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Abstract. In this note we prove the uniqueness of solutions to a class of mean field games
systems subject to possibly degenerate individual noise. Our results hold true for arbitrary long
time horizons and for general nonseparable Hamiltonians that satisfy a so-called displacement mono-
tonicity condition. This monotonicity condition that we propose for nonseparable Hamiltonians is
sharper and more general than the one proposed in the work [W. Gangbo et al., Ann. Probab., 50
(2022), pp. 2178--2217]. The displacement monotonicity assumptions imposed on the data actually
provide not only uniqueness, but also the existence and regularity of the solutions. Our analysis
uses elementary arguments and does not rely on the well-posedness of the corresponding master
equations.
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1. Introduction. The theory of mean field games (MFGs) was introduced around
2006 simultaneously by Lasry and Lions [51, 52, 53, 55] and Huang, Malham\'e and
Caines [47, 48, 49, 50]. Since then, its literature has witnessed a vast increase in
various directions and the theory turned out to be extremely rich in applications.

In its simplest form (cf. [17, 19, 23, 26, 27]), an MFG can be fully characterized
by the solutions of the following system of nonlinear PDEs,\left\{       

 - \partial tu(t, x) - \beta 2

2 \Delta xu(t, x) +H(x, - Dxu(t, x), \rho t) = 0 in (0, T )\times \BbbR d,

\partial t\rho t  - \beta 2

2 \Delta x\rho t +Dx \cdot (\rho tDpH(x, - Dxu(t, x), \rho t)) = 0 in (0, T )\times \BbbR d,

u(T,x) = g(x,\rho T ), \rho (0, \cdot ) = \rho 0 in \BbbR d,

(1.1)

where \beta \in \BbbR is the intensity of the individual noise, T > 0 is a given time horizon,
and \rho 0 \in P2(\BbbR d) is the initial configuration of the agents. Here, the state space of
the agents is represented by \BbbR d and P2(\BbbR d) denotes the space of Borel probability
measures on \BbbR d with finite second moments.

We underline that the unknown u : [0, T ]\times \BbbR d \rightarrow \BbbR stands for the value function
of a typical agent, who solves the control problem
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530 ALP\'AR R. M\'ESZ\'AROS AND CHENCHEN MOU

u(t, x)=inf
\alpha 

\BbbE 

\Biggl\{ \int T

t

L(Xs, \alpha s, \rho s)ds+g(XT , \rho T )

\Biggr\} 
s.t.

\biggl\{ 
dXs=\alpha sds+\beta dBs, s\in (t, T ),
Xt = x,

where g :\BbbR d \times P(\BbbR d)\rightarrow \BbbR is a given final cost function and L :\BbbR d \times \BbbR d \times P(\BbbR d)\rightarrow 
\BbbR is a given Lagrangian function that models the running cost. The unknown \rho :
[0, T ]\rightarrow P(\BbbR d), the distribution of the agent population, enters into this optimization
problem. The Hamiltonian H :\BbbR d\times \BbbR d\times P(\BbbR d)\rightarrow \BbbR is simply defined as H(x, \cdot , \mu ) =
L\ast (x, \cdot , \mu ) for all x \in \BbbR d and \mu \in P(\BbbR d), i.e., it is the Legendre--Fenchel transform of
L, in its second variable. When \beta = 0, the model becomes deterministic.

By now, the well-posedness of system (1.1) is well understood in many different
settings and the first results date back to the original works of Lasry and Lions and
have been presented in the course of Lions at Coll\`ege de France (cf. [55]). A complete
account on the progress of the literature on this subject has been recently published
in the self-contained and well-written lecture notes [23] from the PDE viewpoint and
in the monographs [26, 27] from the probabilistic viewpoint. Let us now discuss the
state of the art of the literature, that will be relevant for our considerations.

Literature overview. Regarding H and g, we can consider nonlocal (regularizing)
and local dependence on the measure variable \mu . If \beta \not = 0, system (1.1) possesses
a parabolic structure. When H and g are nonlocal and regularizing in the measure
variable, it is fairly straightforward to obtain the existence of a classical solution under
very general assumptions on H and g for any \rho 0 \in P(\BbbR d) and T > 0 (cf. [23, 26]).

If H and g are local functions of the density variable, for general Hamiltonians
the well-posedness result (classical or weak solutions) is known only for short time
(cf. [5, 6, 29]). For arbitrary long time horizon T > 0, the existence of (classical or
weak) solutions is known only under additional structural assumptions on H. This is
for instance, when H possesses a so-called separable structure (cf. [23, 30, 41, 42, 59]),
i.e., the momentum and measure variables are additively separated, having the form of

H(x,p,\mu ) =H0(x,p) - f(x,\mu )(1.2)

for some H0 and f .
When \beta = 0 and T > 0 is arbitrary, the existence of a weak solution to (1.1)

is known only under the condition (1.2) and with extra assumptions on the initial
measure \rho 0 (such as boundedness or compact support; see [17, 23] in the case of
nonlocal regularizing data f, g; and [18, 20, 21, 23] in the case of locally depending
f, g on the \mu variable).

Now, let us turn our attention to the question of uniqueness of solutions to (1.1).
As expected, this is a more subtle question and additional assumptions must be
imposed to hope for positive results in this direction. Already in their original works,
when (1.2) takes place, Lasry and Lions proposed a notion of monotonicity (which
bears the name of Lasry--Lions monotonicity in the literature now) on the coupling
functions f and g under which uniqueness of solutions to (1.1) can be obtained, as long
as they are regular enough. Indeed, let us underline that, for instance when \beta = 0
and f and g are nonlocal and regularizing, the Lasry--Lions monotonicity implies
the uniqueness of solutions as long as the measure component \mu of the solution is
essentially bounded (cf. [23, Theorem 1.8]). When \beta \not = 0 the parabolic regularity
kicks in, and so the uniqueness result holds under the Lasry--Lions monotonicity
condition, without any additional assumption (cf. [23, Theorem 1.4]). When f and g
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MFG SYSTEMS UNDER DISPLACEMENT MONOTONICITY 531

are local functions of the density variable, the existence and (partial) uniqueness of
weak solutions can be obtained by variational techniques as in [18, 20, 21].

Relying on the examples of nonuniqueness of solutions in the lack of the Lasry--
Lions monotonicity, provided in [11, 12, 14, 26, 55], one might wonder whether the
Lasry--Lions monotonicity is a necessary condition for the uniqueness of solutions.
When H and g are nonlocal regularizing functions in the measure variable, until
recently the global in time uniqueness of solutions to (1.1) was essentially known only
in the regime of separable Hamiltonians that satisfy the Lasry--Lions monotonicity
condition. In this paper our goal is to present a different regime which can take care
of a class of data outside of the scope of the Lasry--Lions monotonicity.

When H and g are local functions of the density variable, Lions in his lectures
(cf. [55]) provided a general monotonicity condition on H which yields the uniqueness
of solutions (see also [1, 56], where this condition has been exploited). Finally, recently
a general framework based on monotone operators in Banach spaces (cf. [32, 33]) has
been proposed to show the well-posedness of general MFG systems. These all can
be seen as generalizations of the Lasry--Lions monotonicity condition in the case of
possibly nonseparable, but special Hamiltonians, depending locally on the density
variable. We underline that to the best of our knowledge, no such generalization
of the Lasry--Lions monotonicity is known in the case of nonseparable Hamiltonians
that are nonlocal in the measure variable. The Lasry--Lions monotonicity condition
is certainly a sufficient one, which in many cases provides the well-posedness (hence
uniqueness) of MFG systems. In some cases it can be even used to obtain higher order
regularity of weak solutions to first order local systems (cf. [45, 46]) and stability and
convergence of numerical schemes [4, 44].

The uniqueness and stability of solutions to (1.1) plays an instrumental role in
the theory. For instance, the well-posedness of the associated master equations---
introduced by Lions---is known so far only under the uniqueness and stability of
solutions to the MFG system (cf. [19, 27, 28, 58]). On the contrary, the well-posedness
of the master equation also implies uniqueness of the associated MFG system.

The recent results [36] on the well-posedness of the master equations in the pres-
ence of individual and common noises in a different regime of monotonicity (the
so-called displacement monotonicity) suggests that there are conditions other than
the Lasry--Lions monotonicity that could lead to the global in time well-posedness of
master equations. As it is detailed in [36], the displacement monotonicity condition is
in general in dichotomy with the Lasry--Lions monotonicity, and it allows one to treat
a general class of non-separable Hamiltonians. We note that the displacement mono-
tonicity stems from the notion of displacement convexity arising in optimal transport
theory (cf. [57]), which has been already used to study potential MFG in the de-
terministic case (cf. [13, 35]) and in the stochastic case (cf. [28]). It seems that [2]
(see also [25, 3, 28]), whose weak monotonicity condition is essentially equivalent to
the displacement monotonicity (in the case of particular separable Hamiltonians), is
the first work that relied on displacement monotonicity to study the well-posedness
of McKean--Vlasov forward-backward stochastic differential equations with a special
form. Interestingly, the nonlocal coupling function considered in [9] has a displace-
ment monotone structure. So we believe that our techniques might lead to a better
understanding of the uniqueness issues raised there.

Thus, the purpose of this manuscript is to present the well-posedness of the MFG
system (1.1) in the case of a general class of nonseparable Hamiltonians and final cost
functions that possess the appropriate displacement monotonicity assumptions, for
arbitrary time horizons T and possibly degenerate individual noise. We emphasize
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532 ALP\'AR R. M\'ESZ\'AROS AND CHENCHEN MOU

that in this note we are using only elementary analysis. This means that we do
not rely on the well-posedness of the corresponding master equations. In particular,
we are using only some classical tools from stochastic control theory, the theory of
viscosity solutions, and Fokker--Planck type equations.

Our main results. The heart of our analysis lies in the fact that the displacement
monotonicity assumption on the data (which in fact implies convexity of x \mapsto \rightarrow g(x,\mu )
and (x, v) \mapsto \rightarrow L(x, v,\mu ) for all \mu \in P2(\BbbR d)) together with classical results from optimal
control theory imply that the solution u(t, \cdot ) of the HJB equation from (1.1) has a
C1,1 a priori estimate in the space variable x, independently of the intensity \beta of the
noise. First, having this regularity in hand yields the existence of a solution to the
system (1.1) when \beta = 0. Indeed, in the deterministic case (i.e., \beta = 0) the solution
to the continuity equation can be represented via the flow of a Lipschitz continuous
vector field, so we can get enough compactness to formulate a fixed point problem,
which in turn yields the existence result. Let us remark that in the lack of such
an a priori estimate on u (that would have only semiconcavity estimates), a more
sophisticated argument is needed (by passing though the DiPerna--Lions theory) to
obtain weak solutions to the continuity equation (as explained in [23, 24]), and so,
additional assumptions on the structure of the Hamiltonian and the initial measure \rho 0
seem to be necessary. Our existence results in the case of deterministic problems seem
to be new in the literature (as we can consider general initial measures \rho 0 \in P2(\BbbR d)).
The philosophy behind our results is the same also in the parabolic setting, when
\beta \not = 0. We state in an informal way here one of our main results and will give the full
details on it in Theorem 3.7.

Theorem 1.1. Assume that the Lagrangian function L and the final cost function
g satisfy certain regularity conditions and growth conditions. Assume further that the
functions x \mapsto \rightarrow g(x,\mu ) and (x, v) \mapsto \rightarrow L(x, v,\mu ) are convex. Then the MFG system (1.1),
with \beta = 0, has a solution pair (u,\rho ).

The a priori C1,1 regularity on u(t, \cdot ) justifies the space of the solutions we con-
sider for the uniqueness. Furthermore, this has another deep consequence: together
with the displacement monotonicity of the data, this implies a sort of monotonicity
property for the difference Dxu

1  - Dxu
2 along any two solutions (u1, \rho 1) and (u2, \rho 2)

to the systems (1.1) with initial distributions \rho 10 and \rho 20, respectively. In fact this
result implies the propagation of the displacement monotonicity of the solution to the
corresponding master equation. This is the crucial property that yields a Gr\"onwall
type estimate on W2(\rho 

1
t , \rho 

2
t ) from where the uniqueness follows. More precisely, we es-

tablish the following stability result, which is stated informally here. See Theorem 4.5
for the precise result.

Theorem 1.2. Assume that the Lagrangian function L and the final cost function
g satisfy certain regularity conditions and growth conditions. Assume further that the
functions L and g satisfy the displacement monotonicity condition. Let (u1, \rho 1) and
(u2, \rho 2) be two solution pairs to (1.1) with initial data \rho 10, \rho 

2
0 \in P2(\BbbR d), respectively.

Then there exists C > 0 depending only on T and the data such that

sup
t\in [0,T ]

W2(\rho 
1
t , \rho 

2
t )\leq CW2(\rho 

1
0, \rho 

2
0)

and

sup
t\in [0,T ]

\bigm\| \bigm\| Dxu
1(t, \cdot ) - Dxu

2(t, \cdot )
\bigm\| \bigm\| 
L\infty (\BbbR d)

\leq CW2(\rho 
1
0, \rho 

2
0).
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MFG SYSTEMS UNDER DISPLACEMENT MONOTONICITY 533

Comparison with earlier results involving displacement monotone data. As men-
tioned above, displacement monotonicity (although under a different name) was used
for the first time in the context of MFGs in the work [2] (see also [25, 3]) to show
uniqueness of solutions to MFG with common noise. These works involved separable
Hamiltonians. Later, in the context of the master equations displacement convex-
ity and monotonicity (in the case of separable Hamiltonians) was used in the works
[13, 28, 35]. Displacement monotonicity to study MFGs master equations in the
case of nonseparable Hamiltonians was proposed in the recent work [36]. Although
the well-posedness of the master equation implies the uniqueness of solutions to the
corresponding MFG system, the standing assumptions in this manuscript differ sig-
nificantly from the ones in [36]. First, [36] imposed the presence of a nondegenerate
noise (i.e., \beta \not = 0), and the current manuscript is able to handle degenerate, deter-
ministic problems. Second, [36] assumed that the data have high order derivatives
(and various bounds on those). In particular, there, for instance, the final condition g
cannot have quadratic growth at infinity in the x-variable. In the current manuscript
we impose merely C1,1 type regularity assumptions on the data that can have a more
general growth condition at infinity. Last, but most importantly, the displacement
monotonicity assumption on nonseparable Hamiltonians that we propose in this man-
uscript improves the corresponding condition from [36]. We show that the condition
from [36] always implies our newly proposed condition, but these are in general not
equivalent.

Finally we would like mention that there are some other works on mean field games
and planning problems which also use techniques relying on displacement convexity
(not the displacement monotonicity). In [8, 43, 54] the authors identified functionals
on probability measures which are convex along the measure flow component of first
order MFG systems (or along discrete in time iterations of such) and planning prob-
lems. This information is then used to obtain new a priori estimates. In certain cases,
these in particular could lead to L\infty estimates for the density of the distribution of
the agents, in the case of deterministic problems.

We expect that the techniques developed in this manuscript could be applied to
study various other problems in the regime of displacement monotone data, such as
the long time behavior of both MFG systems and master equations (cf. [22, 23, 31]),
weak solutions for the master equation (cf. [58]), classical solutions to degenerate
master equations subject to common noise (cf. [24]), and others. We believe that our
newly proposed displacement monotonicity condition for nonseparable Hamiltonians
could serve as a sharper condition for the well-posedness of the corresponding master
equation. We leave such investigations to future works.

The structure of the rest of the paper is given as follows. In section 2 we have
collected all the assumptions on our data. Section 3 presents the existence of a solution
to the system (1.1). We end the note with section 4 that contains the main results on
the uniqueness of the solutions.

2. Standing assumptions. Throughout the note, let T > 0 be any given ar-
bitrary time horizon, and (\Omega ,\BbbF ,\BbbP ) be a filtered probability spaces, on which is de-
fined a standard d-dimensional Brownian motion B. For \BbbF = \{ \scrF t\} 0\leq t\leq T , we assume
\scrF t = \scrF 0 \vee \scrF B , and \BbbP has no atom in \scrF 0, so it can support any measure on \BbbR d with
finite second moment, i.e., the map X \mapsto \rightarrow \BbbP \circ X - 1 is surjective from \BbbL 2(\scrF 0)\rightarrow P2(\BbbR d).

Let us introduce now the Wasserstein space and the differential calculus on it.
For any p\geq 1, let Pp(\BbbR d) stand for the set of Borel probability measures with finite

p-moment and for \mu \in Pp(\BbbR d) we denote its p-moment by Mp(\mu ) :=
\bigl( \int 

\BbbR d | x| pd\mu (x)
\bigr) 1

p .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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534 ALP\'AR R. M\'ESZ\'AROS AND CHENCHEN MOU

For any sub-\sigma -field \scrG \subset \scrF T and \mu \in Pp(\BbbR d), denote by \BbbL p(\scrG ) the set of \BbbR d-valued, \scrG -
measurable, and p-integrable random variables \xi ; and by \BbbL p(\scrG ;\mu ) the set of \xi \in \BbbL p(\scrG )
such that the law \scrL \xi := \xi \sharp \BbbP = \mu . Here, by \xi \sharp \BbbP = \mu we denoted the push forward of \BbbP 
by \xi , i.e., \mu (A) = \BbbP \circ \xi  - 1(A) for any Borel set A \subseteq \BbbR d. If A \subseteq \BbbR d is a Borel set, by
\mu A we denote the restriction of \mu to A, i.e., (\mu A)(D) := \mu (A \cap D) for any Borel
set D\subseteq \BbbR d.

For any \mu ,\nu \in Pp(\BbbR d), their Wp-Wasserstein distance is defined as

Wp(\mu ,\nu ) := inf
\Bigl\{ 
(\BbbE [| \xi  - \eta | p])

1
p : for any \xi \in \BbbL p(\scrF T ;\mu ), \eta \in \BbbL p(\scrF T ;\nu )

\Bigr\} 
.(2.1)

Let C0(P2(\BbbR d)) denote the set of W2-continuous functions and C0,1(P2(\BbbR d)) denote
the set of W2-Lipschitz continuous functions. U : P2(\BbbR d) \rightarrow \BbbR is said to be differ-
entiable at \mu \in P2(\BbbR d) (cf. [7, 37, 55]) if the Wasserstein gradient D\mu U(\mu , \cdot )---as an

element of \nabla C\infty 
c (\BbbR d)

L2(\mu )

---exists and one has the expansion

U(\scrL \xi +\eta ) - U(\scrL \xi ) =\BbbE [\langle D\mu U(\mu , \xi ), \eta \rangle ] + o(\| \eta \| 2) for any \xi , \eta \in \BbbL 2(\scrF T ).

Let g :\BbbR d\times P2(\BbbR d)\rightarrow \BbbR be the terminal cost, and let L :\BbbR d\times \BbbR d\times P2(\BbbR d)\rightarrow \BbbR 
be the Lagrangian function. We further make the following assumptions on g,L:

L(\cdot , \cdot , \mu )\in C1,1
loc (\BbbR 

d \times \BbbR d), g(\cdot , \mu )\in C1,1
loc (\BbbR 

d), uniformly in \mu .(H1)

g(x, \cdot ) is continuous in \mu with respect to W1, locally uniformly in \BbbR d
(H2)

and L(x, v, \cdot ) is continuous in \mu with respect to W1, locally uniformly in \BbbR d \times \BbbR d.

L(x, v,\mu )\geq \theta 1(| v| ) - \theta 2(\mu )(| x| + 1), g(x,\mu )\geq  - \theta 2(\mu ) \forall (x, v,\mu )\in \BbbR 2d \times P2(\BbbR d),

(H3)

where \theta 1 : [0,+\infty ) \rightarrow [0,+\infty ) is a given superlinear function and \theta 2 : P2(\BbbR d) \rightarrow 
[0,+\infty ) is a given function which is bounded in \{ \mu \in P2(\BbbR d) :M2(\mu ) \leq R\} , for any
R> 0.

Dxg \in C0,1(\BbbR d \times P2(\BbbR d)).(H4)

We suppose that v \mapsto \rightarrow L(x, v,\mu ) is strictly convex for all (x,\mu )\in \BbbR d\times P2(\BbbR d) and
there exists c0 > 0 such that

D2
vvL\leq 1

c0
Id.(H5)

DxL,DvL are uniformly Lipschitz continuous in \BbbR d \times \BbbR d \times P2(\BbbR d),(H6) \bigm| \bigm| [DvL(0, \cdot , \mu )] - 1(p)
\bigm| \bigm| \leq C(p),

where C(p)> 0 is independent of \mu .
We remark that the strict convexity assumption on L(x, \cdot , \mu ) implies that

[DvL(0, \cdot , \mu )] - 1 exists. The assumption | [DvL(0, \cdot , \mu )] - 1(p)| \leq C(p) simply means that
this vector field is locally bounded with respect to p, independently of the measure
variable. Let us emphasize that in (H2) and in the last part of (H6) the continuity in
the measure variable is taken with respect to the W1 metric (rather than the W2 one).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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MFG SYSTEMS UNDER DISPLACEMENT MONOTONICITY 535

The reason behind this is that in our consideration the natural space for the solu-
tion to the Fokker--Planck equation in (1.1) will be C([0, T ]; (P1(\BbbR d),W1)), and so,
accordingly, the data in the Hamilton--Jacobi equation need to be continuous with
respect to W1. This continuity is in line with the typical assumptions in the literature
(cf. [23]).

We impose our crucial displacement monotonicity assumptions on the terminal
cost g and on the nonseparable Lagrangian function L:

\BbbE 
\bigl\{ 
[Dxg(X

1, \mu 1) - Dxg(X
2, \mu 2)] \cdot (X1  - X2)

\bigr\} 
\geq 0(H7)

for any X1,X2 \in \BbbL 2(\scrF T ) with \scrL X1 = \mu 1 \in P2(\BbbR d) and \scrL X2 = \mu 2 \in P2(\BbbR d). We recall
that the notion of displacement monotonicity was proposed in [36], and the previous
inequality is the same as the one in [36, Definition 2.2].

\BbbE 
\Bigl\{ 
[DxL(X

1,Z1, \mu 1) - DxL(X
2,Z2, \mu 2)] \cdot (X1  - X2)

\Bigr\} 
+\BbbE 

\Bigl\{ 
[DvL(X

1,Z1, \mu 1) - DvL(X
2,Z2, \mu 2)] \cdot (Z1  - Z2)

\Bigr\} 
\geq 0(H8)

for any X1,X2,Z1,Z2 \in \BbbL 2(\scrF T ) with \scrL X1 = \mu 1 \in P2(\BbbR d) and \scrL X2 = \mu 2 \in P2(\BbbR d).

Remark 2.1. We recall that g is Lasry--Lions monotone if

\BbbE 
\bigl\{ 
g(X1, \mu 1) + g(X2, \mu 2) - g(X1, \mu 2) - g(X2, \mu 1)

\bigr\} 
\geq 0(2.2)

for any X1,X2 \in \BbbL 2(\scrF T ) with \scrL X1 = \mu 1 \in P2(\BbbR d) and \scrL X2 = \mu 2 \in P2(\BbbR d). Assume
that g is smooth enough in x and \mu . Then the inequality (2.2) is equivalent to

\BbbE 
\Bigl\{ 
\~\BbbE [D2

x\mu g(X,\mu , \~X)\delta \~X] \cdot \delta X
\Bigr\} 
\geq 0(2.3)

for any X,\delta X \in \BbbL 2(\scrF T ) with \scrL X = \mu \in P2(\BbbR d), where ( \~X,\delta \~X) is an independent
copy of (X,\delta X) and \~\BbbE is the (conditional) expectation corresponding to ( \~X,\delta \~X).
Similarly, the fact that g satisfies the displacement monotonicity assumption (H7) is
equivalent to

\BbbE 
\Bigl\{ 
\~\BbbE [D2

x\mu g(X,\mu , \~X)\delta \~X] \cdot \delta X + [D2
xxg(X,\mu )\delta X] \cdot \delta X

\Bigr\} 
\geq 0(2.4)

for any X,\delta X \in \BbbL 2(\scrF T ) with \scrL X = \mu \in P2(\BbbR d).
Let us consider g :\BbbR d \times P2(\BbbR d)\rightarrow \BbbR defined as

g(x,\mu ) :=C| x| 2 + (\phi  \star \mu )(x),

where C > 0 and \phi \in C2(\BbbR d) with  - CId \leq D2
xx\phi < 0. By (2.3) and (2.4), g fails to be

Lasry--Lions monotone while g is displacement monotone. This example shows that
the displacement monotonicity in general does not imply Lasry--Lions monotonicity. It
is also immediate to see that if g(x,\mu )\equiv g(x), then g is trivially Lasry--Lions monotone.
But, this function will be displacement monotone only if g is convex. Thus, in general
the Lasry--Lions monotonicity does not imply displacement monotonicity either. This
example also shows that there are, however, functions which are both Lasry--Lions
and displacement monotone at the same time.

Remark 2.2. It is important to notice that the condition in (H8) can be naturally
seen as an extension of (H7) from the state space \BbbR d to \BbbR d \times \BbbR d. Indeed, consider
the map \~L :\BbbR d \times \BbbR d \times P2(\BbbR d \times \BbbR d)\rightarrow \BbbR defined by

\~L(x, z, \nu ) =L(x, z,\pi 1\sharp \nu ) for any (x, z, \nu )\in \BbbR d \times \BbbR d \times P2(\BbbR d \times \BbbR d),
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536 ALP\'AR R. M\'ESZ\'AROS AND CHENCHEN MOU

where \pi 1\sharp \nu is the first marginal of \nu . For any X1,X2,Z1,Z2 \in \BbbL 2(\scrF T ) with \scrL X1 = \mu 1

and \scrL X2 = \mu 2, we consider

\BbbE 
\Bigl\{ \bigl\langle 

(Dx
\~L,Dv

\~L)(X1,Z1,\scrL (X1,Z1)) - (Dx
\~L,Dv

\~L)(X2,Z2,\scrL (X2,Z2)),

(X1  - X2,Z1  - Z2)
\bigr\rangle \Bigr\} 

=\BbbE 
\bigl\{ 
[DxL(X

1,Z1, \mu 1) - DxL(X
2,Z2, \mu 2)] \cdot (X1  - X2)

\bigr\} 
+\BbbE 

\bigl\{ 
[DvL(X

1,Z1, \mu 1) - DvL(X
2,Z2, \mu 2)] \cdot (Z1  - Z2)

\bigr\} 
.

Lemma 2.3. Suppose that (H4) takes place. Then (H7) implies that g(\cdot , \mu ) is
convex on \BbbR d for all \mu \in P2(\BbbR d).

Proof. By assumption (H4), it is enough to show the convexity for any \mu \in P2(\BbbR d)
that has positive density \rho . We further notice that the convexity of g(\cdot , \mu ) is equivalent
to the monotonicity of Dxg(\cdot , \mu ).

Let us suppose the contrary, i.e., that there are two different points x1, x2 \in \BbbR d

and \mu 0 \in P2(\BbbR d) with positive density \rho 0 such that

\langle Dxg(x1, \mu 0) - Dxg(x2, \mu 0), x1  - x2\rangle < 0.

Since (H4) holds and \rho 0 is positive, there exist small \delta 1, \delta 2 > 0 such that \mu 0(B\delta 1(x1)) =
\mu 0(B\delta 2(x2)), B\delta 1(x1)\cap B\delta 2(x2) = \emptyset and for any x\in B\delta 1(x1) and y \in B\delta 2(x2) such that
we have

\langle Dxg(x,\mu 0) - Dxg(y,\mu 0), x - y\rangle < 0.

Now, let \xi 1 \in \BbbL 2(\scrF T ) such that \scrL \xi 1 = \mu 0. Consider a transport map T : B\delta 1(x1) \rightarrow 
B\delta 2(x2) between the measures \mu 0 B\delta 1(x1) and \mu 0 B\delta 2(x2) (one can simply take
Brenier's map for instance). Define Ai := \xi  - 1

1 (B\delta i(xi)), i = 1,2. We notice that
A1,A2 \in \scrF T , \BbbP (A1) = \BbbP (A2), and \BbbP (A1 \cap A2) = 0. Then we consider \xi 2 \in \BbbL 2(\scrF T )
defined as follows:

\xi 2(\omega ) =

\left\{   \xi 1(\omega ), \omega /\in (A1 \cup A2),
(T \circ \xi 1)(\omega ), \omega \in A1,
(T - 1 \circ \xi 1)(\omega ), \omega \in A2.

We readily check that \scrL \xi 2 = \mu 0. Then, by construction, we find

\BbbE 
\Bigl[ 
\langle Dxg(\xi 1,\scrL \xi 1) - Dxg(\xi 2,\scrL \xi 2), \xi 1  - \xi 2\rangle 

\Bigr] 
< 0,

which contradicts with the displacement monotonicity of g. The result follows.

Remark 2.4. The result of Lemma 2.3 can be seen as a slight improvement of
[36, Lemma 2.6] in weakening the regularity assumptions on the data.

Lemma 2.5. Suppose that (H6) takes place. Then (H8) implies that L(\cdot , \cdot , \mu ) is
convex on \BbbR d \times \BbbR d for all \mu \in P2(\BbbR d).

Proof. By the observation made in Remark 2.2, we can apply Lemma 2.3, to
obtain that \~L(\cdot , \cdot , \nu ) is convex on \BbbR d \times \BbbR d for all \nu \in P2(\BbbR d \times \BbbR d). This implies that
L(\cdot , \cdot , \mu ) is convex in \BbbR d \times \BbbR d for all \mu \in P2(\BbbR d).

Let H :\BbbR d\times \BbbR d\times P2(\BbbR d)\rightarrow \BbbR be the Hamiltonian function such that L\ast (x, \cdot , \mu ) =
H(x, \cdot , \mu ) for all x \in \BbbR d and \mu \in P2(\BbbR d) (i.e., H is the Legendre--Fenchel transform
of L in its second variable).

Remark 2.6. Standard convex analysis theory ensures that the assumptions
(H1), (H2), (H6), (H5), (H8) for the Lagrangian function L are equivalent to the
following assumptions on the corresponding Hamiltonian H, respectively,
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MFG SYSTEMS UNDER DISPLACEMENT MONOTONICITY 537

H(\cdot , \cdot , \mu )\in C1,1
loc (\BbbR 

d \times \BbbR d),uniformly in \mu ,(2.5)

H(x,p, \cdot ) is continuous in \mu with respect to W1, locally uniformly in \BbbR d \times \BbbR d,
(2.6)

DxH,DpH are uniformly Lipschitz continuous in \BbbR d \times \BbbR d \times P2(\BbbR d),
| DpH(0, p,\mu )| \leq C(p) and D2

ppH \geq c0Id,
(2.7)

and, moreover, for any X1,X2, P 1, P 2 \in \BbbL 2(\scrF T ) with \scrL X1 = \mu 1 \in P2(\BbbR d) and \scrL X2 =
\mu 2 \in P2(\BbbR d),

\BbbE 
\Bigl\{ \bigl( 

 - DxH(X1, P 1, \mu 1) +DxH(X2, P 2, \mu 2)
\bigr) 
\cdot (X1  - X2)

\Bigr\} (2.8)

+\BbbE 
\Bigl\{ \bigl( 

DpH(X1, P 1, \mu 1) - DpH(X2, P 2, \mu 2)
\bigr) 
\cdot 
\bigl( 
P 1  - P 2

\bigr) \Bigr\} 
\geq 0,

where C(p) > 0 is independent of \mu . We note that (2.8) implies H is convex in its
second variable.

The only result which might not be straightforward is the equivalence between
(H8) and (2.8), so let us sketch its proof. Notice that we have the Legendre--Fenchel
inequality: for all x\in \BbbR d, \mu \in P2(\BbbR d), and p, v \in \BbbR d we have H(x,p,\mu ) +L(x, v,\mu )\geq 
p \cdot v. It is well known that we have the equality if and only if v = DpH(x,p,\mu ) or
p=DvL(x, v,\mu ). As a consequence DvL(x, \cdot , \mu ) = [DpH(x, \cdot , \mu )] - 1. Furthermore

DxH(x,p,\mu ) = - DxL(x,DpH(x,p,\mu ), \mu ).

Supposing that (H8) takes place, fix X1,X2, P 1, P 2 \in \BbbL 2(\scrF T ) with \scrL X1 = \mu 1 \in 
P2(\BbbR d) and \scrL X2 = \mu 2 \in P2(\BbbR d). Then, by setting Zi := DpH(Xi, P i, \mu i), i = 1,2,
and noticing that by the Lipschitz continuity assumption on DpH, Zi \in \BbbL 2(\scrF T ),
we obtain (2.8) by using (H8) for X1,X2,Z1,Z2. The converse implication can be
checked similarly.

In what follows we show that the displacement monotonicity assumption (2.8)
imposed on H (and hence the condition (H8) imposed on L) is implied by the cor-
responding displacement monotonicity assumption, proposed in [36, Definition 3.4].
Therefore, our standing assumptions in this manuscript are in general weaker than
the ones from [36].

Lemma 2.7. Assume that H \in \scrC 2(\BbbR d \times \BbbR d \times P2(\BbbR d)), DppH \geq c0Id for some
c0 > 0, and assume further that D2

x\mu H,D2
xxH,D2

ppH,D2
p\mu H are uniformly bounded.

Then (2.8) holds if, for any X,\delta X,P \in \BbbL 2(\scrF T ) with \scrL X = \mu \in P2(\BbbR d),

\BbbE 
\Bigl[ 
\langle \~\BbbE 
\bigl[ 
D2

x\mu H(X,P,\mu , \~X)\delta \~X
\bigr] 
, \delta X\rangle + \langle D2

xxH(X,P,\mu )\delta X, \delta X\rangle 
\Bigr] 

(2.9)

\leq  - 1

4
\BbbE 
\biggl[ \bigm| \bigm| \bigm| [D2

ppH(X,P,\mu )] - 
1
2 \~\BbbE 
\Bigl[ 
D2

p\mu H(X,P,\mu , \~X)\delta \~X
\Bigr] \bigm| \bigm| \bigm| 2\biggr] ,

where \~\BbbE is a (conditional) expectation corresponding to \~X and \delta \~X.
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538 ALP\'AR R. M\'ESZ\'AROS AND CHENCHEN MOU

Proof. Let \=X :=X1 - X2, \=P := P1 - P2, X\theta :=X2+\theta \=X, and P\theta := P2+\theta \=P . Then

\BbbE 
\Bigl[ 
\langle DxH(X1, P1, \mu 1) - DxH(X2, P2, \mu 2), \=X\rangle  - \langle DpH(X1, P1, \mu 1)

 - DpH(X2, P2, \mu 2), \=P \rangle 
\Bigr] 

=\BbbE 

\Biggl[ \int 1

0

\langle D2
xxH(X\theta , P\theta ,\scrL X\theta 

) \=X + \~\BbbE [D2
x\mu H(X\theta , P\theta ,\scrL X\theta 

, \~X\theta )
\~\=X]

+D2
xpH(X\theta , P\theta ,\scrL X\theta 

) \=P , \=X\rangle  - \langle D2
pxH(X\theta , P\theta ,\scrL X\theta 

) \=X

+ \~\BbbE [D2
p\mu H(X\theta , P\theta ,\scrL X\theta 

, \~X\theta )
\~\=X] +D2

ppH(X\theta , P\theta ,\scrL X\theta 
) \=P , \=P \rangle d\theta 

\Biggr] 

=\BbbE 

\Biggl[ \int 1

0

\langle D2
xxH(X\theta , P\theta ,\scrL X\theta 

) \=X + \~\BbbE [D2
x\mu H(X\theta , P\theta ,\scrL X\theta 

, \~X\theta )
\~\=X], \=X\rangle 

+
1

4

\bigm| \bigm| \bigm| [D2
ppH(X\theta , P\theta ,\scrL X\theta 

)] - 
1
2 \~\BbbE [D2

p\mu H(X\theta , P\theta ,\scrL X\theta 
, \~X\theta )

\~\=X]
\bigm| \bigm| \bigm| 2

 - 
\bigm| \bigm| \bigm| D2

ppH(X\theta , P\theta ,\scrL X\theta 
)

1
2 \=P +

1

2
D2

ppH(X\theta , P\theta ,\scrL X\theta 
) - 

1
2

\~\BbbE [D2
p\mu H(X\theta , P\theta ,\scrL \theta , \~X\theta )

\~\=X]
\bigm| \bigm| \bigm| 2d\theta \Biggr] \leq 0.

Remark 2.8.
1. A quite general class of Hamiltonians constructed in [36, Lemma 3.8] satisfies

all the assumptions in Lemma 2.7 including (2.9). Then (2.8) holds by Lemma
2.7. Moreover, it can be easily verified that the class also satisfies (2.5)--(2.8).
Therefore, the corresponding class of Lagrangians satisfies (H1)--(H3), (H6),
(H5), (H8).

2. More particularly, the following model Hamiltonians satisfy our assumptions.
Let H0 :\BbbR d \times \BbbR d \times P2(\BbbR d)\rightarrow \BbbR be of class C2 in the first two variables such
that there exists C0 > 0 with the property

| \partial \alpha 
x \partial 

\beta 
pH0(x,p,\mu )| <C0 for all (x,p,\mu )\in \BbbR d \times \BbbR d \times P2(\BbbR d),

and for all \alpha ,\beta \in (\BbbN \cup \{ 0\} )d multi-indices with 0\leq | \alpha | + | \beta | \leq 2. Furthermore,
assume thatH0(x,p, \cdot ) is continuous with respect toW1 andDpH0 is Lipschitz
continuous in the last variable with respect to W1, uniformly with respect to
(x,p). Then we define H :\BbbR d \times \BbbR d \times P2(\BbbR d)\rightarrow \BbbR as

H(x,p,\mu ) :=H0(x,p,\mu ) +
C0

2
(| p| 2  - | x| 2).

3. It is not hard to see that if the Hamiltonian is sufficiently regular and sepa-
rable (i.e., D2

p\mu H = 0), the condition (2.9) is equivalent to (2.8). Indeed, we
can see this from the last line of the proof of Lemma 2.7, by choosing \=P = 0.

4. If the Hamiltonian is nonseparable (i.e., D2
p\mu H \not = 0), then the monotonicity

condition (2.8) in general does not imply (2.9), and so the former one is
weaker than the latter one. Indeed, looking again at the last line of the proof
of Lemma 2.7, we see that this in general does not vanish and it gives a
negative contribution.

3. Existence of a solution when \bfitbeta = 0. In this section we provide the result
on the existence of a classical solution to the MFG system (1.1) when \beta = 0. We shall
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MFG SYSTEMS UNDER DISPLACEMENT MONOTONICITY 539

emphasize that the convexity properties of x \mapsto \rightarrow g(x,\mu ) and (x, v) \mapsto \rightarrow L(x, v,\mu ) for all
\mu \in P2(\BbbR d) (implied by the displacement monotonicity assumptions; cf. Lemmas 2.3
and 2.5) play an important role in showing such a result and this seems to be new in
the literature.

The study of fully convex control problems received a great deal of attention in the
past, and this goes back to the works by Rockafellar in the 1970s (cf. [60, 61, 62]). In
these works, for deterministic optimal control problems, powerful duality techniques
were developed and the author could handle even nonsmooth (but convex) data.
Later, in this fully convex setting, many other results followed (cf. [63, 64, 40, 39]).
In particular, in [38] (see also [10] for special Hamiltonians) it was proven that in
the case of a fully convex control problem involving data of class C1,1, the associated
value function (which is convex in the position variable) is also of class C1,1 in the
position variable.

This regularity on the value function will also hold in our context, which will in
turn imply that the drift for the continuity equation will also be Lipschitz continuous
in the position variable. By this (using the regularity property of H in the measure
variable), we can build a suitable fixed point scheme that would yield the existence
of a solution to (1.1) when \beta = 0. So, in fact the monotonicity conditions (H7) and
(H8) are not used explicitly in this section.

Furthermore, for the results of this section, one can slightly weaken the first
part of assumptions from (H6) (or equivalently the first part of the one in (2.7)).
In particular, for the existence of a solution to (1.1) when \beta = 0, we do not need
to impose Lipschitz continuity assumptions on DxL (or on DxH). Inspired by the
assumptions from [34, Theorem 3.3], we impose the following condition on DpH.

Let b : \BbbR d \rightarrow \BbbR d be a Lipschitz continuous vector field such that there exists
Cb > 0 with | b(x)| \leq Cb(1 + | x| ) for all x \in \BbbR d. Define Vb : \BbbR d \times P2(\BbbR d) \rightarrow \BbbR d by
Vb :=DpH(x, b(x), \mu ). Suppose that for all R> 0, there exists \omega R : [0,+\infty )\rightarrow [0,+\infty ),
a modulus of continuity, with \omega R(s)>\omega R(0) = 0 for all s > 0 and

\int s0
0

ds
\omega R(s) =+\infty for

some s0 > 0 such that for any b with the above-mentioned properties we have\int \int 
\BbbR d\times \BbbR d

[Vb(x,\mu 
1) - Vb(x,\mu 

2)] \cdot (x - y)d\gamma (x, y)\leq \omega R(W2(\mu 
1, \mu 2))W2(\mu 

1, \mu 2),(H6')

for any \mu 1, \mu 2 \in 
\Bigl\{ 
\mu \in P2(\BbbR d) : M2(\mu )\leq R

\Bigr\} 
and any \gamma \in \Pi o(\mu 

1, \mu 2) (here \Pi o(\mu 
1, \mu 2)

stands for the set of optimal plans realizing W2(\mu 
1, \mu 2)). Suppose also that there

exists CH > 0 and \omega : [0,+\infty ) \rightarrow [0,+\infty ) continuous increasing with \omega (0) = 0 such
that

| DpH(x,p,\mu 1) - DpH(x,p,\mu 2)| \leq CH(| x| +| p| +1)\omega (W1(\mu 1, \mu 2)) if W1(\mu 1, \mu 2)\ll 1 and

(3.1)

| DpH(x1, p1, \mu ) - DpH(x2, p2, \mu )| \leq CH(| x1  - x2| + | p1  - p2| ),
\forall (x1, x2, p1, p2)\in \BbbR d, \mu \in P2(\BbbR d).

We suppose furthermore that the second part of (2.7) takes place, i.e.,

| DpH(0, p,\mu )| \leq C(p) and D2
ppH \geq c0Id.(H6"")

Remark 3.1. We would like to emphasize that (H6') and (3.1) are a relaxation of

(2.7). Indeed, (H6') and (3.1) would allow us to consider H(x,p,\mu ) := a(\mu ) | p| 
2

2 , where

we suppose that there exists C0 > 0 such that 1
C0

\leq a(\mu )\leq C0 for all \mu \in Ps(\BbbR d) and
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540 ALP\'AR R. M\'ESZ\'AROS AND CHENCHEN MOU

a :P2(\BbbR d)\rightarrow \BbbR is Lipschitz continuous with respect to W1. This Hamiltonian satisfies
also the other assumptions imposed in this section, but it clearly does not satisfy the
first part of (2.7). However, this Hamiltonian is not displacement monotone, so the
results of the next section do not apply for this example.

There are some existence results to (1.1) already in the literature when \beta = 0,
however, these are for weak solutions, without any monotonicity assumption; see
[17, 23, 24]. When \beta 2 > 0, the nondegeneracy gives enough compactness for the
existence of classical solutions to the MFG system (1.1) without any monotonicity
assumptions; see, e.g., for analytical arguments (cf. [17, 19, 23]) and for probabilistic
arguments (cf. [28]). Therefore, we shall only focus on the case \beta = 0 regarding the
existence result.

Before we show the existence result, let us define in which sense do we understand
a pair (u,\rho ) to be a solution to the MFG system (1.1).

Definition 3.2. We say that (u,\rho ) is a solution pair to the MFG system (1.1) if
(i) u is locally Lipschitz continuous, solves the Hamilton--Jacobi--Bellman equa-

tion in (1.1) in the viscosity sense, and D2
xu(t, \cdot ) is essentially bounded on

\BbbR d, uniformly with respect to t\in [0, T ];
(ii) \rho solves the Fokker--Planck equation in (1.1) in the distributional sense and

(\rho t)t\in [0,T ] is a continuous curve in the metric space (P1(\BbbR d),W1).

Remark 3.3. It is important to underline that the uniform bound on D2
xu(t, \cdot ) in

the notion of solution is a consequence of the convexity of x \mapsto \rightarrow g(x,\mu ) and (x, v) \mapsto \rightarrow 
L(x, v,\mu ) for all \mu \in P2(\BbbR d) and this bound is independent of the intensity of the
noise \beta 2 \geq 0. In the case when \beta = 0, this estimate will further imply (see Lemma 3.4
below) that u is a classical solution to the Hamilton--Jacobi--Bellman equation.

Lemma 3.4. Let \rho : [0, T ] \rightarrow \scrP 2(\BbbR d) be a given continuous curve with respect to
W1 and let C\rho > 0 such that M2(\rho t) \leq C\rho for all t \in [0, T ]. Let us suppose that
the assumptions (H1)--(H3) take place. Suppose furthermore that x \mapsto \rightarrow g(x,\mu ) and
(x, v) \mapsto \rightarrow L(x, v,\mu ) are convex for all \mu \in P2(\BbbR d).

Then the problem\Biggl\{ 
 - \partial tu(t, x) +H(x, - Dxu(t, x), \rho t) = 0 in (0, T )\times \BbbR d,

u(T,x) = g(x,\rho T ) in \BbbR d,
(3.2)

has a unique viscosity solution u : [0, T ]\times \BbbR d \rightarrow \BbbR , which is continuously differentiable.
Furthermore, this solution satisfies the following derivative estimates: there exists
C0 > 0 (depending only on the data and T ), and for all R > 0 there exist C1 =
C1(R)> 0 (depending on R, the data, and T > 0) and C2 = C2(R,\rho )> 0 (depending
on R> 0, C\rho , the data, and T > 0), such that

(i) | Dxu(t, x)| \leq C1 for all (t, x)\in [0, T ]\times BR;
(ii) | \partial tu(t, x)| \leq C2 for all (t, x)\in [0, T ]\times BR;
(iii) | D2

xu(t, x)| \leq C0 for all t\in [0, T ] and a.e. x\in \BbbR d;
(iv) | \partial tDxu(t, x)| \leq C2, for a.e. (t, x)\in [0, T ]\times BR.

Proof. It is well known that solutions to (3.2) are intimately linked to value
functions in optimal control problems. Under our standing assumptions, classical
results (cf. [16]) imply that the unique viscosity solution of (3.2) can be obtained
as the value function of the optimal control problem. Given \rho as stated in the
Lemma 3.4,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/0

9/
24

 to
 1

29
.2

34
.0

.2
06

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



MFG SYSTEMS UNDER DISPLACEMENT MONOTONICITY 541

u(t, x) = inf

\Biggl\{ \int T

t

L(Xs, \alpha s, \rho s)ds+ g(XT , \rho T )

\Biggr\} 
s.t.

\biggl\{ 
dXs = \alpha sds, s\in (t, T ),
Xt = x,

where the infimum is taken over all \alpha \in L2([t, T ]).
It is standard (cf. [16]) to show that u is continuous in t, u(t, \cdot ) is locally Lipschitz

continuous on \BbbR d, and u(t, \cdot ) is semiconcave, uniformly with respect to t\in [0, T ].
These arguments yield (i).
Claim. u(t, \cdot ) is convex, uniformly in time.
Proof of Claim. Let x1, x2 \in \BbbR d and let \lambda \in [0,1]. For \varepsilon > 0, let \alpha i,\varepsilon , i= 1,2, be

\varepsilon -optimal controls and let Xi,\varepsilon be the corresponding paths, so we have\int T

t

L(Xi,\varepsilon 
s , \alpha i,\varepsilon 

s , \rho s)ds+ g(Xi,\varepsilon 
T , \rho T )\leq u(t, xi) + \varepsilon .

Let us set Y \lambda = (1 - \lambda )X1,\varepsilon +\lambda X2,\varepsilon , so in particular Y \lambda 
0 = (1 - \lambda )x1+\lambda x2. We notice

that Y \lambda is an admissible competitor for u(t, (1 - \lambda )x1 + \lambda x2). We have

u(t, (1 - \lambda )x1 + \lambda x2)\leq 
\int T

t

L(Y \lambda 
s , (1 - \lambda )\alpha 1,\varepsilon 

s + \lambda \alpha 2,\varepsilon 
s , \rho s)ds+ g(Y \lambda 

T , \rho T )

\leq (1 - \lambda )u(t, x1) + \lambda u(t, x2) - 2\varepsilon ,

where, in the last inequality we have used the convexity of L(\cdot , \cdot , \mu ) and g(\cdot , \mu ) and
the \varepsilon -optimality of the curves Xi,\varepsilon . By the arbitrariness of \varepsilon > 0, we conclude about
the the convexity of u(t, \cdot ) and the claim follows. Together with the semiconcavity
result this implies (iii).

Now, from the Hamilton--Jacobi equation, we find that \partial tumust be locally bounded.
Thus, (ii) follows.

We further differentiate the equation with respect to x and find that \partial tDxu must
be locally bounded, which implies in particular that Dxu is Lipschitz continuous with
respect to t (locally uniformly with respect to x). Looking again at the equation, this
means that \partial tu must be continuous. The corresponding constants in the estimates
are such as they are specified in the statement of the theorem.

Remark 3.5. It is immediate to see that the implication of Lemma 3.4 and the
estimates (i)--(iii) (except point (iv)) remain valid also in the case of \beta 2 > 0 (using
again some classical results; cf. [15]). The constants in those estimates are independent
of \beta .

The following result will not surprise experts in optimal transport theory. How-
ever, for completeness we supply its proof here.

Lemma 3.6. Let T > 0 and V : [0, T ]\times \BbbR d \times P2(\BbbR d)\rightarrow \BbbR d be a given continuous
vector field and suppose that there exists CV > 0 such that x \mapsto \rightarrow V (t, x,\mu ) is Lipschitz
continuous with constant CV , uniformly in (t, \mu ),

V (t, \cdot , \cdot ) satisfies (H6\prime ) with some \omega R \forall R> 0 \forall t\in [0, T ],(3.3)

and

| V (t,0, \mu )| \leq CV \forall t\in [0, T ] \forall \mu \in P1(\BbbR d),

and there exists \omega : [0,+\infty ) \rightarrow [0,+\infty ) continuously increasing with \omega (0) = 0 such
that

| V (t, x,\mu ) - V (t, x, \nu )| \leq CV (| x| + 1)\omega (W1(\mu ,\nu )) if W1(\mu ,\nu )\ll 1.(3.4)
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542 ALP\'AR R. M\'ESZ\'AROS AND CHENCHEN MOU

Then, for any \rho 0 \in P2(\BbbR d) the problem\Biggl\{ 
\partial t\rho t +Dx \cdot (\rho tV (t, x, \rho t)) = 0, in D \prime ((0, T )\times \BbbR d),

\rho (0, \cdot ) = \rho 0,
(3.5)

has a unique solution. Moreover, we have that there exists C =C(T,CV ,M2(\rho 0))> 0
such that

M2(\rho t)\leq C \forall t\in [0, T ] and W1(\rho t, \rho s)\leq C| s - t| \forall s, t\in [0, T ].

Proof. First, let us notice that by the assumption on V , we have

| V (t, x,\mu )| \leq | V (t,0, \mu )| +CV | x| \leq CV (1 + | x| ).

Existence. We define the operator \scrS :C([0, T ]; (P1(\BbbR d),W1))\rightarrow C([0, T ]; (P1(\BbbR d),
W1)) as follows. For \~\rho \in C([0, T ]; (P1(\BbbR d),W1)), we set \scrS (\~\rho ) := \rho , where \rho is the
unique solution to the problem\Biggl\{ 

\partial t\rho t +Dx \cdot (\rho tV (t, x, \~\rho t)) = 0 in D \prime ((0, T )\times \BbbR d),

\rho (0, \cdot ) = \rho 0.
(3.6)

The well-posedness of this is the consequence of classical results, since by the assump-
tions, V (\cdot , \cdot , \~\rho t) is Lipschitz continuous in space and continuous in time. Now, let us
show that the range of \scrS is a compact subset of C([0, T ]; (P1(\BbbR d),W1)).

Claim 1. M2(\rho t) is uniformly bounded if t\in [0, T ] (independently of \~\rho ).
Proof of Claim 1. Because of the regularity on V (\cdot , \cdot , \~\rho t), the solution of (3.6) can

be represented along the flow of the vector field, i.e.,\Biggl\{ 
\.X(t, x) = V (t,X(t, x), \~\rho t), t\in (0, T ),

X(0, x) = x, x\in \BbbR d.

First, let us notice that

| X(t, x)| \leq | x| +
\int t

0

CV (1 + | X(s,x)| )ds= | x| +CV t+CV

\int t

0

| X(s,x)| ds,

thus Gr\"onwall's inequality yields

| X(t, x)| \leq (| x| +CV t)e
tCV ,(3.7)

which further implies

| X(t, x)| 2 \leq 2(| x| 2 +C2
V t

2)e2tCV .(3.8)

Since \rho t =X(t, \cdot )\sharp \rho 0, for any \varphi \in Cb(\BbbR d) we have\int 
\BbbR d

\varphi (x)d\rho t(x) =

\int 
\BbbR d

\varphi (X(t, x))d\rho 0(x).(3.9)

For R > 0 we consider \varphi R \in Cb(\BbbR d) defined as \varphi R(x) := min\{ R2, | x| 2\} . Clearly,
\varphi R \rightarrow | x| 2, locally uniformly as R \rightarrow +\infty . (3.9) and (3.8) yield that there exists a
constant \~C > 0 (depending only on CV and T ) such that\int 

\BbbR d

\varphi R(x)d\rho t(x) =

\int 
\BbbR d

\varphi R(X(t, x))d\rho 0(x)\leq 
\int 
\BbbR d

| X(t, x)| 2d\rho 0

\leq \~C + \~C

\int 
\BbbR d

| x| 2d\rho 0 = \~C(1 +M2
2 (\rho 0)).
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MFG SYSTEMS UNDER DISPLACEMENT MONOTONICITY 543

Now, by the dominated convergence theorem, as R\rightarrow +\infty , we have that

M2(\rho t)\leq \~C(1 +M2(\rho 0)),

as desired.
Claim 2. There exists C > 0 (independent of \~\rho ) such that

W1(\rho t, \rho s)\leq C| t - s| \forall t, s\in [0, T ].

Proof of Claim 2. Let us suppose that 0\leq s\leq t\leq T .
Let \varphi be 1 - Lip(\BbbR d). Then we have\int 

\BbbR d

\varphi (x)d(\rho t  - \rho s)(x) =

\int t

s

\int 
\BbbR d

Dx\varphi \cdot V (\tau ,x, \~\rho \tau )d\rho \tau (x)d\tau 

\leq 
\int t

s

\int 
\BbbR d

CV (1 + | x| )d\rho \tau (x)d\tau 

\leq 
\int t

s

[CV +M2(\rho \tau )]d\tau \leq C| t - s| .

Let us remark that all the integrals are finite by the second moment bounds on \rho . Now,
taking the supremum with respect to \varphi , 1 - Lip(\BbbR d) one obtains W1(\rho t, \rho s)\leq C| t - s| ,
so the claim follows.

From Claims 1 and 2 we can conclude that the range of \scrS is compact. The conti-
nuity of \scrS is straightforward. Indeed, let (\~\rho n)n\in \BbbN be a sequence uniformly converging
to \~\rho in C([0, T ]; (P1(\BbbR d),W1)) as n \rightarrow +\infty . Let \varphi be 1 - Lip(\BbbR d), set \rho n = \scrS (\~\rho n),
and \rho = \scrS (\~\rho ) and let Xn and X stand for the flows of the vector fields V (\cdot , \cdot , \~\rho n) and
V (\cdot , \cdot , \~\rho ), respectively.

Then, one obtains

\int 
\BbbR d

\varphi (x)d(\rho nt  - \rho t)(x) =

\int 
\BbbR d

[\varphi (Xn(t, x)) - \varphi (X(t, x))]d\rho 0(x)d\tau 

(3.10)

=

\int 
\BbbR d

\int 1

0

Dx\varphi (sX
n(t, x) + (1 - s)X(t, x)) \cdot [Xn(t, x) - X(t, x)]dsd\rho 0(x)

\leq 
\int 
\BbbR d

| Xn(t, x) - X(t, x)| d\rho 0(x).

Now, by the ODEs satisfied by Xn and X we get

| Xn(t, x) - X(t, x)| \leq 
\int t

0

| V (\tau ,Xn(\tau ,x), \~\rho n) - V (\tau ,X(\tau ,x), \~\rho )| d\tau 

\leq 
\int t

0

| V (\tau ,Xn(\tau ,x), \~\rho n\tau ) - V (\tau ,X(\tau ,x), \~\rho n\tau )| d\tau 

+

\int t

0

| V (\tau ,X(\tau ,x), \~\rho n\tau ) - V (\tau ,X(\tau ,x), \~\rho )| d\tau 

\leq CV

\int t

0

| Xn(\tau ,x) - X(\tau ,x)| d\tau 

+

\int t

0

CV (| X(\tau ,x)| + 1)\omega (W1(\~\rho 
n
\tau , \~\rho \tau ))d\tau ,
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544 ALP\'AR R. M\'ESZ\'AROS AND CHENCHEN MOU

where in the last inequality, we used the assumptions on the field V . Using (3.7), the
previous chain of inequalities can be further estimated as

| Xn(t, x) - X(t, x)| \leq CV

\int t

0

| Xn(\tau ,x) - X(\tau ,x)| d\tau 

+

\int t

0

CV [(| x| +CV T )e
TCV + 1]\omega 

\Biggl( 
sup

s\in [0,T ]

W1(\~\rho 
n
s , \~\rho s)

\Biggr) 
d\tau .

By denoting an := \omega 
\Bigl( 
sups\in [0,T ]W1(\~\rho 

n
s , \~\rho s)

\Bigr) 
, there exists a constant C = C(T,CV )

such that

| Xn(t, x) - X(t, x)| \leq CV

\int t

0

| Xn(\tau ,x) - X(\tau ,x)| d\tau 

+C(| x| + 1)an.

We notice that by assumption sups\in [0,T ]W1(\~\rho 
n
s , \~\rho s) \rightarrow 0 as n \rightarrow +\infty , so an \rightarrow 0 as

n\rightarrow +\infty , as well.
Gr\"onwall's inequality yields that

| Xn(t, x) - X(t, x)| \leq C(| x| + 1)ane
tCV \leq C(| x| + 1)ane

TCV .

Thus,

lim
n\rightarrow +\infty 

sup
t\in [0,T ]

\int 
\BbbR d

| Xn(t, x) - X(t, x)| d\rho 0(x) = 0.

So, by taking the supremum with respect to \varphi in (3.10), we can conclude that

lim
n\rightarrow +\infty 

sup
t\in [0,T ]

W1(\rho 
n
t , \rho t) = 0,

and so, the continuity of \scrS follows. So, finally, one can use Schauder's fixed point
theorem to conclude that \scrS has a fixed point and therefore (3.5) has a solution.

Uniqueness.
By (3.3), the vector field V satisfies the assumptions in [34, Theorem 3.3], and

therefore the uniqueness of solutions to (3.5) follows from there.

Now, we are in position to state the main result of this section.

Theorem 3.7. We suppose that all the assumptions (H1)--(H5), (H6'), (H6""),
and (3.1) take place and the functions x \mapsto \rightarrow g(x,\mu ) and (x, v) \mapsto \rightarrow L(x, v,\mu ) are convex.
Then the MFG system (1.1), with \beta = 0, has a solution pair (u,\rho ).

Proof. Let \rho \in C([0, T ]; (P1(\BbbR d),W1)) be given with \rho | t=0 = \rho 0. Let u be the
unique classical solution to (3.2) provided in Lemma 3.4. Now set

V (t, x,\mu ) :=DpH(x, - Dxu(t, x), \mu ).

Clearly, by our standing assumptions and the results in Lemma 3.4, V satisfies (3.3)
and (3.4) with a constant CV > 0 and | V (t,0, \mu )| \leq CV , where CV depends only on the
data and | Dxu(t,0)| (from (2.7)), but clearly | Dxu(t,0)| depends only on the previous
constants and therefore CV depends only on the data. We also have | Dxu(t, x)| \leq 
C(| x| + 1) for some constant C > 0 depending on T and the data.
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MFG SYSTEMS UNDER DISPLACEMENT MONOTONICITY 545

Let \rho \in C([0, T ]; (P1(\BbbR d),W1)) be the unique solution of (3.5) starting at \rho 0 with
the previously set vector field V . So, if one considers the mapping S :C([0, T ]; (P1(\BbbR d),
W1))\rightarrow C([0, T ]; (P1(\BbbR d),W1)) such that S(\rho ) = \rho , this is well-defined.

We show now that S is a continuous mapping. Let us take a sequence (\rho n)n\in \BbbN 
from the space C([0, T ]; (P1(\BbbR d),W1)) that uniformly converges to some \rho \in C([0, T ];
(P1(\BbbR d),W1)) as n\rightarrow +\infty . If we consider the corresponding unique solutions (un)n\in \BbbN 
to (3.2), we find that all the bounds on \partial tu

n, Dxu
n, and D2

xxu
n, as stated in Lemma

3.4, are independent of n, and they just depend on the data. So, by the continuity
assumptions on H (transferred from the regularity assumptions on L) and g in the
measure variable, standard results on stability of viscosity solutions to Hamilton--
Jacobi equations yield that (un)n\in \BbbN converges locally uniformly to the unique solution
of (3.2) (where as data, we consider the limit curve \rho ).

Moreover, up to passing to a subsequence that we do not relabel, (Dxu
n)n\in \BbbN 

converges locally uniformly to Dxu on \BbbR d, uniformly with respect to t. So, the
corresponding vector fields V n(t, x,\mu ) =DpH(x, - Dxu

n(t, x), \mu ) also converge locally
uniformly to V (t, x,\mu ) = DpH(x, - Dxu(t, x), \mu ) as n \rightarrow +\infty . Therefore, since the
sequence of curves (\rho n)n\in \BbbN is uniformly Lipschitz continuous (with respect to W1) and
as their second moments are uniformly bounded (as provided in Lemma 3.6), Arzel\`a--
Ascoli's theorem yields the existence of a subsequence that converges uniformly to
some \~\rho . However, passing to the limit the continuity equation, one must have that
this limit \~\rho is the solution of the equation, when we consider u. By uniqueness of
solutions, one must have that \~\rho = \rho . So, the continuity of S follows.

Now, it remains to show that S satisfies the assumptions of Schauder's fixed
point theorem. Clearly, the space of curves in C([0, T ]; (P1(\BbbR d),W1)) that start at
the fixed \rho 0 is convex. Moreover, because of the results provided in Lemma 3.6, we
find that the image of C([0, T ]; (P1(\BbbR d),W1)) through S is the space of curves that
are uniformly Lipschitz continuous with respect to W1 and such that their second
moments are uniformly bounded by a constant that depends only on the data and
M2(\rho 0). Therefore, this image space is compact. So, Schauder's fixed point theorem
yields the existence of a fixed point of S, and therefore the existence of a solution to
(1.1) follows.

The fact that D2
xu(t, \cdot )\in L\infty (\BbbR d\times \BbbR d), uniformly with respect to t\in [0, T ] follows

from the estimates in Lemma 3.4.

4. Uniqueness of solutions. As our main results, in this section we shall prove
the uniqueness of solutions to the MFG system (1.1) for \beta \in \BbbR .

Suppose that (u,\rho ) is a solution pair of the MFG system (1.1) for some \rho 0 \in 
P2(\BbbR d). Then (t, x) \mapsto \rightarrow DpH(x, - Dxu(t, x), \rho t) is continuous in t and globally Lip-
schitz continuous in the x-variable, the flow associated with the Fokker--Planck equa-
tion reads as

Xt = \xi +

\int t

0

DpH(Xs, - Dxu(t,Xs), \rho s)ds+ \beta Bt, t\in [0, T ],(4.1)

where \xi \in \BbbL 2(\scrF 0;\rho 0). When \beta 2 > 0, by standard C2,\alpha estimates for parabolic equa-

tions, we have that u\in C
1+\alpha 

2 ,2+\alpha 

loc ((0, T )\times \BbbR d). We define

Yt := - Dxu(t,Xt)(4.2)

and if \beta 2 > 0 we further define

Zt := - D2
xxu(t,Xt).(4.3)
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546 ALP\'AR R. M\'ESZ\'AROS AND CHENCHEN MOU

We would like to justify that (X,Y,Z) is a strong solution to the following forward-
backward (stochastic) differential equation on [0, T ] associated with the MFG system
(1.1): \left\{       

Xt = \xi +

\int t

0

DpH(Xs, Ys, \rho s)ds+ \beta Bt,

Yt = - Dxg(XT , \rho T ) +

\int T

t

DxH(Xs, Ys, \rho s)ds - \beta 

\int T

t

ZsdBs.

(4.4)

Let us remark that in the case of \beta = 0, this system corresponds to a standard
Hamiltonian system.

Theorem 4.1. Assume that (2.7) holds. Let (u,\rho ) be a solution pair of the MFG
system (1.1) for some \rho 0 \in P2(\BbbR d), and let (X,Y,Z) be defined in (4.1), (4.2), and
(4.3). Then (X,Y,Z) is a strong solution to the forward-backward (stochastic) differ-
ential equation (4.4).

Proof. The idea of the proof is based on the differentiation of the Hamilton--
Jacobi--Bellman equation in the x-variable. To be able to justify this, we first regu-
larize the equation.

Let \{ \zeta n\} n be a sequence of densities in C\infty 
c (B 1

n
(0)). Define

un(t, x) :=

\int 
\BbbR d

u(t, x - y)\zeta n(y)dy, vn(t, x) :=Dxun(t, x), and v(t, x) =Dxu(t, x).

Then

\partial tun(t, x) = - \beta 2

2
\Delta xun(t, x) +

\int 
\BbbR d

\zeta n(y)H(x - y, - v(t, x - y), \rho t)dy.(4.5)

We then differentiate (4.5) in x and obtain

\partial tvn(t, x) +
\beta 2

2
\Delta xvn(t, x)

(4.6)

=

\int 
\BbbR d

\zeta n(y)[DxH(x - y, - v(t, x - y), \rho t) - DpH(x - y, - v(t, x - y), \rho t)Dxv(t, x - y)]dy.

Let (X,Y,Z) be defined in (4.1), (4.2), and (4.3). By the It\^o formula and using (4.6),
we have

dvn(t,Xt) =

\biggl[ 
\partial tvn(t,Xt) +

\beta 2

2
\Delta xvn(t,Xt)

\biggr] 
dt

+Dxvn(t,Xt) \cdot [DpH(Xt, - v(t,Xt), \rho t)dt+ \beta dBt]

=
\Bigl[ \int 

\BbbR d

\zeta n(y)[DxH(Xt  - y, - v(t,Xt  - y), \rho t)

 - DpH(Xt  - y, - v(t,Xt  - y), \rho t)Dxv(t,Xt  - y)]dy
\Bigr] 
dt

+Dxvn(t,Xt) \cdot [DpH(Xt, - v(t,Xt), \rho t)dt+ \beta dBt] .

Letting n\rightarrow +\infty in the above equation, we have

dv(t,Xt) =DxH(x, - v(t,Xt), \rho t)dt+ \beta Dxv(t,Xt)dBt,

which is exactly the backward (stochastic) differential equation (4.4).
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Theorem 4.2. We suppose that all the assumptions (H1)--(H8) take place. Let
us suppose that (u1, \rho 1) and (u2, \rho 2) are two solution pairs to (1.1) with initial data
\rho 10, \rho 

2
0, respectively. Suppose that Xi, i\in \{ 1,2\} , stand for the flows of the vector fields

(t, x) \mapsto \rightarrow DpH(t, x, - Dxu
i(t, x), \rho it) defined in (4.1) with initial data \xi i \in \BbbL 2(\scrF 0;\rho 

i
0).

Then Dxu
1 and Dxu

2 are jointly monotone along the flows (X1
t )t\in [0,T ] and (X2

t )t\in [0,T ],
respectively. That is,

\BbbE 
\bigl( 
[Dxu

1(t,X1
t ) - Dxu

2(t,X2
t )] \cdot (X1

t  - X2
t )
\bigr) 
\geq 0 \forall t\in [0, T ].(4.7)

Proof. Define Y i
t := - Dxu

i(t,Xi
t) and Zi

t := - D2
xxu

i(t,Xi
t) for i \in \{ 1,2\} . Apply-

ing Theorem 4.1, we have

Y i
t = - Dxg(X

i
T , \rho 

i
T ) +

\int T

t

DxH(Xi
s, Y

i
s , \rho 

i
s)ds - \beta 

\int T

t

Zi
sdBs,(4.8)

and thus

d
\bigl[ \bigl( 
Dxu

1(t,X1
t ) - Dxu

2(t,X2
t )
\bigr) 
\cdot (X1

t  - X2
t )
\bigr] 

= - d
\bigl[ \bigl( 
Y 1
t  - Y 2

t

\bigr) 
\cdot (X1

t  - X2
t )
\bigr] 

= (DxH(X1
t , Y

1
t , \rho 

1
t ) - DxH(X2

t , Y
2
t , \rho 

2
t )) \cdot (X1

t  - X2
t )dt

 - \beta (Z1
t  - Z2

t ) \cdot (X1
t  - X2

t )dBt

 - 
\bigl\{ 
(Y 1

t  - Y 2
t ) \cdot 

\bigl( 
DpH(X1

t , Y
1
t , \rho 

1
t ) - DpH(X2

t , Y
2
t , \rho 

2
t )
\bigr) \bigr\} 

.

Taking the expectation on both sides above, we obtain

d\BbbE 
\bigl\{ \bigl[ \bigl( 

Dxu
1(t,X1

t ) - Dxu
2(t,X2

t )
\bigr) 
\cdot (X1

t  - X2
t )
\bigr] \bigr\} 

(4.9)

=\BbbE 
\Bigl\{ 
(DxH(X1

t , Y
1
t , \rho 

1
t ) - DxH(X1

t , Y
1
t , \rho 

1
t )) \cdot (X1

t  - X2
t )
\Bigr\} 
dt

 - \BbbE 
\Bigl\{ \bigl[ 

(Y 1
t  - Y 2

t ) \cdot 
\bigl( 
DpH(X1

t , Y
1
t , \rho 

1
t ) - DpH(X2

t , Y
2
t , \rho 

2
t )
\bigr) \bigr] \Bigr\} 

\leq 0,

where in the last inequality we have used (2.8). Now, integrating the previous in-
equality in time on [t, T ], we find

\BbbE 
\Bigl\{ 
(Dxu

1(t,X1
t ) - Dxu

2(t,X2
t )) \cdot (X1

t  - X2
t )
\Bigr\} 

\geq \BbbE 
\bigl\{ \bigl( 

Dxg(X
1
T , \rho 

1
T ) - Dxg(X

2
T , \rho 

2
T )
\bigr) 
\cdot (X1

T  - X2
T )
\bigr\} 
\geq 0.

And so, the thesis of the theorem follows by (H7).

Corollary 4.3. If the assumptions in Theorem 4.2 hold and H(x,p,\mu ) = 1
2 | p| 

2+
f(x,\mu ), then one has immediately

W2(\scrL X1
t
,\scrL X2

t
)\leq W2(\rho 

1
0, \rho 

2
0) \forall t\in [0, T ].(4.10)

Proof. Indeed, in this case one has

d

dt

1

2
\BbbE | X1

t  - X2
t | 2

=\BbbE 
\bigl\{ 
(X1

t  - X2
t ) \cdot 

\bigl( 
DpH(X1

t , - Dxu
1(t,X1

t ), \rho 
1
t ) - DpH(X2

t , - Dxu
2(t,X2

t ), \rho 
2
t )
\bigr) \bigr\} 

= - \BbbE 
\bigl\{ 
(X1

t  - X2
t ) \cdot 

\bigl( 
Dxu

1(t,X1
t ) - Dxu

2(t,X2
t )
\bigr) \bigr\} 

\leq 0,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/0

9/
24

 to
 1

29
.2

34
.0

.2
06

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



548 ALP\'AR R. M\'ESZ\'AROS AND CHENCHEN MOU

where in the last inequality we used the result from Theorem 4.2. Thus, the claim
follows by integration over [0, t] and choosing \xi i \in \BbbL 2(\scrF 0;\rho 

i
0), i = 1,2, such that

W2(\rho 
1
0, \rho 

2
0) =

\bigl\{ 
\BbbE 
\bigl[ 
| \xi 1  - \xi 2| 2

\bigr] \bigr\} 1/2
.

Remark 4.4. For general Hamiltonians, we do not expect (4.10) to hold true, since
the composition of monotone maps (in this case DpH and Dxu) in general fails to be
monotone.

Theorem 4.5. We suppose that all the assumptions (H1)--(H8) take place. Let
(u1, \rho 1) and (u2, \rho 2) be two solution pairs to (1.1) with initial data \rho 10, \rho 

2
0 \in P2(\BbbR d),

respectively. Then there exists C > 0 depending only on T and the data such that

sup
t\in [0,T ]

W2(\rho 
1
t , \rho 

2
t )\leq CW2(\rho 

1
0, \rho 

2
0)

and

sup
t\in [0,T ]

\bigm\| \bigm\| Dxu
1(t, \cdot ) - Dxu

2(t, \cdot )
\bigm\| \bigm\| 
L\infty (\BbbR d)

\leq CW2(\rho 
1
0, \rho 

2
0).

Proof. Let (Xi, Y i,Zi), i \in \{ 1,2\} , be given as in Theorem 4.2. We note from
(4.9)

d

dt
\BbbE 
\bigl[ \bigl( 
Y 1
t  - Y 2

t

\bigr) 
\cdot 
\bigl( 
X1

t  - X2
t

\bigr) \bigr] 
(4.11)

= - \BbbE 
\bigl[ \bigl( 
X1

t  - X2
t

\bigr) 
\cdot 
\bigl( 
DxH(X1

t , Y
1
t , \rho 

1
t ) - DxH(X2

t , Y
2
t , \rho 

2
t )
\bigr) \bigr] 

+\BbbE 
\bigl[ 
(DpH(X1

t , Y
1
t , \rho 

1
t ) - DpH(X2

t , Y
2
t , \rho 

2
t )) \cdot (Y 1

t  - Y 2
t )
\bigr] 
.

We integrate (4.11) from 0 to t and using (4.7) one obtains

0\geq \BbbE 
\bigl[ 
[Y 1

t  - Y 2
t )] \cdot (X1

t  - X2
t )
\bigr] 

=\BbbE 
\bigl[ 
[Y 1

0  - Y 2
0 ] \cdot (X1

0  - X2
0 )
\bigr] 

 - 
\int t

0

\BbbE 
\bigl[ \bigl( 
X1

s  - X2
s

\bigr) 
\cdot 
\bigl( 
DxH(X1

s , Y
1
s , \rho 

1
s) - DxH(X2

s , Y
2
s , \rho 

2
s)
\bigr) \bigr] 

 - \BbbE 
\bigl[ 
(DpH(X1

s , Y
1
s , \rho 

1
s) - DpH(X2

s , Y
2
s , \rho 

2
s)) \cdot (Y 1

s  - Y 2
s )
\bigr] 
ds,

which by (2.7) implies that

c0

\int t

0

\BbbE 
\Bigl[ \bigm| \bigm| Y 1

s  - Y 2
s

\bigm| \bigm| 2\Bigr] ds
\leq  - \BbbE 

\bigl[ 
[Y 1

0  - Y 2
0 ] \cdot (X1

0  - X2
0 )
\bigr] 
+C

\int t

0

\BbbE 
\bigl[ \bigm| \bigm| Y 1

s  - Y 2
s

\bigm| \bigm| \bigm| \bigm| X1
s  - X2

s

\bigm| \bigm| \bigr] +\BbbE 
\Bigl[ \bigm| \bigm| X1

s  - X2
s

\bigm| \bigm| 2\Bigr] ds.
Applying Young's inequality, we derive

c0
2

\int t

0

\BbbE 
\Bigl[ \bigm| \bigm| Y 1

s  - Y 2
s

\bigm| \bigm| 2\Bigr] ds
\leq  - \BbbE 

\bigl[ 
[Y 1

0  - Y 2
0 ] \cdot (X1

0  - X2
0 )
\bigr] 
+C

\int t

0

\BbbE 
\Bigl[ \bigm| \bigm| X1

s  - X2
s

\bigm| \bigm| 2\Bigr] ds.
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Then

\BbbE 
\bigl[ 
| X1

t  - X2
t | 2
\bigr] 
\leq \BbbE 

\bigl[ 
| X1

0  - X2
0 | 2
\bigr] 
+

\int t

0

\BbbE 
\Bigl[ \bigm| \bigm| DpH(X1

s , Y
1
s , \rho 

1
s) - DpH(X2

s , Y
2
s , \rho 

2
s)
\bigm| \bigm| 2\Bigr] ds

\leq \BbbE 
\bigl[ 
| X1

0  - X2
0 | 2
\bigr] 
+C

\int t

0

\BbbE 
\Bigl[ \bigm| \bigm| Y 1

s  - Y 2
s

\bigm| \bigm| 2\Bigr] +\BbbE 
\Bigl[ \bigm| \bigm| X1

s  - X2
s

\bigm| \bigm| 2\Bigr] ds
\leq \BbbE 

\bigl[ 
| X1

0 - X2
0 | 2
\bigr] 
 - \BbbE 

\bigl[ 
[Y 1

0  - Y 2
0 ] \cdot (X1

0 - X2
0 )
\bigr] 
+C

\int t

0

\BbbE 
\Bigl[ \bigm| \bigm| X1

s - X2
s

\bigm| \bigm| 2\Bigr] ds.
We recall that Y i

t = - Dxu
i(t,Xi

t) and note that | D2
xu

i| \leq C for i= 1,2. We have

\BbbE 
\bigl[ 
| X1

t  - X2
t | 2
\bigr] 
\leq \BbbE 

\bigl[ 
| X1

0  - X2
0 | 2
\bigr] 
+C\BbbE 

\Bigl[ \bigm| \bigm| X1
0  - X2

0

\bigm| \bigm| 2 + \bigm| \bigm| \bigm| Dxu
1(0,X1

0 )

 - Dxu
2(0,X2

0 )
\bigm| \bigm| \bigm| \bigm| \bigm| X1

0  - X2
0

\bigm| \bigm| \Bigr] +C

\int t

0

\BbbE 
\Bigl[ \bigm| \bigm| X1

s  - X2
s

\bigm| \bigm| 2\Bigr] ds
\leq C\BbbE 

\bigl[ 
| X1

0  - X2
0 | 2
\bigr] 
+C

\Bigl\{ 
\BbbE 
\Bigl[ \bigm| \bigm| Dxu

1(0,X1
0 ) - Dxu

2(0,X2
0 )
\bigm| \bigm| 2\Bigr] \Bigr\} 1

2

\Bigl\{ 
\BbbE 
\Bigl[ \bigm| \bigm| X1

0  - X2
0

\bigm| \bigm| 2\Bigr] \Bigr\} 1
2

+C

\int t

0

\BbbE 
\Bigl[ \bigm| \bigm| X1

s  - X2
s

\bigm| \bigm| 2\Bigr] ds.
Using Gr\"onwall's inequality and the fact that W 2

2 (\rho 
1
t , \rho 

2
t )\leq \BbbE | X1

t  - X2
t | 2, we have

W 2
2 (\rho 

1
t , \rho 

2
t )\leq \BbbE 

\bigl[ 
| X1

t  - X2
t | 2
\bigr] 
\leq C

\Bigl( 
\BbbE 
\Bigl[ \bigm| \bigm| X1

0  - X2
0

\bigm| \bigm| 2\Bigr] (4.12)

+
\Bigl\{ 
\BbbE 
\Bigl[ \bigm| \bigm| Dxu

1(0,X1
0 ) - Dxu

2(0,X2
0 )
\bigm| \bigm| 2\Bigr] \Bigr\} 1

2
\Bigl\{ 
\BbbE 
\Bigl[ \bigm| \bigm| X1

0  - X2
0

\bigm| \bigm| 2\Bigr] \Bigr\} 1
2
\Bigr) 
.

For any given t0 \in [0, T ], we now take the conditional expectation \BbbE 
\bigl[ 
\cdot | Xi

t0 = x
\bigr] 
on

(4.8) for i= 1,2: \forall t\in [t0, T ]

Y i,t0,x
t = - Dxg(X

i,t0,x
T , \rho iT ) +

\int T

t

DxH(Xi,t0,x
s , Y i,t0,x

s , \rho is)ds - \beta 

\int T

t

Zi,t0,x
s dBs,

(4.13)

where

Xi,t0,x
t = x+

\int t

t0

DpH(Xi,t0,x
s , - Dxu

i(t,Xi,t0,x
s ), \rho is)ds+ \beta Bt,

Y i,t0x
t =  - Dxu

i(t,Xi,t0,x
t ), and Zi,t0,x

t =  - D2
xxu

i(t,Xi,t0,x
t ). By (2.7) and by the

global Lipschitz property of x \mapsto \rightarrow Dxu
i(t, x), uniformly on t \in [0, T ], it follows from

standard SDE arguments that\Biggl( 
\BbbE 

\Biggl[ 
sup

s\in [t0,T ]

\bigm| \bigm| X1,t0,x
s  - X2,t0,x

s

\bigm| \bigm| 2\Biggr] \Biggr) 1
2

(4.14)

\leq C

\int T

t0

\bigl[ 
\| Dxu

1(s, \cdot ) - Dxu
2(s, \cdot )\| L\infty (\BbbR d) +W2(\rho 

1
s, \rho 

2
s)
\bigr] 
ds.

Letting t= t0 and taking the expectation on (4.13), we have

Dxu
i(t0, x) =\BbbE 

\Bigl[ 
Dxg(X

i,t0,x
T , \rho iT )

\Bigr] 
 - 
\int T

t0

\BbbE 
\bigl[ 
DxH(Xi,t0,x

s , Y i,t0,x
s , \rho is)

\bigr] 
ds for i= 1,2,
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550 ALP\'AR R. M\'ESZ\'AROS AND CHENCHEN MOU

and thus by (H4), (2.7), and (4.14) we have

| Dxu
1(t0, x) - Dxu

2(t0, x)| 

\leq C

\Biggl[ 
sup

s\in [t0,T ]

W2(\rho 
1
s, \rho 

2
s) +

\int T

t0

\BbbE 
\bigl[ \bigm| \bigm| Dxu

1(s,X1,t0,x
s ) - Dxu

2(s,X2,t0,x
s )

\bigm| \bigm| \bigr] ds\Biggr] 

+C

\Biggl[ 
\BbbE | X1,t0,x

T  - X2,t0,x
T | +

\int T

t0

\BbbE 
\bigm| \bigm| X1,t0,x

s  - X2,t0,x
s

\bigm| \bigm| ds\Biggr] 

\leq C

\Biggl[ 
sup

s\in [t0,T ]

W2(\rho 
1
s, \rho 

2
s) +

\int T

t0

\bigm\| \bigm\| Dxu
1(s, \cdot ) - Dxu

2(s, \cdot )
\bigm\| \bigm\| 
L\infty (\BbbR d)

ds

\Biggr] 

+C

\Biggl[ \Bigl( 
\BbbE 
\bigl[ 
| X1,t0,x

T  - X2,t0,x
T | 2

\bigr] \Bigr) 1
2

+

\int T

t0

\bigl( 
\BbbE 
\bigl[ 
| X1,t0,x

s  - X2,t0,x
s | 2

\bigr] \bigr) 1
2 ds

\Biggr] 

\leq C

\Biggl[ 
sup

s\in [t0,T ]

W2(\rho 
1
s, \rho 

2
s) +

\int T

t0

\bigm\| \bigm\| Dxu
1(s, \cdot ) - Dxu

2(s, \cdot )
\bigm\| \bigm\| 
L\infty (\BbbR d)

ds

\Biggr] 
.

By Gronwall's inequality, we derive\bigm\| \bigm\| Dxu
1  - Dxu

2
\bigm\| \bigm\| 
L\infty ([0,T ]\times \BbbR d)

\leq C sup
t\in [0,T ]

W2(\rho 
1
t , \rho 

2
t ).(4.15)

Plugging (4.15) into (4.12) and applying Young's inequality, we obtain

sup
t\in [0,T ]

W2(\rho 
1
t , \rho 

2
t )\leq C

\Bigl\{ 
\BbbE 
\Bigl[ \bigm| \bigm| X1

0  - X2
0

\bigm| \bigm| 2\Bigr] \Bigr\} 1
2

.

We can choose \xi i to be such that W2(\rho 
1
0, \rho 

2
0) =

\Bigl\{ 
\BbbE 
\Bigl[ \bigm| \bigm| \xi 1  - \xi 2

\bigm| \bigm| 2\Bigr] \Bigr\} 1
2

and thus

sup
t\in [0,T ]

W2(\rho 
1
t , \rho 

2
t )\leq CW2(\rho 

1
0, \rho 

2
0).(4.16)

Combining (4.15) and (4.16)\bigm\| \bigm\| Dxu
1  - Dxu

2
\bigm\| \bigm\| 
L\infty ([0,T ]\times \BbbR d)

\leq CW2(\rho 
1
0, \rho 

2
0).(4.17)

Corollary 4.6. We suppose that all the assumptions (H1)--(H8) take place. The
MFG system (1.1) admits at most one solution pair (u,\rho ).

Proof. It is immediate that Theorem 4.5 yields the uniqueness of \rho and Dxu. By
the uniqueness of solutions to the HJB component of (1.1) (given \rho ), the uniqueness
of u follows.
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