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Abstract. We consider the 3d cubic nonlinear Schrödinger equation (NLS) with a strong

2d harmonic potential. The model is physically relevant to observe the lower-dimensional

dynamics of the Bose-Einstein condensate, but its ground state cannot be constructed

by the standard method due to its supercritical nature. In Bellazzini-Boussäıd-Jeanjean-

Visciglia [3], a proper ground state is constructed introducing a constrained energy mini-

mization problem. In this paper, we further investigate the properties of the ground state.

First, we show that as the partial confinement is increased, the 1d ground state is derived

from the 3d energy minimizer with a precise rate of convergence. Then, by employing

this dimension reduction limit, we prove the uniqueness of the 3d minimizer provided that

the confinement is sufficiently strong. Consequently, we obtain the orbital stability of the

minimizer, which improves that of the set of minimizers in the previous work [3].

1. Introduction

1.1. Background. Consider the 3d cubic nonlinear Schrödinger equation (NLS) with a 2d

partial confinement

i∂tu = (−∆x + ω2|y|2)u− 1

ω
|u|2u, (1.1)

where u = u(t, x) : I(⊂ R)× R3 → C and

x = (y, z) ∈ R3
x = R2

y × Rz.

The parameter ω > 0 represents the strength of the 2d quadratic potential and the weak-

ness of the nonlinearity simultaneously. The NLS is a canonical equation for wave propa-

gation that arises in various fields of physics [30]. This particular model (1.1) describes the

mean-field dynamics of an extremely cooled boson gas, namely a Bose–Einstein condensate

confined in an anisotropic trap. We refer to Chen [12] for a rigorous derivation of the model

(1.1) from the many-body bosonic system.

In physical experiments, the 2d partial confinement ω2|y|2 is used to simulate lower-

dimensional cigar-shaped condensates [21]. By increasing the strength of the trap ω →∞,

a low energy state u(t, x) to the 3d NLS (1.1) can be asymptotically described by a factorized

state

v(t, z)e−2itω√ωΦ0(
√
ωy), (1.2)
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2 Y. HONG AND S. JIN

where v = v(t, z) : I(⊂ R)× R→ C is a solution to the 1d cubic NLS

i∂tv = −∂2
zv −

1

2π
|v|2v (1.3)

and Φ0(y) = 1√
π
e−
|y|2
2 is an L2

y(R2)-normalized eigenfunction of the 2d Hermite operator

Hy = −∆y + |y|2

corresponding to the lowest eigenvalue 2 (refer to Appendix A for the proof).

N →∞

ω →∞
[Appendix A]

ω = Nα →∞
Chen-Holmer [13]

3d NLS (1.1)

1d NLS (1.3)

Chen [12]
3d N-body LS

Figure 1.

The dimension reduction of Bose–Einstein condensates is important both theoretically

and experimentally, and it has been studied in various settings. In [25, 29], it was shown

that cigar-shaped and disk-shaped condensates were obtained from the ground state of the

3d many-body bosonic Schrödinger operator. The lower-dimensional time-dependent NLSs

are derived from the 3d linear Schrödinger equation (LS) including the attractive interaction

case [6, 7, 8, 13, 14]. Moreover, the convergence from a high- to a low-dimensional NLS

is established in various physical contexts [1, 4, 5, 18, 28]. We also note that a similar

dimension reduction problem can be formulated on the product space Rk×M as a compact

manifold M shrinks [16, 17, 31]. For further references and related results, we refer to the

survey article by Bao and Cai [2].

In analysis perspective, however, because the 3d cubic NLS (1.4) is mass-supercritical,

one may encounter several technical challenges. It is not globally well-posed, and a finite

time blow-up may occur (see Lemma 2.6). Furthermore, an orbitally stable state cannot

be constructed as a typical notion of a ground state, because the energy functional is not

bounded below under a mass constraint. Nevertheless, it is shown in the important work

of Bellazzini, Boussäıd, Jeanjean and Visciglia [3] that a certain energy minimizer can still

be constructed by imposing an additional constraint. In addition, the authors established

the orbital stability of a set of energy minimizers [3, Theorem 1].

The purpose of this study is twofold. First, we rigorously derive the 1d ground state from

the dimension reduction limit (ω → ∞) of the 3d energy minimizer obtained in [3]. This

corresponds to the downward arrow on the right-hand side of Figure 1 along the minimum

energy states. Second, by employing convergence, we establish the local uniqueness of the
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3d energy minimizer. Consequently, we upgrade the orbital stability of the set of energy

minimizers to that of the minimizer.

1.2. Setup and the statement of the main result. To clarify the connection to the 1d

model, we reformulate the setup of the problem as follows. Motivated by the ansatz (1.2),

replacing e2itω 1√
ω
u(t, y√

ω
, z) with u(t, x), we rewrite (1.1) as

i∂tu =
(
ω(Hy − 2)− ∂2

z

)
u− |u|2u. (1.4)

Then, it can be shown that the NLS (1.4) is locally well-posed in the weighted energy space

Σ =
{
u ∈ H1

x(R3) : yu ∈ L2
x(R3)

}
(1.5)

equipped with the norm

‖u‖Σ :=

{∫
R3

|u(x)|2 + |∇xu(x)|2 + |y|2|u(x)|2dx
}1/2

(see [9, 10]), and its solutions preserve the mass

M(u) = ‖u‖2L2
x(R3)

and energy

Eω(u) =
ω

2
‖u‖2

Σ̇y
+

1

2
‖∂zu‖2L2

x(R3) −
1

4
‖u‖4L4

x(R3),

where

‖u‖Σ̇y := ‖
√
Hy − 2u‖L2

x(R3) =

{∫
R3

|∇yu(x)|2 + |y|2|u(x)|2 − 2|u(x)|2dx
}1/2

. (1.6)

Remark 1.1. To be precise, the energy Eω(u) is “adjusted” in that a mass term ωM(u) is

subtracted from the more “natural” energy functional

Ẽω(u) =
ω

2

{
‖∇yu‖2L2

x(R3) + ‖yu‖2L2
x(R3)

}
+

1

2
‖∂zu‖2L2

x(R3) −
1

4
‖u‖4L4

x(R3).

Note that this modification does not make any essential difference in the energy minimiza-

tion problem because the mass is fixed (see (1.7) below). The role of −ωM(u) is to keep

the ground state energy finite in the limit ω → ∞. Indeed, it is expected that the lowest

energy state would be of the form u(t, x) = v(t, z)Φ0(y). Then, the energy Ẽ(u) grows as
ω
2 ‖
√
Hyu‖2L2

x(R3) = ωM(u). Thus, ωM(u) is removed from the energy.

For large ω ≥ 1, which will be specified later, we consider the energy minimization

problem with an additional constraint,

Jω(m) = inf
{
Eω(u) : u ∈ Σ, M(u) = m and ‖u‖2

Σ̇y
≤
√
ω
}
. (1.7)

We now state the existence of a minimizer for the problem Jω(m).

Theorem 1.2 (Existence of an energy minimizer, [3, Theorem 1]). If ω ≥ (CGN )4m2,

where CGN > 0 is the constant given in Lemma 2.2, then the following hold:
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(1) For any minimizing sequence {un}∞n=1 of the variational problem Jω(m), there ex-

ists a subsequence of {un}∞n=1 (but still denoted by {un}∞n=1), {θn}∞n=1 ⊂ R and

{zn}∞n=1 ⊂ R such that eiθnun(y, z − zn)→ Qω in Σ.

(2) The limit Qω is a minimizer for the problem Jω(m).

(3) A minimizer must be of the form eiθQω(y, z − z0), with θ, z0 ∈ R, where Qω(x) =

Qω(|y|, |z|) and it is non-negative and decreasing as |y|, |z| → ∞.

(4) The minimizer Qω solves the elliptic equation

ω(Hy − 2)Qω − ∂2
zQω −Q3

ω = −µωQω, (1.8)

where µω ∈ R is a Lagrange multiplier.

Remark 1.3. (1) Theorem 1.2 is proved in [3, Theorem 1] in a slightly different setting1.

(2) As observed in [3], a minimizer for Jω(m) solves the usual Euler–Lagrange equation

(1.8) because it is not located on the boundary of the constraint, i.e., the sphere

‖u‖2
Σ̇y

=
√
ω, which is forbidden in the function space (see Corollary 2.3).

Remark 1.4. The additional constraint ‖u‖2
Σ̇y
≤
√
ω seems natural for the supercritical

problem (1.7), because according to the strong blow-up conjecture (see [19]), it is expected

that any negative energy solution to the Cauchy problem (1.4) with initial data ‖u0‖2Σ̇y >√
ω would blow up in finite time. This means that the steady state Qω(x)eiµωt may occupy

the least energy among all global-in-time solutions having the same mass. Indeed, it is easy

to show finite-time blow up in the finite variance case, i.e., xu0 ∈ L2
x(R3) (see Lemma 2.6),

but it is difficult to eliminate the finite variance assumption [19].

As shown in [3, Theorem 2], the minimizer Qω is asymptotically reduced to the one-

dimensional state in the sense that as ω →∞,

Qω(x)−Qω,‖(z)Φ0(y)→ 0, (1.9)

where Qω,‖(z) = 〈Qω(·, z),Φ0〉L2
y(R2) is the Φ0(y)-directional component. This justifies the

dimension reduction of the Bose–Einstein condensates in physical experiments.

In this paper, with reference to the dimension reduction limit, we examine the connection

to the 1d minimization problem

J∞(m) = inf
w∈H1

z (R)

{
E∞(w) : ‖w‖2L2

z(R) = m
}
, (1.10)

1By scaling u =
√
ωv(y,

√
ωz), the problem (1.7) is equivalent to the small mass constraint energy

minimization

inf

{
E(v) : v ∈ Σ, M(v) =

m√
ω

and ‖∇yv‖2L2
x(R3) + ‖yv‖2L2

x(R3) ≤ 1 + 2m

}
,

where E(v) = 1
2
‖∇xv‖2L2

x(R3) + 1
2
‖yv‖2L2

x(R3) −
1
4
‖v‖4L4

x(R3) is the energy functional without the parameter ω.

The variational problem considered in [3] is similar to this rescaled problem but under a slightly stronger

additional constraint ‖∇xv‖2L2
x(R3) + ‖yv‖2L2

x(R3) ≤ 1 + 2m, where the full gradient norm bound, not for

the partial gradient ∇yv, is imposed. As it will be sketched in Section 3, this change requires only minor

modifications in the proof.
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where

E∞(w) :=
1

2
‖∂zw‖2L2

z(R) −
1

8π
‖w‖4L4

z(R).

We recall that the problem J∞(m) possesses a positive symmetric decreasing ground state

Q∞, and it solves the Euler–Lagrange equation

− ∂2
zQ∞ −

1

2π
Q3
∞ = −µ∞Q∞ (1.11)

with µ∞ > 0 (see [10, Theorem 8.1.6]). Moreover, it is unique up to phase shift and

translation (see [22, 26]).

Our first main result provides the derivation of the 1d ground state from the 3d minimizer

in Theorem 1.2 with a precise rate of convergence.

Theorem 1.5 (Dimension reduction limit to the 1d ground state). For a sufficiently large

ω ≥ 1, let Qω be a minimizer for the problem Jω(m) constructed in Theorem 1.2. Then,

we have

‖Qω(x)−Q∞(z)Φ0(y)‖Σ .
1√
ω

and

µω = µ∞ +O(ω−1),

where Φ0(y) = 1√
π
e−
|y|2
2 is the lowest eigenstate to the 2d Hermite operator Hy, and µω

(resp., µ∞) is the Lagrange multiplier in (1.8) (resp., (1.11)).

Remark 1.6. More precisely, Theorem 1.5 is broken into the following:

(1) (3d-to-1d estimates) We have ‖Qω(x) − Qω,‖(z)Φ0(y)‖L2
x(R3)∩Σ̇y

. 1
ω . However,

for the z-directional derivative norm, only a weaker convergent rate ‖∂z(Qω(x) −
Qω,‖(z)Φ0(y))‖L2

x(R3) .
1√
ω

is obtained (see Lemma 3.4).

(2) (Derivation of the 1d ground state) For the Φ0-component, we have a better bound

‖Qω,‖(z)Φ0(y)−Q∞(z)Φ0(y)‖H1
x(R3) = ‖Qω,‖(z)−Q∞(z)‖H1

z (R) .
1
ω (see (4.2))

Remark 1.7. Theorem 1.5 improves the previous result [3, Theorem 2] in two aspects.

First, for the dimension reduction (1.9), the O( 1√
ω

)-rate of convergence in [3, Theorem 2]

is improved to O( 1
ω ). Secondly, the limit profile is clearly characterized as the 1D ground

state Q∞.

Remark 1.8. Dimension reduction also holds in high Sobolev norms (see Remark 4.2). In

particular, Qω(x)→ Q∞(z)Φ0(y) point-wisely.

Next, using the dimension-reduction limit and the spectral properties of the 1d ground

state to (1.10), we establish the uniqueness of the 3d minimizer.

Theorem 1.9 (Uniqueness). For a sufficiently large ω ≥ 1, the minimizer Qω of the problem

Jω(m), constructed in Theorem 1.2, is unique.
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As a direct consequence, combining Theorem 1.2 and 1.9 by the standard argument of

Cazenave and Lions [11] together with a suitable global well-posedness (Proposition 2.5),

we prove the orbital stability for the 3d NLS (1.4).

Theorem 1.10 (Orbital stability). For a sufficiently large ω ≥ 1, let Qω be the unique

minimizer of the variational problem Jω(m) constructed in Theorem 1.2. Then, for any

ε > 0, there exists δ > 0 such that if ‖u0(x) − Qω(x)‖Σ ≤ δ, then the global solution

uω(t) ∈ Ct(R; Σ) to the 3d NLS (1.4) with initial data u0 satisfies

inf
z1,θ1∈R

‖uω(t, x)− eiθ1Qω(y, z − z1)‖Σ ≤ ε for all t ∈ R.

Remark 1.11. (1) Since ‖·‖Σ is equivalent to ‖·‖Σ̇y +‖∂z(·)‖L2
x(R3) +‖·‖L2

x(R3) on Σ, the

norm ‖·‖Σ stated in Theorem 1.10 can be replaced by ‖·‖Σ̇y+‖∂z(·)‖L2
x(R3)+‖·‖L2

x(R3).

(2) By scaling, Theorem 1.10 corresponds to the orbital stability in [3, Theorem 1];

however, by the uniqueness (Theorem 1.9), the possibility of transition from one

minimizer to another is eliminated.

To sum up, the main contribution of this papers is to clarify the quasi-lower dimensional

properties of partially confined BECs; we establish the emergence of the 1D ground state

from the 3D energy minimization problem with a precise rate of convergence, but we also

prove uniqueness and dynamical stability of the 3D minimizer. These results are based on

the introduction of the setup (1.7), which we think fits better for the dimension reduction.

Indeed, this formulation is consistent with the setup of the mean-field limit in Chen and

Holmer [13]. Also, the strong confinement formulation (ω →∞) seems to provide a clearer

picture of the dimension-reduction process than the small-mass-limit formulation (see [3] for

the small-mass-limit). Indeed, we note that if ω is sufficiently large, the Hermite operator

ω(Hy − 2) acts completely differently on the lowest and higher eigenstates. Thus, our

intuition naturally leads to the modification of the Gagliardo–Nirenberg inequality (see

Lemma 2.2). In our analysis, this modified inequality plays a fundamental role in handling

the anisotropic operator ω(Hy−2)−∂2
z . For instance, it is employed to prove the conditional

global existence (Proposition 2.5) and some properties of the 3d minimizer Qω, such as the

concentration of the lowest eigenstate (Lemma 3.2 and 3.4). It is also helpful in the proof

of the existence of a minimizer (Theorem 1.2).

Once the dimension reduction limit of a 3d energy minimizer (Theorem 1.5) has been

justified, we use convergence to prove its uniqueness (Theorem 1.9). A key step is to obtain

a coercivity estimate of the linearized operator at the 3d minimizer Qω (Proposition 5.1). It

can be shown by transferring the coercivity of the linearized operator for the 1d ground state

Q∞ via the dimension reduction limit. The non-degeneracy of the 3d linearized operator

can also be proved by dimension reduction, as in [23]. Then, we show that if there are two

minimizers, comparing modified energies, the coercivity bound deduces a contradiction.

Finally, we note that our proof relies on the fact that even though the 3d minimization

problem (1.7) is mass-supercritical, the limiting 1d problem (1.10) is mass-subcritical and
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has a ground state. Thus, the main results of this study can be extended to general di-

mensions and nonlinearities in a similar situation. However, another physically relevant

3d-to-2d reduction problem cannot be treated by the current method because the limiting

2d cubic NLS is mass-critical.

1.3. Organization of the paper. The remainder of this paper is organized as follows.

In Section 2, we introduce the notations used in this paper and prove some preliminary

estimates. Global well-posedness is given for the trapped solutions to the 3d NLS. In

Section 3, we prove the existence of a minimizer for Jω(m) and state some uniform bounds

for a minimizer and vanishing rate of the projection of a minimizer onto higher eigenstates

of the 2d Hermite operator. Section 4 is devoted to the study of the convergence rate

from 3d to the 1d NLS. In Section 5, we study the linearized operator for the 3d NLS and

prove the uniqueness of the minimizer. The dimension reduction of the Cauchy problem is

included in the Appendix for the readers’ convenience.

1.4. Acknowledgement. This work was supported by National Research Foundation of

Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF-2020R1A2C4002615)

2. Basic tools, and global existence for trapped solutions

In this section, we introduce basic analysis tools to deal with the anisotropic elliptic

operator ωHy − ∂2
z , and prove that if a negative energy solution to the time-dependent

3d NLS (1.4) initially obeys the constraint in the variational problem (1.7), then it exists

globally in time, and a refined constraint is satisfied for all times (see Proposition 2.5 below).

We remark that proving such a conditional global well-posedness is a prerequisite for orbital

stability because the standard approach by Cazenave and Lions [11] can be applied under

the assumption that any perturbed state satisfies the constraint for all time.

2.1. Spectral representation, and notations. For the 2d Hermite operatorHy = −∆y+

|y|2, let {Φj}∞j=0 ⊂ L2
y(R2) be the collection of L2

y(R2)-normalized eigenfunctions, that is,

HyΦj = ΛjΦj ,

with eigenvalues Λ0 < Λ1 ≤ Λ2 ≤ · · · in a non-decreasing order. We recall that {Φj}∞j=0

forms an orthonormal basis of L2
y(R2), and that the lowest eigenvalue is Λ0 = 2, and the

corresponding eigenstate is given by Φ0(y) = 1√
π
e−
|y|2
2 . From the spectral representation,

the function u ∈ L2
x(R3) can be written as

u(x) =

∞∑
j=0

〈u(·, z),Φj〉L2
y(R2)Φj(y), (2.1)

where

〈u(·, z),Φj〉L2
y(R2) =

∫
R2

u(y, z)Φj(y)dy : Rz → C.
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In particular, we denote the Φ0(y)-directional component of u = u(x) : R3
x → C by

u‖(z) = 〈u(·, z),Φ0〉L2
y(R2) : Rz → C.

We define the 2d projection onto the lowest eigenspace by

(P0u)(x) := u‖(z)Φ0(y) : R3
x → C,

and let P1 = 1− P0 be the projection to the orthogonal complement, precisely,

(P1u)(x) =
∞∑
j=1

〈u(·, z),Φj〉L2
y(R2)Φj(y) : R3

x → C.

Then, we have

‖u‖2L2
x(R3) =

∞∑
j=0

∥∥〈u(·, z),Φj〉L2
y(R2)

∥∥2

L2
z(R)

= ‖P0u‖2L2
x(R3) + ‖P1u‖2L2

x(R3).

Using the spectral representation, we prove the following interpolation inequality.

Lemma 2.1 (Interpolation inequality). For any k ∈ N and θ ∈ (0, 1), we have

‖(Hy − ∂2
z )ku‖L2

x(R3) ≤ ‖u‖1−θL2
x(R3)
‖(Hy − ∂2

z )
k
θ u‖θL2

x(R3).

Proof. From the spectral representation (2.1) with cj(z) = 〈u(·, z),Φj〉L2
y(R2), we write

((Hy − ∂2
z )ku)(x) =

∞∑
j=0

((Λj − ∂2
z )kcj)(z)Φj(y).

Then, applying the Plancherel theorem with respect to the z-variable, we obtain

‖(Hy − ∂2
z )kϕ‖2L2

x(R3) =
∞∑
j=0

∥∥((Λj − ∂2
z )kcj)(z)

∥∥2

L2
z(R)

=
1

2π

∞∑
j=0

∥∥(Λj + ξ2)k ĉj(ξ)
∥∥2

L2
ξ(R)

.

Hence, by the standard interpolation inequality, it follows that

‖(Hy − ∂2
z )kϕ‖2L2

x(R3) ≤

 1

2π

∞∑
j=0

‖ĉj(ξ)‖2L2
ξ(R)


1−θ 1

2π

∞∑
j=0

∥∥(Λj + ξ2)
k
θ ĉj(ξ)

∥∥2

L2
ξ(R)


θ

.

Then, applying the Plancherel theorem and the spectral representation backward, we prove

the lemma. �

2.2. Gagliardo–Nirenberg inequality. Throughout this article, our analysis relies heav-

ily on the following modified Gagliardo–Nirenberg inequality. It is a simple modification of

the standard inequality; however, it is useful for capturing the ω →∞ limit behavior of the

anisotropic elliptic operator ωHy − ∂2
z .

Lemma 2.2 (Gagliardo–Nirenberg inequality). There exists CGN > 2 such that

‖u‖4L4
x(R3) ≤ CGN

{
‖P0u‖3L2

x(R3)‖P0∂zu‖L2
x(R3) + ‖P1u‖L2

x(R3)‖P1∂zu‖L2
x(R3)‖P1u‖2Σ̇y

}
,

where ‖ · ‖Σ̇y is the norm defined by (1.6).
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Proof. By the 1d Gagliardo–Nirenberg and the Hölder inequalities, we obtain

‖u‖4L4
x(R3) =

∥∥∥‖u‖L4
z(R)

∥∥∥4

L4
y(R2)

.
∥∥∥‖u‖ 3

4

L2
z(R)
‖∂zu‖

1
4

L2
z(R)

∥∥∥4

L4
y(R2)

≤
∥∥∥‖u‖ 3

4

L2
z(R)

∥∥∥4

L8
y(R2)

∥∥∥‖∂zu‖ 1
4

L2
z(R)

∥∥∥4

L8
y(R2)

=
∥∥∥‖u‖L2

z(R)

∥∥∥3

L6
y(R2)
‖∂zu‖L2

x(R3)

≤
∥∥∥‖u‖L6

y(R2)

∥∥∥3

L2
z(R)
‖∂zu‖L2

x(R3).

Consequently, we apply the 2d Gagliardo–Nirenberg inequality,

‖u‖4L4
x(R3) .

∥∥∥‖u‖ 1
3

L2
y(R2)
‖∇yu‖

2
3

L2
y(R2)

∥∥∥3

L2
z(R)
‖∂zu‖L2

x(R3)

≤ ‖u‖L2
x(R3)‖∇yu‖2L2

x(R3)‖∂zu‖L2
x(R3)

≤ ‖u‖L2
x(R3)‖

√
Hyu‖2L2

x(R3)‖∂zu‖L2
x(R3).

In the above bound, by inserting P0u and P1u with√
HyP0u =

√
2P0u and ‖

√
HyP1u‖L2

x(R3) . ‖P1u‖Σ̇y ,

respectively, and then combining them, we complete the proof. �

As an application, we find a forbidden region in the weighted energy space Σ (see (1.5)).

Corollary 2.3 (Forbidden region). Suppose that ω ≥ (CGN )4m2, where CGN is a constant

in Lemma 2.2. Then, there is no u ∈ Σ such that M(u) = m, Eω(u) < 0 and

(CGN )2m3

2ω
≤ ‖u‖2

Σ̇y
≤
√
ω.

As a consequence, if M(u) = m, Eω(u) < 0, and ‖u‖2
Σ̇y
≤
√
ω, then ‖u‖2

Σ̇y
< (CGN )2m3

2ω .

Proof. For contradiction, we assume that there is a nonzero u ∈ Σ. Then, by Lemma 2.2

and the Cauchy-Schwarz inequality ab ≤ a2

8 + 2b2 with a = ‖∂zu‖L2
x(R3), we have

0 > Eω(u) ≥ ω

2
‖u‖2

Σ̇y
+

1

2
‖∂zu‖2L2

x(R3) −
CGNm

3
2

4
‖∂zu‖L2

x(R3)

− CGN
√
m

4
‖∂zu‖L2

x(R3)‖u‖2Σ̇y

≥ ω

2
‖u‖2

Σ̇y
+

1

4
‖∂zu‖2L2

x(R3) −
(CGN )2m3

8
− (CGN )2m

8
‖u‖4

Σ̇y
.

(2.2)

By the assumption on ‖u‖2
Σ̇y

, it follows that

0 >
ω

2
‖u‖2

Σ̇y
+

1

4
‖∂zu‖2L2

x(R3) −
ω

4
‖u‖2

Σ̇y
− (CGN )2m

8

√
ω‖u‖2

Σ̇y

=
1

4
‖∂zu‖2L2

x(R3) +
ω

4
‖u‖2

Σ̇y

{
1− (CGN )2m

2
√
ω

}
.

However, because ω ≥ (CGN )4m2, we can deduce a contradiction. �
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Remark 2.4. Corollary 2.3 states that if u has negative energy and satisfies the constraint

in the variational problem (1.7), then Lemma 2.2 can be read as

‖u‖4L4
x(R3) . ‖P0u‖3L2

x(R3)‖P0∂zu‖L2
x(R3) +

1

ω
‖P1u‖L2

x(R3)‖P1∂zu‖L2
x(R3) . ‖∂zu‖L2

x(R3).

Thus, the modified Gagliardo–Nirenberg inequality behaves like the standard 1d inequality

‖u‖4L4
x(R) . ‖u‖

3
L2
x(R)‖∂zu‖L2

x(R).

In this sense, the modified inequality is a suitable tool for solving a supercritical problem

(1.7) with a subcritical nature in the limit.

2.3. Conditional global existence. We consider the Cauchy problem for 3d NLS (1.4).

Using Mehler’s formula [27], the linear Schrödinger flow with a partial harmonic potential

satisfies the Strichartz estimates [20]. Thus, a standard fixed-point argument yields the

local well-posedness of the NLS (1.4) in the weighted energy space Σ [9, 10]. We note

that its solution exists as long as the quantity ‖∂zu(t)‖L2(R3) + ‖u(t)‖Σ̇y remains bounded;

however, a blow-up may occur in finite time.

We show that negative energy solutions whose initial data satisfy the constraint exist

globally in time, and they obey a refined constraint.

Proposition 2.5 (Global existence for trapped solutions). Let ω ≥ (CGN )4m2, where CGN

is a constant in Lemma 2.2. Suppose that uω,0 ∈ Σ, M(uω,0) = m.

Eω(uω,0) < 0 and ‖uω,0‖2Σ̇y ≤
√
ω.

Then, the solution uω(t) to the 3d NLS (1.4) with initial data uω,0 exists globally in time,

and

sup
t∈R
‖uω(t)‖2

Σ̇y
≤ (CGN )2m3

2ω
. (2.3)

Proof. By the time reversal symmetry, it is sufficient to consider only positive times. Let

uω(t) be the solution to the 3d NLS (1.4) with initial data uω,0 on the maximal interval

of existence [0, T ). Then, it follows from Corollary 2.3 and the continuity of the nonlinear

solution that ‖uω(t)‖2
Σ̇y
≤ (CGN )2m3

2ω and by (2.2),

‖∂zuω(t)‖2L2
x(R3) ≤

(CGN )2m3

2
+

(CGN )2m

2
‖uω(t)‖4

Σ̇y
≤ (CGN )2m3

2
+

(CGN )6m7

8ω2

for all 0 ≤ t < T . Because uω(t) remains bounded, we must have T =∞. �

Next, we prove that a finite-time blow-up may occur if the additional constraint is not

satisfied.

Lemma 2.6. Let ω ≥ (CGN )4m2. If there exists u0 ∈ Σ such that

‖xu0‖L2
x(R3) <∞, ‖u0‖2Σ̇y ≥

√
ω, M(u0) = m and Eω(u0) < 0, (2.4)

then the solution to the Cauchy problem (1.4) with initial data u0 blows up in finite time.
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Proof. We follow the classical argument in Glassey [15]. Let u(t) be the solution to the 3d

NLS (1.4) with initial data u0 on the maximal interval of existence (−Tmin, Tmax). Note

that

‖u(t)‖2
Σ̇y
≥
√
ω for t ∈ (−Tmin, Tmax), (2.5)

because Proposition 2.5 implies that if ‖u(t0)‖2
Σ̇y

<
√
ω for some t0 ∈ (−Tmin, Tmax), then

‖u(t)‖2
Σ̇y
≤ (CGN )2m3

2ω <
√
ω for all t ∈ R including t = 0.

On the other hand, by the scaling v(t, y, z) =
√
ωu(t,

√
ωy, z), we observe that the prob-

lem (1.4) is equivalent to

i∂tv = (−∆x + ω2|y|2 − 2ω)v − 1

ω
|v|2v.

Then, direct computations (see [10, Proposition 6.5.1]) yield

∂2
t

∫
R3

|x|2|v(t, x)|2dx = 8‖∇v‖2L2(R3) − 6ω−1‖v‖4L4(R3) − 8ω2

∫
R3

|y|2|v|2dx

= 8ω‖u‖2
Σ̇y

+ 16ω‖u‖2L2
x(R3) + 8‖∂zu‖2L2

x(R3) − 6‖u‖4L4
x(R3)

= 24Eω(u)− 4ω‖u‖2
Σ̇y
− 4‖∂zu‖2L2

x(R3) + 16ω‖u‖2L2
x(R3).

Hence, by (2.5), the assumptions (2.4) and the fact that CGN > 2 (see Lemma 2.2), if

ω ≥ (CGN )4m2, we obtain

∂2
t

∫
R3

|x|2|v(t, x)|2dx ≤ 24Eω(u0) < 0.

Therefore, we conclude that both Tmin and Tmax are finite. �

3. Existence of a minimizer: proof of Theorem 1.2

We consider the minimization problem Jω(m) (see (1.7)). This section proves the exis-

tence of a minimizer. Indeed, as mentioned in Remark 1.3 (1), existence has been established

in a slightly different setting [3, Theorem 1]; however, it is reformulated in the context of

dimension reduction as ω → ∞. Thus, we only sketch the proof for the sake of complete-

ness. We also provide additional properties of a minimizer, which are direct consequences

of this different formulation (Lemmas 3.3 and 3.4).

3.1. Existence of a minimizer. First, we obtain the upper and lower bounds of the

minimum energy level of the variational problem (1.7).

Lemma 3.1. For any ω > 0, we have

−∞ < Jω(m) ≤ J∞(m) = E∞(Q∞) < 0.

Proof. Direct calculations show that ‖Φ0(y)Q∞(z)‖Σ̇y = 0 and

Eω(Φ0(y)Q∞(z)) =
1

2
‖∂zQ∞‖2L2

z(R) −
1

4
‖Q∞‖4L4

z(R)‖Φ0‖4L4(R2) = E∞(Q∞) = J∞(m) < 0,
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since ∫
R2

|Φ0(y)|4dy =

∫
R2

1

π2
e−2|y|2dy =

1

2π
. (3.1)

Thus, by minimality, it follows that Jω(m) ≤ J∞(m).

To show that Jω(m) is bounded from below, we observe that by Lemma 2.2 and the mass

constraint, we have

Eω(u) ≥ ω

2
‖u‖2

Σ̇y
+

1

2
‖∂zu‖2L2

x(R3) −
CGN

4

{
m

3
2 ‖∂zu‖L2

x(R3) +m
1
2 ‖∂zu‖L2

x(R3)

√
ω
}
.

Thus, the Cauchy-Schwarz inequality yields a lower bound on the energy Eω(u), which is

independent of u. �

Now, we prove the existence of a minimizer.

Sketch of the proof of Theorem 1.2. Let {un}∞n=1 be a minimizing sequence for Jω(m). By

Lemma 3.1, estimate (2.2), and the assumption ω ≥ (CGN )4m2, we have

0 > Jω(m) + on(1) = Eω(un)

≥ ω

2
‖un‖2Σ̇y

(
1− (CGN )2m

4ω
‖un‖2Σ̇y

)
+

1

4
‖∂zun‖2L2

x(R3) −
(CGN )2m3

8

≥ ω

4
‖un‖2Σ̇y +

1

4
‖∂zun‖2L2

x(R3) −
(CGN )2m3

8
.

(3.2)

Consequently, {un}∞n=1 is bounded in Σ. Note that ‖un‖4L4
x(R3) ≥ −4J∞(m) + on(1) ≥

−2J∞(m) > 0 because Lemma 3.1 implies that

0 > J∞(m) ≥ lim sup
n→∞

Eω(un) ≥ −1

4
lim inf
n→∞

‖un‖4L4
x(R3). (3.3)

Hence, passing to a subsequence, there exists a sequence {zn}∞n=1 ⊂ R such that un(y, z −
zn) ⇀ u∞ in Σ. Thus, it follows that u∞ 6= 0 (refer to the proof of [3, Lemma 3.4] for

details).

With abuse of notation, we denote the function un(y, z− zn) by un. Then, we claim that

un → u∞ in L2
x(R3). Indeed, if the claim is not true, then passing to a subsequence,

‖u∞‖2L2
x(R3) = m′, lim

n→∞
‖un − u∞‖2L2

x(R3) = m−m′ ∈ (0,m).

Note that since un ⇀ u∞ in Σ, we have

ω‖un‖2Σ̇y + ‖∂zun‖2L2
x(R3)

= ω
{
‖u∞‖2Σ̇y + ‖un − u∞‖2Σ̇y

}
+ ‖∂zu∞‖2L2

x(R3) + ‖∂z(un − u∞)‖2L2
x(R3) + on(1)

and

‖un‖4L4
x(R3) = ‖u∞‖4L4

x(R3) + ‖un − u∞‖4L4
x(R3) + on(1).

Hence, it follows that

Jω(m) = Eω(un) + on(1) = Eω(u∞) + Eω(un − u∞) + on(1)

≥ Jω(m′) + Jω(m−m′) + on(1).
(3.4)
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Let {vn}∞n=1 be a minimizing sequence for Jω(m′). Then, the modified sequence {
√

m
m′ vn}

∞
n=1

satisfies ‖
√

m
m′ vn‖

2
L2
x(R3) = m and∥∥∥√ m

m′ vn

∥∥∥2

Σ̇y
≤ m

m′
‖vn‖2Σ̇y ≤

m

m′
(CGN )2(m′)3

2ω
≤
√
ω,

where we used Corollary 2.3 and the assumption ω ≥ (CGN )4m2 ≥ (CGN )
4
3m2. Moreover,

by repeating the proof of (3.3), we can show that 1
4‖vn‖

4
L4
x(R3) ≥ −J∞(m′) + on(1). Thus,

by minimality, it follows that

Jω(m) ≤ Eω
(√

m
m′ vn

)
=
ω

2

m

m′
‖vn‖2Σ̇y +

1

2

m

m′
‖∂zvn‖2L2

x(R3) −
m2

4(m′)2
‖vn‖4L4

x(R3)

=
m

m′
Eω(vn)− m

4m′
m−m′

m′
‖vn‖4L4

x(R3)

=
m

m′
Jω(m′) +

m

m′
m−m′

m′
J∞(m′) + on(1),

and thus

Jω(m′) ≥ m′

m
Jω(m)− m−m′

m′
J∞(m′) + on(1).

On the other hand, by switching the roles of m′ and m−m′, one can show that

Jω(m−m′) ≥ m−m′

m
Jω(m)− m′

m−m′
J∞(m−m′) + on(1).

Then, inserting these two lower bounds in (3.4), we obtain

Jω(m) ≥ Jω(m′) + Jω(m−m′) + on(1)

≥ Jω(m)− m−m′

m′
J∞(m′)− m′

m−m′
J∞(m−m′) + on(1),

which deduces a contradiction with J∞(m′),J∞(m −m′) < 0 (see Lemma 3.1). Thus, we

conclude that un → u∞ in L2
x(R3) and ‖u∞‖2L2

x(R3) = m.

We claim that un → u∞ in Σ and u∞ is a minimizer for Jω(m). The L2
x(R3) convergence

un → u∞ and the Gagliardo–Nirenberg inequality ‖u‖4L4
x(R3) . ‖u‖L2

x(R3)‖u‖3H1
x(R3) yield the

convergence un → u∞ in L4
x(R3) and Eω(un − u∞) ≥ ‖un − u∞‖2Σ + on(1). Thus, it follows

from the argument used to derive (3.4) that Jω(m) = Eω(un) + on(1) = Eω(u∞) +Eω(un−
u∞) + on(1) ≥ Jω(m) + ‖un − u∞‖2Σ + on(1).

Because the minimizer u∞ is of the form u∞(x) = u∞(|y|, |z|) up to translation and

phase shift, and it is non-negative and decreases with respect to y and z, that is, u∞ =

eiθQω(|y|, |z − z0|) for some θ, z0 ∈ R, we refer to [3, Theorem 2]. �

3.2. Uniform bounds, and vanishing higher eigenstates. Because a minimizing se-

quence converges (passing to a subsequence and up to symmetries), taking n → ∞ in the

estimate (3.2), we obtain the following preliminary bound:

Lemma 3.2 (Preliminary uniform bound). For ω ≥ (CGN )4m2, let Qω be the minimizer

constructed in Theorem 1.2. Then, ω‖Qω‖2Σ̇y + ‖∂zQω‖2L2
x(R3) is uniformly bounded in ω.
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Proof. Following the arguments in (3.2), we have

0 > Jω(m) = Eω(Qω) ≥ ω

4
‖Qω‖2Σ̇y +

1

4
‖∂zQω‖2L2

x(R3) −
(CGN )2m3

8
.

�

We upgrade the above bound using the Euler–Lagrange equation (1.8). First, using a

standard iterative argument for elliptic regularity, we prove weighted high Sobolev norm

bounds.

Lemma 3.3 (Weighted high Sobolev norm bounds). For ω ≥ (CGN )4m2, let Qω be the

minimizer constructed in Theorem 1.2. Then, for any k ∈ N, we have

sup
ω≥(CGN )4m2

∥∥(Hy − ∂2
z )kQω

∥∥
L2
x(R3)

<∞.

In particular, Qω is uniformly bounded in L∞x (R3).

Proof. By using (1.8), the energy of the minimizer can be written as

Eω(Qω) = −µω
2
‖Qω‖2L2

x(R3) +
1

4
‖Qω‖4L4

x(R3) ≥ −
µωm

2
.

However, because the minimum energy is negative (Lemma 3.1), we have

µω ≥ 0. (3.5)

For k = 1, we decompose

(Hy−∂2
z )Qω = (Hy−∂2

z )(P0Qω)+(Hy−∂2
z )(P1Qω) = 2P0Qω−∂2

z (P0Qω)+(Hy−∂2
z )(P1Qω)

and estimate∥∥(Hy − ∂2
z )Qω

∥∥
L2
x(R3)

≤ 2‖P0Qω‖L2
x(R3) + ‖∂2

z (P0Qω)‖L2
x(R3) +

∥∥(Hy − ∂2
z )P1Qω

∥∥
L2
x(R3)

. ‖Qω‖L2
x(R3) +

∥∥ (ω(Hy − 2)− ∂2
z + µω

)
Qω
∥∥
L2
x(R3)

,

where we used the spectrum gap∥∥Hy(P1Qω)
∥∥
L2
x(R3)

.
∥∥(Hy − 2)(P1Qω)

∥∥
L2
x(R3)

.

Then, using the equation (1.8) and Lemma 3.2, we prove that∥∥(Hy − ∂2
z )Qω

∥∥
L2
x(R3)

. ‖Qω‖L2
x(R3) + ‖Q3

ω‖L2
x(R3) = ‖Qω‖L2

x(R3) + ‖Qω‖3L6
x(R3)

. 1 + ‖Qω‖3H1
x(R3) . 1,

where the implicit constants are independent of ω.

For k = 2, by repeating the above estimates with equation (1.8) and the commutative

properties

(Hy − ∂2
z )(P1Qω) = P1

(
(Hy − ∂2

z )Qω
)

and Hy(Hy − ∂2
z ) = (Hy − ∂2

z )Hy,
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we write∥∥(Hy − ∂2
z )2Qω

∥∥
L2
x(R3)

=
∥∥(Hy − ∂2

z )2P0Qω
∥∥
L2
x(R3)

+
∥∥(Hy − ∂2

z )2P1Qω
∥∥
L2
x(R3)

. ‖Qω‖L2
x(R3) +

∥∥(Hy − ∂2
z )(ω(Hy − 2)− ∂2

z + µω)Qω
∥∥
L2
x(R3)

= ‖Qω‖L2
x(R3) +

∥∥(Hy − ∂2
z )(Q3

ω)
∥∥
L2
x(R3)

.

Then, by distributing derivatives in (Hy − ∂2
z )(Q3

ω) and using the Sobolev embedding

H2(R3) ↪→ L∞(R3), we can obtain a uniform bound on ‖(Hy − ∂2
z )2Qω‖L2

x(R3) using the

uniform bound in the previous step. Proceeding inductively, we deduce the lemma for all

k ≥ 2. �

Next, we sharpen the bound in Lemma 3.2 and prove the convergence of the minimum

energy and the Lagrange multiplier.

Lemma 3.4. For ω ≥ (CGN )4m2, let Qω be the minimizer constructed in Theorem 1.2.

(1) (Minimum energy convergence)

Jω(m) = J∞(m) +O(ω−1).

(2) (Vanishing higher eigenstates)

‖P1Qω‖L2
x(R3) . ‖Qω‖Σ̇y .

1

ω
and ‖∂z(P1Qω)‖L2

x(R3) .
1√
ω
.

(3) (Lagrange multiplier convergence)

µω = µ∞ +O(ω−1).

Proof. First, we show that

‖P1Qω‖L2
x(R3) . ‖Qω‖Σ̇y .

1

ω
. (3.6)

Because Λ1 > 2 and µω ≥ 0 (see (3.5)), we have

‖P1Qω‖L2
x(R3) . ‖(Hy − 2)P1Qω‖L2

x(R3) = ‖(Hy − 2)Qω‖L2
x(R3)

≤ 1

ω
‖(ω(Hy − 2)− ∂2

z + µω)Qω‖L2
x(R3) =

1

ω
‖Q3

ω‖L2
x(R3),

where equation (1.8) is used in the last step. Then, by Lemma 3.3, we obtain the desired

bound (3.6).

For the remainder of the proof, we compare the energies of the two minimizers Qω(x)

and Q∞(z). For the 1d energy, we consider the Φ0(y)-directional component of Qω, that

is, Qω,‖(z) = 〈Qω(·, z),Φ0〉L2
y(R2). Note that by (3.6), its mass mω = ‖Qω,‖‖2L2

z(R) satisfies

mω = m+O( 1
ω2 ). Moreover, by Lemmas 3.3 and (3.6), we have

‖Qω‖4L4
x(R3) − ‖P0Qω‖4L4

x(R3) .
∫
R3

(
Q3
ω + |P0Qω|3

)
|P1Qω|dx . ‖P1Qω‖L2

x(R3) .
1

ω
.
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Hence, the admissible function
√

m
mω
Qω,‖ for the problem J∞(m) satisfies

E∞(Q∞) ≤ E∞(
√

m
mω
Qω,‖) = E∞(Qω,‖) +O(ω−2)

=
1

2
‖∂z(P0Qω)‖2L2

x(R3) −
1

4
‖P0Qω‖4L4

x(R3) +O(ω−2)

= Eω(Qω)− ω

2
‖Qω‖2Σ̇y −

1

2
‖∂z(P1Qω)‖2L2

x(R3) +O(ω−1).

Since Eω(Qω) ≤ E∞(Q∞), it follows that

ω‖Qω‖2Σ̇y + ‖∂z(P1Qω)‖2L2
x(R3) .

1

ω
. (3.7)

Then, inserting this back, we obtain the minimum energy convergence Jω(m) = J∞(m) +

O(ω−1).

Eω(Qω) ≤ E∞(Q∞) ≤ E∞(
√

m
mω
Qω,‖) = Eω(Qω) +O(ω−1). (3.8)

It remains to show the convergence of the Lagrange multiplier. To estimate the difference

between µω and µ∞, we express the energies of the two minimizers using the Pohozaev-type

identities. Here, the trick is to take the inner product with z∂zQω rather than the usual

choice x ·∇xQω because the z-direction is dominant in the limit. Specifically, by multiplying

the elliptic equation (1.8) by Qω and z∂zQω and integrating over R3
x, we have

0 = 〈ω(Hy − 2)Qω − ∂2
zQω −Q3

ω + µωQω, Qω〉L2
x(R3)

= ω‖Qω‖2Σ̇y + ‖∂zQω‖2L2
x(R3) − ‖Qω‖

4
L4
x(R3) + µωm

and

0 = 〈ω(Hy − 2)Qω − ∂2
zQω −Q3

ω + µωQω, z∂zQω〉L2
x(R3)

=

∫
R3

ωz

2
∂z(
√
Hy − 2Qω)2 − z

2
∂z(∂zQω)2 − z

4
∂z(Q

4
ω) +

µωz

2
∂z(Qω)2dx

= −ω
2
‖Qω‖2Σ̇y +

1

2
‖∂zQω‖2L2

x(R3) +
1

4
‖Qω‖4L4

x(R3) −
µω
2
m.

Solving the above system of equations for ‖∂zQω‖2L2
x(R3) and ‖Qω‖4L4

x(R3) and substituting

them into the energy, we obtain

Jω(m) = Eω(Qω) = −µωm
6
− ω

6
‖Qω‖2Σ̇y = −µωm

6
+O(ω−1),

where (3.7) is used in the last step. Similarly, we can express the energy level E∞(Q∞) in

terms of the mass m and a Lagrange multiplier µ∞, that is,

J∞(m) = E∞(Qω) = −µ∞m
6

.

Thus, it follows from the minimum energy convergence that µω = µ∞ +O(ω−1). �
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4. Dimension reduction to the 1d ground state: Proof of Theorem 1.5

In this section, we prove the convergence from the 3d to 1d energy minimizers. For the

proof, a key ingredient is the non-degeneracy estimate of the 1d linearized operator:

L∞ = −∂2
z + µ∞ −

3

2π
Q2
∞. (4.1)

Lemma 4.1 (Non-degeneracy estimate [22, 32]). The linearized operator L∞ satisfies

‖L∞ϕ‖H−1
z (R) & ‖ϕ‖H1

z (R) for all even ϕ ∈ H1
z (R).

Proof. If there exists an even function ϕn ∈ H1
z (R) such that

‖ϕn‖H1
z (R) = 1 and lim

n→∞
‖L∞ϕn‖H−1

z (R) = 0,

Then, we may assume that ϕn ⇀ ϕ∞ in H1(R3) and ϕn → ϕ∞ in L2
loc(R) as n → ∞.

Because limn→∞ ‖L∞ϕn‖H−1
z (R) = 0, we see that for ψ ∈ C∞0 (R),

lim
n→∞

〈L∞ϕn, ψ〉L2
z(R) = 〈L∞ϕ∞, ψ〉L2

z(R) = 0,

which implies that L∞ϕ∞ = 0. Moreover, by the exponential decay property of Q∞, we see

that

0 = lim
n→∞

〈L∞ϕn, ϕn〉L2
z(R) = lim

n→∞

∫
R

(∂zϕn)2 + µ∞ϕ
2
n −Q2

∞ϕ
2
ndz

= lim
n→∞

∫
R

(∂zϕn)2 + µ∞ϕ
2
ndz −

∫
R
Q∞ϕ

2
∞dz.

Hence, we deduce that an even function ϕ∞ 6= 0 satisfies L∞ϕ∞ = 0, which contradicts the

results in [22] and [32, Proposition 2.8]. �

Proof of Theorem 1.5. By Lemma 3.4, it suffices to show that

‖Qω,‖(z)−Q∞(z)‖H1
z (R) .

1

ω
. (4.2)

It has been shown in the proof of Lemma 3.4 that {
√

m
mω
Qω,‖}ω≥ω0 , where Qω,‖(z) =

〈Qω(·, z),Φ0〉L2
y(R2) is a minimizing sequence for the variational problem J∞(m) (see (3.8)).

Then, by the well-known variational property of J∞(m) [24] and the uniqueness of the

minimizer Q∞ [22], it follows that Qω,‖ → Q∞ in H1
z (R).

For the rate of convergence in (4.2), using the Euler–Lagrange equation (1.8), we write

the equation for Qω,‖ as

(−∂2
z + µω)Qω,‖ = 〈Qω(·, z)3,Φ0(·)〉L2

y(R2).

Then, the difference rω,‖ = Qω,‖ −Q∞ satisfies

L∞rω,‖ = (µ∞ − µω)Qω,‖ +
1

2π

{
Q3
ω,‖ −Q

3
∞ − 3Q2

∞rω,‖

}
+

{
〈Qω(·, z)3,Φ0〉L2

y(R2) −
1

2π
Q3
ω,‖

}
,

(4.3)
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where L∞ = −∂2
z +µ∞− 3

2πQ
2
∞. On the right-hand side of (4.3), from Lemma 3.4, we have

that ‖(µ∞ − µω)Qω,‖‖L2
x(R3) ≤ |µ∞ − µω|‖Qω,‖‖L2

x(R3) .
1
ω . By the convergence rω,‖ → 0

and the uniform bound (Lemma 3.3), we have

‖Q3
ω,‖ −Q

3
∞ − 3Q2

∞rω,‖‖L2
z(R) = ‖3Q∞r2

ω,‖ + r3
ω,‖‖L2

z(R) = oω(1)‖rω,‖‖H1
z (R).

Moreover, using 1
2πQ

3
ω,‖ = 〈(Qω,‖(z)Φ0(y))3,Φ0(y)〉L2

y(R2) = 〈(P0Qω(·, z))3,Φ0〉L2
y(R2) (see

(3.1)), we obtain〈
Q3
ω,Φ0

〉
L2
y(R2)

− 1

2π
Q3
ω,‖ =

〈
Q3
ω − (P0Qω)3,Φ0

〉
L2
y(R2

=
〈
3(P0Qω)2(P1Qω) + 3(P0Qω)(P1Qω)2 + (P1Qω)3,Φ0

〉
L2
y(R2)

.

Then, Lemma 3.4 with the uniform bound (Lemma 3.3) yields∥∥∥∥〈Qω(·, z)3,Φ0〉L2
y(R2) −

1

2π
Q3
ω,‖

∥∥∥∥
L2
z(R)

. ‖P1Qω‖L2
x(R3) .

1

ω
.

Putting it all together, we obtain ‖L∞rω,‖‖L2
z(R) .

1
ω . Finally, by applying the non-

degeneracy estimate for the linearized operator (Lemma 4.1), we complete the proof. �

Remark 4.2 (Weighted high Sobolev norm convergence). Let k ∈ N. By interpolating the

L2
x(R3) convergence in Theorem 1.5 and the bound in Lemma 3.3 using Lemma 2.1, we

obtain the convergence in the high Sobolev norms:∥∥(Hy − ∂2
z )k(Qω(x)−Q∞(z)Φ0(y))

∥∥
L2
x(R3)

≤ ‖Qω(x)−Q∞(z)Φ0(y)‖1−η
L2
x(R3)

∥∥(Hy − ∂2
z )

k
η (Qω(x)−Q∞(z)Φ0(y))

∥∥η
L2
x(R3)

≤ Ck,ηω−(1−η) → 0,

where Ck,η > 0 is a constant depending on k and η, and η ∈ (0, 1) satisfying kη−1 ∈ N.

5. Linearized operator and uniqueness of a minimizer: Proof of Theorem 1.9

In this section, we study the linearized operator at an energy minimizer of the varia-

tional problem Jω(m). Then, exploiting its coercivity, we establish the uniqueness of the

minimizer, which is the main result of this study.

5.1. Linearized operator. Let Q∞ be the unique radially symmetric positive ground state

of the 1d minimization problem (see (1.10)). It is well-known that Q∞ is non-degenerate

in the sense that the kernel of the 1d linearized operator (see (4.1)) acting on L2
z(R) with

the domain H2
z (R) is completely characterized by the translation invariance of equation

(1.11), that is, Ker(L∞) = span{∂zQ∞} (see [22] and [32, Proposition 2.8]). Moreover, it

is coercive in a restricted function space. Specifically, there exists CL > 0 such that

〈L∞φ, φ〉L2
z(R) ≥ CL‖φ‖2L2

z(R) (5.1)

for all radially symmetric φ ∈ L2
z(R), such that 〈φ,Q∞〉L2

z(R) = 0 (see [32, Propositions 2.7

and 2.8]).
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For a sufficiently large ω ≥ 1, let Qω be an energy minimizer of the variational problem

Jω(m) obtained in Theorem 1.2 and consider the 3d linearized operator

Lω = ω(Hy − 2)− ∂2
z + µω − 3Q2

ω (5.2)

acting on L2
x(R3) with the domain {u ∈ H2

x(R3) : |y|2u ∈ L2
x(R3)}. From the dimension

reduction limit (Theorem 1.5), it is expected that the operator Lω satisfies properties similar

to those of the 1d operator L∞.

First, we show that the 3d linearized operator has analogous coercivity.

Proposition 5.1 (Coercivity of the linearized operator Lω). Let CL > 0 be the constant

given in (5.1). Then, for a sufficiently large ω ≥ 1, we have

〈Lωϕ,ϕ〉L2
x(R3) ≥

CL
4
‖P0ϕ‖2H1

x(R3) +
ω(Λ1 − 2)

2
‖P1ϕ‖2L2

x(R3)

for all ϕ ∈ Σ such that ϕ(x) = ϕ(|y|, |z|) and 〈Qω, ϕ〉L2
x(R3) = 0.

Proof. Suppose that ϕ satisfies the assumptions of the proposition. Then, because µω →
µ∞, Qω → Q∞(z)Φ0(y) in L∞x (R3) and 〈(Hy − 2)ϕ,ϕ〉L2

x(R3) ≥ (Λ1 − 2)‖P1ϕ‖2L2
x(R3), it

suffices to show that

〈L̃∞ϕ,ϕ〉L2
x(R3) ≥

CL
3
‖P0ϕ‖2H1

x(R3) −
ω(Λ1 − 2)

2
‖P1ϕ‖2L2

x(R3),

where

L̃∞ = −∂2
z + µ∞ − 3(Q∞(z)Φ0(y))2

is an auxiliary 3d linear operator on L2
x(R3).

By decomposing ϕ = P0ϕ+P1ϕ, where P0ϕ = ϕ‖(z)Φ0(y) and ϕ‖(z) = 〈ϕ(·, z),Φ0〉L2
y(R2),

we write〈
L̃∞ϕ,ϕ

〉
L2
x(R3)

≥
〈
L̃∞(ϕ‖(z)Φ0(y)), ϕ‖(z)Φ0(y)

〉
L2
x(R3)

− 6
〈

(Q∞Φ0)2 P0ϕ, P1ϕ
〉
L2
x(R3)

− 3
〈

(Q∞Φ0)2 P1ϕ, P1ϕ
〉
L2
x(R3)

,

where the cross term 〈(−∂2
z + µ∞)P0ϕ, P1ϕ〉L2

x(R3) is canceled, and the non-negative term

〈(−∂2
z + µ∞)P1ϕ, P1ϕ〉L2

x(R3) is dropped. Then, by the Hölder and the Cauchy-Schwarz

inequalities, we can show that∣∣∣6〈 (Q∞Φ0)2 P0ϕ, P1ϕ
〉
L2
x(R3)

+ 3
〈

(Q∞Φ0)2 P1ϕ, P1ϕ
〉
L2
x(R3)

∣∣∣
≤ oω(1)‖P0ϕ‖2L2

x(R3) +
(Λ1 − 2)ω

4
‖P1ϕ‖2L2

x(R3)

because Q∞ is bounded. We also note that integrating out the y-variable〈
L̃∞(ϕ‖(z)Φ0(y)), ϕ‖(z)Φ0(y)

〉
L2
x(R3)

= 〈L∞ϕ‖, ϕ‖〉L2
z(R),

where L∞ is the 1d linearized operator (see (4.1)). Therefore, the proof of the proposition

can be further reduced to show the lower bound:

〈L∞ϕ‖, ϕ‖〉L2
z(R) ≥

CL
2
‖ϕ‖‖2H1

z (R) − ‖P1ϕ‖2L2
x(R3). (5.3)
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We show (5.3) using the coercivity (5.1) of the 1d linearized operator L∞. To do so, we

denote the component of ϕ‖ orthogonal to Q∞ by

ϕ̃‖ = ϕ‖ −
〈ϕ‖, Q∞〉L2

z(R)

‖Q∞‖2L2
z(R)

Q∞.

We observe that under the orthogonality condition 〈ϕ,Qω〉L2
x(R3) = 0 and the convergence

Qω → Q∞(z)Φ0(y) in H1
x(R3), ϕ‖ is almost orthogonal to Q∞ as follows:

〈ϕ‖, Q∞〉L2
z(R) =

〈
ϕ‖(z)Φ0(y), Q∞(z)Φ0(y)

〉
L2
x(R3)

=
〈
ϕ,Q∞(z)Φ0(y)

〉
L2
x(R3)

= 〈ϕ,Qω〉L2
x(R3) +

〈
ϕ,Q∞(z)Φ0(y)−Qω

〉
L2
x(R3)

= oω(1)‖ϕ‖L2
x(R3).

Consequently, ϕ‖ = ϕ̃‖+oω(1)‖ϕ‖L2
x(R3)Q∞. Hence, by the Hölder and the Cauchy-Schwarz

inequalities, the core part is extracted as

〈L∞ϕ‖, ϕ‖〉L2
z(R) = 〈L∞ϕ̃‖, ϕ̃‖〉L2

z(R) + oω(1)‖ϕ‖L2
x(R3)〈L∞Q∞, ϕ̃‖〉L2

z(R)

+ oω(1)‖ϕ‖2L2
x(R3)〈L∞Q∞, Q∞〉L2

z(R)

≥ 〈L∞ϕ̃‖, ϕ̃‖〉L2
z(R) + oω(1)‖ϕ‖2L2

x(R3).

Then, it follows from the coercivity of L∞ (see (5.1)) that

〈L∞ϕ‖, ϕ‖〉L2
z(R) ≥ CL‖ϕ̃‖‖2H1

z (R) + oω(1)‖ϕ‖2L2
x(R3).

Thus, using ‖ϕ̃‖‖2H1
z (R) ≥ ‖ϕ‖‖

2
H1
z (R) + oω(1)‖ϕ‖2L2

x(R3), we prove (5.3). �

Next, we show the non-degeneracy of the energy minimizer Qω. The non-degeneracy will

not be used to prove the uniqueness of the minimizer; however, it is included for interest

and potential future applications.

Proposition 5.2 (Non-degeneracy of minimizers for large ω). For sufficiently large ω > 0,

the operator Lω is non-degenerate; that is, its kernel is given by

kerLω = span{∂zQω}.

Proof. For contradiction, we assume that for some large ω > 0, there exists ϕω ∈ {u ∈
H2
x(R3) : |y|2u ∈ L2

x(R3)} such that ‖ϕω‖L2
x(R3) = 1, 〈∂zQω, ϕω〉L2

x(R3) = 0, and Lωϕω = 0.

Then, we have

3

∫
R3

Q2
ω|ϕω|2dx = 〈Lωϕω, ϕω〉L2

x(R3) + 3〈Q2
ωϕω, ϕω〉L2

x(R3)

= ω‖ϕω‖2Σ̇y + ‖∂zϕω‖2L2
x(R3) + µω‖ϕω‖2L2

x(R3)

≥ µω = µ∞ + oω(1),
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while, by the Sobolev inequality with Lemma 3.3,∫
R3

Q2
ω|ϕω|2dx =

∞∑
k=−∞

∫
Tk

Q2
ω|ϕω|2dx ≤

∞∑
k=−∞

‖Qω‖2L∞x (Tk)‖ϕω‖
2
L2
x(Tk)

.
∞∑

k=−∞
‖Qω‖2H2

x(Tk)‖ϕω‖
2
L2
x(Tk) ≤ sup

k
‖ϕω‖2L2

x(Tk) ·
∞∑

k=−∞
‖Qω‖2H2

x(Tk)

= sup
k
‖ϕω‖2L2

x(Tk) · ‖Qω‖
2
H2
x(R3) . sup

k
‖ϕω‖2L2

x(Tk),

where Tk = R2 × [k, k + 1), k ∈ Z and the implicit constants are independent of ω. Hence,

by combining these two inequalities, we obtain

µ∞
2
≤ ω‖ϕω‖2Σ̇y + ‖∂zϕω‖2L2

x(R3) + µω‖ϕω‖2L2
x(R3) . sup

k
‖ϕω‖2L2

x(Tk) ≤ 1. (5.4)

Thus, by translating ϕω(y, z − kω) using suitable kω ∈ Z if necessary, but still denoting by

ϕω, we may assume that

lim inf
ω→∞

‖ϕω‖2L2
x(R2×[0,1)) ≥

µ∞
2
. (5.5)

On the other hand, by (5.4), the sequence {ϕω}ω is bounded in Σ and thus passing to

a subsequence, ϕω ⇀ ϕ∞ 6= 0 in Σ as ω → ∞. Moreover, by (5.4), ‖P1ϕω‖2L2
x(R3) .

‖P1ϕω‖2Σ̇y = ‖ϕω‖2Σ̇y .
1
ω → 0, and consequently, by (5.5),

ϕω,‖(z) =

∫
R2

ϕω(y, z)Φ0(y)dy ⇀ ϕ∞,‖(z) =

∫
R2

ϕ∞(y, z)Φ0(y)dy 6= 0

in L2
z(R). Therefore, by collecting and using the dimension reduction limit (Theorem 1.5),

we get that for any g ∈ C∞c (R)

0 = 〈Lωϕω, g(z)Φ0(y)〉L2
x(R3)

=
〈
(−∂2

z + µ∞ − 3(Q∞(z)Φ0(y))2)ϕω,‖(z)Φ0(y), g(z)Φ0(y)
〉
L2
x(R3)

+ oω(1)

= 〈L∞ϕ∞,‖, g〉L2
z(R) + oω(1),

in other words, ϕ∞,‖ ∈ Ker(L∞). However, since

0 = 〈ϕω, ∂zQω〉L2
x(R3) = 〈ϕ∞,‖(z)Φ0(y), ∂zQ∞(z)Φ0(y)〉L2

x(R3) + oω(1)

= 〈ϕ∞,‖, ∂zQ∞〉L2
z(R) + oω(1),

this contradicts the non-degeneracy of the minimizer Q∞. �

5.2. Proof of Theorem 1.9. We now prove the uniqueness of the minimizer using the

coercivity of its linearized operator (Proposition 5.1). For contradiction, we assume that the

variational problem Jω(m) has two different minimizers Qω(x) = Qω(|y|, |z|) and Q̃ω(x) =

Q̃ω(|y|, |z|). We introduce the functional

Iω(u) = Eω(u) +
µω
2
M(u).
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Then, it is obvious that Iω(Qω) = Iω(Q̃ω). We decompose

Q̃ω =
√

1− δ2
ωQω +Rω,

where 〈Qω, Rω〉L2
x(R3) = 0. Then, since m = ‖Q̃ω‖2L2

x(R3) = (1 − δ2
ω)m + ‖Rω‖2L2

x(R3) and

‖Qω − Q̃ω‖2L2
x(R3) = (1−

√
1− δ2

ω)2m+ ‖Rω‖2L2
x(R3) = oω(1), we have

δω =
1√
m
‖Rω‖L2

x(R3) = oω(1). (5.6)

By inserting Q̃ω =
√

1− δ2
ωQω +Rω into Iω(Q̃ω), we reorganize the terms in the increasing

order of Rω as

Iω(Q̃ω) =
ω

2

∥∥√1− δ2
ωQω +Rω

∥∥2

Σ̇y
+

1

2

∥∥∂z(√1− δ2
ωQω +Rω)

∥∥2

L2
x(R3)

− 1

4

∥∥√1− δ2
ωQω +Rω

∥∥4

L4
x(R3)

+
µω
2

∥∥√1− δ2
ωQω +Rω

∥∥2

L2
x(R3)

=
1− δ2

ω

2

{
ω ‖Qω‖2Σ̇y + ‖∂zQω‖2L2

x(R3) + µω‖Qω‖2L2
x(R3)

}
− (1− δ2

ω)2

4
‖Qω‖4L4

x(R3)

+
〈√

1− δ2
ω(ω(Hy − 2)− ∂2

z + µω)Qω − (1− δ2
ω)

3
2Q3

ω, Rω
〉
L2
x(R3)

+
1

2

〈
(ω(Hy − 2)− ∂2

z + µω)Rω − 3(1− δ2
ω)Q2

ωRω, Rω
〉
L2
x(R3)

−
√

1− δ2
ω〈Qω, R3

ω〉L2
x(R3) −

1

4
‖Rω‖4L4

x(R3).

For the zeroth and first-order terms, applying the equation (1.8), we write

1− δ2
ω

2

{
ω ‖Qω‖2Σ̇y + ‖∂zQω‖2L2

x(R3) + µω‖Qω‖2L2
x(R3)

}
− (1− δ2

ω)2

4
‖Qω‖4L4

x(R3)

=
1

2

{
ω ‖Qω‖2Σ̇y + ‖∂zQω‖2L2

x(R3) + µω‖Qω‖2L2
x(R3)

}
−
{
δ2
ω

2
+

(1− δ2
ω)2

4

}
‖Qω‖4L4

x(R3)

= Iω(Qω)− δ4
ω

4
‖Qω‖4L4

x(R3) = Iω(Qω) + oω(1)‖Rω‖2L2
x(R3)

and 〈√
1− δ2

ω(ω(Hy − 2)− ∂2
z + µω)Qω − (1− δ2

ω)
3
2Q3

ω, Rω
〉
L2
x(R3)

=
√

1− δ2
ω

〈
(ω(Hy − 2)− ∂2

z + µω)Qω −Q3
ω, Rω

〉
L2
x(R3)

+
(√

1− δ2
ω − (1− δ2

ω)
3
2
)
〈Q3

ω, Rω〉L2
x(R3)

= δ2
ω

√
1− δ2

ω〈Q3
ω, Rω〉L2

x(R3) = oω(1)‖Rω‖2L2
x(R3),

where (5.6) is used in the last step in both cases. For the second-order terms, by extracting

the lineaarized operator, we write〈
(ω(Hy − 2)− ∂2

z + µω)Rω − 3(1− δ2
ω)Q2

ωRω, Rω
〉
L2
x(R3)

= 〈LωRω, Rω〉L2
x(R3) + 3δ2

ω〈Q2
ωRω, Rω〉L2

x(R3)

= 〈LωRω, Rω〉L2
x(R3) + oω(1)‖Rω‖2L2

x(R3).
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For the higher-order terms, we observe from Theorem 1.5 and the Sobolev embedding

L∞x (R3) ↪→ H2
x(R3) that ‖Rω‖L∞x (R3) → 0. Hence, we have√

1− δ2
ω|〈Qω, R3

ω〉L2
x(R3)|+

1

4
‖Rω‖4L4

x(R3) = oω(1)‖Rω‖2L2
x(R3).

Putting it all together, we obtain

Iω(Q̃ω) = Iω(Qω) +
1

2
〈LωRω, Rω〉L2

x(R3) + oω(1)‖Rω‖2L2
x(R3).

Then, Proposition 5.1 yields a contradiction.

Appendix A. Dimension reduction for the Cauchy problem

We establish the convergence of general 3d solutions in Proposition 2.5 as the confinement

is strengthened, which corresponds to the downward arrow on the right-hand side of Figure

1. While this dimension reduction is not used to prove the main result, it is included because

it might be of its own interest.

Theorem A.1 (Dimension reduction from the 3d to the 1d NLS). For ω ≥ (CGN )4m2,

where CGN is given in Lemma 2.2, we assume that uω,0 ∈ Σ, M(uω,0) = m,

Eω(uω,0) < 0 and ‖uω,0‖2Σ̇y ≤
√
ω.

Let uω(t) be the global solution to the 3d NLS (1.4) with initial data uω,0, and let vω(t) be

the global solution to the 1d NLS (1.3) with initial data uω,‖(0) = 〈uω,0,Φ0〉L2
y(R2). Then,

there exists constants C1, C2 > 0, independent of ω, such that

‖uω(t, x)− vω(t, z)Φ0(y)‖L2
x(R3) ≤

C1√
ω
eC2t.

For the proof, we require suitable bounds that are uniform-in-ω for nonlinear solutions.

We recall that the 1d NLS (1.3) is mass-subcritical and is globally well-posed. Moreover, by

summing the space-time norm bounds on short-time intervals with the mass conservation

law, one can derive the following bound (see [10]):

Lemma A.2. A global solution v(t) ∈ Ct(R;L2
z(R)) to the 1d NLS (1.3) with initial data

v0 ∈ L2
z(R) satisfies

‖v(t)‖L4
t ([−T,T ]);L∞z (R) . T

1
4 ‖v0‖L2

z(R) for all T ≥ 1. (A.1)

Because ‖uω,‖(0)‖2L2
z(R) ≤ ‖uω,0‖

2
L2
x(R3) = m, the 1d solution vω(t) satisfies a bound of the

form (A.1). Based on what follows, we claim that the core Φ0(y)-directional component of

the 3d solution satisfies the same bound. We decompose

uω(t, x) = uω,‖(t, z)Φ0(y) + (P1uω)(t, x),

where

uω,‖(t, z) := 〈uω(t, y, z),Φ0(y)〉L2
y(R2). (A.2)

Here, uω,‖(t, z) is essential because by Proposition 2.5 P1uω(t) becomes negligible as ω →∞.
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Lemma A.3. Under the assumptions in Theorem A.1, let uω,‖(t) be given by (A.2). Then,

we have

‖uω,‖(t)‖L4
t ([−T,T ];L∞z (R)) . T

1
4 (A.3)

for all T ≥ 1, where the implicit constant depends on the mass and energy of uω,0 but

independent of ω.

Proof. By direct calculations, we observe that uω,‖(t, z) solves

i∂tuω,‖ =
〈
(ω(Hy − 2)− ∂2

z )uω − |uω|2uω,Φ0

〉
L2
y(R2)

= −∂2
zuω,‖ −

〈
|P0uω|2P0uω,Φ0

〉
L2
y(R2)

−
〈
|uω|2uω − |P0uω|2P0uω,Φ0

〉
L2
y(R2)

= −∂2
zuω,‖ −

1

2π
|uω,‖|2uω,‖ −

〈
|uω|2uω − |P0uω|2P0uω,Φ0

〉
L2
y(R2)

,

(A.4)

where the last step, we used P0uω(t, x) = uω,‖(t, z)Φ0(y) and ‖Φ0‖4L4
y(R2) = 1

2π . Equivalently,

we have

uω,‖(t) = eit∂
2
zuω,‖(0),

+ i

∫ t

0
ei(t−s)∂

2
z

{
1

2π
|uω,‖|2uω,‖ +

〈
|uω|2uω − |P0uω|2P0uω,Φ0

〉
L2
y(R2)

}
(s)ds.

For a sufficiently small T ∈ (0, 1], we let I = [−T, T ]. Then, the well-known 1d Strichartz

estimate [10]

‖eit∂2zϕ‖L4
t (R;L∞x (R)) . ‖ϕ‖L2

z(R) (A.5)

yields
‖uω,‖‖L4

t (I;L
∞
x (R)) . ‖uω,‖(0)‖L2

z(R) + ‖|uω,‖|2uω,‖‖L1
t (I;L

2
z(R))

+
∥∥∥〈|uω|2uω − |P0uω|2P0uω,Φ0

〉
L2
y(R2)

∥∥∥
L1
t (I;L

2
z(R))

.

Hence, by the Hölder inequality with∣∣|uω|2uω − |P0uω|2P0uω
∣∣ . {|P0uω|2 + |P1uω|2

}
|P1uω| . |uω|2|P1uω|

for the last term, it follows that

‖uω,‖‖L4
t (I;L

∞
x (R)) . ‖uω,‖(0)‖L2

z(R) + T
1
2 ‖uω,‖‖2L4

t (I;L
∞
z (R))‖uω,‖‖Ct(I;L2

z(R))

+ T‖uω‖2L∞t (I;L4
x(R3))‖P1uω‖Ct(I;L2

x(R3)).

We observe that by the Gagliardo–Nirenberg inequality (Lemma 2.2) and the bound (2.3),

‖uω(t)‖L4
x(R3) is uniformly bounded in ω and ‖P1uω(t)‖L2

x(R3) ≤ 1√
ω

. Thus, we obtain

‖uω,‖‖L4
t (I;L

∞
x (R)) . 1 + T

1
2 ‖uω,‖‖2L4

t (I;L
∞
z (R)) + T

√
(CGN )4m2

ω , (A.6)

where the implicit constant depends on the mass and energy of uω,0. Thus, taking a suf-

ficiently small T > 0, we prove that ‖uω,‖‖L4
t (I;L

∞
x (R)) . 1. Note that the time interval is

selected depending only on the mass and energy. Thus, by iterating, we prove the desired

bound. �
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Proof. By Proposition 2.5, it suffices to estimate rω(t) = (uω,‖ − vω)(t). Subtracting 1d

NLS (1.3) from equation (A.4), we see that the difference rω(t) solves

i∂trω = −∂2
zrω −

1

2π

(
|uω,‖|2uω,‖ − |vω|2vω

)
−
〈
|uω|2uω − |P0uω|2P0uω,Φ0

〉
L2
y(R2)

with no initial data. Thus, we have

‖rω(t)‖L2
x(R) ≤

∫ t

0

∥∥|uω,‖|2uω,‖(s)− |vω|2vω(s)
∥∥
L2
z(R)

ds

+

∫ t

0

∥∥∥〈|uω|2uω(s)− |P0uω|2P0uω(s),Φ0

〉
L2
y(R2)

∥∥∥
L2
z(R)

ds.

Using the estimates from the proof of (A.6) for the second integral, we obtain

‖rω(t)‖L2
x(R) .

√
(CGN )4m2

ω
|t|+

∫ t

0

{
‖vω(s)‖2L∞z (R) + ‖uω,‖(s)‖2L∞z (R)

}
‖rω(s)‖L2

z(R)ds.

Therefore, Gronwall’s inequality together with (A.1) and (A.3) yields the desired conver-

gence estimate. �
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