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Abstract. We describe a new, adaptive solver for the two-dimensional Poisson equation in
complicated geometries. Using classical potential theory, we represent the solution as the sum of a
volume potential and a double layer potential. Rather than evaluating the volume potential over
the given domain, we first extend the source data to a geometrically simpler region with high or-
der accuracy. This allows us to accelerate the evaluation of the volume potential using an efficient,
geometry-unaware fast multipole-based algorithm. To impose the desired boundary condition, it
remains only to solve the Laplace equation with suitably modified boundary data. This is accom-
plished with existing fast and accurate boundary integral methods. The novelty of our solver is the
scheme used for creating the source extension, assuming it is provided on an adaptive quad-tree.
For leaf boxes intersected by the boundary, we construct a universal “stencil” and require that the
data be provided at the subset of those points that lie within the domain interior. This universality
permits us to precompute and store an interpolation matrix which is used to extrapolate the source
data to an extended set of leaf nodes with full tensor-product grids on each. We demonstrate the
method’s speed, robustness and high-order convergence with several examples, including domains
with piecewise smooth boundaries.
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1. Introduction. We consider the problem of rapidly and accurately solving the
Poisson equation

∆u(x) = f(x), for x ∈ Ω,(1.1)

u(x) = g(x), for x ∈ ∂Ω,(1.2)

in complicated domains in the plane. Here, u is an unknown function, f is a smooth
source density and g is the specified Dirichlet boundary data. While many fast solvers
are based on direct discretization of the partial differential equation itself, recent years
have witnessed substantial progress in developing solvers based on potential theory,
that make use of the linearity of the problem to solve (1.1), (1.2) in two steps. One
first computes a “particular solution” v(x) that satisfies

(1.3) ∆v(x) = f(x) for x ∈ Ω,

without regard to the boundary condition, and then finds a harmonic function w(x)
that satisfies

∆w(x) = 0 for x ∈ Ω,(1.4)

w(x) = g(x) − v(x), for x ∈ ∂Ω.
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Clearly, u(x) = w(x)+v(x) is the desired solution. Strong arguments for this approach
are that (1.3) can be solved by an integral transform without any volumetric unknowns
and that (1.4) can be solved using a boundary integral equation with unknowns only
on the surface ∂Ω (see, for example, [2, 19, 38]).

One possible choice for v(x) is the volume potential

(1.5) VΩ[f](x) = ∫
Ω

G(x − y)f(y)dy, for x ∈ Ω,

where G(x) is the free-space Green’s function [14], given in the two-dimensional case
by

(1.6) G(x,y) =
1

2π
log ∥x − y∥.

Definition 1.1. When Ω is a square with f(x) given at tensor product grid points
on the leaf nodes of an adaptive quad-tree data structure, highly optimized fast multi-
pole methods are available for computing volume potentials of the form (1.5) [12, 37].
We will refer to such methods as volume-integral fast multipole methods (VFMMs).

Remark 1.2. VFMMs assume that f(x) is resolved with high order accuracy by a
piecewise polynomial approximation on the leaf nodes. For orders of accuracy greater
than four, VFMMs typically use tensor product Chebyshev or Legendre grids on the
leaf nodes for stable high order approximation. For those familiar with VFMMs,
recall that (1.5) is computed exactly (for the piecewise polynomial approximation of
the source density) in the near field and with arbitrary, user-controlled precision in
the far field.

For general domains, however, VFMMs cannot be applied directly with high order
accuracy, since there will be cut leaf nodes that are intersected by the boundary ∂Ω
and where the data is only defined in the domain interior. This prevents simple high
order polynomial approximation of f(x) on the cut nodes, since the function is not
locally smooth. In this paper, we seek to enable the application of VFMMs by first
extending the function f(x) smoothly to a function fe(x) defined on a region E ⊃ Ω
for which a VFMM can be applied (see Fig. 4).

The combination of function extension and fast solvers is an active area of re-
search. In [44, 45], for example, an extension of the source density f(x) is obtained
through an immersed boundary formalism. In [2], function extension is carried out
using a boundary integral formulation (with harmonic extension yielding a C0 exten-
sion, biharmonic extension yielding a C1 extension, etc.). Once the extended function
has been obtained, the fully adaptive solver of [2] computes the extended volume inte-
gral using the VFMM algorithm of [12, 23]. Another approach is Fourier continuation.
One such scheme is described in [9], where the source density is extended normal to
the boundary, through projection onto a basis that vanishes in the vicinity of the
boundary. For a good discussion of Fourier-based extension, see [7]. In the active
penalty method [42], an extension is created by matching boundary data and normal
derivatives up to order k in terms of a carefully crafted set of basis functions which
gives an extension with global regularity Ck.

Function extension is not the only way in which the computation of volume po-
tentials can be accelerated using VFMMs. One alternative is to modify the VFMM
algorithm to treat the cut leaf nodes via more elaborate approximation and quadra-
ture tools that depend on the precise intersection of ∂Ω with the leaf node (see [1]
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and the references therein). Another alternative is the recently developed technique of
function intension [43], where the source density is coverd by regular tensor product
leaf nodes on an adaptive quad-tree in the interior of Ω, blended with a conforming
mesh in the neighborhood of the boundary. This permits the use of a VFMM for the
interior degrees of freedom, but needs to be coupled to an auxiliary fast Poisson solver
on a tubular neighborhood of the boundary.

In this paper, we describe our new function extension algorithm in detail, using
the Dirichlet problem for the Poisson equation as our model. The method is fully
adaptive in the interior of the domain, high-order accurate, robust, and fast. The
main novelty lies in creating a universal, level-independent, oversampled interpolation
matrix, recruiting sufficient data from the neighbors of cut leaf nodes, and defining
the range of the extension based on the local mesh size of the adaptive discretization.
Our method is similar to the partition of unity extension scheme (PUX) developed
in [21] for uniform grids. In the present scheme, however, blending and partitions
of unity are avoided. Instead, the extension for each cut leaf node is entirely local,
based only on data from the square itself or its nearest neighbors. Moreover, there
is no need to truncate the function smoothly to zero; we simply extend it to cover a
domain E ⊃ Ω which is discretized as a collection of leaf nodes beyond which f(x) is
identically zero (Fig. 4). (In PUX, the data is represented on a uniform grid, rather
than a quad-tree, extended smoothly to zero, with a global interpolation framework
based on the fast Fourier transform.) Rather than (1.5), the VFMM then computes
the volume potential

(1.7) v(x) = VE[fe](x) = ∫
E
G(x − y)fe(y)dy

where fe is the smooth extension of f .
An important feature of our method is that it is agnostic to the smoothness of

the boundary. It simply assumes that the adaptive quad-tree has resolved the source
data well enough, and that the user can identify points as being either inside or
outside the domain. We will demonstrate that with an eighth order accurate VFMM,
we obtain an eighth order accurate scheme for the full problem, even on piecewise
smooth domains. We will also show that the overall approach is compatible with other
extension schemes, including one-dimensional extensions along lines, using either the
rational function approximation of [15] or the diffeomorphism-based method of [11].
For a review of

There are, of course, drawbacks to extensions schemes - the major ones being
caustics and ill-conditioning. The former arise when a domain boundary curves back
on itself, so that two exterior normals intersect close to the domain. This can be
overcome by ensuring that the length scale of leaf nodes in the quad-tree near such
points must be commensurate with the distance to the nearest such intersection. The
difficulty is that this constraint could result in excessive refinement, even though the
geometry and the data may be simple to resolve. Ill-conditioning is an inherit concern
with function extension, since it is an extrapolation process. This effect is mitigated
by the fact that, as the quad-tree is refined, the data becomes locally smoother on the
scale of the leaf node and the extension problem becomes simpler as well. A detailed
analysis of the conditioning of the process remains to be carried out, but experiments
indicate that our method performs well without excessive resolution. The algorithm
requires that data be provided at auxiliary nodes close to the boundary, but this is to
be expected in a high-order formulation, and the node locations are specified as soon
as the quad-tree is created, so can be considered part of the discretization process.



4 F. FRYKLUND AND L. GREENGARD

This paper is organized as follows. In section 2, we review the needed elements
of classical potential theory for the Poisson equation, and in section 3, we discuss
function extension with Gaussians. In section 4, we present the data structures used
to discretize the right-hand side f(x) and create its extension. Layer potentials are
discussed in more detail in section 5 and the performance of the algorithm is illustrated
in section 6, along with a discussion of some implementation details. In section 7, we
discuss extensions of the present scheme and consider avenues for future improvement.

2. Mathematical preliminaries. Let D be an open, bounded subset of R2,
which is either simply or multiply connected. For a point x in R2, we will denote
its Cartesian components by (x1, x2) and its Euclidean norm by ∥x∥. For x,y in R2,
their inner product will be denoted by x ⋅y. Unless otherwise stated, we assume that
the domain has a boundary ∂Ω which is at least twice continuously differentiable. In
the case of an interior problem, Ω =D and the problem is fully specified. In the case
of an exterior problem, Ω = R2 ∖ D̄, in which case we must also specify a condition at
infinity for the problem to be well-posed. That is, we must specify a constant A such
that

(2.1) u(x)→ A log(∥x∥)

as ∥x∥→∞ [16, 30]. Bounded solutions correspond to setting A = 0.
For simplicity, let us begin with the interior problem in a simply-connected do-

main. By standard potential theory [16, 26, 30], an explicit representation of the
solution u can be formulated as

(2.2) u(x) = VE[fe](x) +D[σ](x), for x ∈ Ω,

where the volume potential VE[fe](x) is defined in (1.7), so long as E ⊃ Ω and fe = f
within Ω. Here,

(2.3) D[σ](x) = ∫
∂Ω

∂G(x − y)

∂ν(y)
σ(y)ds, for x ∈ Ω,

is the double layer potential, with unknown layer density σ∶∂Ω → R, ν(y) denotes

the unit normal at the point y ∈ ∂Ω, and ∂G(x−y)
∂ν(y) denotes the normal derivative of

the Green’s function (1.6). It is straightforward to see that D[σ](x) is harmonic and
that the kernel of D[σ] in (2.3) is

(2.4)
∂G(x − y)

∂ν(y)
=

1

2π

(x − y) ⋅ ν(y)

∥x − y∥2
.

Note that the limiting value of (2.4), as x approaches y along the boundary, is
− 1

2π
κ(y), where κ(y) is the curvature at y. Thus, assuming the boundary is at

least twice differentiable, the kernel is a continuous function. For a Ck+2 boundary,
the kernel is Ck.

In order to satisfy the desired Dirichlet boundary conditions, (1.2), we seek a layer
density σ such that D[σ](x) = g(x) − VE[fe](x) for x on ∂Ω. This is achieved by
taking the limit of (2.2) as x approaches the boundary from the interior and applying
standard jump conditions [32], yielding the integral equation

(2.5) (− 1
2
+D)[σ](x) = g(x) − VE[fe](x), for x ∈ ∂Ω.
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Equation (2.5) is a Fredholm integral equation of the second kind for σ, since D[σ] is
a compact operator with a continuous kernel on a C2 boundary (as noted above). It
follows by the Fredholm alternative that (2.5) has a unique solution [3]. Once σ has
been obtained, we have a complete solution to the full problem.

Remark 2.1. For Neumann boundary value problems, where (1.2) is replaced by

(2.6)
∂u

∂ν
(x) = g(x), for x ∈ ∂Ω,

the approach is essentially the same, except that the homogeneous solution is ex-
pressed as a single layer potential

(2.7) S[σ](x) = ∫
∂Ω

G(x − y)σ(y)ds, for x ∈ Ω.

Imposing (2.6) leads to a second kind Fredholm equation, ensuring a unique solution
(up to an arbitrary constant) so long as ∫∂Ω g(x)ds = 0.

For the exterior Dirichlet problem in Ω = R2 ∖ D̄, we first compute a particular
solution of the form (1.7), where the extension is now into D. The exterior harmonic
correction is then represented in the form

(2.8) uH(x) = D)[σ](x) +
1

2π
∫

∂Ω

σ(y)ds + α log ∥x − xD∥,

where xD lies in D. Letting Q = 1
2π ∬E f

e(y)dy, we impose the additional constraint

(2.9) α = A −Q

to ensure the user-specified radiation condition (2.1). For a discussion of uniqueness
of the resulting integral equation, see [22, 39].

2.1. Multiply-connected domains. We now consider the interior problem for
a multiply connected domain, whose boundary consists of (NΩ+1) closed curves. The
outer boundary curve is denoted ∂Ω0, and the interior boundary curves are denoted
by ∂Ω1, . . . , ∂ΩNΩ

(see subsection 2.1). In this setting, it turns out that there are
NΩ nontrivial homogeneous solutions to the boundary integral equation (2.5) [16]. In
order to ensure uniqueness, we proceed as in [22], and write the full solution to the
Poisson equation in the form

(2.10) u(x) = VE[fe](x) +D[σ](x) +
NΩ

∑
k=1

Ak log ∥x − sk∥, for x ∈ Ω,

where sk is a point inside the interior curve ∂Ωk and {Ak}
NΩ

k=1 are unknown constants,
with the additional constraints

(2.11) ∫

∂Ωk

σ(y)dy = 0, k = 1, . . . ,NΩ.

Imposing the Dirichlet boundary conditions together with (2.11) leads to an invertible
Fredholm equation of the second kind for the unknowns σ and {Ak}

NΩ

k=1.
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Ω

∂Ω0

∂Ω1

∂Ω2

∂ΩNΩ

∂Ω1

∂Ω2

∂ΩNΩ

Fig. 1: Left: An example geometry for the interior problem on an (NΩ + 1)ply con-
nected domain. Right: An example geometry for the exterior problem on an (NΩ)ply
connected domain

Finally, we consider the Dirichlet problem posed in the region exterior to a collec-
tion of NΩ closed curves ∂Ω1, . . . , ∂ΩNΩ

. It is shown in [22], that the representation

(2.12) uH(x) = D[σ](x) +
1

2π
∫

∂Ω

σ(x)dx +
NΩ

∑
k=1

Ak log ∥x − sk∥, for x ∈ Ω,

together with the constraints

(2.13) ∫

∂Ωk

σ(y)dy = 0, k = 1, . . . ,NΩ − 1 ,
NΩ

∑
k=1

Ak = A,

leads to a well-conditioned Fredholm equation of the second kind for σ and {Ak}
NΩ

k=1.

Remark 2.2. We will also consider domains with piecewise smooth boundaries.
For such geometries, the double layer operator is no longer compact, but there is an
extensive literature on the invertibility of the corresponding integral equation (see
[48, 10]) and the design of high order methods for its solution (see, for example,
[8, 27, 29]).

3. Function extension. We turn now to the problem of extending the function
f(x) defined on Ω to a function fe(x) ∈ Cq(E) on a region E ⊃ Ω for which a
VFMM can be applied. Our scheme is based on local extrapolation using a basis
of Gaussians, with a precomputed interpolation matrix that can be obtained using
the RBF-QR algorithm[17], discussed briefly below. This approach is similar to local
extension in the PUX algorithm [21]. However, the scheme presented here has fewer
parameters and requires neither a smooth taper to zero nor a blending of multiple
local extensions through a partition of unity.

3.1. Interpolation in a Gaussian basis. Consider the approximation

(3.1) If(x) =
NG

∑
i=1

λiφi(x), x ∈ S̄,

of a function f ∈ Cq(S̄), with q ≥ 0 on the bounded domain S̄ ⊂ Rd for d = 1,2,3,

with weights {λi}
NG
i=1. The basis consists of Gaussians φi(x) = e

−ε2∥x−ci∥2 centered at
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a set of distinct points G = {ci}
NG
i=1 in S̄. We will refer to ε as a shape parameter, with

smaller values corresponding to flatter basis functions. Clearly, If ∈ C
∞(S̄) ⊂ Cq(S̄).

Let P = {pi}
NP
i=1 be a set of NP distinct points in S̄ and suppose that we wish

to approximate the function values at P using the representation (3.1). The weights
Λ = (λj) ∈ RNG can be obtained by solving the linear system

(3.2) ΦP,GΛ = fP ,

where ΦP,G ∈ RNP×NG with ΦP,G[i, j] = (φj(pi)) and fP = (f(p1), . . . , f(pNG)). If
NP > NG , then we solve for Λ in a least squares sense.

Approximation via a sum of Gaussians is a particular case of radial basis function
approximation [34, 17, 41], and we do not seek to review the literature here, except
to note that high order accuracy can be achieved by a careful interplay of the shape
parameter ε and NG . This requires carefully letting ε → 0 while increasing NG [34,
17, 41]. If ε were fixed, convergence would stagnate with NG . On the other hand,
for a fixed NG , the linear system (3.2) becomes increasingly ill-conditioned as ε → 0,
resulting in oscillatory weights Λ. Following [35], it turns out that one can construct
a well-conditioned interpolation problem for ε ≈ 10−5 on the unit box, achieving
high order convergence. This involves reformulating (3.2) to avoid explicit use of the
weights Λ. For this, let

fG = (f(c1), . . . , f(cNG)) ∈ R
NG .

If we formally collocate (3.1) at G, then Λ = Φ−1
G,GfG and we may rewrite (3.2) in the

form

(3.3) AP,GfG = fP ,

where AP,G = ΦP,GΦ−1
G,G to directly obtain the desired values fG . While this formula-

tion avoids Λ, it remains to address the ill-conditioning of ΦG,G . It turns out that sta-
ble, accurate solutions can be obtained using the RBF-QR method [17]. The essential
idea is to expand each Gaussian in an intermediate (well-conditioned) basis consist-
ing of a combination of powers, Chebyshev polynomials, and trigonometric functions.
Leaving out the details, the total cost of RBF-QR is of the order O(NPNGM

2), where
M > NG is the number of functions used in the intermediate basis. This cost would be
prohibitive if carried out at every cut leaf node in our adaptive discretization. How-
ever, if the sets P and G are universal, then A can be precomputed and stored. In that
case, the cost of solving the least squares problem (3.3) is of the order O(NPN

2
G+N

3
G).

In the next section, we describe how to construct such a univeral matrix.

3.2. Extension from cut leaf nodes. Let S be a square of sidelength L which
is cut by the boundary Γ of our domain Ω, and let XS be the K ×K tensor product
Chebyshev grid scaled to S. We define the extension square S̄ to be a square of
sidelength 3L, with the same center as S (see Fig. 2). The K̄ × K̄ tensor product
Chebyshev grid scaled to S̄ is denoted by XS̄ .

On that square, we also impose a uniform triangulation, and constructing a De-
launay triangulation. The vertices of that triangulation are chosen as the Gaussian
support nodes G. The details of the construction are not so important - just that the
number be slightly greater than O(K2) and that they be approximately uniformly
distributed in the square. Let P = XS ∪ XS̄ ∪ G. For any of these point sets, we
let the superscript I refer to the subset that lies in the interior of Ω and we let the
superscript E refer to the subset that lies in the exterior of Ω. Thus, PI denotes the
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Fig. 2: A cut cell S of interest (the central square) and its 8 near neighbors at the
same scale. Their union defines the extension square S̄. In this case, suppose that the
region below the curve (light blue) corresponds to the domain interior and the region
above the curve (light purple) corresponds to the exterior. The marked points with
a blue, circular shape in S are the scaled Chebyshev nodes on S. The marked points
with a black, diamond shape are the scaled Chebyshev nodes on S̄. The marked points
with a red, square shape are the support nodes for the Gaussian basis functions. The
points in each of these sets that lie in the domain interior are indicated with filled
markers. The points in these sets that lie in the domain exterior are indicated with
unfilled markers. In our extension algorithm, we construct a least-squares interpolant
at the interior points and use it to obtain values at the Chebyshev nodes on S̄.

subset of P that lies in the interior of Ω, and X E
S̄

denotes the subset of XS̄ that lies
in the exterior of Ω. The full matrix AP,G is universal and can clearly be computed
and stored. Extracting the rows corresponding to interior points results in the matrix
API ,G , while extracting the rows corresponding to X E

S̄
results in AXE

S̄
,G . Assuming

that the function f is known at Pi, we can obtain its extension fXE
S̄

as

fXE
S̄
= AXE

S̄
,GA

†
PI ,GfPI .

where A†
PI ,G denotes the pseudo-inverse of API ,G . This yields the missing values to

extend f to a full tensor product Chebyshev grid XS̄ on the extension square S̄. From
this, we can easily compute fe at any point in S̄ by interpolation.

4. Discretization, data structures, and the volume potential. We turn
now to the task of function extension from a complicated domain Ω to a larger domain
E for which the VFMM can be applied with high order accuracy. We assume, without
loss of generality, that Ω is contained in the unit square D centered at the origin, and
that the support E of fe (which is only slightly larger than Ω) is contained in D as
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well. We assume that the boundary ∂Ω is provided in the form

∂Ω =
NΓ

⋃
i=1

Γi,

where we refer to the disjoint segments {Γi}
NΓ

i=1 as panels, and each panel is defined
by a parametrization

Γi = {γi(t) ∈ R
2
∣ t ∈ [−1,1]}.

We will refer to the length of each panel as ∣Γi∣ = ∫
1
−1 ∥γ′i(t)∥dt.

For the domain itself, we assume that an adaptive quad-tree is superimposed on
D to resolve the source density f(x). For this, the entire box D is referred to as
the root node, and a collection of squares (boxes) at level l + 1 is obtained by the
subdivision of some squares (boxes) at level l into four equal parts. For a square S at
level l, the four squares that result from its subdivision are referred to as S’s children,
and S is referred to as their parent. Squares that do not have children are referred to
as leaf boxes or leaf nodes. For resolve a source distributions with localized structure,
the subdivision process may lead to very fine refinement levels in some parts of the
domain. The only assumption we make about the data structure is that the tree is
level-restricted or balanced, meaning that any two leaf nodes which share a boundary
point are no more than one level apart (see 3).

Definition 4.1. For a square S at level l > 0, its colleagues are the boxes at
the same refinement level that share a boundary point with S, including itself. Coarse
neighbors of S are leaf nodes at level l−1 which share a boundary point with S and fine
neighbors are leaf nodes at level l+1 which share a boundary point with S. We define
the neighbors of S as the union of its colleagues, coarse neighbors and fine neighbors
(Figure 3). Leaf nodes that lie entirely in the interior of Ω are called regular leaf
nodes. Leaf nodes that are intersected by the boundary are called cut squares.

For each regular leaf node, we assume that f(x) is provided on a scaled K ×K
tensor product Chebyshev grid. (In the present paper, we always use Chebyshev
nodes of the first kind, which exclude the endpoints, and fix K = 8.) For each cut
square S with side length L, we define the extension square S̄ as above: the square
of length 3L, centered on S (see Figure 2). The extension square can be decomposed
into two disjoint subsets: the interpolation region S̄I that is the intersection of S̄ and
Ω, and the extension region S̄E = S̄∖ S̄I . We define the extension list for a cut square
S to be the set of all leaf squares S′ intersected by the extension region S̄E , for which
the center of S is the closest of all cut squares centers. If two cut square centers
are equidistant, the latter cut square which has added S′ to its extension list takes
precedence. On each cut square, there is a K ×K Chebyshev grid, for which some
nodes are within the domain and some not. On each extension square, we assume
there is also a K̄ × K̄ Chebyshev grid and a set of NG distinct points CG .

In adaptive refinement, a standard criterion for regular (non-cut) squares is that
the source distribution is resolved. From tensor product Chebyshev samples, one mea-
sure of resolution is spectral decay: that is, one computes the Chebyshev expansion
of f(x) and requires that the relative `p norm of the vector of Chebyshev coefficients
of total order N −1 be below a prescribed tolerance. If that is satisfies, the refinement
is terminated. Otherwise, one preceeds to the next level.

Remark 4.2. In practice, it is simplest to refine a quad-tree without regard to
level-restriction, based on resolution considerations alone. There are standard algo-
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Fig. 3: An adaptive, level-restricted tree: a typical leaf node at level l in the hierarchy
(away from the boundary) is marked by an S. Its colleagues are marked as n, its coarse
neighbors as n+ and its fine neighbors as n−. The boxes marked by i are the children
of the colleagues of S’s parent (the so-called interaction list). The box marked i+ is
a colleague of S’s parent which does not touch S and the boxes marked by i− are
children of S’s colleagues which do not touch S. In the VFMM, the contributions
to S from boxes marked by i, i+, or i− are accounted for using multipole and local
expansions, while the contributions from boxes marked by n,n+, or n− are handled
using precomputed tables. The VFMM is a multi-level algorithm that computes all
such interactions using O(N) operations, where N is the total number of points in
the discretization.

rithms that take a general adaptive quad-tree as input and create a slightly more
refined tree which does satisfy the level-restriction (see, for example, [46]).

In addition to ensuring that the source density is resolved, we require two addition
conditions to be satisfied on the discretization. First, we we impose what we call an
extension-restriction, meaning that a cut leaf square S cannot have coarse neighbors
in its extension list (see Figure 4). Second, For cut leaf squares, we require that
the side length of the box be less than or equal to twice the length of the boundary
segment ∣Γi∣ which intersects it.

Remark 4.3. In the VFMM, as in all FMMs, non-neighboring interactions are
approximated in a hierarchical fashion using outgoing (multipole) and incoming (local)
expansions with controllable precision. Near neighbor interactions, on the other hand,
are weakly singular, and computed using precomputed tables of integrals. The size of
these tables is quite modest because the level-restriction criterion limits the number
of possible configurations that need to be considered and there are a fixed set of K2

basis functions and target points that need to be considered on a given leaf node. We
refer the reader to [12, 23] and the references therein for details.

4.1. Function extension on a quad-tree and the VFMM. Suppose now
that S̄i is the extension square associated with the cut leaf square Si. Using the
method of subsection 3.2, we obtain the (K̄ − 1)th total order Chebyshev expansion
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C1

C5C2

C4

C3

E*2E*1 E*3

C1

C5C2

E1

E2 E3

C4

C3

E4

E5

Fig. 4: Cut squares C1 − C5 on an adaptive, level-restricted quad-tree and their ex-
tensions from the domain Ω to a domain E for which the VFMM can be used. (left):
Note that, in the initial discretization, C1 is the closest box to E∗

1 and E∗
2 , while

C5 is closest to E∗
3 . (right): Since C1 is at a finer level, the boxes E∗

1 and E∗
2 are

subdivided before extension, while E∗
3 is not - it is within the extension region for C5.

The arrows indicate the box from which the extension to the indicated exterior boxes
is computed.

of fe on S̄i in the form

(4.1) fe(x) = ∑
m+n<K̄

αim,nTm(x1)Tn(x2), x = (x1, x2) ∈ S̄,

where Tm(x) is the Chebyshev polynomial of degree m scaled to the dimensions of
S̄i. We then evaluate the expression (4.1) at every square in the extension list of Si.

We carry out this procedure for all cut leaf squares in the discretization (Figure 4).
For leaf squares that don’t intersect the domain Ω and are not in any cut square’s
extension list, we set fe to zero. The set of all regular leaf nodes, all cut leaf nodes
(to which f has been extended) and all extension squares defines the domain E with
non-zero data, to which the VFMM from [12] is applied, computing VE[fe] on the
K ×K Chebyshev grids for all leaf squares. At any point x in the closure of Ω, it is
straightforward to compute VE[fe](x) by interpolation of the Chebyshev expansion
of the leaf node containing the point.

5. Boundary correction using a double layer potential. Having found a
particular solution to the Poisson equation in Ω, namely VE[fe], it remains to solve
the Laplace equation (1.4) with modified Dirichlet data: g(x) − VE[fe](x). The
contribution g(x) is given by the user and we compute the contribution VE[fe](x)
as described in the preceding section. For the remainder of this section we consider
the interior problem for a simply connected domain. The modifications required to
handle multiply connected domain or exterior problems are discussed in section 2.

We solve (1.4) using the boundary integral equation (2.5) with a Nyström dis-

cretization [3]. For this, let {tGj }
Nq

j=1 and {wGj }
Nq

j=1 be the canonical Gauss-Legendre
nodes and weights for the interval [−1,1]. Consider a panel Γi in (4), parametrized as
in (4). We let yij = y(γi(t

G
j )), νij = ν(yij), sij = ∥γ′i(t

G
j )∥, and σij be the approxi-

mation of σ(yij). Applying Gauss-Legendre quadrature to the double layer potential
yields

(5.1) D[σ](x) = ∫
∂Ω

∂G(x − y)

∂ν(y)
σ(y)ds ≈

NΓ

∑
i=1

Nq

∑
j=1

∂G(x,yij)

∂νij
σijsijw

G
j ,
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since ds = ∥γ′i(t)∥dt. Recall that the double layer kernel is smooth on a smooth
boundary, so that the approximation (5.1) has an error of the order O(h2Nq where
h = ∣Γi∣/Nq. Using this quadrature in our Nyström scheme applied to (2.5) yields the
discrete linear system

(5.2)
1

2
σi′j′ +

1

2π

NΓ

∑
i=1

Nq

∑
j=1

∂G(yi′j′ ,yij)

∂νij
σijsijw

G
j = g(yi′j′) − VE[fe](yi′j′),

for i′ = 1, . . . ,NΓ and j′ = 1, . . . ,Nq. In matrix form, we write (5.2) as

(I + 2D)σ = 2(g −V).

While the system matrix D is dense, it is well-conditioned and can be solved efficiently
with GMRES. This follows from the fact that the underlying integral equation is an
invertible Fredholm equation of the second kind, whose eigenvalues cluster at (1,0)
[33, 32, 47].) Furthermore, the matrix-vector multiplications required by GMRES can
be computed using the original (“point”) FMM with O(NΓNq) operations, resulting
in an optimal time solver [22, 25, 40].

Having solved the integral equation, we may evaluate the double layer potential
(5.1) at all interior points using the point FMM [25]. Care must be taken, however,
as x approaches the boundary ∂Ω, since the kernel (2.4) is singular and the smooth
Gauss-Legendre rule used above loses accuracy. Designing quadrature rules for this
regime has been an active area of research, and there are several FMM-compatible
methods available that restore precision, such as [31, 5, 4]. We use the Helsing-Ojala
correction scheme [28] in this paper.

5.1. Error analysis. One of the advantages of potential theory is that it un-
couples the discretization of the domain from that of the boundary and permits very
simple error analysis. In computing the particular solution VE[fe], there are two
sources of error. The first is the error εf made in the piecewise polynomial approxi-
mation of f(x). Since the volume integral operator VE is bounded, this contributes
an error of the order O(εf). The second is the error made in computing VE[fe] for
that piecewise polynomial approximation fe. The VFMM computes this exactly, up
to the tolerance εFMM specified by the user. More complicated is the error in the
double layer potential. Since this involves the solution of an integral equation, we
can’t specify the accuracy a priori. We can say, however, that the order of accuracy
of the solution is that of the underlying quadrature rule. This is a particular feature of
second kind integral equations [3]. That is, we are guaranteed high order convergence
from a high order accurate rule. We must also ensure that the right-hand side of the
integral equation (5.2), namely g(y) − VE[fe](y), is well-resolved. This is a slightly
subtle issue, since the function is cut off sharply at the boundary of the extension
region E, which could introduce high-frequency content in the term VE[fe](y). Our
algorithm mitigates this by ensuring that the corner points of the polygonal boundary
∂E are pushed out at least a full leaf node away from the domain boundary ∂Ω.

Remark 5.1. One could also sample the curve more finely to ensure that a piece-
wise polynomial approximation of g(y)−VE[fe](y) is resolved to the desired precision.
We have not investigated this issue in detail. In the present paper, we sample the
boundary sufficiently finely that the error is dominated by the accuracy of the volume
integral.

Remark 5.2. For nonsmooth boundaries, we rely on the recent development of
high order solvers that deal efficiently with corner singularities, such as [8, 27, 29]).
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The essential idea in these schemes is the use of dyadic refinement to the corner to
overcome the induced singularity in the double layer density. We make use here of
the RCIP method of [27] and refer the reader to the original paper for further details.

6. Numerical results. The bulk of the software for our function extension
scheme is written in Julia 1.7.1 [6] and available at [18]. It can be used to gen-
erate the results in this section. Software for the boundary integral equation, the
evaluation of the double layer potential, the RCIP scheme, and the RBF-QR algo-
rithm have also been implemented in Julia. The latter is available at [20]. The full
Poisson solver relies on several external packages: the VFMM [12] is written in For-
tran and available at [13], fixed at eighth order accuracy. We set the FMM tolerance
to εFMM = 0.5 × 10−11. The “point” FMM we use is available at [49].

In our discretization, we set K = 8 for the Chebyshev grids on leaf nodes, whether
they are regular or cut. The number of Gaussians is set to NG = 66, as discussed
in subsection 3.2. We have found this works well in practice to obtain eighth order
accuracy. On the extension region, S̄, we set K̄ = 12. When it is resampled on
the individual extension squares, however, we interpolate on 8 × 8 Chebyshev grids,
for compatibility with the VFMM. As the algorithm traverses the extension list, no
square is written to more than once, making the extension step trivially parallel. On
the boundary, we use Nq = 16 Gauss-Legendre nodes for each panel. The number of
panels NΓ is set to be sufficiently large that resolving the geometry does not dominate
the error. That is, we pick NΓ to ensure that, on each panel, the 16 point Gauss-
Legendre expansion of ∥γ∥ is resolved to fifteen digits of accuracy.

In the following numerical experiments, we compute the solution at the subset of
a uniform 100 × 100 grid on D that lie inside Ω for the interior problem, and outside
Ω for the exterior problem. We measure the error in both the relative `∞ norm and
the relative `2 norm.

For convergence studies, we use a uniform quad-tree; thus, at level l there are
N = 8 ⋅ 2l points in each dimension. All computations were carried out on a single
core of a 4.2 GHz Intel i7 − 8620U with 16 GB of memory.

6.1. The interior problem. For our first test, we consider the problem posed
as Example 2 in [2]. It involves a doubly connected domain with a right-hand side
that has some very fine features with exact solution

(6.1) u(x) = sin(10(x1 + x2)) + x
2
1 − 3x2 + 8 + exp(−500x2

1), x ∈ Ω.

The two boundary components are specified in polar coordinates with θ ∈ [0,2π) and

r(θ) =∑
j

(cj cos(jθ) + dj sin(jθ)).

The non-zero coefficients for the outer boundary ∂Ω0 are c0 = 0.25, d3 = c6 = c8 = c10 =

0.01 and c5 = 0.02. The non-zero coefficients for the inner boundary ∂Ω1 are c0 = 0.05
and c2 = d3 = c5 = c7 = 0.005. (See Figure 5.) We discretize ∂Ω0 with 200 panels and
∂Ω1 with 180 panels.

In Figure 5, we observe the expected eighth order convergence as we refine the
quad-tree uniformly. The `∞ error levels out after six levels of refinement at about
eleven digits of accuracy, more or less the FMM tolerance εFMM . The `2 error contin-
ues to decrease for one more level, reaching twelve digits of accuracy. For comparison,
we also plot the errors when the function extension is carried out exactly based on the
exact solution (to the same region E ⊃ Ω). We refer to this as the analytic extension.
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Note that we lose one to two digits of accuracy from our numerical scheme (although
with sufficient refinement, the errors are the same).

We test the performance of the adaptive solver, using εFMM = 0.5×10−11 for both
the VFMM and in determining when the right-hand side is sufficiently resolved. As
noted above, we also ensure that the dimensions of the cut squares are commensurate
with the boundary panel size (∣∂Ω0∣/NΓ), which requires seven levels of refinement
near the boundary. The resulting `∞ error is 2×10−11, with an `2 error of 10−12. The
full discretization requires 3361 leaf squares, of which 339 are cut, with a total of about
215,000 points. The construction of the quad-tree, which includes labeling squares
as cut, imposing the level-restriction, and imposing the extension-restriction, requires
0.3 seconds. The precomputation steps in function extension - building the extension
lists and identifying points as inside or outside - requires 0.7 seconds. Creating the
extension itself requires 0.4 seconds, and the VFMM requires 0.2 seconds. Finally,
solving the integral equation and evaluating the double layer potential requires 0.7
seconds. Note that, since seven levels of uniform refinement would require N ∼ 103

points, adaptivity has yielded a factor of five improvement for the same accuracy.
It is difficult to make a direct comparison with the scheme of [2], since they used a
less smooth extension and relied on a fourth order VFMM. For the same example,
however, ten times more points were needed to obtain an error of 10−8.
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Fig. 5: The doubly-connected interior problem of subsection 6.1. (a) The extended
function f = ∆u with u given by (6.1) (with seven levels of refinement). (b) Point-
wise error in the computed solution. (c) Convergence plot under uniform refinement
(markers are from levels three to eight in the refinement process).

In a second test, we use the same exact solution u from (6.1), but in the simply
connected domain shown in Figure 6. Using complex notation z(θ) = x(θ) + iy(θ),
the boundary ∂Ω is given by
(6.2)
z = 0.17((2 + 0.5 sin(7θ)) cos(θ + 0.5 sin(7θ)) + i((2 + 0.5 sin(7θ)) sin(θ + 0.5 sin(7θ))),

where θ ∈ [0,2π). We again observe the expected eighth order convergence, but with
a larger constant for the error than for our first example.

6.2. The exterior problem. We turn now to a test for the exterior solver on
a multiply connected domain (Figure 7). Using complex notation again, we have

(6.3) z = R((1 + a cos(Nt)) exp(−it)) + c1 + ic2, for t ∈ [0,2π).
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Fig. 6: (a) Extended function f = ∆u, with u from (6.1), using seven levels of re-
finement. (b) Pointwise absolute error for solving the problem in subsection 6.1. (c)
Convergence plot as the quad-tree is uniformly refined. Here, we plot from three levels
of refinement to eight levels of refinement.

For ∂Ω1 we set R = 0.12, a = 0.3, N = 5, c1 = 0.186, and c2 = −0.15. For ∂Ω2 we
set R = 0.17, a = 0.3, N = 4, c1 = −0.21, and c2 = −0.03, and for ∂Ω3 we set R = 0.2,
a = 0.2, N = 3, c1 = 0.2, and c2 = 0.15. We solve the Poisson equation on this domain
with the exact solution

(6.4) u(x) =
3

∑
j=1

e−∥x−yj∥2/βj−10 log (

√

(x1 + 0.2)2 + x2
2) , for x ∈ R2

∖(Ω̄1∪Ω̄2∪Ω̄3),

where y1 = (0.1,0.07), β1 = 10−3, y2 = (0.09,−0.25), β2 = 10−3/2.1, y3 = (−0.21,−0.25),
and β3 = 10−3/4.5 (see Figure 7.) Note that the Gaussian centers {yj}

3
j=1 are interior

to but close to the boundaries of the inclusions Ωj . Note also that we are seeking
a solution which is growing logarithmically using the representation (2.12) for our
integral equation solver, to impose the radiation condition u(x)→ 10 log ∥x∥ as ∥x∥→
∞. Note, however, that the source distribution f may itself have net “charge” Ae =

∬E f
e(y)dy, so that the VFMM is computing a particular solution with growth

Ae log ∥x∥. Thus, in our integral equation solver, for the constraint conditions (2.13),
we enforce

∫

∂Ωk

σ(y)dy = 0, k = 1, . . . ,NΩ − 1 ,
NΩ

∑
k=1

Ak = 10 −Ae.

The convergence plots in Figure 7 show the expected eighth order convergence under
uniform refinement.

6.3. Piecewise smooth boundaries. A good demonstration of the value of
potential theory is the solution of the Poisson equation with a non-smooth boundary.
Assuming that the source distribution is well-resolved by the user-provided grid, our
extension scheme is agnostic as to the regularity of the boundary. Thus, let us suppose
for simplicity that the solution and source density are both smooth on a square with
side length 0.5, centered at (0.01,−0.02) and rotated π/3 radians, to avoid any benefit
from alignment with the coordinate axes. We solve the interior problem with solution

(6.5) u(x) = −2
4

∑
j=1

(Ei(β∥x − xj∥
2
) + log ∥x − xj∥

2) ,
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Fig. 7: (a) Extended function f = ∆u on a logarithmic scale, with u from (6.4),
using seven levels of refinement. (b) Pointwise absolute error for solving the problem
in subsection 6.2. (c) Convergence plot as the quad-tree is uniformly refined, with
markers at refinement levels three to nine.
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Fig. 8: (a) Extended function f = ∆u on a logarithmic scale, with u from (6.5),
using seven levels of refinement. (b) Pointwise absolute error for solving the problem
in subsection 6.2. (c) Convergence plot as the quad-tree is uniformly refined, with
markers at refinement levels three to eight.

with β = 800, where Ei denotes the exponential integral function, x1 = (−0.35,−0.135),
x2 = (−0.09,042), x3 = (0.445,0.09), and x4 = (0.135,−0.405) (see Figure 8).

No modifications te the code is required for computing the volume potential
VD[fe], but the double layer potential develops a singularity at the corners,so that
we require a specialized quadrature scheme to achieve high order accuracy in comput-
ing the doulbe layer D[σ]. For this, we make use of recursive(ly) compressed inverse
preconditioning (RCIP) [27]. The results are shown in Figure 8, where we again ob-
tain the expected eighth order convergence. The code works equally well when the
solution has corner singularities, so long as the source distribution is resolved by the
quad-tree.

6.4. Extension along lines. An alternate to our function extension scheme is
to carry out one-dimensional extension along lines in the plane. Consider a star-
shaped domain centered at the origin, as shown in Figure 9, on which we seek to solve
the interior problem with solution (6.1). For each point x outside Ω on the K̄ × K̄
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Fig. 9: (a) Extended function f = ∆u on a logarithmic scale, with u from (6.1), using
seven levels of refinement. (b) and (c) are convergence plots for the relative `∞ error
and the relative `2 error, respectively, as the quad-tree is uniformly refined, with
markers at refinement levels three to eight.

grids for each S̄, we extend along the line passing through the origin and x. Assuming
x ∈ S̄ for some cut cell S of side length L, we assume we are given the data at eight
uniformly-spaced interior nodes over a distance L from the boundary. We then form
the one-dimensional barycentric rational interpolant with Floater-Hormann weights
[15], using the Julia implementation from [36]. We then evaluate the interpolant at x.
The results are shown in Figure 9. Note that, using this extension method, provides
errors of about the same magnitude as the analytic extension. Note also that we are
not extending in the normal direction, but in the radial direction which intersects the
boundary at some unspecified angle. The cost of this version of function extension is
much less than that of a VFMM call. When considering geometries such as Figure 6,
a more careful implementation will be required to avoid caustics. We will return to
this topic in the next section.

7. Conclusions. We have presented a potential theory-based solver for the Pois-
son equation in complicated two-dimensional geometries. To avoid computing a vol-
ume potential over the actual domain, which involves complicated quadratures over
cut leaf nodes in a quad-tree discretization, we have developed a fast, high-order
scheme to extend the source density smoothly to a slightly larger region where a vol-
ume integral FMM (VFMM) can be applied [12]. The VFMM computes a volume
integral in linear time on an adaptive quad-tree, assuming that the source distribu-
tion is available on a tensor product grid for every leaf node in the tree. Unlike many
earlier function extension schemes, we do not require the extended function to de-
cay smoothly to zero. It is sufficient for it to be extended a sufficient distance from
the domain boundary (on the order of a single cut square width). Having computed
the volume potential, an auxiliary integral equation is solved to impose the desired
boundary (and radiation) condition.

The order of convergence of our scheme is dictated by the underlying discretiza-
tion, not the extension method, since we can adjust the order of accuracy of our
Gaussian interpolant to match that of the underlying scheme. To make our extension
efficient, we designed a single, universal interpolation matrix which can be precom-
puted and used for every cut leaf node which is intersected by the domain boundary.
From the universal interpolation matrix, rows are extracted corresponding to data
that lies in the domain interior. This leads to a small least squares problem that is
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solved by QR factorization on each cut square. Unlike the earlier high-order extension
method of [21], the present scheme visits each extension square once, without blend-
ing, making it much simpler to implement in parallel. Furthermore, the extension
scheme does not rely on the smoothness of the boundary - just on being resolved by
the user-provided data. The robustness, order of convergence, and accuracy of the
scheme have been demonstrated with several numerical examples.

For our interior problem, with 11 digits of accuracy and eighth order convergence,
the VFMM itself runs at about 1M points/sec/core and the RBF-based function ex-
tension runs at about 500,000 points/sec/core. The integral equation cost should be
negligible (it is linear scaling in the number of boundary points, but sublinear in the
total number of unknowns). It dominates here, since we rely on a non-optimized
iterative FMM-based scheme, but the full solver still requires only about two sec-
onds for a problem with more than 200,000 unknowns. We expect that with some
modest modifications, the full solver should achieve a throughput of close to 500,000
points/sec/core.

A natural extension of the method presented here is to the three-dimensional case.
The main ingredients are available, such as high performance, parallelized VFMM li-
braries [37] and layer potential FMMs for boundary integral equations [24]. However,
it remains to be determined how well the RBF-QR algorithm performs in three di-
mensions [17]. If the constants associated with the RBF-QR approach are too large,
our preliminary experiments, presented in subsection 6.4, suggest that one-dimensonal
extension may be equally effective and faster. We have begun exploring the extension
method of [11], which appears to be just as efficient as rational approximation, both
in terms of speed and accuracy. We suspect that, for robustness, this should always be
done in the normal direction and we are actively investigating this approach. Finally,
we should note that our function extension scheme is unrelated to the governing PDE
- it can be used with any potential-theoretic approach to boundary value problems in
complicated domains when fast solvers like the VFMM are available.
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