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Abstract

We propose a framework to study tipping points in reaction-diffusion equations (RDEs) in one spatial
dimension, where the reaction term decays in space (asymptotically homogeneous) and varies linearly
with time (nonautonomous) due to an external input. A compactification of the moving-frame coordinate
together with Lin’s method to construct heteroclinic orbits along intersections of stable and unstable
invariant manifolds allows us to (i) obtain multiple coexisting pulse and front solutions for the RDE by
computing heteroclinic orbits connecting equilibria at negative and positive infinity in the compactified
moving-frame ordinary differential equation, (ii) detect tipping points as dangerous bifurcations of such
heteroclinic orbits and, (iii) obtain tipping diagrams by numerical continuation of such bifurcations. We
apply our framework to an illustrative model of a habitat patch that features an Allee effect in population
growth and is geographically shrinking or shifting due to human activity or climate change. Thus, we
identify two classes of tipping points to extinction: bifurcation-induced tipping (B-tipping) when the
shrinking habitat falls below some critical length and rate-induced tipping (R-tipping) when the shifting
habitat exceeds some critical speed. We explore two-parameter R-tipping diagrams to understand how the
critical speed depends on the size of the habitat patch and the dispersal rate of the population, uncover
parameter regions where the shifting population survives, and relate these regions to the invasion speed in
an infinite homogeneous habitat. Furthermore, we contrast the tipping instabilities with gradual transitions
to extinction found for logistic population growth without the Allee effect.
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1 Introduction

Tipping points or critical transitions are often described as large and sudden changes in the state of an open
system that arise in response to small and slow changes in the external inputs. The phenomenon of tipping
is ubiquitous in natural and human systems, could be of great environmental impact, and has thus attracted
much interest from the scientific community over the past two decades, especially in climate science [36, 37],
as well as in ecology [19, 47, 58, 60, 63], where it is referred to as a “regime shift” [4, 59, 68, 69]. So far,
mathematical approaches to tipping have focused on examples and theory of instability in nonautonomous
ordinary differential equation (ODE) models [1, 2, 3, 10, 31, 32, 48, 52, 53, 61, 65]. These studies have
identified different critical factors for tipping as well as various tipping mechanisms. On the other hand,
tipping in spatially-extended systems modelled by nonautonomous partial differential equations (PDEs)
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has been much less explored [6, 11, 40]. While PDE models will likely exhibit new critical factors and
interesting tipping mechanisms, their analysis is more challenging and requires new methods.

In this work, we analyze tipping in spatially-extended systems modelled by reaction-diffusion equations
(RDEs) with reaction terms that are space dependent (heterogeneous), decaying at the boundaries (bi-
asymptotically homogeneous), and possibly time dependent (nonautonomous). Specifically, we develop a
mathematical framework that allows us to analyze tipping in such RDEs in terms of intersecting invariant
manifolds of saddle equilibria for a suitably compactified moving-frame ODE. Inspired by [6], we apply our
framework to an RDE model of a geographically shifting or shrinking ecosystem and describe two different
tipping mechanisms that are characteristic of spatially-extended systems.

When discussing tipping points in nonautonomous systems with time-varying external inputs, it is
useful to consider the corresponding frozen system with fixed-in-time inputs. In the frozen system, we
identify a desired stable state and refer to this state as the base state. When the external input changes
over time, the shape and position of the base state may change too, and the nonautonomous system will
try to adapt to the changing base state. In other words, the nonautonomous system will try to track the
stable branch of base states for the frozen system. However, in some cases tracking is not possible, and the
nonautonomous system tips from the base state to a different state, such as an alternative stable state. For
example, the base state may lose stability or disappear in a classical bifurcation at some critical level of the
external input. If this bifurcation is dangerous [3], meaning that it gives rise to a discontinuity in the stable
branch of base states, we say the system undergoes bifurcation-induced tipping or B-tipping [3]. What is
more, if the external input changes faster than some critical rate, the nonautonomous system may deviate
too far from the changing base state, cross some threshold, and tip to an alternative stable state, even
though the base state never loses stability or disappears. Such transitions are caused entirely by the rate of
change of the external input, and we say the system undergoes rate-induced tipping or R-tipping [3, 48, 65].

In our framework, we consider a one-dimensional RDE with a bi-asymptotically homogeneous reaction
term. In the moving frame, such an RDE reduces to a special nonautonomous moving-frame ODE that
is often described as a bi-asymptotically autonomous ODE [42, 66]. We exploit the asymptotic properties
of the nonautonomous moving-frame ODE and use the compactification technique of [66] to reformulate it
into an autonomous ODE on a suitably extended and compactified phase space. We refer to the ensuing
autonomous ODE as the compactified system. Different compactification methods have been used before
to study the phase space near infinity [15, 16, 18, 29, 43], compute linear spectra of nonlinear wave
solutions [23, 27], and facilitate analysis of nonautonomous ODEs [65, 66]. A particular advantage of
our compactified system is that, unlike the nonautonomous moving-frame ODE, it is autonomous and
contains regular equilibria from infinity. This allows us to obtain pulse and front solutions for the original
RDE by computing heteroclinic orbits that connect an equilibrium from negative infinity to an equilibrium
from positive infinity in the compactified system. We compute such heteroclinic orbits as intersections
of invariant manifolds of these equilibria, which automatically allows us to capture multiple coexisting
pulse and front solutions. In practice, we obtain the unstable invariant manifold of the equilibrium from
negative infinity and the stable invariant manifold of the equilibrium from positive infinity by combining an
adaptive collocation method [55] and pseudo-arclength continuation [13]. Intersections of these manifolds
are detected using Lin’s method for connecting orbits [39]. For convenience, all three numerical methods
are implemented in the continuation software package AUTO [14]. This implementation enables us to
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perform numerical continuation of heteroclinic orbits in the compactified system, giving rise to bifurcation
diagrams of pulse and front solutions for the original RDE. Finally, we identify tipping points as dangerous
bifurcations of pulse and front solutions in the moving frame of reference.

Inspired by the work done in [6], we choose as an illustrative example for our framework a mathematical
model of a habitat that is shrinking in size due to, for example, increased human activity, or shifting in
space due to, for example, global warming. The difference is that we consider a more general reaction
term. The reaction term used in [6] was a discontinuous piecewise-homogeneous function of space. In
other words, the spatial domain was separated into a homogeneous “good habitat,” where any non-zero
population tends toward the carrying capacity, and a homogeneous “bad habitat,” where population always
declines to extinction. This gives rise to a piecewise-autonomous ODE in a moving frame. Then, pulse
solutions for the original RDE were constructed in the moving frame by gluing orbit segments of a linear
autonomous ODE obtained inside the bad habitat and orbit segments of a nonlinear autonomous ODE
obtained inside the good habitat. In contrast, our reaction term is a nonhomogeneous C1-smooth function
of space with a continuous transition between the good and bad habitats. Such a reaction term gives
rise to a nonautonomous ODE in a moving frame, meaning that the approach of gluing orbit segments
of different autonomous ODEs does not apply. To address this problem, we propose a framework that
combines compactification, invariant manifold computations, Lin’s method, and numerical continuation to
study tipping from pulse and front solutions in RDEs with such reaction terms.

Most studies of geographically shifting ecosystems [6, 7, 38, 41, 50] focused on a monostable logistic
population growth model inside the good habitat. On the other hand, some studies [22, 54] considered
a bistable growth model that takes into account the effect of undercrowding at low population density,
also known as the Allee effect (see [64] and [12, Sec.3]). Roques et al. [54] considered three different
configurations of a two-dimensional spatial domain and found that the populations subject to the Allee
effect are more sensitive to the shape and position of the habitat. Harsch et al. [22] used integrodifference
equations to conduct case studies for the impact of moving habitats on (i) populations subject to the Allee
model, (ii) interspecific competitions, and (iii) disease-infected populations. Other work [5, 51] focused
on interspecific competitions and investigated the effect of moving habitats in invasion problems. Here,
we introduce a non-homogeneous C1-smooth habitat function, couple it with the Allee growth model, and
highlight the key differences from the the logistic growth model.

As the main result, we uncover B-tipping to extinction below a critical length of the habitat and R-
tipping to extinction above a critical speed of the shifting habitat. Each tipping point corresponds to a fold,
or equivalently saddle-node, bifurcation of pulse solutions for the RDE, which are obtained by computing a
codimension-one heteroclinic orbit along a (quadratic) tangency of invariant manifolds in the compactified
system. Furthermore, we continue these heteroclinic orbits in the system parameters to produce two-
parameter tipping diagrams, revealing nonobvious dependence of the critical length and critical speed on
the diffusion, or equivalently the dispersal rate, of the population.

The organization of the paper is as follows. Section 2 presents the general form of the RDE and the
specifics of the habitat model, and demonstrates the presence of both B-tipping and R-tipping via direct
numerical simulations. In Section 3, we outline the details of our mathematical framework for studying
pulse and front solutions in bi-asymptotically homogeneous RDEs. The framework is presented in four
steps: (i) nondimensionalization, (ii) reformulation of the problem and comparison to practiced approaches
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to obtaining pulse and front solutions by computing connecting orbits in the moving-frame ODE, (iii)
compactification, and (iv) numerical implementation. In Section 4 , we demonstrate the results for pulse
solutions and their bifurcations in the habitat model. Conclusions and final remarks are discussed in
Section 5.

2 The model

This paper considers nonlinear dynamics of RDEs in one spatial dimension

ut = Duxx + f (u,H(x− ct)) , (2.1)

with Dirichlet boundary conditions on an unbounded domain:

lim
x→±∞

u(x, t) = u± ∈ R, (2.2)

where the independent variables x ∈ R and t ∈ [0,∞) represent space and time, respectively, and the
subscripts represent partial derivatives ut = ∂u/∂t and uxx = ∂2u/∂x2.

As an illustrative example, we consider a conceptual model of a habitat that can shrink or shift [6],
where the state variable u(x, t) ≥ 0 represents the spatiotemporal density of the inhabiting population. In
this model, the constant diffusion coefficient D ≥ 0 quantifies the magnitude of population flux from higher
to lower density areas, while the space-dependent (heterogeneous) and time-dependent (nonautonomous)
reaction term

f(u,H(x− ct)), (2.3)

describes population growth. The spatial extent of the habitat supporting population growth, and the
linear shift of the habitat in x at a given constant speed c ≥ 0, are specified by the habitat function
H(x − ct), which is introduced in the next section. The model variables and different parameter values,
along with their physical units are summarized in table 1.

In typical reaction-diffusion problems, the reaction term is homogeneous (space independent) and au-
tonomous (time independent), the boundary conditions specify what types of traveling-wave solutions (e.g.,
fronts, pulses or wave trains) are possible, and the primary aim is to obtain such solutions and determine
their unknown speed. In our problem, the boundary conditions (2.2) together with the reaction term (2.3)
specify either travelling-pulse (u− = u+) or travelling-front (u− 6= u+) solutions and, in contrast to the
typical problems, the speed of travelling pulses is already given by c. Thus, it is convenient to define the
moving-frame coordinate

ξ = x− ct,

together with an equivalent state variable

U(ξ, t) = u(x, t),

and reformulate the BVP (2.1) and (2.2) in the moving frame with the given speed c, in terms of t and ξ
as the new independent variables. This gives the advection-reaction-diffusion equation (ARDE)

Ut = DUξξ + cUξ + f(U,H(ξ)), (2.4)
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Quantity Allee unit Allee value Logistic unit Logistic value

u, U indiv/km [0,∞) indiv/km [0,∞)

x km (−∞,∞) km (−∞,∞)

t yr [0,∞) yr [0,∞)

ξ km (−∞,∞) km (−∞,∞)

D km2/yr km3/yr varied km2/yr varied

β 1/yr 0.45 1/yr 5

γ km2/(indiv2 yr) 1 km/(indiv yr) 1

λ km/(indiv yr) 4
√
βγ 1/yr 2β

L km varied km varied

a km−1 5 km−1 5

c km/yr varied km/yr varied

Table 1: Physical quantities for system (2.1) with the logistic reaction term (2.8) and the Allee reaction term (2.9);
indiv, km and yr denote individuals, kilometers, and years, respectively.

with the boundary conditions

lim
ξ→±∞

U(ξ, t) = U± ∈ R. (2.5)

Note that the reaction term f in (2.4) is heterogeneous in ξ but no longer depends on time t. Furthermore,
travelling-pulse (travelling-front) solutions with speed c in the original-frame BVP (2.1)–(2.2) correspond
to stationary-pulse (stationary-front) solutions in the moving-frame BVP (2.4)–(2.5). We will use the term
pulse solutions (front solutions) to mean either, depending on the context. Such solutions can be obtained
by setting Ut = 0 in (2.4) and solving the ensuing heterogeneous BVP

DUξξ + cUξ + f(U,H(ξ)) = 0, (2.6)

lim
ξ→±∞

U(ξ) = U± ∈ R, (2.7)

where the subscripts denote new ordinary derivatives Uξ = dU/dξ and Uξξ = d2U/dξ2. The second-order
ODE in (2.6) is often referred to as a moving-frame ODE. The method of computing pulse and front
solutions (i.e., solving the BVP (2.6)–(2.7)) depends on the form of the reaction term, as will be explained
in Section 3.2.

2.1 The habitat model

In the illustrative example of a changing habitat, we consider two distinct population growth models that
are characterized by two different reaction terms. The logistic growth model, which is the focus of [6], is
characterized by the logistic reaction term

fL(U,H(ξ)) = −β U + λH(ξ)U − γ U2, (2.8)
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Figure 1: Continuous heterogeneous-in-ξ habitat function H
(

ξ) as defined in (2.10) with (a) a steep spatial gradient
a = 5 km−1 and (b) a gentle spatial gradient a = 0.5 km−1. In each panel, the three different colours represent three
different lengths L = 2, 5, and 8 km.

which accounts for limited resources at large population density. This quadratic function has two roots.
The zero root corresponds to extinction, while the positive root corresponds to the carrying capacity of
the habitat. In contrast, the Allee growth model is characterized by the Allee reaction term

fA(U,H(ξ)) = −β U + λH(ξ)U2 − γ U3, (2.9)

which accounts for limited resources at large population density as well as for the undercrowding Allee
effect at low population density; see [64] and [12, Sec.3]. The main difference from the logistic growth
model is that this cubic function has three roots and may give rise to bistability between extinction and
carrying capacity, which are separated by the unstable Allee threshold for population growth. Our focus
is on the analysis of the Allee growth model and how it contrasts with the logistic growth model. The
logistic growth model is discussed in the appendix.

For both growth models, the constant parameters β ≥ 0 and γ ≥ 0 represent the linear and nonlinear
death rates, respectively. The second term in (2.8) and (2.9) characterises birth processes and consists of
two factors. The constant parameter λ ≥ 0 is the birth rate 1, and the dimensionless and heterogeneous-in-ξ
habitat function

H(ξ) =
tanh (a (ξ + L/2)) − tanh (a (ξ − L/2))

2 tanh (aL/2)
, (2.10)

specifies the position of the good habitat patch in the moving frame; see Figure 1. By good habitat, we
mean the ξ-interval for which H ≈ 1. We also use the terms bad habitat to refer to the two ξ-intervals
for which H ≈ 0 and transitional habitat to refer to the two ξ-intervals where 0 . H . 1. Here, a > 0
quantifies the spatial slope of the transitional habitat, and L > 0 approximates the length of the good
habitat when a is large enough.

1Note that λ is the linear birth rate in the logistic model (2.8), and nonlinear birth rate in the Allee model (2.9).
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Figure 2: One-parameter attractor diagrams of pulses for the RDE (2.1)–(2.2) with the Allee reaction term (2.9),
obtained using the ARDE (2.4)–(2.5) with (2.9). (a) Decreasing (red) and then increasing (blue) the length L
of a static habitat (c = 0 km/yr) shows B-tipping from a standing pulse to extinction at a critical length L ≈
1.1748727 km. (b) Increasing (red) and then decreasing (blue) the speed c of a moving habitat with a fixed Lcrit =
5 km shows R-tipping from a travelling pulse to extinction at a critical speed ccrit ≈ 1.35536596 km/yr. Other
parameter values are given in Table 1.

To motivate our work, we consider two cases for a given L. In the case of sufficiently large a, there
is an abrupt transition between the good and bad habitats, with the length of the good habitat being
approximately L, and with a relatively short length of the transitional habitat; see Figure 1(a). In this case,
the heterogeneous habitat function in (2.10) can be approximated by a piecewise-homogeneous function
which greatly simplifies analysis of pulse solutions – we explain this in more detail in Section 3.2. However,
in the case of sufficiently small a, the transitional habitat extends over relatively wide ξ-intervals, and the
length of the good habitat is noticeably shorter than L; see Figure 1(b). This means that the piecewise-
homogeneous approximation is no longer valid, and there is a need for an alternative approach to analyze
pulse solutions.

2.2 B-tipping and R-tipping in the habitat model

To give a taste of different tipping mechanisms that are present in the habitat model, we perform direct
numerical simulations2 to detect stable pulse solutions in the ARDE (2.4)–(2.5) with the Allee reaction
term (2.9) and U± = 0; see Figure 2.

In Figure 2(a), we set c = 0 and simulate a slowly shrinking habitat. We start with L = 5, detect
a stable standing pulse solution, then decrement L, use the previously obtained solution as an initial
condition, converge to the new stable solution, and repeat this procedure until we reach L = 0. The
result is a stable branch of standing pulses that terminates at the critical length L = Lcrit ≈ 1.17537.
For 0 < L < Lcrit, the system always converges to the extinction solution U(x) = 0. Subsequently, we
increment L using the same procedure, which shows that the branch of extinction solutions is stable, at

2Using the method of lines [21, 67].
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least up to L = 5. Thus, the shrinking habitat undergoes B-tipping to extinction upon decreasing L, and
this transition cannot be reversed by increasing L back to its initial value.

In Figure 2(b), we fix L = 5 and simulate a geographically shifting habitat at different speeds c > 0. We
start with c = 0, detect a stable standing pulse solution, then increment c, and proceed in the same manner
as in Figure 2(a). The result is a stable branch of travelling pulses that terminates at the critical speed
c = ccrit ≈ 1.35527. For c > ccrit, the system always converges to the extinction solution U(x) = 0. Thus,
the moving habitat undergoes R-tipping to extinction above the critical rate ccrit. Note that, in contrast
to the branch of standing pulses near Lcrit in (a), the branch of travelling pulses in (b) remains nearly
constant, showing no indication of the imminent critical speed. In the remainder of the paper, we develop
a framework to study pulse solutions in bi-asymptotically homogeneous RDEs and use this framework to
uncover and discuss the dynamical mechanisms responsible for both tipping examples in Figure 2.

3 The framework

We here propose a framework that facilitates analysis of travelling pulses and fronts in the heterogeneous
and nonautonomous RDE (2.1) or stationary fronts and pulses in the heterogeneous ARDE (2.4). This
framework

• is applicable to C1-smooth reaction terms that are bi-asymptotically homogeneous in ξ, meaning
that 3

H(ξ) → h± ∈ R and f(U,H(ξ)) → f(U, h±) as ξ → ±∞,

and Dirichlet boundary conditions

lim
ξ→±∞

U(ξ, t) = U± ∈ R;

• uses the compactification technique of [66] to transform a pulse or front solution in system (2.1)
or (2.4) into a heteroclinic orbit in a suitably compactified system;

• uses Lin’s method [39] implemented in the continuation software package AUTO [14, 30] to com-
pute heteroclinic orbits in the compactified system that correspond to pulse and front solutions in
system (2.1) or (2.4).

We introduce this framework in four steps.
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Quantity Allee rescaling Allee value Logistic rescaling Logistic value

U
√

γ
a2D

U [0,∞) γ
a2D

U [0,∞)

z a ξ (−∞,∞) a ξ (−∞,∞)

τ a2Dt [0,∞) a2Dt [0,∞)

β̃
√

β
a2D

varied
√

β
a2D

varied

L̃ aL varied aL varied

c̃ c
aD

varied c
aD

varied

Table 2: Dimensionless variables and parameters for system (3.1)–(3.2) with D > 0.

3.1 Nondimensionalization

In the first step, summarized in Table 2, we rewrite the BVP (2.6)–(2.7) in terms of a dimensionless
moving-frame coordinate z and a dimensionless state variable U(z) as 4

Uzz + c̃Uz + f̃(U , H̃(z)) = 0, (3.1)

lim
z→±∞

U(z) = U± ∈ R. (3.2)

A particular advantage of this nondimensionalization is that the number of parameters in the system
reduces from seven to just three, namely, c̃, β̃, and L̃. This advantage becomes clear from the rescaled
Allee reaction term (2.9),

f̃A(U , H̃(z)) = U
(

−β̃2 + 4β̃ H̃(z)U − U2
)

, (3.3)

and the rescaled habitat function (2.10),

H̃(z) =
tanh(z + L̃/2) − tanh(z − L̃/2)

2 tanh(L̃/2)
. (3.4)

3.2 Pulses and fronts in the moving-frame ODE

In the second step, we rewrite the second-order BVP (3.1)–(3.2) as a first-order BVP at the expense of
introducing an additional dependent variable V(z) = Uz(z):

Uz = V, (3.5)

Vz = −c̃V − f̃(U , H̃(z)), (3.6)

lim
z→±∞

U(z) = U± ∈ R. (3.7)

3Note that this applies to the given habitat function in (2.10) with any combination of a and L.
4Note the slight abuse of notation where we use the same symbol U(z) for differently rescaled U(ξ) in the logistic and Allee

models.
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Figure 3: A pulse solution for an RDE can be obtained in the moving-frame ODE by computing (a) a smooth
homoclinic orbit to a saddle p when the reaction term is homogeneous (z-independent), (b) a piecewise-smooth
homoclinic orbit to a saddle p when the reaction term is piecewise-homogeneous (piecewise-constant in z), and
(c) a trajectory that limits to an equilibrium p± as z tends to ±∞ when the reaction term is bi-asymptotically
homogeneous.

We then view the moving-frame ODEs (3.5) and (3.6) as a dynamical system on R
2, where z plays the

role of time. The following three paragraphs overview how one can obtain pulse and front solutions to the
BVP (3.5)–(3.7) depending on the nature of the reaction term f̃ .

In typical problems with a z-independent reaction term f̃(U , h) and a constant h ∈ R, the ensuing
dynamical system is autonomous. Pulse solutions are possible if U± = U∗ and there is a saddle equilibrium
point p = (U∗, 0) in the (U ,V) phase plane, in which case such solutions can be computed as homoclinic
orbits to p; see Section 3.2(a). Similarly, front solutions are possible if U− 6= U+ and there are two different
equilibrium points, p− = (U−, 0) and p+ = (U+, 0), in which case such solutions can be computed as
heteroclinic orbits from p− to p+. This typical approach has been widely implemented, for example, in [33,
Ch.7], [34, Ex.6.3] and [9, 24, 56, 57].

In problems where the reaction term f̃(U, H̃(z)) can be approximated by a piecewise-homogeneous
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function, the ensuing dynamical system is piecewise-autonomous. For example, if

f̃(U, H̃(z)) =











f̃(U, h−), h− ∈ R, if z < −L̃/2,

f̃(U, h0), h0 ∈ R, if − L̃/2 ≤ z ≤ L̃/2,

f̃(U, h+), h+ ∈ R, if z > L̃/2,

(3.8)

the system is given by a set of three (constituent) autonomous dynamical systems that are defined on
three adjacent z-intervals with shared boundaries at z = ±L/2; see Figure 1(a). Pulse solutions are
possible if U± = U∗ and there is a saddle equilibrium point p = (U∗, 0) for z < −L̃/2 and z > L̃/2.
Then, such solutions can be computed as piecewise-smooth homoclinic orbits to p, via a concatenation
of three orbit segments of the three constituent autonomous systems that match at ‘times’ z = ±L̃/2;
see Section 3.2(b). Similarly, front solutions are possible if U− 6= U+ and there are two different equilibrium
points, p− = (U−, 0) for z < −L̃/2 and p+ = (U+, 0) for z > L̃/2, in which case such solutions can be
computed as piecewise-smooth heteroclinic orbits from p− to p+. Such a concatenation technique was
proposed in [26, 25, 35] and has been implemented in various contexts and applications [6, 28, 46, 62].

By contrast, a general z-dependent reaction term f̃(U , H̃(z)) poses an obstacle to computing pulse
and front solutions: it gives rise to a nonautonomous dynamical system (3.5)–(3.6) that has no equilibrium
points in the extended (U ,V, z) phase space; see Section 3.2(c). This obstacle becomes particularly apparent
when the BVP (3.5)–(3.7) has multiple ‘nearby’ pulse or front solutions that may be difficult to capture
by a shooting method or a collocation method. To overcome this obstacle, we exploit the fact that the
reaction term is bi-asymptotically homogeneous in the sense that

f̃(U , H̃(z)) → f̃(U , h±) as z → ±∞.

Specifically, we use an equilibrium point

p− = (U ,V) = (U−, 0),

for the autonomous past limit system

Uz = V,
Vz = −c̃V − f̃(U , h−),

(3.9)

and an equilibrium point
p+ = (U ,V) = (U+, 0),

for the autonomous future limit system

Uz = V,
Vz = −c̃V − f̃(U , h+),

(3.10)

to construct pulse or front solutions as heteroclinic orbits from p− to p+ in a suitably compactified system.
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3.3 Compactification

In the third step, we bring in equilibria of the limit systems from infinity by reformulating the nonau-
tonomous system (3.5)–(3.6) on R

2 into an autonomous compactified system on R
2× [−1, 1]. This requires

a suitable coordinate transformation that makes the additional dependent variable bounded and ensures
that the compactified system is at least C1-smooth on the extended phase space.

Reference [66, Sec. 4] constructs examples of coordinate transformations for different asymptotic decays
of the nonautonomous reaction term, ranging from sub-logarithmic to super-exponential decays. Here, we
focus on the case where the nonautonomous reaction term decays exponentially with a decay coefficient
ρ > 0 as z tends to ±∞, in the sense that [65]

lim
z→±∞

H̃z(z)

e∓ρz
exists for some ρ > 0.

Thus, we use the parameterized coordinate transformation [66, Eq.(48)], designed for exponentially or
faster decaying reaction terms, to augment the nonautonomous system (3.5)–(3.6) with

s = gα(z) = tanh
(α

2
z
)

, (3.11)

as a third dependent variable.5 The compactification parameter α > 0 quantifies the rate of the exponential
decay of both s(z) and sz(z). We note that s ∈ (−1, 1) for z ∈ R, use the definition of tanh−1 to obtain
the inverse transformation

z = g−1
α (s) =

1

α
ln

1 + s

1 − s
, (3.12)

and differentiate gα(z) in (3.11) with respect to z to derive the ODE for s:

sz =
α

2
(1 − s2).

Next, we continuously extend the new dependent variable s to include the limits from z = ±∞, which
correspond to s = ±1. This gives the autonomous compactified system















Uz = V,
Vz = −c̃V − f̃

(

U , H̃α(s)
)

,

sz =
α

2
(1 − s2),

(3.13)

defined on R
2 × [−1, 1], with the continuously-extended habitat function

H̃α(s) =











H̃(g−1
α (s)), for s ∈ (−1, 1),

h−, for s = −1,

h+, for s = 1.

(3.14)

5Note that nonautonomous reaction terms with algebraic or logarithmic decay will require different transformations. Also
note that we use the subscript α to denote dependence on α, not a partial derivative.
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It follows from [66, Cor.4.1] that if H̃(z) decays exponentially with a decay coefficient ρ > 0, then the
compactified system (3.13) is continuously differentiable on the extended phase space R

2 × [−1, 1] for any

α ∈ (0, ρ].

In other words, one needs to ensure that the compactification parameter α does not exceed the exponential
decay coefficient ρ.

A particular advantage of compactification is that the flow-invariant planes of the compactified sys-
tem (3.13), namely,

S− = R
2 × {−1} and S+ = R

2 × {1},
contain equilibria p− and p+ of the autonomous past (3.9) and future (3.10) limit systems, respectively.
When embedded in the extended phase space of the compactified system (3.13), p− becomes

p̃− = (U ,V, s) = (U−, 0,−1) ∈ S−,

and gains one additional eigendirection v− with positive eigenvalue α > 0, and p+ becomes

p̃+ = (U ,V, s) = (U+, 0, 1) ∈ S+,

and gains one additional eigendirection v+ with negative eigenvalue −α < 0; see [66, Rem. 3.1 and Cor.
4.1]. Thus, a pulse or front solution to the BVP (2.6)–(2.7) can be computed as a heteroclinic connecting
orbit from p̃− to p̃+ in the compactified system (3.13). The computation of such connecting orbits becomes
more convenient if

(i) v− is normal to S− and typical trajectories leave p̃− along v−,

(ii) v+ is normal to S+ and typical trajectories approach p̃+ along v+.

Suppose that p− and p+ are hyperbolic and note from the discussion of additional eigenvalues due to
compactification that p̃− and p̃+ must be hyperbolic too. If the unstable (stable) invariant manifold of p̃−

(p̃+) is of dimension one, conditions (i) and (ii) are satisfied for any α ∈ (0, ρ); see [66, Rem. 3.1 and Cor.
4.1] and [65, Prop.6.3]. In contrast, if the unstable invariant manifold of p̃− is of dimension greater than one,
condition (i) is satisfied for any α ∈ (0,min{ρ, l−}), where l− is the smallest-magnitude eigenvalue within
the unstable eigenspace of p− in the autonomous past limit system (3.9); see [65, Prop.6.3]. Similarly,
if the stable invariant manifold of p̃+ is of dimension greater than one, condition (ii) is satisfied for any
α ∈ (0,min{ρ, |l+|}), where l+ is the smallest-magnitude eigenvalue within the stable eigenspace of p+ in
the autonomous future limit system (3.10).

3.4 Numerical implementation

In the fourth step, we outline a numerical setup for computing pulse and front solutions in a reaction-
diffusion system (2.1) or (2.4) as heteroclinic orbits from p̃− ∈ S− to p̃+ ∈ S+ in the autonomous compact-
ified system (3.13). For convenience, we use the continuation software package AUTO [14], which allows
numerical continuation of solutions to autonomous ODEs subject to boundary conditions.
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We start with the notation and write

Γ(z) = (U(z),V(z), s(z)) ∈ R
2 × [−1, 1],

to denote a solution to the compactified system (3.13) at ‘time’ z. Furthermore, we write Eu(p̃−) to denote
the unstable eigenspace of p̃−, W u(p̃−) to denote a (numerical approximation of a local) unstable manifold
of p̃−, Es(p̃+) to denote the stable eigenspace of p̃+, and W s(p̃+) to denote a (numerical approximation of
a local) stable manifold of p̃+ in (3.13).

A heteroclinic orbit from p̃− to p̃+ in (3.13) is a special orbit that connects p̃− to p̃+ along an intersection
of W u(p̃−) and W s(p̃+). Such a connection can be approximated by a finite-time orbit segment that starts
from Eu(p̃−) sufficiently close to p̃− at time z = 0, and crosses Es(p̃+) sufficiently close to p̃+ at some later
time z = Z > 0. Specifically, for fixed ε−, ε+ > 0, we consider a finite-time orbit segment

Γ := {Γ(z) : z ∈ [0, Z]} ⊂ R
2 × [−1, 1], (3.15)

where
{

Γ(0) ∈ Eu(p̃−) and ‖Γ(0) − p̃−‖ = ε−,
Γ(Z) ∈ Es(p̃+) and ‖Γ(Z) − p̃+‖ = ε+.

(3.16)

In other words, Γ(0) lies on a half (n − 1)-sphere of radius ε− about p̃− within an n-dimensional Eu(p̃−),
and Γ(Z) lies on a half (m−1)-sphere of radius ε+ about p̃+ within an m-dimensional Eu(p̃−).6 Moreover,
ε− and ε+ are chosen small enough so that Eu(p̃−) is a good approximation of W u(p̃−) on the half (n−1)-
sphere about p̃−, and Es(p̃+) is a good approximation of W s(p̃+) on the half (m − 1)-sphere of about
p̃+.

To obtain such finite-time orbit segments, we implement Lin’s method [39] in AUTO [14]; see also
[1, 17, 30, 44, 45, 49, 70]. First, we need to identify a two-dimensional cross section Σ that is transversal
to the flow along the heteroclinic orbit and, for practical purposes, is sufficiently far from both p̃− and p̃+.
We note that sz = α/2 > 0 at s = 0 and choose

Σ := {(U ,V, s) : s = 0} = R
2 × {0}, (3.17)

which satisfies the transversality requirement.
Second, we compute two orbit segments, denoted Γ− and Γ+. We define Γ− as an orbit segment that

starts at time z = 0 from an (n− 1)-sphere about p̃− within Eu(p̃−) and meets Σ at time z = Z− > 0:

Γ− :=
{

Γ−(z) : z ∈ [0, Z−]
}

⊂ R
2 × [−1, 0],

where
{

Γ−(0) ∈ Eu(p̃−) and ‖Γ−(0) − p̃−‖ = ε−,
Γ−(Z−) ∈ Σ.

(3.18)

6The other half of the (n− 1)- and (m− 1)-spheres lies outside the compactified phase space R
2
× [−1, 1].
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Going backward in z, we define Γ+ as an orbit segment that starts at ‘time’ z = 0 from an (m− 1)-sphere
about p̃+ within Es(p̃+) and meets Σ at ‘time’ z = Z+ < 0:

Γ+ :=
{

Γ+(z) : z ∈ [Z+, 0]
}

⊂ R
2 × [0, 1],

where
{

Γ+(0) ∈ Es(p̃+) and ‖Γ+(0) − p̃+‖ = ε+,
Γ+(Z+) ∈ Σ.

(3.19)

The computation of these two orbit segments can be performed by the shooting method, that is, by
reducing the BVP to an IVP and solving the IVP using direct z-integration. Here, we use AUTO instead,
which solves the BVP directly by combining an adaptive collocation method [55] and pseudoarclength
continuation [13]. One advantage of our approach is to equidistribute the local discretization error along
the computed orbit segment. Another advantage is that once an orbit segment satisfying (3.18) or (3.19)
is computed in AUTO, it can be readily numerically continued in AUTO by varying a system parameter
or a parameterized boundary condition. To be more precise, in the case where the eigenspace Eu(p̃−)
is one-dimensional, the boundary condition Γ−(0) is fixed at a half zero-sphere (a single point) within
Eu(p̃−), a distance ε− from p̃−. Similarly, if Es(p̃+) is one-dimensional, the boundary condition Γ+(0) is
fixed at a single point within Es(p̃+), a distance ε+ from p̃+. However, in the case where the eigenspace
Eu(p̃−) is two-dimensional, the boundary condition Γ−(0) is contained in a half one-sphere (a half circle)
of radius ε− about p̃− within Eu(p̃−). Similarly, if Es(p̃+) is two-dimensional, the boundary condition
Γ+(0) is contained in a half circle of radius ε+ about p̃+ within Es(p̃+). Thus, when Eu(p̃−) or Es(p̃+) is
two-dimensional, we parameterise the boundary condition Γ−(0) on the respective half circle by an angle
parameter θ− ∈ (0, π), and Γ+(0) on the respective half circle by an angle parameter θ+ ∈ (0, π).

Third, we proceed to close the so-called Lin’s gap, which is defined as the Euclidean distance between
the end points Γ−(Z−) and Γ+(Z+) in Σ:

η =
∥

∥Γ−(Z−) − Γ+(Z+)
∥

∥ .

We are interested in structurally-stable (observable) pulse and front solutions, which typically correspond
to codimension-zero heteroclinic orbits from p̃− to p̃+, meaning that such connections persist on an open
set of system parameters. Hence, we close the Lin’s gap by varying parameterized boundary conditions
rather than system parameters. For example, when W u(p̃−) and W s(p̃+) are both two dimensional, their
transverse intersections are codimension-zero heteroclinic orbits, and we close the Lin’s gap by varying θ−

and θ+. The strategy is to fix ε− and ε+, solve the BVP (3.13) and (3.18) with a suitable choice of θ−,
solve the BVP (3.13) and (3.19) with a suitable choice of θ+, and then vary θ− and θ+ simultaneously and
monitor the Lin’s gap η. Once the Lin’s gap is closed, meaning that η = 0 and Γ−(Z−) = Γ+(Z+), we
concatenate Γ− and Γ+ to obtain a single orbit segment Γ that satisfies the desired BVP (3.13) and (3.16)
and has a finite integration time of Z = Z− − Z+. In this way, we can approximate a single heteroclinic
orbit from p̃− to p̃+ in (3.13), which corresponds to a pulse or front solution in (2.1) or (2.4).

In the case where both eigenspaces Eu(p̃−) and Es(p̃+) are of dimension two, there can be multiple
coexisting heteroclinic orbits from p̃− to p̃+. To capture multiple coexisting heteroclinic orbits, we proceed
as follows. We write Γ−

θ−
and Γ+

θ+
to indicate the dependence of the orbit segments Γ− and Γ+ on the
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angle parameters θ− and θ+. Numerical continuation in θ− of an orbit segment Γ−
θ−

satisfying (3.18) gives
a parameterized family of orbit segments

W u(p̃−) := {Γ−
θ−

: θ− ∈ (0, π)},

which approximates the two-dimensional local unstable manifold of p̃−. Similarly, numerical continuation
in θ+ of an orbit segment Γ+

θ+
satisfying (3.19) gives a parameterized family of orbit segments

W s(p̃+) := {Γ+

θ+
: θ+ ∈ (0, π)},

which approximates the two-dimensional local stable manifold of p̃+. W u(p̃−) and W s(p̃+) each intersects
the cross section Σ along a different curve. Typically, these two curves intersect each other at isolated
points in Σ. Each such isolated point in Σ approximates an intersection of Σ with a different heteroclinic
orbit from p̃− to p̃+. For each such isolated point in Σ, a finite-time approximation Γ to the corresponding
heteroclinic orbit is obtained by a concatenation of the two orbit segments, Γ− and Γ+, that meet at this
point.

Furthermore, in the case of multiple coexisting heteroclinic orbits from p̃− to p̃+, there is a possibility
that some connections become degenerate, for example, along a (codimension-one) tangency of W u(p̃−) and
W s(p̃+), as the system parameters are varied. Such degeneracies of heteroclinic orbits in the compactified
system (3.13) correspond to bifurcations of pulse and front solutions in a reaction-diffusion system (2.1)
or (2.4). Bifurcations of travelling waves is an area of great interest; see, for example, [20, 56, 57]. A
particular advantage of our framework is that these bifurcations can be detected by numerical continuation
of the orbit segment Γ in one of the system parameters in AUTO. Once detected, these bifurcations can
be then continued in two system parameters to produce two-parameter bifurcation diagrams of pulse and
front solutions.

4 Pulse solutions and their bifurcations in the habitat model

In this section, we study the existence and bifurcations of pulse solutions in the geographically shifting
habitat model (2.1)–(2.2), or equivalently (2.4)–(2.5), with

u± = U± = 0, (4.1)

the Allee reaction term (2.9), and the habitat function (2.10). Specifically, we use the framework out-
lined in section 3 to obtain pulse solutions for the habitat model by computing heteroclinic orbits in the
nondimensionalized compactified system















Uz = V,
Vz = −c̃V − f̃A

(

U , H̃α(s)
)

,

sz =
α

2
(1 − s2).

(4.2)
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Here, the dimensionless Allee reaction term (3.3) is given in terms of s instead of z,

f̃A

(

U , H̃α(s)
)

= −β̃2U + 4β̃ H̃α(s)U2 − U3, (4.3)

using the rescaled and extended habitat function H̃α(s) from (3.14) with h± = 0 and

H̃(g−1
α (s)) =

eL̃ − e−L̃

tanh
(

L̃
2

)

(

eL̃ + e−L̃ +
(

1+s
1−s

)
2

α

+
(

1−s
1+s

)
2

α

) , (4.4)

which is derived by employing the inverse coordinate transformation (3.12) to express z in terms of s in
the rescaled habitat function (3.4). The compactified logistic model is given in appendix A.1.

4.1 Equilibria and their stability in the compactified habitat model

We consider the two extinction equilibria for the compactified system (4.2), namely,

p̃− = (U ,V, s) = (0, 0,−1) ∈ S−,

and
p̃+ = (U ,V, s) = (0, 0, 1) ∈ S+,

which correspond to u± = 0 in (2.2), or equivalently to U± = 0 in (2.5). Next, we note that the rescaled
habitat function H̃(z) in (3.4) decays exponentially to zero with a decay coefficient ρ = 2 as z → ±∞.7

Hence, we need to choose the compactification parameter

α ∈ (0, 2],

to ensure that the compactified system (4.2) is C1-smooth (continuously differentiable) at the added in-
variant planes S− containing p̃− and S+ containing p̃+; see section 3.3 and the references therein. Linear
stability analysis shows that p̃− is a saddle with eigenvalues

l−
1

=
−c̃−

√

c̃2 + 4β̃2

2
< 0, l−

2
=

−c̃ +

√

c̃2 + 4β̃2

2
> 0, and l−

3
= α > 0,

meaning that it has a two-dimensional local unstable invariant manifold W u(p̃−). Similarly, p̃+ is a saddle
with eigenvalues

l+
1

= l−
1
< 0, l+

2
= l−

2
> 0, and l+

3
= −l−

3
= −α < 0,

meaning that it has a two-dimensional local stable invariant manifold W s(p̃+). Next, we note that l−
2
≤ |l+

1
|

and, for practical convenience, we limit the choices for the compactification parameter to

α ∈
(

0,min{2, l−
2
, |l+

1
|}
)

, or equivalently α ∈
(

0,min{2, l−
2
}
)

,

7Equivalently, H̃(g−1
α (s)) decays to h± = 0 as s → ±1.
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to ensure that the additional eigenvector v−
3

(corresponding to l−
3

) is normal to S−, the additional eigen-
vector v+

3
(corresponding to l+

3
) is normal to S+, and typical trajectories leave p̃− along v−

3
and approach

p̃+ along v+
3

; see section 3.3 and the references therein. We then note that, for c̃ ≥ 0 and β̃ < 2, l−
2
∈ (0, β̃]

if and only if D > 4.5 × 10−3. Hence we choose

α =

{

l−
2
/2, if D > 4.5 × 10−3,

1, if 0 < D < 4.5 × 10−3.
(4.5)

We fix all the model parameters in Table 1, except for L, c, and D, which could be varied. Although we
work with the nondimensionalized compactified system (4.2), we specify the original parameters as input
parameters in all figures.

4.2 Pulse solutions as heteroclinic orbits in the compactified system

Codimension-zero heteroclinic orbits from p̃− to p̃+ along transverse intersections of W u(p̃−) and W s(p̃+)
in the extended phase space R× [−1, 1] of compactified system (4.2) correspond to structurally-stable pulse
solutions in the habitat model, whereas codimension-one heteroclinic orbits along tangent intersections
of W u(p̃−) and W s(p̃+) correspond to bifurcations of pulse solutions; see section 3.4 for more details.
Numerically, we approximate both types of heteroclinic orbits using a finite-time orbit segment (3.15) with
boundary conditions (3.16) parameterized by the angles θ− and θ+ as follows:

{

Γ(0) = p̃− + ε−(v−
2

cos θ− + v−
3

sin θ−),
Γ(Z) = p̃+ + ε+(v+

1
cos θ+ + v+

3
sin θ+).

(4.6)

Here, the unit eigenvectors v−
2

and v−
3

correspond to the eigenvalues l−
2

and l−
3

and span the unstable
eigenspace Eu(p̃−). The unit eigenvectors v+

1
and v+

3
correspond to the eigenvalues l+

1
and l+

3
and span the

stable eigenspace Es(p̃+). To ensure that s ∈ (−1, 1) for Γ(0) and Γ(Z), we use θ± ∈ (0, π); see section 3.4.
To compute multiple coexisting heteroclinic orbits from p̃− to p̃+, we use the numerical setup described

in the last two paragraphs of section 3.4. The results shown in Figure 4 include (a)-(b) intersecting two-
dimensional invariant manifolds W u(p̃−) and W s(p̃+), together with (c) the corresponding dimensionless
pulse solutions U∗(s). In panel (a), we plot the (light red) unstable manifold W u(p̃−) of p̃− ∈ S− and the
(light blue) stable manifold W s(p̃+) of p̃+ ∈ S+, each computed up to the (grey) two-dimensional cross
section Σ defined in (3.17). The invariant manifolds W u(p̃−) and W s(p̃+) each intersect Σ along a different
curve. The (dark red) intersection curve W u(p̃−) ∩ Σ and the (dark blue) intersection curve W s(p̃+) ∩ Σ
are shown in more detail in Figure 4(b). These two curves intersect each other in three isolated (black)
points in Σ, labelled U∗

0 , U∗
1 , and U∗

2 . Each of these points corresponds to an intersection of a different
heteroclinic orbit from p̃− to p̃+ with Σ. The three heteroclinic orbits are shown (in black) in the projection
onto (s,U)-plane in panel (c).

In the habitat model (2.1)–(2.2), the trivial heteroclinic orbit U∗
0 = 0 corresponds to the extinction

state, which is stable. The nontrivial heteroclinic orbits U∗
1 and U∗

2 correspond to pulses that are standing
when c = 0, or travelling when c > 0; see Figure 4(c). Pulse U∗

2 represents the carrying capacity of the
habitat and is stable. Pulse U∗

1 is unstable and is contained in the (infinite-dimensional) Allee threshold,
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Figure 4: Standing-pulse solutions for the RDE (2.1)–(2.2) with the Allee reaction term (2.9) obtained by com-
puting intersections of two-dimensional invariant manifolds Wu(p̃−) and W s(p̃+) in the compactified moving-frame
ODE (4.2) with the s-dependent Allee reaction term (4.3). (a) The unstable invariant manifold Wu(p̃−) of saddle p̃−

(red surface), the stable invariant manifold W s(p̃+) of saddle p̃+ (blue surface), intersections of Wu(p̃−) and W s(p̃+)
with the cross section Σ (3.17) (red and blue curves, respectively), and transverse heteroclinic intersections of Wu(p̃−)
with W s(p̃+) (black curves U∗

0 , U∗
1 , and U∗

2 ). (b) The cross section Σ from (a). (c) The stable extinction state U∗
0 ,

the unstable standing pulse U∗
1 , and the stable standing pulse U∗

2 , shown over the compactified dimensionless space
coordinate s. We used c = 0 km/yr, D = 0.8 km2/yr, and L = 5 km; other parameter values are given in table 1.

which separates initial states that converge to extinction U∗
0 from those that converge to the carrying

capacity U∗
2 .8

8The stability of U∗
0 , U

∗
1 , and U

∗
2 was obtained by numerical integration of the habitat model (3.1)–(3.4) using the method

of lines [21, 67].
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4.3 B-tipping in a shrinking habitat: Critical length

Here, we consider a static habitat with c = 0, meaning the the original space coordinate and the moving-
frame coordinate are identical, that is, x = ξ. Thus, the new variable s in (3.11) can be interpreted as a
compactified and rescaled original coordinate x:

s = tanh

(

1

4

√

β

D
x

)

.

Our aim is to describe standing-pulse solutions in the habitat model (2.1)–(2.2) and how they depend
on L. To start with, we compute branches of standing pulses in (2.1)–(2.2) by performing numerical
continuation of nontrivial heteroclinic orbits in parameter L in the compactified system (4.2). The ensuing
one-parameter bifurcation diagram for the Allee reaction term (4.3) is shown in Figure 5(a). The stable
extinction state U∗

0 exists for all L > 0 and is the only stationary solution for L sufficiently small. As L
is increased, there is a saddle-node (SN) bifurcation of standing pulses at some critical length L = Lcrit.
This bifurcation gives rise to two standing pulses that exist for L > Lcrit, namely, the unstable pulse U∗

1

and the stable carrying-capacity pulse U∗
2 , and explains the the attractor diagram in Figure 2(a).

Now consider a shrinking-habitat scenario during which L(t) slowly decreases over time, for example,
due to deforestation and changes in land use by the growing human population. We expect that the
ecosystem, represented by the red trajectory in Figure 5(a), tracks the stable branch of changing carrying-
capacity base states U∗

2 until L(t) reaches its critical value Lcrit. At this bifurcation point the carrying-
capacity base state U∗

2 disappears. The ensuing discontinuity in the stable branch of base states gives rise
to a sudden transition to the alternative stable state, namely, the extinction state U∗

0 . This transition is an
example of B-tipping because it is caused solely by a dangerous bifurcation of standing pulses and occurs
no matter how slowly L decreases. Ecologically speaking, a habitat with L < Lcrit becomes too small to
support population growth: dispersion brings the habitat population below the Allee threshold, leading to
extinction.

The critical length Lcrit can be detected by finding L that gives a codimension-one heteroclinic orbit
along a tangent intersection of W u(p̃−) and W s(p̃+) in the compactified system (4.2). This is shown in
more detail in Figure 6. The left column of Figure 6 shows the interplay between the unstable invariant
manifold W u(p̃−) and the stable invariant manifold W s(p̃+) on the two-dimensional cross section Σ in the
compactified system (4.2). The right column of Figure 6 shows the rescaled stationary solutions U∗(s) of
the habitat model (2.1)–(2.2) that correspond to the intersections of W u(p̃−) and W s(p̃+). For L > Lcrit,
the stable and unstable invariant manifolds intersect transversally in the three points marked with black
dots; see Figure 6(a1) and (b1). These intersections give rise to three codimension-zero heteroclinic orbits.
These orbits correspond to one trivial solution U∗

0 (s) that exists for L > 0, and two standing pulses
U∗
1 (s) and U∗

2 (s); see Figure 6(a2) and (b2). The situation is different when L reaches a critical level
L = Lcrit ≈ 1.16337. In addition to the transverse intersection of the manifolds at the origin, there is
a tangent intersection away from the origin. This tangent intersection gives rise to a codimension-one
heteroclinic orbit, which corresponds to a saddle-node (SN) bifurcation of standing pulses, where U∗

1 (s) and
U∗
2 (s) coalesce into U∗

1,2(s); see Figure 6(c1) and (c2). For L < Lcrit, there is only one transverse intersection
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Figure 5: One-parameter bifurcation diagrams of standing pulses for the RDE (2.1)–(2.2) obtained by numerical
continuation of heteroclinic orbits in the compactified moving-frame ODE. (a) In the Allee model (4.2)–(4.3) with
c = 0 km/yr and D = 0.8 km2/yr, the branches of stable pulses U∗

2 (solid black curve) and unstable pulses U∗
1

(dashed black curve) meet and terminate in a saddle-node (SN) bifurcation (black dot), while the extinction solution
U∗
0 = 0 (solid black line) is stable for all values of L; compare with fig. 2(a). (b) In the logistic model (A.1)–(A.2)

with c = 0 km/yr and D = 0.4 km2/yr, the branch of stable pulses U∗
1 (solid black curve) meets the extinction

solution U∗
0 = 0 and terminates in a transcritical (TR) bifurcation (black dot), where U∗

0 changes stability. Red
trajectories are the expected solutions of the system when L is decreased slowly. Other parameter values are given
in table 1.

of the manifolds at the origin, meaning that U∗
0 (s) is the only stationary solution for the habitat model;

see Figure 6(d1) and (d2).
For comparison, we show the one-parameter bifurcation diagram for the logistic growth model (A.1)–

(A.2) in Figure 5(b). As L is increased, there is a transcritical (TR) bifurcation of standing pulses, in
which a branch of stable carrying-capacity pulses U∗

1 bifurcates from the branch of stable extinction states
U∗
0 , while U∗

0 turns unstable. The main difference from the Allee reaction term is that TR is a safe
bifurcation, meaning that there is no discontinuity in the branch of stable solutions at TR. There is
no critical level L = Lcrit or bistability either. Thus, when L(t) slowly decreases over time, the (red
trajectory) ecosystem tracks the branch of changing carrying-capacity base states U∗

1 and declines toward
the alternative extinction state U∗

0 gradually, that is, without any sudden transitions. In other words, there
is no tipping point for the logistic reaction term.

4.4 R-tipping in a moving habitat: Critical speed

Here, we fix L = 5 > Lcrit and consider a habitat that is moving at a constant speed c > 0, for example, due
to changing weather patterns and ensuing geographical shifts in vegetation communities. Thus, the new
variable s in (3.11) can be interpreted as a compactified and rescaled moving-frame coordinate ξ = x− ct:

s = tanh

(

−c +
√

c2 + 4βD

8D
(x− ct)

)

.
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Figure 6: B-tipping in a shrinking habitat RDE (2.1)–(2.2) with the Allee reaction term (2.9) shown as (left column)
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Figure 7: One-parameter bifurcation diagrams of travelling pulses for the RDE (2.1)–(2.2) obtained by numerical
continuation of heteroclinic orbits in the compactified moving-frame ODE; refer to fig. 5 for more details. (a) The
Allee model (4.2)–(4.3) with L = 5 km and D = 0.8 km2/yr; compare with fig. 2(b). (b) The logistic model (A.1)–
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Our aim is to describe travelling-pulse solutions in the habitat model (2.1)–(2.2) and how they depend
on c. To start with, we compute branches of travelling pulses in (2.1)–(2.2) by performing numerical
continuation of nontrivial heteroclinic orbits in parameter c in the compactified system. The ensuing
one-parameter bifurcation diagram for the Allee model (4.2)–(4.3) is shown in Figure 7(a). The stable
extinction state U∗

0 exists for all c ≥ 0. For c > 0 sufficiently small, there are two travelling pulses in
addition to U∗

0 , namely, an unstable pulse U∗
1 and a stable carrying-capacity pulse U∗

2 that represents the
ability of an ecosystem to track the moving habitat. Interestingly, as c is increased, the amplitude of the
stable carrying-capacity pulse U∗

2 remains nearly unchanged, while the amplitude of the unstable pulse
U∗
1 increases. Then, at some critical speed c = ccrit, there is an SN bifurcation of travelling pulses, at

which U∗
2 and U∗

1 meet and disappear. For c > ccrit, the ecosystem always goes extinct since U∗
0 is the

only stable state, which explains the attractor diagram in Figure 2(b). This is an example of R-tipping
because extinction is caused entirely by the rate of change in the position of the otherwise stable ecosystem.
In other words, the spatial position of a static habitat patch in the infinite domain has no effect on the
stability of the carrying-capacity base state U∗

2 . Rather, it is the rate of change in the spatial position
of the habitat patch alone that causes extinction. Ecologically speaking, a habitat that is shifting faster
than ccrit cannot support population growth: the dispersion rate no longer allows the population to keep
pace with the shifting habitat, so that the population within the habitat drops below the Allee threshold,
leading to extinction.

It is important to note that if the external input is a linear function of time (or, equivalently, varies
at a constant speed), critical rates for R-tipping can be detected as classical autonomous bifurcations in a
suitable moving frame. This is the case here and in [3, Sec.3(a),(b)]. However, a different approach will be
required for external inputs that are nonlinear functions of time. Such inputs are left for future research.

The critical speed ccrit can be detected by finding c that gives a codimension-one heteroclinic orbit
along a tangent intersection of W u(p̃−) and W s(p̃+) in the compactified system (4.2). This is shown in
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Figure 8: R-tipping in a shifting habitat RDE (2.1)–(2.2) with the Allee reaction term (2.9) shown as (left column)
changing intersections of the (blue) stable and (red) unstable invariant manifolds on the cross section Σ (3.17) in the
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of travelling pulses. Other parameter values are given in table 1.
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more detail in Figure 8. The left column of Figure 8 shows the interplay between the unstable invariant
manifold W u(p̃−) and the stable invariant manifold W s(p̃+) on the two-dimensional cross section Σ in the
compactified system (4.2). The right column of Figure 8 shows the rescaled trivial and travelling-pulse
solutions U∗(s) of the habitat model (2.1)–(2.2) that correspond to the intersections of W u(p̃−) and W s(p̃+).
For 0 < c < ccrit, the stable and unstable invariant manifolds intersect transversally in the three points
marked with black dots; see Figure 8(a1) and (b1). These intersections give rise to three codimension-zero
heteroclinic orbits. These orbits correspond to one trivial solution U∗

0 (s) that exists for c > 0 and two
travelling pulses U∗

1 (s) and U∗
2 (s); see Figure 8(a2) and (b2). Note the increasing asymmetry in the shape

of the intersecting manifolds and travelling pulses, which can be understood in terms of the symmetry-
breaking advection term in (2.4) that is proportional to c. When c = ccrit ≈ 1.355264, in addition to the
transverse intersection of the manifolds at the origin, there is a tangent intersection away from the origin.
This tangent intersection gives rise to a codimension-one heteroclinic orbit, which corresponds to an SN
bifurcation of travelling pulses, where U∗

1 (s) and U∗
2 (s) coalesce into U∗

1,2(s); see Figure 8(c1) and (c2). For
c > ccrit, there is only one transverse intersection of the manifolds at the origin, meaning that U∗

0 (s) is the
only stationary solution in the moving frame; see Figure 8(d1) and (d2).

For comparison, we show the one-parameter bifurcation diagram for the logistic growth model (A.1)–
(A.2) in Figure 7(b). As c is increased, there is a TR bifurcation of travelling pulses at which a branch
of stable carrying-capacity pulses U∗

1 meets the branch of unstable extinction states U∗
0 and disappears,

while U∗
0 turns stable. Since TR is a safe bifurcation, the stable branch of the carrying-capacity base states

U∗
1 declines toward the alternative extinction state U∗

0 rapidly but gradually, that is, without any critical
speed. Thus, we do not consider this instability of a moving habitat with the logistic reaction term as
R-tipping, but rather as a rate-induced gradual transition to extinction.

4.5 Two-parameter bifurcation diagrams

In this section, we explore two-parameter bifurcation diagrams of pulse solutions in the habitat model (2.1)–
(2.2). Primarily, we are interested in the persistence of stable carrying-capacity pulses when multiple
parameters are varied. To start with, we compute the carrying-capacity pulse solution of the habitat
model (2.1)–(2.2) as a heteroclinic orbit in the compactified system and detect a codimension-one bi-
furcation of this pulse solution while varying a single parameter. Then we trace this bifurcation as a
one-dimensional curve in a two-parameter plane. In this way, we identify parameter regions of survival
with a stable carrying-capacity pulse and extinction with the extinction state being the only stable state.

The two-parameter bifurcation diagram in the (L, c)-plane for the Allee model (4.2)–(4.3) is shown in
Figure 9(a1)–(a2). For D = 1, the (red) extinction and (green) survival regions are separated by a (black)
curve of SN bifurcations of pulse solutions; see Figure 9(a1). Note that SN has a (dotted grey) horizontal
asymptote c = cinv. In other words, no pulses can propagate faster than c = cinv. It turns out that cinv,
often called the invasion speed, is the speed of a travelling front in an infinitely-long and homogeneous
habitat.9 The separating tipping curves SN for different values of D are shown in Figure 9(a2). As
the dispersal rate D is increased, the corresponding value of the invasion speed cinv (not displayed) also
increases, and the survival region becomes larger.

9See appendix A.2 for more details on the computation of cinv .
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Figure 9: Two-parameter bifurcation diagrams for the RDE (2.1)–(2.2) in the parameter plane (L, c) showing the
boundary between the regions of (red) extinction and (green) survival, obtained by numerical continuation of SN and
TR bifurcations of heteroclinic orbits in the compactified moving-frame ODE. The boundary is asymptotic to (the
horizontal gray line) c = cinv, where cinv depends on D; see appendix A.2 for details. (Left column) In the Allee
model (4.2)–(4.3), the tipping boundary is a SN bifurcation of pulses. (Right column) In the logistic model (A.1)–
(A.2), the boundary is a TR bifurcation of pulses. (Bottom row) The boundary for different values of D. Other
parameter values are given in table 1.

For comparison, the two-parameter bifurcation diagram in the (L, c)-plane for the logistic growth
model (A.1)–(A.2) is shown in Figure 9(b1)–(b2). The extinction and survival regions for D = 1 are
separated by a TR bifurcation of pulse solutions; see Figure 9(b1). The separating curves TR for different
values of D are shown in Figure 9(b2).

The two-parameter bifurcation diagram of pulse solutions in the (L,D)-plane for the Allee growth
model (4.2)–(4.3) is shown in Figure 10(a1)–(a2); note the logarithmic scale of D. For c = 1, the tongue-
shaped survival region is separated from extinction by a SN bifurcation of pulse solutions; see Figure 10(a1).
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Figure 10: Two-parameter bifurcation diagrams for the RDE (2.1)–(2.2) in the parameter plane (L,D) showing
the boundary between the regions of (red) extinction and (green) survival, obtained by numerical continuation of SN
and TR bifurcations of heteroclinic orbits in the compactified moving-frame ODE. See fig. 9 for more details.

For sufficiently large fixed L, survival is possible only within some bounded interval (Dmin,Dmax) with
Dmin > 0. When 0 < D < Dmin, the dispersal rate is too low for the population to keep pace with the
shifting habitat, and the habitat population falls below the Allee threshold, leading to extinction. When
D > Dmax, the large dispersal rate compels a larger proportion of the population to move outside the good
habitat, causes the good habitat population to drop below the Allee threshold, and also leads to extinction.
The observation that the population of moving habitats can only survive within a finite range of a dispersal
rate has also been reported in [54]. The separating tipping curves SN for different values of D are shown
in Figure 10(a2). For c > 0, the survival region of stable carrying-capacity travelling pulses sustain the
tongue-like shape with Dmin > 0. However, for c = 0, the survival region changes shape qualitatively so
that it extends to L = 0 and retains Dmax > 0, but Dmin becomes zero.

For comparison, the two-parameter bifurcation diagram of pulse solutions in the (L,D)-plane for the
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logistic growth model (A.1)–(A.2) is shown in Figure 10(b1)–(b2).
The two-parameter bifurcation diagram of pulse solutions in the (D, c)-plane for the Allee growth

model (4.2)–(4.3) is shown in Figure 11(a1)–(a2). For L = 8, the bubble-shaped survival region is separated
from extinction by a SN bifurcation of pulse solutions; see Figure 11(a1). For sufficiently small fixed c,
the survival region exists within a bounded interval (Dmin,Dmax) with Dmin > 0 for reasons similar to
those explained in the two paragraphs above. The separating tipping curves SN for different values of L
are shown in different colors in Figure 11(a2). When L is increased, the survival region extends over a
wider range in the (D, c)-plane. The different tipping curves accumulate on the dashed black curve, which
shows the invasion speed cinv for an infinitely-long homogeneous good habitat (L = ∞) as a function of
the dispersal rate D.

For comparison, the two-parameter bifurcation diagram of pulse solutions in the (D, c)-plane for the
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logistic growth model (A.1)–(A.2) is shown in Figure 11(b1)–(b2).

5 Discussion

A brief overview of the article. Tipping points, or critical transitions, have been studied predominantly
in ordinary differential equation (ODE) models. However, they remain largely unexplored in partial differ-
ential equation (PDE) models, where spatial dynamics can give rise to new tipping mechanisms. In this
article, we studied tipping points in a special class of PDEs, namely, reaction-diffusion equations (RDEs)
with a linearly time-varying and asymptotically-homogeneous reaction term. To analyze such problems,
we introduced a mathematical framework that is based on two primary ingredients: (i) compactification of
the moving-frame coordinate and (ii) computations of pulse and front solutions for such an RDE as hete-
roclinic orbits connecting two equilibria from infinity in the ensuing compactified ODE. As an illustrative
example, we considered a conceptual ecosystem model subject to a geographically moving or shrinking
habitat induced by climate change or human activity. Our focus was on tipping points to extinction for
the population growth model with an Allee effect (cubic nonlinearity) and how it contrasts to the simpler
logistic growth model (quadratic nonlinearity).

Summary of the framework. The summary of our framework is as follows. We started with a
nondimensionalization of variables and parameters, followed by a reformulation of the nondimensionalized
RDE into a first-order moving-frame ODE. Of importance is the fact that this ODE is only asymptot-
ically autonomous. Thus, we applied a compactification technique, adapted from [66], to transform the
nonautonomous ODE into an autonomous ODE on a suitably extended and compactified phase space
that contains equilibria of autonomous limit systems from infinity. In the last step of the framework, we
implemented a numerical method for obtaining pulse and front solutions for the RDE by computing het-
eroclinic orbits connecting these equilibria in the autonomous compactified ODE. Such heteroclinic orbits
can be detected as intersections of the corresponding stable and unstable invariant manifolds using Lin’s
method [39]. A particular advantage of our framework is that it also allows for numerical continuation of
pulse and front solutions, as well as their bifurcations, in the space of the system and input parameters.

Summary of the example. To demonstrate its applicability, the mathematical framework was
implemented in AUTO [14] and illustrated by the example of an ecosystem subject to a moving or shrinking
habitat. As a result, we provided new insight into nonlinear dynamics of the moving habitat problem by
performing the following:

• Computations of the two-dimensional unstable manifold of a hyperbolic saddle from negative infinity
and the two-dimensional stable invariant manifold of a hyperbolic saddle from positive infinity in the
compactified autonomous ODE.

• Computation of multiple heteroclinic orbits connecting these two saddles along intersections of the
manifolds. These heteroclinic orbits correspond to coexisting pulse solutions for the ecosystem RDE,
and may not be possible to obtain using traditional computational techniques.

• Continuation of these heteroclinic orbits to detect their bifurcations, which correspond to bifurcations
of pulse solutions for the ecosystem RDE. We distinguished between dangerous bifurcations that give
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rise to tipping points (abrupt transitions to extinction) and safe bifurcations that give rise to gradual
transitions to extinction

• Continuation of bifurcations of heteroclinic orbits for the compactified autonomous ODE to obtain
two-parameter bifurcation diagrams of pulse solutions for the ecosystem RDE.

Our main findings include bifurcation-induced tipping (B-tipping) to extinction below some critical length
of a shrinking habitat and rate-induced tipping (R-tipping) to extinction above some critical speed of a
moving habitat. We also showed that abrupt tipping points found for the Allee growth model were replaced
by gradual transitions to extinction for the logistic growth model. Finally, we examined the impact of
system and input parameters by analyzing curves that separate regions of survival and extinction in two-
parameter planes of: the habitat length and speed, the habitat length and population dispersion rate, and
the population dispersion rate and habitat speed.

Future work. One interesting research direction for the future is to generalize the mathematical
framework for tipping points in RDEs. Here, we considered reaction terms with linear time dependence,
namely, f(u, x − ct). Thus, we were able to simplify the original RDE to an ODE in the moving-frame
coordinate ξ = x − ct. More generally, one will be interested in reaction terms with a nonlinear time
dependence g(rt), namely, f(u, x − g(rt)). However, such an RDE no longer simplifies to an ODE in the
moving-frame coordinate ξ = x − g(rt). Other interesting research directions include more complicated,
possibly nonstationary, population dynamics within the habitat and extension to two spatial dimensions.
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A Appendix

A.1 Compactified logistic model

Here, we lay out the nondimensionalized compactified system for the logistic model















Uz = V,
Vz = −c̃V − f̃L

(

U , H̃α(s)
)

,

sz =
α

2
(1 − s2),

(A.1)

where the dimensionless logistic reaction term is expressed in terms of s and given by

f̃L

(

U , H̃α(s)
)

= U
(

β̃2
(

2H̃α(s) − 1
)

− U
)

, (A.2)

and the s-dependent habitat function, H̃α(s), is given by (3.14) and (4.4).

A.2 Invasion speed in a homogeneous good habitat

Here, we compute the invasion speed in an infinite homogeneous habitat (L = ∞), which is the speed of
travelling fronts for a constant H(ξ) = 1. Thus, the reaction terms in the RDE (2.1) and the moving-frame
ARDE (2.4) are now homogeneous and autonomous. In the nondimensionalized setting, this corresponds to
setting H̃(z) = 1 for all z, and the nonautonomous moving-frame ODE (3.5)–(3.6) is now autonomous. We
obtain travelling fronts for the homogeneous RDE (2.1) by computing heteroclinic orbits in the autonomous
moving-frame ODE (3.5)–(3.6).

A.2.1 Invasion speed in the Allee growth model

For the Allee model, we consider the ensuing autonomous system

Uz = V,
Vz = −c̃V − f̃A(U , 1),

(A.3)

with the Allee reaction term
f̃A(U , 1) = U

(

−β̃2 + 4β̃ U − U2
)

. (A.4)

System (A.3)–(A.4) has three equilibrium points,

U∗
0 := (U ,V) = (0, 0), U∗

1 := (U ,V) = ((2 −
√

3)β̃, 0), U∗
2 := (U ,V) = ((2 +

√
3)β̃, 0),

which represent extinction, the Allee threshold, and carrying capacity, respectively. Stability analysis shows
that U∗

0 and U∗
2 are always of saddle type. The Allee threshold equilibrium U∗

1 is a center for c = 0 and a
sink for c > 0. To find the speed c = cinv of travelling fronts, we seek a heteroclinic orbit that connects
the saddle equilibria U∗

0 and U∗
2 . We detect this heteroclinic orbit by computing the unstable manifold of
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Figure 12: The phase portrait of system (A.3)–(A.4), (a)–(b) before, (c) at, and (d) after the heteroclinic orbit.
Here, D = 0.8 and c is varied. From left to right, the black dots on the V -axis are the equilibria U∗

0 (saddle), U∗
1

(center for c = 0 and sink for c > 0), and U∗
2 (saddle). The blue and red orbit trajectories represent the stable

and unstable manifolds of U∗
0 and U∗

2 , respectively. The magenta trajectory represents the heteroclinic orbit that
connects U∗

0 with U∗
2 at c = cinv.

U∗
2 and the stable manifold of U∗

0 and finding c for which the two manifolds intersect; see Figure 12. In
Figure 12(a)–(b), where c < cinv , the unstable manifold of U∗

2 (red curve) lies below the stable manifold
of U∗

0 (blue curve). In Figure 12(c), where c = cinv, the two manifolds intersect along a codimension-one
heteroclinic orbit (magenta curve). In Figure 12(d), the unstable manifold of U∗

2 (red curve) lies above
the stable manifold of U∗

0 (blue curve) and connects to saddle U∗
1 instead. Since cinv depends on D, we

use numerical continuation of heteroclinic orbits to obtain the invasion speed curve in the parameter plane
(D, c). We find that the invasion speed curve cinv indeed marks the upper bound for the speed of travelling
pulses for a bi-asymptotically homogeneous habitat; see fig. 9(a1) and fig. 11(a2).
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A.2.2 Invasion speed in the logistic growth model

For the logistic model, the ensuing autonomous system is

Uz = V,
Vz = −c̃V − f̃L(U , 1),

(A.5)

with the logistic reaction term

f̃A(U , 1) = U
(

β̃2 − U
)

. (A.6)

System (A.5)–(A.6) has two equilibrium points,

U∗
0 := (U ,V) = (0, 0), U∗

1 := (U ,V) = (β̃2, 0),

which represent extinction and the carrying capacity, respectively. Stability analysis shows that U∗
0 is

always a sink and U∗
1 is always a saddle. The invasion speed can be obtained as follows; see, for example,

[6, 8]. When c̃2 < 4β̃2, U∗
0 is a stable spiral, and when c̃2 ≥ 4β̃2, U∗

0 becomes a stable node. The heteroclinic
orbit between U∗

0 and U∗
1 is of codimension-zero. However, when c̃2 < 4β̃2, this heteroclinic orbit crosses

the V-axis due to the spiralling nature of the spiral sink, which means that there is at least one negative
U -value along the heteroclinic orbit. On the other hand, when c̃2 ≥ 4β̃2, the heteroclinic orbit connecting
U∗
0 to U∗

1 does not violate the condition U(z) ≥ 0 for all z. Therefore, the corresponding travelling front
for c̃2 ≥ 4β̃2 is physically relevant if and only if c̃2 ≥ 4β̃2. Here, we define the invasion speed in the
logistic model as the value of c that corresponds to the onset of physically relevant travelling fronts. This
onset is given by the analytical expression c̃2 = 4β̃2, or equivalently, c = cinv = 2

√
βD. We find that the

invasion speed cinv indeed marks the upper bound for the speed of travelling pulses in the logistic model;
see fig. 9(b1) and fig. 11(b2).
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[8] José Canosa. On a nonlinear diffusion equation describing population growth. IBM Journal of Research
and Development, 17(4):307–313, 1973.

[9] Alan R Champneys. Homoclinic orbits in reversible systems and their applications in mechanics, fluids
and optics. Physica D: Nonlinear Phenomena, 112(1-2):158–186, 1998.

[10] Yuxin Chen, John A Gemmer, Mary Silber, and Alexandria Volkening. Noise-induced tipping under
periodic forcing: Preferred tipping phase in a non-adiabatic forcing regime. Chaos: An Interdisci-
plinary Journal of Nonlinear Science, 29(4):043119, 2019.

[11] Yuxin Chen, Theodore Kolokolnikov, Justin Tzou, and Chunyi Gai. Patterned vegetation, tipping
points, and the rate of climate change. European Journal of Applied Mathematics, 26(6):945–958,
2015.

[12] Brian Dennis. Allee effects: population growth, critical density, and the chance of extinction. Natural
Resource Modeling, 3(4):481–538, 1989.

[13] Eusebius J Doedel. Lecture notes on numerical analysis of nonlinear equations. In Numerical Contin-
uation Methods for Dynamical Systems, pages 1–49. Springer, New York, 2007.

[14] Eusebius J Doedel, Alan R Champneys, Fabio Dercole, Thomas F Fairgrieve, Yu A Kuznetsov, B Olde-
man, RC Paffenroth, B Sandstede, XJ Wang, and CH Zhang. AUTO-07P: Continuation and Bifur-
cation Software for Ordinary Differential Equations, 2007, https://github.com/auto-07p.

[15] Freddy Dumortier. Compactification and desingularization of spaces of polynomial Liénard equations.
Journal of Differential Equations, 224(2):296–313, 2006.

[16] Andrus Giraldo, Bernd Krauskopf, and Hinke M Osinga. Saddle invariant objects and their global
manifolds in a neighborhood of a homoclinic flip bifurcation of case B. SIAM Journal on Applied
Dynamical Systems, 16(1):640–686, 2017.

[17] Andrus Giraldo, Bernd Krauskopf, and Hinke M Osinga. Cascades of global bifurcations and chaos
near a homoclinic flip bifurcation: a case study. SIAM Journal on Applied Dynamical Systems,
17(4):2784–2829, 2018.

35

https://github.com/auto-07p


[18] Andrus Giraldo, Bernd Krauskopf, and Hinke M Osinga. Computing connecting orbits to infinity
associated with a homoclinic flip bifurcation. Journal of Computational Dynamics, 7(2):489–510,
2020.

[19] Karna Gowda, Hermann Riecke, and Mary Silber. Transitions between patterned states in vegetation
models for semiarid ecosystems. Physical Review E, 89(2):022701, 2014.

[20] Aric Hagberg and Ehud Meron. Pattern formation in non-gradient reaction-diffusion systems: the
effects of front bifurcations. Nonlinearity, 7(3):805–835, 1994.

[21] Samir Hamdi, William E Schiesser, and Graham W Griffiths. Method of lines. Scholarpedia, 2(7):2859,
2007.

[22] Melanie A Harsch, Austin Phillips, Ying Zhou, Margaret-Rose Leung, D Scott Rinnan, and Mark
Kot. Moving forward: insights and applications of moving-habitat models for climate change ecology.
Journal of ecology, 105(5):1169–1181, 2017.

[23] James Alexander, Christopher KRT Jones and Robert Gardner. A topological invariant arising in
the stability analysis of travelling waves. Journal für die reine und angewandte Mathematik, pages
167–212, 1990.

[24] Christopher KRT Jones. Stability of the travelling wave solution of the Fitzhugh-Nagumo system.
Transactions of the American Mathematical Society, 286(2):431–469, 1984.

[25] Christopher KRT Jones. Instability of standing waves for nonlinear Schrödinger type equations.
Ergodic Theory and Dynamical Systems, 8:119–128, 1988.

[26] Christopher KRT Jones and Jerome V Moloney. Instability of standing waves in nonlinear optical
waveguides. Physics Letters A, 117(4):175–180, 1986.

[27] Todd Kapitula and Björn Sandstede. Eigenvalues and resonances using the Evans function. Discrete
& Continuous Dynamical Systems, 10(4):857–869, 2004.
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