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NUMERICAL DISCRETIZATION OF A DARCY–FORCHHEIMER

PROBLEM COUPLED WITH A SINGULAR HEAT EQUATION∗

ALEJANDRO ALLENDES† , GILBERTO CAMPAÑA‡ , AND ENRIQUE OTÁROLA§

Abstract. In Lipschitz domains, we study a Darcy–Forchheimer problem coupled with a singular
heat equation by a nonlinear forcing term depending on the temperature. By singular we mean that
the heat source corresponds to a Dirac measure. We establish the existence of solutions for a model
that allows a diffusion coefficient in the heat equation depending on the temperature. For such a
model, we also propose a finite element discretization scheme and provide an a priori convergence
analysis. In the case that the aforementioned diffusion coefficient is constant, we devise an a posteriori
error estimator and investigate reliability and efficiency properties. We conclude by devising an
adaptive loop based on the proposed error estimator and presenting numerical experiments.

Key words. nonlinear equations, Darcy–Forchheimer problem, singular heat equation, Dirac
measures, finite element approximations, convergence, a posteriori error estimates, adaptive loop.
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1. Introduction. Let Ω ⊂ R
d, with d ∈ {2, 3}, be an open and bounded domain

with Lipschitz boundary ∂Ω. In this work, we will be interested in the study of
existence and approximation results for the temperature distribution of a fluid in a
porous medium modeled by a singular convection–diffusion equation coupled with a
Darcy–Forchheimer problem. To be precise, we will study the following system of
partial differential equations (PDEs):

(1)







νu+ |u|u+∇p = f(T ) in Ω,
div u = 0 in Ω,

−div(κ(T )∇T ) + div(u T ) = g in Ω,

supplemented with u · n = 0 on ∂Ω and T = 0 on ∂Ω. The unknowns of the system
(1) are the velocity field u, the pressure p, and the temperature T of the fluid. The
data of the model are the thermal diffusivity coefficient κ, the viscosity coefficient ν,
the external density force f , and the external heat source g. The coefficient κ and the
force f may depend nonlinearly on the temperature T . Finally, n denotes the unit
outward normal vector on ∂Ω and | · | corresponds to the Euclidean norm. In our
work we shall be particularly interested in the case that g = δz, where δz corresponds
to the Dirac delta supported at the interior point z ∈ Ω.

Darcy’s law, u = −K∇p/µ, is a linear relationship that describes the creeping
flow of Newtonian fluids in porous media and is backed by years of experimental
data [34]. However, when the fluid velocity is sufficiently high, experimental evidence
indicates that the relationship between the pressure gradient and Darcy velocity may
be nonlinear. On the basis of flow experimentation in sand packs, in reference [32]
Forchheimer suggested modifying Darcy’s equation by incorporating a quadratic term
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depending on the velocity. This modification is known as the Darcy–Forchheimer
equation and finds several applications in engineering: it is used for predicting high
velocity flow in porous media, especially in the vicinity of gas wells [13]. It is thus
no surprise that its analysis and approximation have been investigated by several
authors; see [34, 37, 40, 41, 43, 44] for a priori error estimates for suitable mixed
finite element approximations, [47] for the analysis of a posteriori error estimates,
and [45, 46] for the numerical treatment of a coupled problem. On the other hand,
the study of different models of incompressible nonisothermal fluid flow models has
become increasingly important for a variety of research areas in the fields of the
natural sciences and engineering branches. This fact has been motivated by their
diverse applications in industry such as the design of heat exchangers and chemical
reactors, cooling processes, and polymer processing, to name a few. For advances
regarding the numerical approximation of the so-called Boussinesq problem we refer
the interested reader to the nonextensive list [3, 5, 7, 8, 9, 23, 31, 39]. Regarding
the approximation of coupled problems involving the Navier–Stokes equations and
a suitable temperature equation we refer the interested reader to [18, 19, 21, 25].
Within this context, we also mention [6, 16, 17, 27, 28, 33] for similar results when
the Navier–Stokes equations are replaced by Darcy’s equations.

In this work, we are interested in the analysis and discretization of the temper-
ature distribution of a fluid in a porous medium modeled by a convection–diffusion
equation coupled with a Darcy–Forchheimer problem. To the best of our knowledge,
the only two articles that have numerically explored such a coupled problem are [26]
and [45]. In contrast to these advances, we are particularly interested in the case that
the forcing term of the stationary heat equation is singular: a Dirac measure. We
begin our analysis by introducing a concept of weak solution within the spaces L3(Ω),

W 1, 32 (Ω)∩L2
0(Ω), and W 1,p

0 (Ω) for the velocity, pressure, and temperature of the fluid,
respectively. Here, p is such that 2d/(d+1)− ǫ < p < d/(d−1), for some ǫ > 0. Next,
we show the existence of at least one solution for the coupled problem on the basis of
the Leray–Schauder’s fixed point theorem. We propose a finite element discretization
scheme for the coupled problem: we use continuous and piecewise linear functions
to the discretize the temperature and pressure and piecewise constant functions to
discretize the velocity. We prove that such a numerical scheme admits at least one
solution, which remains bounded with respect to discretization, and the existence of
a subsequence that converges to a solution of the continuous problem. Under the as-
sumption that κ is constant, we devise an a posteriori error estimator for the coupled
problem that can be decomposed as the sum of two contributions: a contribution
that accounts for the discretization of the Darcy–Forchheimer problem and another
contribution that accounts for the discretization of the heat equation. We explore
reliability estimates in two dimensions and local efficiency bounds in two and three
dimensions. We conclude our work by designing an adaptive finite element method
on the basis of the devised error estimator and providing numerical experiments in
convex and non-convex domains.

Our manuscript will be organized as follows. We set notation and introduce
preliminary material in section 2. In section 3, we present a weak formulation for
(1) and show existence of solutions. In section 4, we propose a finite element scheme
and investigate convergence properties. In section 5, we devise an a posteriori error
estimator and study reliability and efficiency properties. We conclude in section 6
by providing a series of numerical experiments that illustrate and go beyond the
presented theory.
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2. Notation and preliminaries. We begin by fixing notation and the setting
in which we will operate.

2.1. Notation. We shall use standard notation for Lebesgue and Sobolev spaces.
Spaces of vector valued functions and their elements will be indicated with boldface.
Since we will deal with an incompressible fluid, we must indicate a way to make the
pressure unique. To do so, we denote by L2

0(Ω) the space of functions in L2(Ω) that
have zero averages.

If W and Z are Banach function spaces, we write W →֒ Z to denote that W is
continuously embedded in Z. We denote by W ′ and ‖ · ‖W the dual and the norm of
W , respectively. Given p ∈ (1,∞), we denote by p′ its Hölder conjugate, i.e., the real
number such that 1/p + 1/p′ = 1. The relation a . b indicates that a ≤ Cb, with a
constant C that depends neither on a, b nor on the discretization parameters. The
value of C might change at each occurrence.

2.2. A Darcy–Forchheimer model. In this section, we briefly present some
results regarding the well-posedness of the Darcy–Forchheimer problem

(2) νu+ |u|u+∇p = f in Ω, div u = 0 in Ω, u · n = 0 on ∂Ω,

where f denotes the external density force and ν is the viscosity coefficient. We say
that (u, p) ∈ X×M is a weak solution to problem (2) if

(3)

ˆ

Ω

(νu+ |u|u+∇p) · vdx =

ˆ

Ω

f · vdx ∀v ∈ X,
ˆ

Ω

∇q · udx = 0 ∀q ∈M.

Here, X := L3(Ω), M := W 1, 32 (Ω) ∩ L2
0(Ω), f belongs to L

3
2 (Ω), and ν ∈ C0,1(Ω̄) is

a strictly positive and bounded function which satisfies ν− ≤ ν(x) ≤ ν+ for every
x ∈ Ω, where 0 < ν− ≤ ν+. We immediately comment that, owing to our assumptions
on data and definition of weak solution, all terms in (3) are meaningful.

In what follows, we will repeatedly make use of the fact that, on the spaces X

and M , the following inf–sup condition holds [34, Lemma 1]:

(4) inf
q∈M

sup
v∈X

´

Ω v · ∇qdx
‖v‖L3(Ω)‖∇q‖

L
3
2 (Ω)

= 1.

This follows immediately from the dual representation of the norm ‖ · ‖
L

3
2 (Ω)

[34].

To study problem (3), it is convenient to introduce the map

A : L3(Ω)→ L
3
2 (Ω), v 7→ A(v) := νv + |v|v.(5)

It is immediate that A maps L3(Ω) into L
3
2 (Ω). In addition, A is bounded on all

bounded subsets of L3(Ω) and A is monotone, coercive, and hemicontinuous in L3(Ω).

Proposition 1 (Properties of A). A satisfies the following properties.
(i) A is bounded on all bounded subsets of L3(Ω): If v ∈ L3(Ω), then

(6) ‖A(v)‖
L

3
2 (Ω)

≤ ν+‖v‖
L

3
2 (Ω)

+ ‖v‖2
L3(Ω).
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(ii) A is monotone from L3(Ω) into L
3
2 (Ω): If v,w ∈ L3(Ω), then

(7)

ˆ

Ω

(A(v) −A(w)) · (v −w)dx ≥ γd‖v −w‖3
L3(Ω) + ν−‖v −w‖2

L2(Ω),

where γd is a strictly positive constant that depends on the dimension d.
(iii) A is coercive in L3(Ω):

(8) lim
‖v‖

L3(Ω)→+∞

1

‖v‖L3(Ω)

ˆ

Ω

A(v) · vdx = +∞.

(iv) A is hemicontinuous in L3(Ω): Let v,w ∈ L3(Ω). Then, the mapping

t→
ˆ

Ω

A(v + tw) ·wdx,(9)

is continuous from R into R.
(v) Almost everywhere in Ω, we have

|A(v) −A(w)| ≤ |v −w|(ν+ + |v| + |w|).(10)

Proof. The proofs of (6) and (10) are trivial. To obtain (7), we utilize the defini-
tion of A to write (A(v) −A(w)) · (v −w) and invoke the inequality of [29, Lemma
4.4, Chapter I] with p = 3. Property (8) follows from a direct calculation; see also
the proof [34, Theorem 2]. Finally, the proof of the continuity of the map described
in (9) can be found in [34, Proposition 3].

Let us now introduce the functional spaces

H :=
{

v ∈ L3(Ω) : div(v) ∈ L
3d

d+3 (Ω)
}

,

endowed with the norm ‖v‖H := ‖v‖L3(Ω) + ‖div(v)‖
L

3d
d+3 (Ω)

, H0 := C∞
0 (Ω)

H

, and

V := {v ∈ H0 : div(v) = 0 in Ω} .

The definition of H is motivated by the Sobolev embedding W 1, 32 (Ω) →֒ Ls(Ω), which
holds for every s ≤ s⋆ := 3d/(2d−3). Observe that s′⋆ = 3d/(d+3). The space H is a
reflexive Banach space when equipped with ‖ · ‖H. In addition, C∞(Ω̄) is dense in H.
With such a density result at hand, the following Green’s formula can be derived [34,
formula (2.5)]:

´

Ω v · ∇qdx = −
´

Ω qdivvdx + 〈q,v · n〉∂Ω for all q ∈ M and v ∈ H.
Finally, we mention the characterization H0 := {v ∈ H : v · n = 0 on ∂Ω} .

Having introduced the space V, the following result follows from [34, Proposition
2]: Problem (3) is equivalent to the following formulation: Find u ∈ V such that

(11)

ˆ

Ω

A(u) · vdx =

ˆ

Ω

f · vdx ∀v ∈ V.

The well-posedness of problem (11) is as follows.

Theorem 2 (well-posedness of a Darcy–Forchheimer problem). If f ∈ L
3
2 (Ω),

then problem (3) admits a unique solution (u, p) ∈ X×M . In addition, we have

‖u‖2
L3(Ω) ≤ ‖f‖L 3

2 (Ω)
,(12)

‖∇p‖
L

3
2 (Ω)

≤ ‖f‖
L

3
2 (Ω)

+ ν+‖u‖
L

3
2 (Ω)

+ ‖u‖2
L3(Ω),(13)

with hidden constants that are independent of the data f and ν and the solution (u, p).
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Proof. In view of the equivalence of problems (3) and (11), we analyze problem
(11). To accomplish this task, we notice that Proposition 1 guarantees that A is
bounded on all bounded subsets of L3(Ω) and monotone, coercive, and hemicontinu-
ous in L3(Ω). We can thus invoke the standard theory for monotone operators [42,
Theorem 2.18], [22, Theorem 9.14-1] to conclude the existence of a solution u ∈ L3(Ω).
Uniqueness follows from the item (ii) in Proposition 1. To obtain (12), it suffices to
set v = u in the first equation of problem (3). The remaining estimate (13) follows
from the first equation of problem (3) and the inf–sup condition (4).

3. The coupled problem. In this section, we analyze the existence of weak
solutions for problem (1).

3.1. Main assumptions. We begin our studies by introducing the set of as-
sumptions under which we will operate.

• External force: The external density force is as follows [45, Assumption 2.1]:

(14) f(x, s) := f0(x) + f1(s), x ∈ Ω, s ∈ R,

where f0 ∈ L
3
2 (Ω) and f1 is a Lipschitz–continuous function with constant Cf

which satisfies f1(0) = 0. In particular, |f1(s)| ≤ Cf |s| for every s ∈ R.
• Viscosity: ν is a Lipschitz–continuous function with constant CL and is such
that 0 < ν− ≤ ν(x) ≤ ν+ for every x ∈ Ω.
• Diffusivity: κ ∈ C0,1(R) is such that 0 < κ− ≤ κ(s) ≤ κ+ for every s ∈ R.

3.2. Weak formulation. We introduce the following notion of weak solution.

Definition 3 (weak solution). Let z ∈ Ω and p < d/(d − 1). We say that
(u, p, T ) ∈ X×M × Y is a weak solution to (1) if

(15)



























ˆ

Ω

(νu+|u|u+∇p) · vdx =

ˆ

Ω

f(T ) · vdx ∀v ∈ X,
ˆ

Ω

∇q · udx = 0 ∀q ∈M,
ˆ

Ω

(κ(T )∇T · ∇S−Tu · ∇S)dx = 〈δz, S〉 ∀S ∈ W 1,p′

0 (Ω).

Here, 〈·, ·〉 denotes the duality pairing between W 1,p′

0 (Ω) and W−1,p(Ω) = (W 1,p′

0 (Ω))′

and Y := W 1,p
0 (Ω).

The following comments are now in order. The asymptotic behavior of solutions
χ to second order elliptic problems with homogeneous Dirichlet boundary conditions
and δz as a forcing term is dictated by |∇χ(x)| ≈ |x − z|−1 [36, Theorem 3.3]. On
the basis of a simple computation, this asymptotic behavior motivates us to seek for
a temperature distribution within the space W 1,p

0 (Ω) for p < d/(d− 1). On the other
hand, we notice that, in view of the assumptions imposed on the problem data and the
definition of weak solution, all terms in problem (15) are well-defined. In particular,
the convective term can be controlled as follows:

(16)

∣

∣

∣

∣

ˆ

Ω

Tu · ∇Sdx
∣

∣

∣

∣

≤ ‖u‖L3(Ω)‖T ‖
L

3p
3−p (Ω)

‖∇S‖
Lp′(Ω)

≤ Ce‖u‖L3(Ω)‖∇T ‖Lp(Ω)‖∇S‖Lp′(Ω),

upon utilizing that L
2p

2−p (Ω) ⊂ L
3p

3−p (Ω) and that W 1,p
0 (Ω) →֒ L

dp
d−p (Ω) [1, Theorem

4.12, Case C], with Ce being the best constant in the second embedding.
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3.3. A problem for the single variable T . We follow [16, Section 2.2] and
write (15) as a problem for the single variable T : For a given T , the first two equations
in (15) correspond to a Darcy–Forchheimer system that, in view of Theorem 2, admits
a unique solution (u, p) ∈ X×M . Observe that f(T ) ∈ L3/2(Ω). The variables u and
p can thus be seen as functions depending on T , (u, p) = (u(T ), p(T )), and (15) is
equivalent to the reduced formulation [45, Section 2.2]: Find T ∈ W 1,p

0 (Ω) such that

(17)

ˆ

Ω

(κ(T )∇T · ∇S − Tu(T ) · ∇S)dx = 〈δz, S〉 ∀S ∈ W 1,p′

0 (Ω),

where p < d/(d − 1) and u(T ) ∈ X denotes the velocity component of the pair
(u(T ), p(T )) that solves the problem: Find (u(T ), p(T )) ∈ X×M such that

(18)

ˆ

Ω

(νu(T ) + |u(T )|u(T ) +∇p(T )) ·vdx =

ˆ

Ω

f(T ) ·vdx,
ˆ

Ω

∇q ·u(T )dx = 0,

for all (v, q) ∈ X ×M . Since f and ν satisfy the assumptions stated in section 3.1,
(18) admits a unique solution (u(T ), p(T )) ∈ X×M which satisfies the bounds

‖u(T )‖2
L3(Ω) ≤ ‖f0‖L 3

2 (Ω)
+ CfCe‖∇T ‖Lp(Ω),(19)

‖∇p(T )‖
L

3
2 (Ω)

≤ ‖f0‖
L

3
2 (Ω)

+CfCe‖∇T ‖Lp(Ω)+ν+‖u(T )‖
L

3
2 (Ω)

+‖u(T )‖2
L3(Ω),(20)

where Ce is the best constant in the Sobolev embedding W 1,p
0 (Ω) →֒ L

3
2 (Ω) (p > 1).

3.4. A singular and stationary heat equation with convection. In this
section, we review and extend to three dimensions some of the results obtained in [6].

Let ξ be a bounded and uniformly continuous function such that 0 < ξ− ≤ ξ(x) ≤
ξ+ for a.e. x ∈ Ω. With ξ at hand, we introduce the following weak formulation for a
singular and stationary heat equation with convection: Find T ∈ W 1,p

0 (Ω) such that

(21)

ˆ

Ω

(ξ∇T · ∇S − Tv · ∇S) dx = 〈δz , S〉 ∀S ∈ W 1,p′

0 (Ω).

Here, p is such that 2d
d+1 − ǫ < p < d

d−1 , for some ǫ > 0, v ∈ L3(Ω), and 1
p + 1

p′
= 1.

We begin our studies by providing a well-posedness result for the case v = 0.

Proposition 4 (case v = 0). Problem (21) with v = 0 is well-posed. This, in
particular, implies that

(22) ‖∇R‖Lp(Ω) ≤ Cξ sup
S∈W 1,p′

0 (Ω)

´

Ω
ξ∇R · ∇Sdx
‖∇S‖

Lp′(Ω)

∀R ∈ W 1,p
0 (Ω),

with a constant Cξ that depends on ξ, p, and Ω.

Proof. The fact that problem (21) is well-posed with v = 0 on Lipschitz domains
follows from [35, Theorem 0.5, item (a)] and [48]. The desired inf–sup condition (22)
thus follows from a result due to Nečas [30, Theorem 2.6].

We now present a well–posedness result for the case of nonzero convection.

Proposition 5 (case v 6= 0). If CξCe‖v‖L3(Ω) ≤ α < 1, then problem (21) is
well-posed. In particular, we have the stability bound

(23) ‖∇T ‖Lp(Ω) ≤ Cα‖δz‖W−1,p(Ω), Cα =
Cξ

1−α ,
2d
d+1 − ǫ < p < d

d−1 ,

for some ǫ > 0. Here, Ce denote the best constant in W 1,p
0 (Ω) →֒ L

dp
d−p (Ω).

Proof. The proof follows from a simple adaption of the arguments elaborated in
the proof of [6, Proposition 3.3].
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3.5. Existence of solutions for the coupled problem. We now study the
existence of solutions for (17)–(18) on the basis of a fixed point argument. To accom-
plish this task, we introduce the map F : W 1,p

0 (Ω) → W 1,p
0 (Ω) defined by F(θ) = ζ,

where ζ denotes the solution to the following problem: Find ζ ∈W 1,p
0 (Ω) such that

(24)

ˆ

Ω

(κ(θ)∇ζ · ∇S − ζu(θ) · ∇S)dx = 〈δz , S〉 ∀S ∈ W 1,p′

0 (Ω).

The definition of ζ compromises solving, for a prescribed temperature θ ∈ W 1,p
0 (Ω),

the Darcy–Forchheimer problem (18) with T being replaced by θ.
To present the following result, we define BT := {θ ∈ W 1,p

0 (Ω) : ‖∇θ‖Lp(Ω) ≤
C 1

2
‖δz‖W−1,p(Ω)}, where C 1

2
is as in (23), and the constant

(25) C := (2CeCκ)
−1.

Here, Ce is the best constant in the embedding W 1,p
0 (Ω) →֒ L

dp
d−p (Ω) and Cκ is the

constant involved in the inf-sup condition (22) with ξ being replaced by κ.

Lemma 6 (F(BT ) ⊂ BT ). If p ∈
(

2d
d+1−ǫ, d

d−1

)

, for some ǫ > 0, and ‖f0‖
L

3
2 (Ω)

+

CfCeC 1
2
‖δz‖W−1,p(Ω) ≤ C2, then F is well-defined on BT and F(BT ) ⊂ BT .

Proof. The proof follows the same arguments as those developed in the proof of
[6, Lemma 5]. For brevity, we skip the details.

The following result is instrumental to show the compactness of the operator F .
Lemma 7 (convergence of sequences). Let {θn}n≥0 be a sequence in L2(Ω) such

that θn → θ in L2(Ω) as n ↑ ∞. Then, as n ↑ ∞,

u(θn)→ u(θ) in L3(Ω), p(θn) ⇀ p(θ) in W 1, 32 (Ω) ∩ L2
0(Ω).

Proof. See [45, Lemma 2.5].

We are now ready to show existence of solutions.

Theorem 8 (existence of solutions). In the framework of Lemma 6, there exists
a solution (u, p, T ) ∈ X×M ×Y of problem (15). In addition, we have that T ∈ BT .

Proof. Notice that BT is nonempty, closed, bounded, and convex. In addition, in
view of Lemma 6 we have that F(BT ) ⊂ BT . It thus suffices to prove the compactness
of F to conclude the desired result on the basis of the Leray–Schauder fixed point
theorem applied to F ; see [24, Theorem 8.8] and [22, Theorem 9.12-1].

We recall that p is such that 2d/(d+ 1)− ǫ < p < d/(d− 1) for some ǫ > 0. Let
{θn}n≥0 ⊂ BT be a sequence such that θn ⇀ θ in W 1,p

0 (Ω) as n ↑ ∞. Since BT is
weakly closed, θ ∈ BT . Define ζ := F(θ) and, for n ∈ N0, ζn := F(θn). Let us prove
that ζn → ζ in W 1,p

0 (Ω) as n ↑ ∞. Observe that eζ,n := ζ − ζn verifies the relation

ˆ

Ω

(κ(θn)∇eζ,n − eζ,nu(θ)) · ∇Sdx = 〈gn, S〉 ∀S ∈ W 1,p′

0 (Ω),

where, for S ∈W 1,p′

0 (Ω), 〈gn, S〉 :=
´

Ω [ζn(u(θ) − u(θn)) + (κ(θn)− κ(θ))∇ζ] ·∇Sdx,
i.e., for n ∈ N0, eζ,n solves (21) with δz, v, and ξ being replaced by gn, u(θ), and
κ(θn), respectively. Proposition 5 with α = 1/2 thus guarantees that

(26) ‖∇eζ,n‖Lp(Ω) ≤ C 1
2
‖gn‖W−1,p(Ω),
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because, as a consequence of (19), ‖u(θ)‖L3(Ω) ≤ C. We now prove that gn → 0 in
W−1,p(Ω) as n ↑ ∞. To accomplish this task, we analyze each of the terms involved
in the definition of gn separately. First, notice that the estimates in (16) reveal that
ˆ

Ω

ζn(u(θ) − u(θn)) · ∇Sdx ≤ Ce‖∇ζn‖Lp(Ω)‖u(θ)− u(θn)‖L3(Ω)‖∇S‖Lp′(Ω).

Now, since θn ⇀ θ ∈ W 1,p
0 (Ω) as n ↑ ∞, an application of the Rellich–Kondrachov

theorem [1, Theorem 6.3, Part I] reveals that θn → θ in Lr(Ω), as n ↑ ∞, for every r
such that 1 ≤ r < dp/(d−p). Invoke Lemma 7, upon observing that dp/(d−p) > 2, to
conclude that u(θn)→ u(θ) in L3(Ω) as n ↑ ∞. To control the remaining term in gn,
we observe that, since κ is continuous and uniformly bounded and θn → θ in Lr(Ω),
we have that κ(θn)→ κ(θ) in Lr(Ω) as n ↑ ∞. Consequently, (κ(θn)− κ(θ))∇ζ → 0

in Lp(Ω). Therefore, in view of (26), ζn → ζ in W 1,p
0 (Ω) as n ↑ ∞. We have thus

proved that the weak convergence θn ⇀ θ in W 1,p
0 (Ω) implies the strong one ζn → ζ

in W 1,p
0 (Ω) as n ↑ ∞. This shows that F is compact and concludes the proof.

4. Finite element approximation. In this section, we devise a finite element
discretization scheme for problem (15) and analyze convergence properties.

4.1. Basic ingredients and assumptions. We denote by Th = {K} a con-
forming partition of Ω̄ into closed simplices K with size hK = diam(K). Define
h := max{hK : K ∈ Th}. We denote by T = {Th}h>0 a collection of conforming and
shape regular meshes Th. We define S as the set of interelement boundaries γ of
Th. For K ∈ Th, let SK denote the subset of S that contains the sides in S which
are sides of K. We denote by Nγ , for γ ∈ S , the subset of Th that contains the two
elements that have γ as a side. In addition, we define the stars or patches

(27) NK = ∪{K ′ ∈ Th : SK ∩SK′ 6= ∅}, N ∗
K = ∪{K ′ ∈ Th : K ∩K ′ 6= ∅}.

In an abuse of notation, below we denote by NK , N ∗
K , and Nγ either the sets them-

selves or the union of its elements.
Given a mesh Th ∈ T, we define Yh := {Sh ∈ C(Ω̄) : Sh|K ∈ P1(K) ∀K ∈

Th and v|∂Ω = 0}. Notice that, for each h > 0, Yh ⊂W 1,p′
0 (Ω) ⊂W 1,p

0 (Ω).
We denote by Ih the Lagrange interpolation operator and immediately observe

that, since W 1,p′
0 (Ω) →֒ C(Ω̄), Ih is well-defined as map from W 1,p′

0 (Ω) into Yh. The
following error estimate is classical [30, Theorem 1.103]: for each K ∈ Th,

(28) ‖S − IhS‖Lp′(K) . hK‖∇S‖Lp′(K) ∀S ∈ W 1,p′
0 (K).

With this estimate at hand, a trace identity yields, for γ ∈ S , the estimate

(29) ‖S − IhS‖Lp′(γ) . h
1
p
γ ‖∇S‖Lp′(Nγ) ∀S ∈ W 1,p′

0 (Nγ).

Regarding the approximation of the Darcy–Forchheimer model (15), we introduce

Xh :=
{

vh ∈ L2(Ω) : vh|K ∈ P0(K)d ∀K ∈ Th

}

,

Mh := {qh ∈ C(Ω̄) : qh|K ∈ P1(K) ∀K ∈ Th} ∩ L2
0(Ω),

Vh :=
{

vh ∈ Xh : (∇qh,vh)L2(Ω) = 0 ∀qh ∈Mh

}

.

The spaces Xh and Mh satisfy the following discrete inf–sup condition: there exists
β > 0, independent of the discretization parameter h, such that

(30) inf
qh∈Mh

sup
vh∈Xh

´

Ω vh · ∇qhdx
‖vh‖L3(Ω)‖∇qh‖

L
3
2 (Ω)

≥ β;
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see [43, Proposition 4.1] and [47, estimate (3.4)].
Since it will be useful later, we also introduce the orthogonal projection Πh :

L1(Ω)→ Xh. The operator Πh satisfies, for any real number r such that r ≥ 1,

(31) lim
h→0

Πhv = v strongly in Lr(Ω) ∀v ∈ Lr(Ω);

see [34, Section 3.3]. With this convergence result at hand, we immediately conclude
the following result [30, Corollary 1.109]: If v ∈ L3(Ω), then

(32) lim
h→0

(

inf
vh∈Xh

‖v − vh‖L3(Ω)

)

= 0.

4.2. The discrete coupled problem. We introduce the following finite ele-
ment approximation of (15): Find (uh, ph, Th) ∈ Xh ×Mh × Yh such that

(33)



























ˆ

Ω

(νuh + |uh|uh +∇ph) · vhdx =

ˆ

Ω

f(Th) · vhdx ∀vh ∈ Xh,
ˆ

Ω

∇qh · uhdx = 0 ∀qh ∈Mh,
ˆ

Ω

(κ(Th)∇Th · ∇Sh−Thuh · ∇Sh)dx = 〈δz , Sh〉 ∀Sh ∈ Yh.

We recall that we are operating under the assumptions stated in section 3.1.
In what follows, we prove that, for every h > 0, problem (33) always has a

solution and that, as h → 0, the sequence {(uh, ph, Th)}h>0 converges weakly, up to
subsequences, to a solution of the coupled problem (15).

4.3. A discrete stationary heat equation. In this section, we review a well-
posedness result for a suitable discretization of the singular heat equation with con-
vection (21). To present such a result, we will make use of the following assump-
tion: If ξ ∈ C0,1(Ω̄) is a strictly positive and bounded function which satisfies
0 < ξ− ≤ ξ(x) ≤ ξ+ for every x ∈ Ω, then there exist h⋆ > 0 such that for all
0 < h ≤ h⋆ and Rh ∈ Yh, the following discrete inf-sup conditions holds:

(34) ‖∇Rh‖Lp(Ω) ≤ C̃ξ sup
Sh∈Yh

´

Ω
ξ∇Rh · ∇Shdx

‖∇Sh‖Lp′(Ω)

.

Here, p is such that 2d
d+1 − ǫ < p < d

d−1 , for some ǫ > 0, and C̃ξ denotes a positive
constant that is independent of h.

Given ξ ∈ C0,1(Ω̄) as above and v ∈ L3(Ω), we introduce the following discrete
version of problem (21): Find Th ∈ Yh such that

(35)

ˆ

Ω

(ξ∇Th · ∇Sh − Thv · ∇Sh) dx = 〈δz , Sh〉 ∀Sh ∈ Yh.

Under a suitable smallness assumption on the convective term, problem (35)
always has a discrete solution. In addition, discrete solutions are uniformly bounded
with respect to the discretization parameter h.

Proposition 9 (well-posedness). There exists h⋆ > 0 such that, if

(36) C̃ξCe‖v‖L3(Ω) ≤ α < 1,

then the discrete problem (35) is well-posed for all 0 < h ≤ h⋆ whenever 2d/(d+1)−ǫ <
p < d/(d− 1), for some ǫ > 0. In particular, we have the stability estimate

(37) ‖∇Th‖Lp(Ω) ≤ C̃α‖δz‖W−1,p(Ω), C̃α =
C̃ξ

1−α ,
2d
d+1 − ǫ < p < d

d−1 .
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Proof. With the discrete inf–sup condition (34) at hand, the proof follows the
same arguments as the ones developed in the proof of [6, Proposition 4].

4.4. Existence of solutions for the discrete coupled problem. We now
show existence of solutions for (33) via a fixed point argument. As in the continuous
case, we introduce, for each h > 0, the map Fh : Yh → Yh by θh 7→ F(θh) = ζh, where

(38) ζh ∈ Yh :

ˆ

Ω

(κ(θh)∇ζh · ∇Sh − ζhuh(θh) · ∇Sh)dx = 〈δz, Sh〉 ∀Sh ∈ Yh.

The definition of ζh compromises solving the following discretization of a Darcy–
Forchheimer model: Find (uh(θh), ph(θh)) ∈ Xh ×Mh such that

(39)

ˆ

Ω

(νuh(θh) + |uh(θh)|uh(θh) +∇ph(θh)) · vhdx =

ˆ

Ω

f(θh) · vhdx,
ˆ

Ω

∇qh · uh(θh)dx = 0,

for all (vh, qh) ∈ Xh ×Mh. In view of the assumptions on the problem data stated
in section 3.1, the discrete problem (39) admits a unique solution. In addition,

‖uh(θh)‖2L3(Ω) ≤ ‖f0‖L 3
2 (Ω)

+ CfCe‖∇Th‖Lp(Ω),(40)

‖∇ph(θh)‖
L

3
2 (Ω)

≤ ‖f0‖
L

3
2 (Ω)

+CfCe‖∇Th‖Lp(Ω) + ν+‖uh‖
L

3
2 (Ω)

+ ‖uh‖2L3(Ω),(41)

where Ce is the best constant in the Sobolev embedding W 1,p
0 (Ω) →֒ L

3
2 (Ω) (p > 1).

To present the following result, we introduce the ball

Bh
T :=

{

θh ∈ Yh : ‖∇θh‖Lp(Ω) ≤ C̃ 1
2
‖δz‖W−1,p(Ω)

}

,

where C̃ 1
2
is defined as in (37) with α = 1

2 . As a final ingredient, we also introduce

(42) C̃ := (2CeC̃κ)
−1,

where Ce is defined as in (16) and C̃κ corresponds to the constant involved in the
discrete inf–sup condition (34) with ξ being replaced by κ.

Lemma 10 (Fh : Bh
T → Bh

T ). If 2d
d+1 − ǫ < p < d

d−1 , for some ǫ > 0, and

‖f0‖
L

3
2 (Ω)

+ CfCeC̃ 1
2
‖δz‖W−1,p(Ω) ≤ C̃2,

then, there exists h⋆ > 0 such that the map Fh is well-defined on Bh
T for all 0 < h ≤

h⋆. In addition, Fh(B
h
T ) ⊂ Bh

T .

Proof. The proof follows similar arguments as the ones utilized in the proof
of Lemma 6. Let θh ∈ Bh

T . It is immediate that there exists a unique solution
(uh(θh), ph(θh)) ∈ Xh × Mh to problem (39). In view of (40), (37), and (42), we
conclude the following bound for the discrete velocity field uh(θh):

‖uh(θh)‖2L3(Ω) ≤ ‖f0‖L 3
2 (Ω)

+ CfCeC̃ 1
2
‖δz‖W−1,p(Ω) ≤ C̃2 = (2CeC̃κ)

−2.

Consequently, C̃κCe‖uh(θh)‖L3(Ω) ≤ 1/2, i.e., uh(θh) satisfies (36) with α = 1/2. We
are thus in position to utilize the results of Proposition 9 to obtain the existence of a
unique ζh ∈ Yh solving (38). In addition, ζh ∈ Bh

T . This concludes the proof.
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We now study the existence of discrete solutions.

Theorem 11 (existence). In the framework of Lemma 10, there exists h⋆ > 0
such that (33) admits a discrete solution (uh, ph, Th) ∈ Xh×Mh×Yh for all 0 < h ≤ h⋆

whenever 2d/(d+ 1)− ǫ < p < d/(d− 1), for some ǫ > 0. In addition, Th ∈ Bh
T .

Proof. Since ∅ 6= Bh
T ⊂ Yh is compact and convex and Fh is continuous, which

follows from similar arguments to the ones used in the proof of Theorem 8, we apply
Brouwer’s fixed point theorem [24, Theorem 3.2] to obtain the existence of a solution.

4.5. Convergence. We present the following convergence result.

Theorem 12 (convergence). Let C and C̃ be the constants defined in (25) and
(42), respectively. Let p be such that 2d/(d+1)− ǫ < p < d/(d− 1) for some ǫ > 0. If

(43) ‖f0‖
L

3
2 (Ω)

+CfCeC 1
2
‖δz‖W−1,p(Ω) ≤ C2, ‖f0‖

L
3
2 (Ω)

+ CfCeC̃ 1
2
‖δz‖W−1,p(Ω) ≤ C̃2,

and, for d = 3, u ∈ L3+ε(Ω), where ε > 0 is arbitrarily small, then there exists
h⋆ > 0 and {(uh, ph, Th)}0<h≤h⋆, a nonrelabelared subsequence, such that uh → u in
X, ph ⇀ p in M , and Th ⇀ T in Y as h ↓ 0. In addition, T ∈ Y solves (17) and
(u, p) ∈ X×M solves (18).

Proof. The existence of a discrete solution (uh, ph, Th), for h such that 0 < h ≤ h⋆,
follows from Theorem 11. We now invoke the results of Lemma 10 and the discrete
stability estimates (40) and (41) to deduce that {(uh, ph, Th)}0<h≤h⋆ is uniformly
bounded in X×M × Y for h such that 0 < h ≤ h⋆. Consequently, we conclude that,
up to a subsequence if necessary, (uh, ph, Th) ⇀ (u, p, T ) in X ×M × Y , as h ↓ 0,
whenever 2d/(d+ 1)− ǫ < p < d/(d− 1), for some ǫ > 0.

We now follow [34, 45] and show, in several steps, that (u, p, T ) ∈ X ×M × Y
solves system (15) or, equivalently, problems (17) and (18). We begin the analysis by
utilizing the monotonicity property (7) of A to obtain

ˆ

Ω

(A(uh)−A(vh)) · (uh − vh)dx ≥ 0 ∀vh ∈ Vh.(44)

Set uh − vh ∈ Vh as a test function in the first equation of problem (33) and utilize
(44) to arrive at

ˆ

Ω

A(vh) · (uh − vh)dx ≤
ˆ

Ω

f(Th) · (uh − vh)dx ∀vh ∈ Vh.(45)

Let us now take the limit as h ↓ 0 in the previous inequality. Set vh = Πh(v) ∈ Vh,
for an arbitrary v ∈ V. Invoke (10) and the convergence property (31) to immediately
deduce that ‖A(vh) −A(v)‖L3/2(Ω) → 0 as h ↓ 0. Since uh − vh ⇀ u − v in L3(Ω)
as h ↓ 0, we take the limit as h ↓ 0 in (45) to obtain, for an arbitrary v ∈ V,

ˆ

Ω

A(v) · (u− v)dx ≤
ˆ

Ω

f(T ) · (u− v)dx,(46)

where we have also used the compactness of the embedding W 1,p
0 (Ω) →֒ Lq(Ω) for

q < q⋆ = dp/(d− p) [1, Theorem 6.3, Part I], combined with the fact that q⋆ > 3/2,
to deduce that ‖f(T ) − f(Th)‖L3/2(Ω) ≤ Cf‖T − Th‖L3/2(Ω) → 0 as h ↓ 0. With the
inequality (46) at hand, we invoke [42, Lemma 2.13] to conclude that

ˆ

Ω

A(u) · vdx =

ˆ

Ω

f(T ) · vdx ∀v ∈ V.(47)
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The inf–sup condition (4) imply the existence of a unique ̺ ∈ M such that (u, ̺) ∈
X×M solves problem (18) [34, Proposition 2].

We now show that uh converges strongly to u in L3(Ω) as h ↓ 0. To accomplish
this task, we first consider the monotonicity property (7) with v = uh andw = Πh(u):

‖uh −Πh(u)‖3L3(Ω) .

ˆ

Ω

(A(uh)−A(Πh(u))) · (uh −Πh(u)) dx.

Set vh = uh −Πh(u) in the first equation of problem (33) to thus obtain

‖uh−Πh(u)‖3L3(Ω).

ˆ

Ω

f(Th)·(uh−Πh(u))dx−
ˆ

Ω

A(Πh(u))·(uh−Πh(u)) dx,(48)

upon utilizing that
´

Ω
∇ph · (uh − Πh(u))dx = 0. We now utilize the fact that

(u, ̺) ∈ X×M solves problem (18) to arrive at

(49) ‖uh −Πh(u)‖3L3(Ω).

∣

∣

∣

∣

ˆ

Ω

(A(u)−A(Πh(u))) · (uh−Πh(u)) dx

∣

∣

∣

∣

∣

∣

∣

∣

ˆ

Ω

(f (Th)− f(T )) · (uh−Πh(u))dx

∣

∣

∣

∣

+

∣

∣

∣

∣

ˆ

∇̺ · (uh−Πh(u))dx

∣

∣

∣

∣

→ 0, h ↓ 0,

upon utilizing that f(Th)→ f (T ) and A(Πh(u))→ A(u) in L
3
2 (Ω), as h ↓ 0, and that

uh −Πh(u) ⇀ 0 in L3(Ω) as h ↓ 0. A basic application of a triangle inequality thus
implies that uh → u in L3(Ω) as h ↓ 0.

We now show that ̺ = p. To accomplish this task, we subtract the first equation
of the problem that (u, ̺) solves (problem (18) with u(T ) and p(T ) being replaced
by u and ̺, respectively) with Πh(v), for an arbitrary function v, as a test function,
from the first equation of (33) to obtain

ˆ

Ω

(A(uh)−A(u)) · vhdx =

ˆ

Ω

(f(Th)− f(T )) · vhdx+

ˆ

Ω

∇(̺− ph) · vhdx.(50)

Since uh → u in L3(Ω), we deduce, in view of (10), that A(uh)→ A(u) in L
3
2 (Ω) as

h ↓ 0. This property combined with the fact that f(Th) → f(T ) in L
3
2 (Ω) as h ↓ 0

allow us to deduce that (∇(̺ − ph),Πh(v))L2(Ω) → (∇(̺ − p),v)L2(Ω) = 0, as h ↓ 0,
for every v ∈ L3(Ω). We have thus proved that p = ̺. Consequently, the limit point
(u, p) ∈ X×M solves problem (18).

It remains to prove that T ∈ W 1,p
0 (Ω) solves (17) with u(T ) = u. To accomplish

this task, we let S ∈ C∞
0 (Ω) and set Sh = IhS ∈ Yh. Utilize Hölder’s inequality,

the assumptions on κ, the Lebesgue dominated convergence theorem, and standard
properties of the interpolation operator Ih to obtain
∣

∣

∣

∣

ˆ

Ω

(κ(T )∇T · ∇S − κ(Th)∇Th · ∇Sh)dx

∣

∣

∣

∣

≤
∣

∣

∣

∣

ˆ

Ω

(κ(T )− κ(Th))∇T · ∇Sdx
∣

∣

∣

∣

+

∣

∣

∣

∣

ˆ

Ω

κ(Th)∇(T − Th) · ∇Sdx
∣

∣

∣

∣

+

∣

∣

∣

∣

ˆ

Ω

κ(Th)∇Th · ∇(S − Sh)dx

∣

∣

∣

∣

→ 0, as h ↓ 0.

Finally, we prove that
´

Ω Thuh · ∇Shdx→
´

Ω Tu · ∇Sdx as h ↓ 0. Observe that

∣

∣

∣

∣

ˆ

Ω

(Thuh · ∇Sh − Tu · ∇S)dx
∣

∣

∣

∣

≤
∣

∣

∣

∣

ˆ

Ω

(T − Th)u · ∇Sdx
∣

∣

∣

∣

+

∣

∣

∣

∣

ˆ

Ω

Th(u− uh) · ∇Sdx
∣

∣

∣

∣

+

∣

∣

∣

∣

ˆ

Ω

Thuh · ∇(S − Sh)dx

∣

∣

∣

∣

=: Ih + IIh + IIIh.
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The fact that IIh → 0 as h ↓ 0 follows from (16) and uh → u in L3(Ω) as h ↓ 0.
To prove that IIIh → 0 as h ↓ 0, we utilize (16) again and standard properties for
Ih. Finally, we control Ih in view of Th ⇀ T in W 1,p

0 (Ω), the compact embedding
W 1,p

0 (Ω) →֒ Lq(Ω) for q < q⋆ = dp/(d− p), Hölder inequality, and the extra assump-
tion on u in three dimensions. We have thus proved that T ∈ W 1,p

0 (Ω) solves (17)
with u = u(T ). This concludes the proof.

5. A posteriori error analysis. In this section, we design and analyze an a
posteriori error estimator for the finite element approximation (33) of the coupled
system (15). In particular, we derive a global reliability estimate for the devised error
estimator and investigate local efficiency bounds. To achieve these goals, we shall
assume that, in addition to the assumptions stated in §3.1, κ is a positive constant.

In what follows, (u, p, T ) ∈ X×M × Y denotes a solution to (15). The existence
of such a solution follows from Theorem 8; p is such that 2d/(d+1)−ǫ < p < d/(d−1)
for some ǫ > 0. In addition, (uh, ph, Th) ∈ Xh ×Mh × Yh denotes a solution to (33),
whose existence, for 0 < h ≤ h⋆ and p as above, is guaranteed by Theorem 11.

Within the a posteriori error analysis that follows, since we will not be dealing
with uniform refinement, the parameter h does not bear the meaning of a mesh size.
It can thus be thought as h = 1/k, where k ∈ N is the index set in a sequence of
refinements of an initial mesh or partition T0.

5.1. A posteriori error estimator. The proposed error estimator is decom-
posed as the sum of two contributions: a contribution related to the discretization of
the Darcy–Forchheimer model and another one associated to the discretization of the
stationary heat equation. To present such an error estimator, let us first introduce
some notation. Let wh be a discrete tensor valued function and let γ ∈ S . We define
the jump or interelement residual of wh on γ by Jwh ·nK := wh ·n+|K+ +wh ·n−|K− ,
where n+ and n− denote the unit normals on γ pointing towards K+ and K−, re-
spectively; K+, K− ∈ Th are such that K+ 6= K− and ∂K+ ∩ ∂K− = γ.

5.1.1. Heat equation with convection: local indicators and estimator.

We define, for an element K ∈ Th and an internal side γ ∈ S , the element residual
RK and the interelement residual Jγ as

(51) RK := −∇Th · uh|K , Jγ := J(κ∇Th − Thuh) · nK.

We define an element indicator Ep,K associated to the discretization of the heat equa-
tion on the basis of three scenarios. First, if z ∈ K and z is not a vertex, then

(52) Ep,K :=
[

h
d+p(1−d)
K + hp

K‖RK‖pLp(K) + hK‖Jγ‖pLp(∂K\∂Ω)

]
1
p

.

Second, if z ∈ K and z is a vertex of K, then

(53) Ep,K :=
[

hp
K‖RK‖pLp(K) + hK‖Jγ‖pLp(∂K\∂Ω)

]
1
p

.

Third, if z /∈ K, then the indicator Ep,K is defined as in (53).
The following comments point in the direction of creating some insight into the

definition of the local indicators (52) and (53). First, we recall that we consider
our elements K to be closed sets. Second, the Lagrange interpolation operator Ih is
well-defined over the space W 1,p′

0 (Ω) with p′ > d. Third, since Ih is constructed by
matching the point values at the Lagrange nodes, we have the basic property

(S − IhS)(v) = 0 ∀S ∈ W 1,p′
0 (Ω), p′ > d, ∀K ∈ Th.
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Here, v denotes a vertex of K. In particular, the third observation explains the
discrepancy between definitions (52) and (53).

With the previous local indicators at hand, we define the error estimator

(54) Ep,T :=

(

∑

K∈Th

Epp,K

)
1
p

, p < d
d−1 .

5.1.2. A Darcy–Forchheimer model: local indicators and estimator. Let
K ∈ Th be an element and let γ ∈ S be an internal side. We define the element
residual RK and the interelement residual Jγ as

RK := (f0 + f1(Th)− νuh − |uh|uh −∇ph)|K , Jγ := Juh · nK.(55)

With RK and Jγ at hand, we define the element indicator and error estimator

(56) EK :=
[

‖RK‖2L2(K) + h
2
3

K‖Jγ‖2L3(∂K\∂Ω)

]
1
2

, ET :=

(

∑

K∈Th

E2
K

)
1
2

.

With all these ingredients at hand, we define the total a posteriori error estimator

(57) ET := Ep,T + ET .

5.2. Reliability analysis. We begin our analysis by defining the temperature
error eT := T−Th, the velocity error eu := u−uh, and the pressure error ep := p−ph.

Let q ∈ M and qh ∈ Mh. Since (u, p, T ) and (uh, ph, Th) solve (15) and (33),
respectively, and

´

Ω∇qh · uhdx = 0, standard computations based on a integration
by parts argument reveal that

(58)

ˆ

Ω

∇q · eudx =

ˆ

Ω

∇q · udx−
ˆ

Ω

∇qh · uhdx−
ˆ

Ω

∇(q− qh) · uhdx

=
∑

K∈Th

ˆ

K

(q− qh)divuhdx+

ˆ

∂K

(q− qh)uh · nds =
∑

γ∈S

ˆ

γ

Juh · nK(q− qh)ds.

Let us now define the following problem: Find w ∈ X such that

(59)

ˆ

Ω

∇q·wdx = F (q) ∀q ∈M, F : M → R, F (q) :=
∑

γ∈S

ˆ

γ

Juh ·nK(q−Rhq)ds.

Here, Rh denotes the Clément interpolation operator. We recall that, for eachK ∈ Th

and γ ∈ S , the operator Rh satisfies the following error estimates [30, Lemma 1.127]

‖q−Rhq‖
L

3
2 (K)

. hK‖q‖
W 1, 3

2 (N∗

K)
∀q ∈ W 1, 32 (N ∗

K),(60)

‖q−Rhq‖
L

3
2 (γ)

. h1/3
γ ‖q‖W 1, 3

2 (N∗

γ )
∀q ∈W 1, 32 (N ∗

γ ).(61)

The set N ∗
K is defined as in (27) and N ∗

γ corresponds to the set of elements in Th

sharing at least one vertex with γ.
The following result is instrumental to perform a reliability analysis.

Lemma 13 (auxiliary result). There exists vr ∈ X which satisfies (59) and

(62) ‖vr‖L3(Ω) .
∑

γ∈S

h1/3
γ ‖Juh · nK‖L3(γ).
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Proof. We first notice that ‖F‖M ′ .
∑

γ∈S
h
1/3
γ ‖Juh · nK‖L3(γ). This bound

follows from Hölder’s inequality and the error estimate (61). We can thus apply the
Banach–Nečas–Babuška Theorem [30, Theorem 2.6], to obtain, on the basis of the
inf–sup condition (4), the existence of vr solving (59) and satisfying (62).

We are now ready to enunciate and prove the main result of this section.

Theorem 14 (global reliability). Let d = 2, let C and C̃ be the constants defined
in (25) and (42), respectively, and let p be such that 4/3− ǫ < p < 2 for some ǫ > 0.
Let (uh, ph, Th) ∈ Xh ×Mh× Yh, for 0 < h ≤ h⋆, be a solution to the discrete system
(33); passing to a nonrelabelared subsequence if necessary uh → u in X, ph ⇀ p in
M , and Th ⇀ T in Y as h ↓ 0, where (u, p, T ) ∈ X ×M × Y is a solution to (15).
Assume that (43) holds and that, for d = 3, u ∈ L3+ε(Ω), where ε > 0 is arbitrarily
small. Assume, in addition, that the aforementioned solutions and problem data are
such that the following inequalities hold:

Cf‖δz‖W−1,p(Ω) ≤ (1− ρ)ν−D,(63)

‖eu‖L2(Ω) + ‖u‖L2(Ω) ≤ 2ρC,(64)

2‖u‖L6(Ω) + ‖eu‖L6(Ω) ≤ C,(65)

where D = (2
√
10C2

κCeCe)
−1, Ce is the best constant in W 1,p

0 (Ω) →֒ L
2p

2−p (Ω), Ce is

the best constant in W 1,p
0 (Ω) →֒ L2(Ω), Ce is the best constant in W 1,p

0 (Ω) →֒ L
3
2 (Ω),

Cκ is as in (22), Cf denotes the Lipschitz constant of f , ρ ∈ (0, 1), and C > 0. Then

(66) ‖∇eT ‖Lp(Ω) + ‖eu‖L2(Ω) + ‖eu‖
3
2

L3(Ω) + ‖∇ep‖L 3
2 (Ω)

. ET .

The hidden constant is independent of the size of the elements in Th and #Th.

Proof. We divide the proof in four steps.
Step 1. We first bound ‖∇eT‖Lp(Ω). Owing to Proposition 4, we have that there

is a positive constant Cκ such that the following inf-sup condition holds:

(67) ‖∇eT ‖Lp(Ω) ≤ Cκ sup
S∈W 1,p′

0 (Ω)

1

‖∇S‖
Lp′(Ω)

ˆ

Ω

κ∇eT · ∇Sdx.

To estimate the right-hand side of (67), we invoke the third equation in (15), a
standard integration by parts formula, and Galerkin orthogonality to obtain

(68)

ˆ

Ω

(κ∇eT + eTeu − eTu− Teu) · ∇Sdx = 〈δz , S − IhS〉

+
∑

K∈Th

ˆ

K

RK(S − IhS)dx+
∑

γ∈S

ˆ

γ

Jγ(S − IhS)ds,

for an arbitrary S ∈ W 1,p′
0 (Ω); RK and Jγ are defined in (51). We can thus invoke

(67), Hölder’s inequality, the local error bounds (28) and (29), and the estimate
‖S− IhS‖L∞(K) . hσ

K‖∇S‖Lp′(K) [20, Corollary 4.4.7], where σ = 1−d/p′, to obtain

‖∇eT ‖Lp(Ω)≤Cκ[‖eT‖Lp(Ω)

(

‖eu‖L2(Ω)+‖u‖L2(Ω)

)

+‖T ‖Lp(Ω)‖eu‖L2(Ω)+CEp,T ],

where p = 2p
2−p . This bound, W

1,p
0 (Ω) →֒ L

2p
2−p (Ω), and assumption (64), reveal that

(69) (1− ρ)‖∇eT‖Lp(Ω) ≤ 2C2
κCe‖δz‖W−1,p(Ω)‖eu‖L2(Ω) + CCκEp,T ,
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where Ce denotes the best constant in the embedding W 1,p
0 (Ω) →֒ L

2p
2−p (Ω) and Cκ is

the constant involved in the inf-sup condition (22) with ξ being replaced by κ.
Step 2. We now follow [47] and control eu. To do this, we first observe that
ˆ

Ω

(

A(u)−A(uh) +∇ep
)

· vdx−
ˆ

Ω

(f(T )− f(Th)) · vdx=
∑

K∈Th

ˆ

K

RK · vdx,(70)

for v ∈ L3(Ω); RK is defined in (55). Let us now define z := u− uh − vr = eu − vr,
where vr is as in the statement of Lemma 13, and set v = z in (70) to obtain

ˆ

Ω

(νeu + |u|u− |uh|uh) · zdx−
ˆ

Ω

(f(T )− f(Th)) · zdx =
∑

K∈Th

ˆ

K

RK · zdx,(71)

where we have utilized that
´

Ω
∇q ·zdx = 0, for every q ∈M , which follows from (58)

and (59). Consequently, we can arrive at the identity

ˆ

Ω

[νeu · z+ (|u|u− |uh|uh) · eu] dx =
∑

K∈Th

ˆ

K

RK · zdx

+

ˆ

Ω

(f(T )− f(Th)) · zdx+

ˆ

Ω

|u|(u− uh) · vrdx+

ˆ

Ω

(|u| − |uh|)uh · vrdx.

Let now us invoke [29, Lemma 4.4, Chapter I] with p = 3 and utilize the fact that ν
is such that 0 < ν− ≤ ν(x) ≤ ν+ for every x ∈ Ω to conclude that

ν−‖z‖2L2(Ω) + γd‖eu‖3L3(Ω) ≤ CfCe‖∇eT ‖Lp(Ω)‖z‖L2(Ω) +
∑

K∈Th

‖RK‖L2(Ω)‖z‖L2(Ω)

+(2‖u‖L6(Ω) + ‖eu‖L6(Ω))(‖z‖L2(Ω) + ‖vr‖L2(Ω))‖vr‖L3(Ω)+ ν+‖vr‖L2(Ω)‖z‖L2(Ω),

where Ce is the best constant in W 1,p
0 (Ω) →֒ L2(Ω). We now utilize the basic bound

‖v‖L2(Ω) . ‖v‖L3(Ω), the results of Lemma 13, assumptions (63) and (65), the a pos-
teriori bound (69), and suitable Young’s inequalities to deal with the terms involving
‖z‖L2(Ω) appearing in the right-hand side of the previous inequality, to obtain

‖eu‖2L2(Ω) + ‖eu‖3L3(Ω) . E2
T + E2p,T .

Replacing this bound into estimate (69) immediately yields ‖∇eT ‖Lp(Ω) . ET +Ep,T ,
upon utilizing assumption (63).

Step 3. Finally, we control the pressure error ‖∇ep‖L3/2(Ω). Since A(u)−A(uh) =
νeu + |u|u − |uh|uh, we utilize (70) combined with the Lipschitz property of f1 and
the embedding W 1,p

0 (Ω) →֒ L2(Ω) to obtain

(72)

∣

∣

∣

∣

ˆ

Ω

∇ep · vdx
∣

∣

∣

∣

≤
∑

K∈Th

‖RK‖L2(K)‖v‖L2(K) + ν+‖eu‖L2(Ω)‖v‖L2(Ω)

+ C‖eu‖L2(Ω)‖v‖L3(Ω) + CfCe‖∇eT ‖Lp(Ω)‖v‖L2(Ω),

upon utilizing that 2‖u‖L6(Ω) + ‖eu‖L6(Ω) ≤ C. It thus suffices to invoke the inf-sup
condition (4) to arrive at the a posteriori error bound

‖∇ep‖
L

3
2 (Ω)

. ‖eu‖L2(Ω) + ‖∇eT ‖Lp(Ω) + ET .

Step 4. The desired a posteriori error bound (66) follows from collecting the a
posteriori error estimates derived in Steps 1, 2, and 3. This concludes the proof.
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5.3. Efficiency estimates. In this section, we analyze efficiency properties for
the local error indicators Ep,K and EK . We begin our analysis by introducing the
following notation: for an edge, triangle or tetrahedron G, let V(G) be the set of
vertices of G. With this notation at hand, for K ∈ Th and γ ∈ S , we introduce the
following standard element and edge bubble functions:

(73) ϕK = (d+ 1)d+1
∏

v∈V(K)

λv, ϕγ = dd
∏

v∈V(γ)

λv|K′ , K ′ ⊂ Nγ .

Here, λv denote the barycentric coordinate function associated to v. Nγ corresponds
to the patch composed of the two elements of Th sharing γ.

We will also make use of the following bubble functions, whose construction we
owe to [10, 14]. Given K ∈ Th, we define the element bubble function φK as

(74) φK(x) := h−2
K |x− z|2ϕK(x) if z ∈ K, φK(x) := ϕK(x) if z 6∈ K.

Given γ ∈ S , we define the edge bubble function φγ as

(75) φγ(x) := h−2
γ |x− z|2ϕγ(x) if z ∈ N̊γ , φγ(x) := ϕγ(x) if z 6∈ N̊γ ,

where N̊γ denotes the interior of Nγ . We recall that the Dirac measure δz is supported
at z ∈ Ω: it can thus be supported on the interior, an edge, or a vertex of an element
K of the triangulation Th.

Given γ ∈ S , we introduce the continuation operator Πγ : L∞(γ) → L∞(Nγ)
[49, Section 3] and notice that Πγ maps polynomials onto piecewise polynomials of
the same degree. Πγ will be useful for controlling jump terms.

We now provide the following result [10, Lemmas 3.1 and 3.2].

Lemma 15 (bubble function properties). Let K ∈ Th, γ ∈ S , and r ∈ (1,∞).
If Sh|K ∈ P1(K) and Rh|γ ∈ P1(γ), then

‖Sh‖Lr(K) . ‖Shφ
1
r

K‖Lr(K) . ‖Sh‖Lr(K),

‖Rh‖Lr(γ) . ‖Rhφ
1
r
γ ‖Lr(γ) . ‖Rh‖Lr(γ),

‖φγΠγ(Rh)‖Lr(Nγ ) . h
1
r
γ ‖Rh‖Lr(γ).

5.3.1. Local estimates for Ep,K . In the following result, we derive local error
bounds for Ep,K , which is defined in (52) and (53).

Theorem 16 (local estimate for Ep,K). Let d ∈ {2, 3}. In the framework of
Theorem 12, we have

(76) Ep,K . ‖∇eT ‖Lp(N∗

K) + ‖eT ‖
L

dp
d−p (N∗

K)
+ ‖eu‖Ld(N∗

K),

where N ∗
K is defined in (27). The hidden constant is independent of continuous and

discrete solutions (u, p, T ) and (uh, ph, Th), respectively, the size of the elements in
the mesh Th, and #Th.

Proof. The proof of (76) for d = 2 is available in [6, Theorem 5.2]. An extension
of these arguments to the three dimensional scenario yield (76) for d = 3. For brevity,
we skip details.
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5.3.2. Local estimates for EK . We now investigate local efficiency bounds for
the error indicator EK defined in (56).

Theorem 17 (local estimate for EK). Let d ∈ {2, 3}. Let us assume that f0 ∈
L2(Ω) and that u ∈ L4(Ω). Let K ∈ Th. In the framework of Theorem 12, we have

(77) EK . ‖|u|u− |uh|uh +∇ep‖L2(NK) + h
1+ d

2−
d
p

K ‖eT ‖
L

dp
d−p (NK)

+ ‖eu‖L2(NK)

+
∑

K′∈NK

‖vr‖L3(K′) + ‖f1(T )−ΠK′f1(T )‖L2(K′)+‖f0−ΠK′f0‖L2(K′),

where NK is defined in (27) and ΠK is the orthogonal projection operator onto
[P0(K)]d. The hidden constant is independent of (u, p, T ) and (uh, ph, Th), the size
of the elements in the mesh Th, and #Th.

Proof. We begin the proof by rewriting (70) as follows:

(78)

ˆ

Ω

(νeu + |u|u− |uh|uh +∇ep) · vdx −
ˆ

Ω

(f(T )− f(Th)) · vdx

=
∑

K∈Th

(
ˆ

K

[(ΠKf(Th)− νuh − |uh|uh −∇ph) + (f(Th)−ΠKf(Th)] · vdx
)

,

which holds for every v ∈ L3(Ω).
Let us now proceed on the basis of three steps.
Step 1. Let K ∈ Th. We bound the term ‖RK‖L2(K) in (56). To accomplish this

task, we begin with a basic application of the triangle inequality and write

(79) ‖RK‖L2(K) ≤ ‖ΠKf(Th)−νuh−|uh|uh−∇ph‖L2(K)+‖f(Th)−ΠKf(Th)‖L2(K).

It thus suffices to control the first term on the right-hand side of (79). To do this, we
set v = ϕKR̃K ∈ L3(Ω) in (78), where R̃K = (ΠKf(Th) − νuh − |uh|uh − ∇ph)|K .
Basic properties of the bubble function ϕK combined with Hölder’s inequality yield

(80) ‖R̃K‖L2(K). ‖eu‖L2(K) + ‖|u|u− |uh|uh +∇ep‖L2(K)

+ h
1+ d

2−
d
p

K ‖eT ‖
L

dp
d−p (K)

+ ‖f(Th)−ΠKf(Th)‖L2(K),

upon utilizing the Lipschitz property that f1 satisfies. To control the term ‖f(Th) −
ΠKf(Th)‖L2(K), we invoke (14), the Lipschitz property that f1 satisfies, the triangle
inequality, and Hölder’s inequality to arrive at

(81) ‖f(Th)−ΠKf(Th)‖L2(K) ≤ ‖f0 −ΠKf0‖L2(K) + ‖f1(Th)−ΠKf1(Th)‖L2(K)

. ‖f0 −ΠKf0‖L2(K) + ‖f1(T )−ΠKf1(T )‖L2(K) + h
1+ d

2−
d
p

K ‖eT ‖
L

dp
d−p (K)

.

To obtain the last bound, we have also utilized the estimate ‖ΠKS−ΠKR‖Lr(K) ≤
‖S − R‖Lr(K), which holds for every r ∈ (1,∞) and S,R ∈ Lr(Ω). Replacing (81)
into (80), we obtain

(82) ‖R̃K‖L2(K) . ‖eu‖L2(K) + ‖|u|u− |uh|uh +∇ep‖L2(K)

h
1+ d

2−
d
p

K ‖eT ‖
L

dp
d−p (K)

+ ‖f0 −ΠKf0‖L2(K) + ‖f1(T )−ΠKf1(T )‖L2(K).
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The desired estimate for the term ‖RK‖L2(K) thus follows from (79) and (82).

Step 2. Let K ∈ Th and γ ∈ SK . We now bound the term h
1/3
K ‖Jγ‖L3(γ) in

(56). To accomplish this task, we define q := ϕγΠγ(Jγ). Here, ϕγ denotes the bubble
function defined in (73) and Πγ denotes the continuation operator introduced in §5.3.
We would like to set q = q in (58). Unfortunately, q does not necessarily belongs to
L2
0(Ω). Therefore, we set q = q − qΩ ∈M , where qΩ corresponds to the mean of q in

Ω. On the other hand, we consider a discrete function qh ∈ Mh such that, over the
particular internal side γ, (qh, 1)L2(γ) = −(qΩ, 1)L2(γ). Setting qh in (58) yields

‖Jγ‖2L2(γ) .
∑

K′∈Nγ

ˆ

K′

∇q · eudx =
∑

K′∈Nγ

ˆ

K′

∇q · vrdx,

where we have utilized that eu = z + vr and that
´

Ω∇q · zdx = 0; the latter being
a consequence of the fact that q ∈ M . Let us now utilize standard properties of the
bubble function ϕγ and inverse estimates to obtain

h1/3
γ ‖Jγ‖L3(γ) .

∑

K′∈Nγ

‖vr‖L3(K′),

upon utilizing the bound ‖vr‖L2(K′) ≤ |K ′|1/6‖vr‖L3(K′).
Step 3. A collection of the bounds derived in Steps 1 and 2 yield the desired

estimate. This concludes the proof.

Remark 18 (higher integrability on u). In Theorem 17, we have assumed that
u ∈ L4(Ω) and that f0 ∈ L2(Ω). Under this assumption, it can thus be deduced
that f(T ) − νu − |u|u = ∇p ∈ L2(Ω). Observe that T ∈ L2(Ω). Consequently,
the construction of the finite element spaces allows us to guarantee that, for every
K ∈ Th, the term ‖|u|u− |uh|uh +∇ep‖L2(K) is well-defined.

Remark 19 (auxiliary estimates). We notice that the right-hand side of the
efficiency estimate (77) contains the local terms ‖|u|u − |uh|uh + ∇ep‖L2(NK) and
‖vr‖L3(NK). The global version of these terms are not contained on the left-hand side
of the global reliability bound (66). The control of ‖vr‖L3(Ω) follows immediately from
(62): ‖vr‖L3(Ω) .

∑

K∈Th
EK . In what follows, we briefly elaborate an argument that

allows us to control ‖|u|u−|uh|uh+∇ep‖L2(Ω). Set v = |u|u−|uh|uh+∇ep ∈ L2(Ω)
in (70). We notice that this is possible because of the arguments in Remark 18. We
thus invoke Hölder’s inequality and the Lipschitz property of f1 to arrive at

‖|u|u− |uh|uh+∇ep‖L2(Ω) . ‖eu‖L2(Ω) + ET + ‖∇eT ‖Lp(Ω) . ET ,

upon utilizing the global reliability bound (66).

6. Numerical experiments. We conduct a series of two-dimensional numerical
examples that illustrate the performance of the error estimator ET defined in (57).
These examples have been carried out with the help of a code that we implemented
using C++. All matrices have been assembled exactly and global linear systems were
solved using the multifrontal massively parallel sparse direct solver (MUMPS) [11, 12].
The right-hand sides, local indicators, and the error estimator were computed by a
quadrature formula which is exact for polynomials of degree 19. To visualize finite
element approximations, we have used the open source application ParaView [2, 15].

For a given partition Th, we solve the discrete system (33) in Xh × Mh × Yh

using the iterative strategy described in Algorithm 1. Once a discrete solution is
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obtained, we compute, for each K ∈ Th, the local error indicator EK , defined by

(83) EK := Ep,K + EK ,

to drive the adaptive procedure described in Algorithm 2. A sequence of adaptively
refined meshes is thus generated from the initial meshes shown in Figure 1.

(A.1) (A.2)

Fig. 1. The initial meshes used in the adaptive algorithm, Algorithm 1, when (A.1) Ω = (0, 1)2

and (A.2) Ω = (−1, 1)2 \ [0, 1)× (−1, 0].

In some of the numerical examples that we perform we go beyond the presented
theory and include a series of Dirac delta sources on the right-hand side of the tem-
perature equation. To be precise, we consider g =

∑

z∈D δz , where D denotes a finite
subset of Ω with cardinality #D. Within this setting, we suitably modify the error
estimator Ep,T , associated to the discretization of the heat equation, as follows:

(84) Ep,T :=

(

∑

K∈Th

Epp,K

)
1
p

, 4
3 − ǫ < p < 2,

for some ǫ > 0. For each K ∈ Th, the local error indicators Ep,K are given now as
follows: if z ∈ D ∩K and z is not a vertex of K, then

(85) Ep,K :=

[

∑

z∈D∩K

h2−p
K + hp

K‖RK‖pLp(K) + hK‖Jγ‖pLp(∂K\∂Ω)

]
1
p

.

If z ∈ D ∩K and z is a vertex of K, then

(86) Ep,K :=
[

hp
K‖RK‖pLp(K) + hK‖Jγ‖pLp(∂K\∂Ω)

]
1
p

.

If D∩K = ∅, then the indicator Ep,K is defined as in (86). We notice that the previous
modification is not needed if #D = 1; (84) and (54) coincide.

6.1. Convex domain. Let Ω = (0, 1)2, κ = 1, ν(x1, x2) = sin(x1x2) + 1.1, D =
{(0.25, 0.25), (0.25, 0.75), (0.75, 0.25), (0.75, 0.75)}, f0(x1, x2) = (1, 1)⊺, and f1(s) =
(s, s)⊺. In Figure 2, we report the results obtained for Example 1. We observe
that optimal experimental rates of convergence are attained for all the values of the
parameter p that we considered: p ∈ {1.0, 1.2, 1.4, 1.6, 1.8}. We also observe that
most of the refinement is concentrated around the singular source points.

6.2. Non-convex domain. Let Ω = (−1, 1)2 \ [0, 1) × (−1, 0], κ = 1, ν =
1, f0(x1, x2) = (0, 0)⊺, f1(s) = (10s, 10s)⊺, and D = {(−0.25, 0.5)}. In Figure 3,
we report the results obtained for Example 2. In spite of the involved geometric
singularity, our estimator exhibits optimal experimental rates of convergence for p ∈
{1.0, 1.6}. We also observe that refinement is concentrated around the singular source
point and the reentrant corner.
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Algorithm 1 Iterative Scheme

Input: Initial guess (u0
h, p

0
h, T

0
h) ∈ Xh ×Mh × Yh and tol = 10−8;

1: For i ≥ 0, find (ui+1
h , pi+1

h ) ∈ Xh ×Mh such that

ˆ

Ω

(νui+1
h · vh + |ui

h|ui+1
h · vh +∇pi+1

h · vh)dx =

ˆ

Ω

f(T i
h) · vhdx ∀vh ∈ Xh,

ˆ

Ω

∇qh · ui+1
h dx = 0 ∀qh ∈Mh.

Then, T i+1
h ∈ Yh is found as the solution to

ˆ

Ω

(κ∇T i+1
h · ∇Sh − T i+1

h ui+1
h · ∇Sh)dx = 〈δz , Sh〉 ∀Sh ∈ Yh.

2: If |(ui+1
h , pi+1

h , T i+1
h )−(ui

h, p
i
h, T

i
h)| > tol, set i← i+1 and go to step 1. Otherwise,

return (uh, ph, Th) = (ui+1
h , pi+1

h , T i+1
h ). Here, | · | denotes the Euclidean norm.

Algorithm 2 Adaptive Algorithm.

Input: Initial mesh T0 and data ν, κ, and f ;
1: Solve the discrete problem (33) by using Algorithm 1;
2: For each K ∈ Th compute the local error indicator EK defined in (83);
3: Mark an element K ∈ Th for refinement if

EK > 1
2 max
K′∈Th

EK′ ;

4: From step 3, construct a new mesh using a longest edge bisection algorithm. Set
i← i+ 1 and go to step 1.

6.3. The five-spot problem. Due to its practical importance, the quarter five-
spot problem has served as a paradigm to validate the stability and accuracy of
numerical methods for fluids in porous media [38]. In what follows, we address this
problem within the following setting: Let Ω = (0, 1)2, f0 := (0, 0)

⊺
, f1(s) = (s, s)⊺,

ν = 1, κ = 1, and D = {(0.5, 0.5)}. Instead of modeling injection and production
of well by a non-zero source term in the mass conservation equation, we consider a
non-homogeneous boundary condition u · n = 1 for all boundary edges that contain
the source (0, 0) and u · n = −1 for all boundary edges that contain the sink (1, 1).

In Figure 4 we report the results obtained for Example 3. We present elevations
for the velocity field, pressure, and temperature, streamlines for the velocity field,
and pressure and temperature contours on a suitable mesh. We observe an optimal
experimental rate of convergence for p = 1.0. We also observe that the adaptive
refinement is mostly concentrated around the singular source point (0.5, 0.5), the
source (0, 0), and the sink (1, 1); see [38, Section 4.2] and [4, Section 5.3].
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