is an n-vertex directed graph, then $\tau_{H}(D) \leq f(H) \nu_{H}(D)+o\left(n^{2}\right)$.
The rest of this paper is organized as follows. Some required definitions and lemma are given in Section 2. In Section 3 we determine $f(H)$ for k-cycles and some other special directed graphs and prove Proposition 1.8, The proof of Theorem 1.7 is given in Section 4. Theorem 1.6 is proved in Section [5,

2 Preliminaries

We set notation used throughout the paper. For a directed (multi)graph D, let $V(D)$ denote its vertex set and $E(D)$ denote its arc set. Directed graphs are allowed to contain directed cycles of length 2 and directed multigraphs are also allowed to contain more than one arc in the same
direction between two vertices. An orientation of an undirected graph is a directed graph obtained by orienting each edge in one of the possible directions. Equivalently, it is a directed graph with no directed cycles of length 2. A tournament is an orientation of the complete graph. A directed graph is acyclic if it has no directed cycles and it is H-free if it has no subgraph that is isomorphic to H. Let T_{k} denote the unique transitive (i.e. acyclic) tournament on k vertices.

For a directed graph H we denote by $C(H, D)$ the set of all subgraphs of D isomorphic to H (namely, the set of H-copies in D). If $F \subseteq E(D)$, then $D \backslash F$ is the spanning subgraph of D obtained by removing the arcs in F. If $F=\{e\}$ we use the shorthand $D \backslash e$. We say that D is arc-weighted if every arc e is assigned a non-negative weight $w(e)$.

A fractional H-packing of an arc-weighted directed multigraph D is a function $m: C(H, D) \rightarrow$ $[0, \infty)$ such that for every arc $e \in E(D)$, the sum of $m(X)$ taken over all H-copies in D that contain e is at most $w(e)$. The value of m is the sum of $m(X)$ taken over all H-copies. The maximum value of a fractional H-packing of D is denoted by $\nu_{H}^{*}(D)$. If D is unweighted (equivalently, all arc weights are 1) and $m(X) \in\{0,1\}$ for each $X \in C(H, D)$ we say that m is an H-packing. The maximum value of an H-packing of an unweighted directed multigraph D is denoted by $\nu_{H}(D)$. Equivalently, $\nu_{H}(D)$ is the maximum number of pairwise arc-disjoint H-copies in D. Clearly, $\nu_{H}(D) \leq \nu_{H}^{*}(D)$ for every unweighted directed multigraph D.

A fractional H-cover of an arc-weighted directed multigraph D is a function $c: E(D) \rightarrow[0,1]$ such that for each $X \in C(H, D)$, the sum of the values of c on the arcs of X is at least 1 . The value of c is the sum of $w(e) c(e)$ taken over all arcs $e \in E(D)$. The minimum value of the fractional H-cover of D is denoted by $\tau_{H}^{*}(D)$. If $c(e) \in\{0,1\}$ for each $e \in E(D)$ we say that c is an H-cover. The minimum value of an H-cover is denoted by $\tau_{H}(D)$. Equivalently, $\tau_{H}(D)$ is the minimum sum of weights of a set of $\operatorname{arcs} F$ such that $D \backslash F$ is H-free. Clearly, $\tau_{H}(D) \geq \tau_{H}^{*}(D)$ for every arc-weighted directed multigraph D.

Given an arc-weighted directed multigraph D, a minimum value fractional H-cover of D and a maximal value fractional H-packing of D can be computed in polynomial time by linear programming. Moreover, by linear programming duality, $\nu_{H}^{*}(D)=\tau_{H}^{*}(D)$. In particular, $\tau_{H}(D) \geq \nu_{H}^{*}(D)$ and if D is unweighted then $\tau_{H}(D) \geq \tau_{H}^{*}(D)=\nu_{H}^{*}(D) \geq \nu_{H}(D)$.

Suppose now that D is an unweighted directed graph. It is not difficult to provide examples where $\tau_{H}(D)$ is larger than $\tau_{H}^{*}(D)$ and to provide examples where $\nu_{H}(D)$ is smaller than $\nu_{H}^{*}(D)$. However, in a dense setting, the latter pair are always close. The following result of Nutov and Yuster [13] is a directed version of a result of the author [17] which, in turn is a generalization of a result of Haxell and Rödl [9] on the difference between a fractional and integral packing in undirected graphs.

Lemma 2.1. Let H be a fixed directed graph. If D is a directed graph with n vertices, then $\nu_{H}^{*}(D) \leq \nu_{H}(D)+o\left(n^{2}\right)$. Furthermore, there exists a polynomial time algorithm that produces an H-packing of D of size at least $\nu_{H}^{*}(D)-o\left(n^{2}\right)$.

Corollary 1.10 follows immediately from Lemma 2.1 and Theorem 1.7

$3 \quad f(H)$ and $f(H, L)$

In this section we consider $f(H)$ and $f(H, L)$; we determine $f(H)$ for certain families of directed graphs and certain small H and provide some general upper bounds for it. To avoid trivial cases, we assume that H is a directed graph with at least two arcs and that L is a nonempty directed graph with $r:=|V(L)|$ vertices.

Proposition 3.1. $f(H)=|E(H)|$ if and only if H has no directed path of length 2 and no directed cycle of length 2 .

Proof. Suppose first that H has no directed path of length 2 and no directed cycle of length 2. Then H is an orientation of an undirected bipartite graph where all arcs are oriented from one part to the other part. So, H is a subgraph of $B(L)$ and therefore $\operatorname{disc}_{H}(L)=0$ implying that $f(H, L)=|E(H)|$ and that $f(H)=|E(H)|$. If H has a directed path of length 2 or a directed cycle of length 2, then consider $L=T_{2}$. As $B\left(T_{2}\right)$ has no path of length 2 and no directed cycle of length 2, we have that $\operatorname{disc}_{H}\left(T_{2}\right) \geq 1$, and so $f(H) \leq f\left(H, T_{2}\right) \leq \max \left\{\frac{3}{4}|E(H)|,|E(H)|-1\right\}$.

Proposition 3.1 is in sync with Theorem 1.7 in the sense that $f(H)$ in the statement of Theorem 1.7 cannot be replaced by a smaller constant which depends only on H for any given directed graph H with no directed path of length 2 and no directed cycle of length 2 . Indeed, let D be an orientation of $K_{n, n}$ where all arcs go from one part to the other and where $n \geq|V(H)|$. Recalling that the Turán number of (undirected) bipartite graphs is $o\left(n^{2}\right)$, we have that $\tau_{H}(D)=n^{2}\left(1-o_{n}(1)\right)$ while $\nu_{H}^{*}(D)=n^{2} /|E(H)|$.

In some cases the infimum in the definition of $f(H)$ is not attained by any L. Although there are infinitely many examples, the simplest is $H=\overrightarrow{C_{2}}$. On the one hand, $f\left(\overrightarrow{C_{2}}, L\right)>1$ for any L. Indeed, if L has a directed cycle of length 2 then $f\left(\overrightarrow{C_{2}}, L\right)=2$. Otherwise, disc $\overrightarrow{C_{2}}(L)=1$ and L is a subgraph of some tournament on r vertices so $f\left(\overrightarrow{C_{2}}, L\right) \geq 2\left(1-r(r-1) / 2 r^{2}\right)=1+1 / r$. If L is a tournament then $f\left(\overrightarrow{C_{2}}, L\right)=1+1 / r$. Taking r to infinity, we have that $f\left(\overrightarrow{C_{2}}\right)=1$.

Let $\gamma(H)$ denote the maximum number of arcs in an acyclic subgraph of H. Equivalently, a minimum feedback arc set is a set of $|E(H)|-\gamma(H)$ arcs of H whose removal makes H acyclic. It is not difficult to show that for every directed graph $H, \gamma(H) \geq|E(H)| / 2$ where equality holds if and only if each pair of vertices of H either induce a directed cycle of length 2 or an empty graph. Let $b(H)$ be the maximum number of arcs in a bipartite subgraph of H. Clearly $b(H)>|E(H)| / 2$.

Lemma 3.2. $|E(H)| / 2 \leq f(H) \leq \min \{\gamma(H), b(H)\}$.

Proof. Let $L=T_{r}$ where $r \geq|V(H)|$. By the definition of $\gamma(H)$ we have that $\operatorname{disc}_{H}\left(T_{r}\right)=$ $|E(H)|-\gamma(H)$. We therefore have $f\left(H, T_{r}\right)=\max \left\{|E(H)|\left(1-r(r-1) / 2 r^{2}\right), \gamma(H)\right\}$. Taking r to infinity we obtain $f(H) \leq \gamma(H)$.

Let $L=\overrightarrow{C_{2}}$. By the definition of $b(H)$ we have that $\operatorname{disc}_{H}\left(\overrightarrow{C_{2}}\right)=|E(H)|-b(H)$. We therefore have $f\left(H, \overrightarrow{C_{2}}\right)=\max \{|E(H)|(1-2 / 4), b(H)\}=b(H)$ whence $f(H) \leq b(H)$.

For the lower bound, consider any nonempty directed graph L. Consider first the case where L has a directed cycle of length 2 . Since every H has a bipartite subgraph containing at least half of its arcs, and since any bipartite subgraph of H is a subgraph of $B(L)$ (as L has a directed cycle of length 2) we have that $\operatorname{disc}_{H}(L) \leq|E(H)| / 2$ so $f(H, L) \geq|E(H)| / 2$. If L has no directed cycle of length 2 then $|E(L)| \leq r(r-1) / 2$ so $f(H, L) \geq|E(H)|\left(1-r(r-1) / 2 r^{2}\right) \geq|E(H)| / 2$.

Proof of Proposition 1.8. Suppose that G is an undirected graph with n vertices and $\Omega(n \ln n)$ edges. Let H be obtained by randomly and independently orienting each edge of G. It is wellknown (and a simple exercise to prove) that $\gamma(H)=\left(1+o_{n}(1)\right)|E(H)| / 2$ asymptotically almost surely. By Lemma3.2 we obtain that asymptotically almost surely, $f(H)=\left(1+o_{n}(1)\right)|E(H)| / 2$.

In some cases, as well as some classes of directed graphs, Lemma 3.2 is far from tight. Consider the class of directed cycles. Observe that $\gamma\left(\overrightarrow{C_{k}}\right)=k-1$ and $b\left(\overrightarrow{C_{k}}\right) \geq k-1$ so Lemma 3.2 (while tight for $k=2$) gives a very poor upper bound for $f\left(\overrightarrow{C_{k}}\right)$. The following proposition determines $f\left(\overrightarrow{C_{k}}\right)$.

Proposition 3.3. For all $k \geq 3$ we have $f\left(\overrightarrow{C_{k}}\right)=2 k / 3$ unless $k=5$ where $f\left(\overrightarrow{C_{5}}\right)=\frac{25}{8}$.
Proof. Any directed path in $B\left(T_{r}\right)$ has length at most $r-1$. So, in order to obtain a directed k-cycle in $B\left(T_{r}\right)$ one must add at least $\lceil k / r\rceil$ arcs. Thus, $\operatorname{disc}_{\overrightarrow{C_{k}}}\left(T_{r}\right)=\lceil k / r\rceil$ and therefore $f\left(\overrightarrow{C_{k}}, T_{r}\right)=$ $\max \left\{k\left(\frac{1}{2}+\frac{1}{2 r}\right), k-\lceil k / r\rceil\right\}$. Using $r=3$ we obtain that $f\left(\overrightarrow{C_{k}}\right) \leq 2 k / 3$ and when $k=5$ we can use $r=4$ to obtain $f_{\overrightarrow{C_{5}}} \leq \frac{25}{8}$.

We prove that the upper bound $2 k / 3$ is tight for all even $k \geq 4, k \neq 5$. A similar argument shows tightness for the $25 / 8$ bound in the case $k=5$. So let $k \geq 4, k \neq 5$ and consider some nonempty directed graph L. If L has a directed cycle of length 2 then $\overrightarrow{C_{k}}$ is a subgraph of $B(L)$ so we have $\operatorname{disc}_{\overrightarrow{C_{k}}}(L)=0$ and $f\left(\overrightarrow{C_{k}}, L\right)=k$. So, we may assume that L is an orientation. If L has a directed path of length 3 then $\operatorname{disc}_{\overrightarrow{C_{k}}}(L) \leq\lceil k / 4\rceil$ implying that $f\left(\overrightarrow{C_{k}}, L\right) \geq k-\lceil k / 4\rceil \geq 2 k / 3$. Otherwise, the underlying graph of L does not have a K_{4}, so $|E(L)| \leq r^{2} / 3$ and therefore $f\left(\overrightarrow{C_{k}}, L\right) \geq 2 k / 3$ as well.

4 Fractional packing and integral covering

Throughout this section, let H be a given directed graph with at least two arcs. We need the following simple lemma, analogous to Lemma 3 of (5).

Lemma 4.1. Let D be an arc-weighted directed multigraph with weight function w, let $c: E(D) \rightarrow$ $[0,1]$ be an optimal fractional H-cover of D, and let $\alpha>0$. Suppose that there exists an arc e such that $c(e) \geq \alpha>0$. If $\tau_{H}(D \backslash e) \leq \alpha^{-1} \nu_{H}^{*}(D \backslash e)$, then $\tau_{H}(D) \leq \alpha^{-1} \nu_{H}^{*}(D)$.

Proof. Since c restricted to $E(D) \backslash\{e\}$ is a fractional H-cover of $D \backslash e$, it follows that

$$
\tau_{H}^{*}(D \backslash e) \leq \tau_{H}^{*}(D)-c(e) w(e) \leq \tau_{H}^{*}(D)-\alpha w(e) .
$$

In particular, $\alpha^{-1} \tau_{H}^{*}(D \backslash e)+w(e) \leq \alpha^{-1} \tau_{H}^{*}(D)$.
By the assumption of the lemma, there exists a set F of arcs of weight at most $\alpha^{-1} \nu_{H}^{*}(D \backslash e)=$ $\alpha^{-1} \tau_{H}^{*}(D \backslash e)$ such that F is an H-cover of $D \backslash e$. Since the set $F \cup\{e\}$ is an H-cover of D and its weight is at most $\alpha^{-1} \tau_{H}^{*}(D \backslash e)+w(e) \leq \alpha^{-1} \tau_{H}^{*}(D)=\alpha^{-1} \nu_{H}^{*}(D)$, the lemma follows.

Let L be a given nonempty directed graph with $r:=|V(L)|, \ell:=|E(L)|$, and assume that $V(L)=[r]$. Let

$$
\alpha=\frac{1}{|E(H)|-\operatorname{disc}_{H}(L)}
$$

and observe that $0<\alpha \leq 1$ since $0 \leq \operatorname{disc}_{H}(L)<|E(H)|$ as L is nonempty.
Lemma 4.2. Let D be an arc-weighted directed multigraph and $c: E(D) \rightarrow[0,1]$ be a fractional H-cover of D such that $c(e)<\alpha$ for every arc e. Let V_{1}, \ldots, V_{r} be a partition of $V(D)$ (some parts may be empty). Let F be the set of all arcs $e=(x, y)$ with $c(e)>0$ and that further satisfy the following: If $x \in V_{i}$ and $y \in V_{j}$ (possibly $i=j$) then $(i, j) \notin E(L)$. Then F is an H-cover of D.

Proof. Let F^{*} be the set of all arcs $e=(x, y)$ that satisfy the following: If $x \in V_{i}$ and $y \in V_{j}$ (possibly $i=j$) then $(i, j) \notin E(L)$. Observe that $F \subseteq F^{*}$ and that $e \in F^{*} \backslash F$ has $c(e)=0$. By the definition of F^{*}, the set of $\operatorname{arcs} E(D) \backslash F^{*}$ is a subgraph of $B(L)$. Let X be some H copy in D. Then $E(X) \backslash F^{*}$ is a subgraph of $B(L)$, so by the definition of $\operatorname{disc}_{H}(L)$, we have that $\left|E(X) \cap F^{*}\right| \geq \operatorname{disc}_{H}(L)$. Since $c(e)<\alpha$ for every arc e, it cannot be that disc $H_{H}(L)$ arcs of $E(X) \cap F^{*}$ all have $c(e)=0$ as otherwise the total value of c over all arcs of X is less than $\alpha\left(|E(H)|-\operatorname{disc}_{H}(L)\right)=1$, contradicting the assumption that c is a fractional H-cover of D. It therefore follows that $|E(X) \cap F|>0$.

Proof of Theorem 1.7. Let c be an optimal fractional H-cover of D and let m be an optimal fractional H-packing. We will show that there exists an H-cover with total value at most $f(H, L) \nu_{H}^{*}(D)$. Using induction on the number of edges of D, observe that the theorem trivially holds when D is empty. By Lemma 4.1, we can assume that $c(e)<f(H, L)^{-1} \leq \alpha$ for every arc $e \in E(D)$, as otherwise we can repeatedly apply Lemma 4.1 and the induction hypothesis, removing edges of weight at least $f(H, L)^{-1}$ until none are left.

Randomly partition $V(D)$ into r parts V_{1}, \ldots, V_{r} where each vertex chooses its part uniformly at random and independently of other vertices. Using the obtained random partition, we apply Lemma 4.2 to obtain an H-cover F.

Next, we upper-bound the expected weight of F, i.e. the sum of the weights of its arcs. First observe that by the definition of F, all arcs $e \in F$ have $c(e)>0$. Consider some arc $e=(x, y) \in E(D)$ with $c(e)>0$. The probability that $e \notin F$ is precisely the probability that $x \in V_{i}, y \in V_{j}$ and $(i, j) \in E(L)$. Equivalently, $\operatorname{Pr}[e \in F]=1-\ell / r^{2}$. By complementary slackness, we have that if $c(e)>0$, then the sum of $m(X)$ over all H-copies X in D for which $e \in E(X)$ equals $w(e)$. The expected weight of F is therefore

$$
\begin{aligned}
\left(1-\frac{\ell}{r^{2}}\right) \sum_{\substack{e \in E(D) \\
c(e)>0}} w(e) & =\left(1-\frac{\ell}{r^{2}}\right) \sum_{\substack{e \in E(D) \\
c(e)>0}} \sum_{\substack{X \in H(D) \\
e \in E(X)}} m(X) \\
& \leq|E(H)|\left(1-\frac{\ell}{r^{2}}\right) \sum_{X \in H(D)} m(X) \\
& \leq f(H, L) \nu_{H}^{*}(D)
\end{aligned}
$$

Thus, there exists a choice of F such that $|F| \leq f(H, L) \nu_{H}^{*}(D)$ and in particular, $\tau_{H}(D) \leq$ $f(H, L) \nu_{H}^{*}(D)$. Now, let $\varepsilon>0$. By the definition of $f(H)$, there exists a nonempty directed graph L such that $f(H, L) \leq f(H)+\varepsilon$, so we have that $\tau_{H}(D) \leq(f(H)+\varepsilon) \nu_{H}^{*}(D)$. As this holds for all $\varepsilon>0$, we obtain that $\tau_{H}(D) \leq f(H) \nu_{H}^{*}(D)$, as required.

Proof of Corollary [1.9. To obtain a deterministic polynomial time algorithm for approximating $\tau_{H}(D)$, we compute $\nu_{H}^{*}(D)$ using any polynomial time algorithm for linear programming. By Theorem 1.7, the approximation ratio is at most $f(H)$.

For the second part of the corollary, first construct (using linear programming) an optimal fractional cover c, so its total value is $\tau_{H}^{*}(D)=\nu_{H}^{*}(D)$. Let L be any fixed nonempty directed graph. We compute $\operatorname{disc}_{H}(L)$ in constant time since in order to determine $\operatorname{disc}_{H}(L)$ it suffices to consider only induced subgraphs of the blowup $B(L)$ with at most $|V(H)|$ vertices in each part. With $\operatorname{disc}_{H}(L)$ given, we compute $f(H, L)$ in constant time. By Lemma 4.1, we can eliminate from D all arcs with $c(e) \geq f(H, L)^{-1}$ so we can now assume that all arcs have $c(e)<f(H, L)^{-1}$. By the proof of Theorem 1.7, the random set F (which is constructed in linear time as L is fixed), has expected weight at most $f(H, L) \nu_{H}^{*}(D)$, so we return F, which is an H-cover, as our algorithm's answer. This gives a randomized polynomial time $f(H, L)$-approximation algorithm for H-cover. To make our algorithm deterministic, we use the derandomization method of conditional expectation. Indeed, observe that the precise expected value $f(H, L) \nu_{H}^{*}(D)$ is known to us. Now, when we construct F, we consider the vertices $v \in V(D)$ one by one. In order to decide in which part V_{i} to place v, we simply compute the conditional expectation of the expected value of $|F|$ for
each of the possible r choices. As one of these choices must yield a value at most $f(H, L) \nu_{H}^{*}(D)$ for the conditional expectation, we take that choice.

Corollary 4.3. Let G be an edge-weighted undirected multigraph. Then, $\tau_{K_{k}}(G) \leq\left\lfloor k^{2} / 4\right\rfloor \nu_{K_{k}}^{*}(G)$. Proof. Let H be a tournament on k vertices. Clearly, $b(H)=\left\lfloor k^{2} / 4\right\rfloor$ so by Lemma 3.2 we have that $f(H) \leq\left\lfloor k^{2} / 4\right\rfloor$. Now, suppose that G is an undirected edge-weighted multigraph and let D be an acyclic orientation of G. Then any copy of K_{k} in G is a copy of T_{k} in D and thus $\rho_{K_{k}}(G)=\rho_{T_{k}}(D)$ for any $\rho \in\left\{\tau, \nu, \tau^{*}, \nu^{*}\right\}$. In particular, we obtain from Theorem 1.7 that $\tau_{K_{k}}(G) \leq\left\lfloor k^{2} / 4\right\rfloor \nu_{K_{k}}^{*}(G)$. Furthermore, Corollary 1.9 shows that there is a polynomial time $\left\lfloor k^{2} / 4\right\rfloor$-approximation algorithm for K_{k}-cover.

5 Lower bound construction for directed cycles

Before presenting the construction which proves Theorem 1.6, we need the following result of Häggkvist and Thomassen [7]. For completeness, we present a simplified proof of it. We mention that the case $k=3$ of the following lemma was first proved Brown and Harary [4].

Lemma 5.1. Let $k \geq 2$ and let D be a directed graph with n vertices. If D has no directed k-cycle, then D has at most $n(n-1) / 2+(k-2) n / 2$ arcs.

Proof. Fixing $k \geq 3$ (the case $k=2$ is trivial), the proof proceeds by induction on n. As the cases $n \leq k-1$ clearly hold, we assume that $n \geq k$. Since every n-vertex undirected graph with more than $n(k-2) / 2$ edges has a path on k vertices, we may assume that D has a path $P=v_{1}, \ldots, v_{k}$ such that all consecutive pairs on this path induce directed cycles of length 2. Furthermore, if the subgraph induced by v_{1}, \ldots, v_{k} does not contain a directed k-cycle, then the sum of the out-degrees of v_{1} and v_{k} inside this subgraph is at most $k-1$ and the sum of the in-degrees of v_{1} and v_{k} inside this subgraph is at most $k-1$. So, without loss of generality, we can assume that in the subgraph induced by $P^{\prime}=v_{2}, \ldots, v_{k}$, the number of arcs incident with v_{k} is at most $k-1$. The number of arcs incident with either v_{2} or v_{k} in P^{\prime} is therefore at most $(k-1)+2(k-3)=3 k-7$. If there is some vertex outside of P^{\prime} that is an in-neighbor of v_{2} and an out-neighbor of v_{k} or vice versa, we have a directed k-cycle in D. Thus, assume that the sum of the in-degree of v_{2} and the out-degree of v_{k} with respect to the vertices outside of P^{\prime} is at most $n-k+1$. Similarly, the sum of the in-degree of v_{k} and the out-degree of v_{2} with respect to the vertices outside of P^{\prime} is at most $n-k+1$. Thus, the total number of arcs incident with v_{2} or v_{k} in all of D is at most $2(n-k+1)+3 k-7=2 n+k-5$. By induction, the directed graph obtained from D by deleting the vertices v_{2} and v_{k} either has a directed k-cycle, or has at most $(n-2)(n-3) / 2+(k-2)(n-2) / 2$ arcs. It follows that the number of arcs of D is at most

$$
\frac{(n-2)(n-3)}{2}+\frac{(k-2)(n-2)}{2}+2 n+k-5=\frac{n(n-1)}{2}+\frac{(k-2) n}{2} .
$$

We construct a probability space of tournaments having the property that a sampled element of it satiates the statement of Theorem [1.6. We require a classical theorem of Wilson [15] that proves, in particular, that for all sufficiently large n satisfying $n \equiv 1(\bmod 2 k)$, the edges of K_{n} can be decomposed into pairwise edge-disjoint copies of C_{k}. Given such an n and a decomposition of its edges into a set \mathcal{C} of edge-disjoint copies of C_{k}, independently orient each element of \mathcal{C} to obtain a directed k-cycle, where each of the two possible directions is chosen at random. The obtained n-vertex tournament T is therefore regular and, by definition, $\nu_{k}(T)=n(n-1) / 2 k$. As trivially $\nu_{k}^{*}(T) \leq\left|E\left(K_{n}\right)\right| /\left|E\left(C_{k}\right)\right|=n(n-1) / 2 k$, we also have $\nu_{k}^{*}(T)=n(n-1) / 2 k$. We next show that asymptotically almost surely, $\tau_{k}(T)=n^{2} / 4-o\left(n^{2}\right)$, thus proving Theorem 1.6. Since every directed graph has an acyclic subgraph consisting of at least half of its arcs, it suffices to prove that asymptotically almost surely, $\tau_{k}(T) \geq n^{2} / 4-o\left(n^{2}\right)$. To this end, we need the following lemma in which the notation $e(A, B)$ denotes the number of arcs of going from vertex set A to vertex set B.

Lemma 5.2. Asymptotically almost surely, for every pair of disjoint sets A, B of vertices of T of order at least $n^{2 / 3}$ each, both $e(A, B)$ and $e(B, A)$ are at most $\left(1+o_{n}(1)\right)|A||B| / 2$.

Proof. We prove that $e(A, B)$ is tightly concentrated around its expected value, $|A||B| / 2$. Let $\mathcal{C}^{\prime} \subseteq \mathcal{C}$ be the set of elements of \mathcal{C} containing at least one edge with endpoints in both A and B. Every $C \in \mathcal{C}^{\prime}$, being a copy of C_{k}, contains some $1 \leq r \leq k$ edges with endpoints in both A and B. When orienting C to obtain a directed k-cycle, some $0 \leq s \leq r$ of its edges become arcs going from A to B and the remaining $r-s$ edges become arcs going from B to A, or vice versa. Thus, we may associate C with the random variable X_{C} such that $X_{C}=s-r / 2$ with probability $\frac{1}{2}$ and $X_{C}=r / 2-s$ with probability $\frac{1}{2}$ noticing that

$$
e(A, B)=\frac{|A||B|}{2}+\sum_{C \in \mathcal{C}^{\prime}} X_{C} .
$$

We observe that the $\left|\mathcal{C}^{\prime}\right| \leq|\mathcal{A}||\mathcal{B}|$ random variables X_{C} are independent, each having expectation 0 and $\left|X_{C}\right|=|r / 2-s|<k$. So, by the Chernoff inequality A.1.16 in [2],

$$
\operatorname{Pr}\left[\sum_{C \in \mathcal{C}^{\prime}} X_{C}>k(|A||B|)^{0.9}\right] \leq e^{-(|A||B|)^{1.8} / 2\left|\mathcal{C}^{\prime}\right|} \leq e^{-(|A||B|)^{0.8} / 2}<\frac{1}{5^{n}}
$$

where in the last inequality we have used that $|A||B| \geq n^{4 / 3}$. Thus, with probability at least $1-1 / 5^{n}, e(A, B) \leq\left(1+o_{n}(1)\right)|A||B| / 2$. As there are less than 4^{n} choices for pairs A, B to consider, the result follows from the union bound.

The rest of our argument is similar to the proof in [5] for directed triangles. As the proof uses the regularity lemma for directed graphs, it requires a few definitions. We say that a pair of disjoint
nonempty vertex sets A, B of a directed graph are ε-regular if for all $X \subseteq A$ and $Y \subseteq B$ with $|X| \geq \varepsilon|A|$ and $|Y| \geq \varepsilon|B|$,

$$
\left|\frac{e(X, Y)}{|X||Y|}-\frac{e(A, B)}{|A||B|}\right| \leq \varepsilon \text { and }\left|\frac{e(Y, X)}{|X||Y|}-\frac{e(B, A)}{|A||B|}\right| \leq \varepsilon
$$

An ε-regular partition of a directed graph D is a partition of its vertices into sets V_{1}, \ldots, V_{ℓ} such that $\ell \geq \varepsilon^{-1},\left|\left|V_{i}\right|-\left|V_{j}\right|\right| \leq 1$ for all $i, j \in[\ell]$, and all but $\varepsilon \ell^{2}$ pairs V_{i}, V_{j} are ε-regular. The directed version of Szemerédi's regularity lemma, first used implicitly in [6] and proved in [1], states that for every $\varepsilon>0$ there exists $K(\varepsilon)$ such that every directed graph D with at least ε^{-1} vertices has an ε-regular partition with at most $K(\varepsilon)$ parts. A useful notion is the reduced arc-weighted directed graph R corresponding to a given ε-regular partition. It has vertex set $[\ell]$ and if the parts V_{i}, V_{j} form an ε-regular pair, then R contains an arc (i, j) with weight $e\left(V_{i}, V_{j}\right) /\left(\left|V_{i}\right|\left|V_{j}\right|\right)$ and an $\operatorname{arc}(j, i)$ with weight $e\left(V_{j}, V_{i}\right) /\left(\left|V_{i}\right|\left|V_{j}\right|\right)$.

Proof of Theorem 1.6. We prove that asymptotically almost surely, $\tau_{k}(T) \geq n^{2} / 4-o\left(n^{2}\right)$. Fix $\varepsilon>0$. By Lemma 5.2, we may assume that T has the property that for every pair of disjoint sets A, B of vertices of T of order at least $n^{2 / 3}$ each, it holds that $e(A, B) \leq\left(1+o_{n}(1)\right)|A||B| / 2$ and $e(B, A) \leq\left(1+o_{n}(1)\right)|A||B| / 2$. Let F be a set of arcs such that $T \backslash F$ has no directed k cycle. Consider an ε-regular partition of the directed graph $T \backslash F$ with $\ell \leq K(\varepsilon)$ parts and the corresponding reduced arc-weighted directed graph R. Let w_{R} be the sum of the weights of the arcs of R. Observe that

$$
|E(T \backslash F)| \leq\left(\frac{w_{R}}{\ell^{2}}+4 \varepsilon\right) n^{2}
$$

where the error term $4 \varepsilon n^{2}$ generously accounts for the arcs inside parts and the arcs between non- ε regular pairs (we are using the fact that each part is of size either $\lfloor n / \ell\rfloor$ or $\lceil n / \ell\rceil$ and that $\ell \geq \varepsilon^{-1}$). Let R^{\prime} be the directed graph obtained from R by removing all arcs with weight at most $k \varepsilon$ so now the sum of the weights of the arcs of R^{\prime} is at least $w_{R}-k \varepsilon \ell^{2}$. Now, if R^{\prime} contained a directed k-cycle, then so would $T \backslash F$. Indeed, suppose, without loss of generality, that the k-cycle in R^{\prime} is $(1, \ldots, k)$. Then we can use the ε-regularity of the pairs V_{i}, V_{i+1} for $i=1, \ldots, k$ (indices modulo k) and the fact that $e\left(V_{i}, V_{i+1}\right) \geq k \varepsilon\left|V_{i}\right|\left|V_{i+1}\right|$ to embed (many) directed k-cycles in $T \backslash F$, each of the form $\left(v_{1}, \ldots, v_{k}\right)$ where $v_{i} \in V_{i}$. Hence, R^{\prime} has no directed k-cycle and therefore has at most $\ell^{2} / 2+\ell k$ arcs by Lemma 5.1. Now, by the property of T stated in the beginning of the proof, each arc of R has weight at most $1 / 2+o_{n}(1)$. It follows that

$$
w_{R} \leq k \varepsilon \ell^{2}+\left(\ell^{2} / 2+\ell k\right)\left(1 / 2+o_{n}(1)\right) \leq\left(\frac{1}{4}+2 k \varepsilon\right) \ell^{2}
$$

implying that $|E(T \backslash F)| \leq(1 / 4+4 k \varepsilon) n^{2}$, implying that $|F| \geq n^{2}\left(1 / 4-4 k \varepsilon-o_{n}(1)\right)$. As this holds for every choice of F which covers all directed k-cycles, we obtain that $\tau_{k}(T) \geq\left(1 / 4-4 k \varepsilon-o_{n}(1)\right) n^{2}$,
for every $\varepsilon>0$. It follows that $\tau_{k}(T) \geq n^{2} / 4-o\left(n^{2}\right)$.
It should be noted that in order to prove that the constant in Conjecture 1.5 cannot be made smaller than $k / 2$, it suffices to prove, say, that there are n-vertex tournaments T (not necessarily regular tournaments) for which $\tau_{k}(T) \geq n^{2} / 4-o\left(n^{2}\right)$ as trivially $\nu_{k}^{*}(T) \leq n(n-1) / 2 k$ for every tournament. In fact, almost all tournaments are good examples, as a random tournament (where each arc is independently and randomly oriented) satisfies $\tau_{k}(T) \geq n^{2} / 4-o\left(n^{2}\right)$ asymptotically almost surely. The proof is identical to the proof of Theorem 1.6 except for Lemma 5.2 which can be replaced with a standard concentration inequality for the binomial distribution. We also note that it is not difficult to prove that random tournaments satisfy $\nu_{k}(T)=\left(1-o_{n}(1)\right) n^{2} / 2 k$ asymptotically almost surely (so they cannot be used as counter-examples to Conjecture 1.5).

Both [5, 12] constructed sparse examples exhibiting the sharp tightness of Conjecture 1.5 in the case $k=3$ of directed triangles (recall again that the case $k=3$ of Conjecture 1.5 is stated in [12]). For example, the unique regular tournament R_{5} on five vertices has $\nu_{3}\left(R_{5}\right)=2$ and $\tau_{3}\left(R_{5}\right)=3$. One can then take many vertex-disjoint copies of R_{5} to obtain infinitely many sparse constructions attaining the ratio 1.5. Alternatively one can take a transitive tournament on any amount of vertices and replace any number of pairwise vertex-disjoint subtournaments on five vertices of it with copies of R_{5} to obtain additional examples attaining the 1.5 ratio. We note that a similar argument holds for the case $k=4$. Indeed, $\nu_{4}\left(R_{5}\right)=1$ (since K_{5} does not have two edge-disjoint copies of C_{4}). While any single arc of R_{5} does not cover all directed 4-cycles, it is easy to check that one can remove two arcs and cover all directed 4 -cycles of R_{5}. Hence, $\tau_{4}\left(R_{5}\right)=2$. It follows that there are infinitely many constructions that attain the ratio 2 for the case $k=4$. Whether there exist constructions attaining the exact ratio $k / 2$ for $k \geq 5$ remains open.

Acknowledgment

I thank both referees for insightful comments.

References

[1] N. Alon and A. Shapira. Testing subgraphs in directed graphs. Journal of Computer and System Sciences, 69(3):354-382, 2004.
[2] N. Alon and J. Spencer. The Probabilistic Method. John Wiley \& Sons, 2004.
[3] J. D. Baron and J. Kahn. Tuza's conjecture is asymptotically tight for dense graphs. Combinatorics, Probability and Computing, 25(5):645-667, 2016.
[4] W. G. Brown and F. Harary. Extremal digraphs. Coll. Math. Soc. J. Bolyai, 4:135-198, 1969.
[5] J. W. Cooper, A. Grzesik, A. Kabela, and D. Král. Packing and covering directed triangles asymptotically. European Journal of Combinatorics, 101:103462, 2022.
[6] A. Czygrinow, S. Poljak, and V. Rödl. Constructive quasi-ramsey numbers and tournament ranking. SIAM Journal on Discrete Mathematics, 12(1):48-63, 1999.
[7] R. Häggkvist and C. Thomassen. On pancyclic digraphs. Journal of Combinatorial Theory, Series B, 20(1):20-40, 1976.
[8] P. E. Haxell. Packing and covering triangles in graphs. Discrete mathematics, 195(1-3):251254, 1999.
[9] P. E. Haxell and V. Rödl. Integer and fractional packings in dense graphs. Combinatorica, 21(1):13-38, 2001.
[10] G. Kortsarz, M. Langberg, and Z. Nutov. Approximating maximum subgraphs without short cycles. SIAM Journal on Discrete Mathematics, 24(1):255-269, 2010.
[11] M. Krivelevich. On a conjecture of Tuza about packing and covering of triangles. Discrete Mathematics, 142(1-3):281-286, 1995.
[12] J. McDonald, G. J. Puleo, and C. Tennenhouse. Packing and covering directed triangles. Graphs and Combinatorics, 36(4):1059-1063, 2020.
[13] Z. Nutov and R. Yuster. Packing directed cycles efficiently. Discrete Applied Mathematics, 155(2):82-91, 2007.
[14] Z. Tuza. A conjecture on triangles of graphs. Graphs and Combinatorics, 6(4):373-380, 1990.
[15] R. M. Wilson. An existence theory for pairwise balanced designs, III: Proof of the existence conjectures. Journal of Combinatorial Theory, Series A, 18(1):71-79, 1975.
[16] M. Yannakakis. Node-and edge-deletion NP-complete problems. In Proceedings of the tenth annual ACM symposium on Theory of computing, pages 253-264, 1978.
[17] R. Yuster. Integer and fractional packing of families of graphs. Random Structures \mathcal{E} Algorithms, 26(1-2):110-118, 2005.
[18] R. Yuster. Dense graphs with a large triangle cover have a large triangle packing. Combinatorics, Probability and Computing, 21(6):952-962, 2012.

[^0]: *Department of Mathematics, University of Haifa, Haifa 3498838, Israel. Email: raphael.yuster@gmail.com .

