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Abstract

We consider a sharp-interface model of ABC triblock copolymers, for which the surface tension σij

across the interface separating phase i from phase j may depend on the components. We study global min-
imizers of the associated ternary local isoperimetric problem in R2, and show how the geometry of min-
imizers changes with the surface tensions σij , varying from symmetric double-bubbles for equal surface
tensions, through asymmetric double bubbles, to core shells as the values of σij become more disparate.
Then we consider the effect of nonlocal interactions in a droplet scaling regime, in which vanishingly small
particles of two phases are distributed in a sea of the third phase. We are particularly interested in a degen-
erate case of σij in which minimizers exhibit core shell geometry, as this phase configuration is expected
on physical grounds in nonlocal ternary systems.

1 Introduction

In this paper we continue our study of ternary systems, in which three constituents or phases interact
through both short range attractive and long range repulsive forces. A prominent example of such ternary
systems are the ABC triblock copolymers, linear chains of molecules consisting of three subchains, joined
covalently to each other. A subchain of type A monomer is connected to one of type B, which in turn
is connected to another subchain of type C monomer. Because of the repulsive forces between different
types of monomers, different types of subchain tend to segregate. However, since subchains are chemically
bonded in molecules, segregation can lead to a phase separation only at microscopic level, where A,B
and C-rich micro-domains emerge, forming morphological phases, many of which have been observed
experimentally: see Figure 1.

A triblock copolymer can be described as a stable critical point of an energy derived with Nakazawa and
Ohta’s density functional theory for triblock copolymers [17, 22]. This is a diffuse interface model, a nonlo-
cal version of the vector-valued Cahn-Hilliard energy. In this paper we consider periodic configurations in
two dimensions, so we pose our problem in the flat unit torus T2 =

[
− 1

2 ,
1
2
]2. The system is determined via

a vector-valued density function u = (u1, u2, u0) ∈ L1(T2,R3), in which each scalar function ui, i = 0, 1, 2,
gives the density of one constituent of the mixture. The free energy of the system is

Eε(u) := 1
2

ˆ
T2

ï
ε2

2 |∇u|
2 +W (u)

ò
dx+

2∑
i,j=1

εγij
2

ˆ
T2

ˆ
T2
G(x− y)ui(x)uj(y)dxdy. (1.1)
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Figure 1: Cross-sectional TEM image of PMMA-b-PVCa-b-PSt triblock copolymer thin flim. The inset image
shows schematic illustration of Core-Shell Cylindrical phase (blue: Pst, red: PVCa, yellow: PMMA) [31].
Reproduced from the Royal Society of Chemistry 2018 (Link to this Open Access Article).

W is a triple-well potential which achieves minimum value 0 at exactly three points: α1 = (1, 0, 0), α2 =
(0, 1, 0) and α0 = (0, 0, 1), and G is the Laplace Green’s function on T2, of mean zero. The functional Eε is
defined on{

u = (u1, u2, u0) : ui ∈ H1(T2;R), i = 0, 1, 2;
2∑
i=0

ui = 1; 1
|T2|

ˆ
T2
ui(x)dx = Mi, i = 1, 2

}
. (1.2)

Using Γ-convergence [9, 21], the variational structure of Eε is connected to minimization of an associated
sharp-interface model,

E(u) :=
∑

0≤i<j≤2
σijH1(∂Ωi ∩ ∂Ωj) +

2∑
i,j=1

γij
2

ˆ
T2

ˆ
T2
G(x− y)ui(x)uj(y)dxdy, (1.3)

where the densities ui are replaced by phase domains described by characteristic functions ui = χΩi of sets
Ωi, i = 0, 1, 2, of finite perimeter.

The constants σij , i 6= j, represent surface tension along the interfaces separating the phase domains,
and they are positive, material-dependent constants. Their values are determined from the Γ-limit of the
vector-valued Cahn-Hilliard part of Eε [6, 26], as a geodesic distance in a degenerate Riemannian metric
induced on R2 by

√
W (u),

σij = inf
®
√

2
ˆ 1

0

»
W (ζ(t))|ζ ′(t)|dt : ζ ∈ C1([0, 1];R3), ζ(0) = αi, ζ(1) = αj

´
. (1.4)

Conversely, given positive constants σij = σji, i 6= j, one might want to engineer a potential W for which
σij give the surface tensions along each interface in E(u). This may or may not be possible, as the definition
(1.4) imposes a necessary condition for σij to arise as coefficients of the perimeter in E(u) in any Γ-limit of
Eε, in the form of a set of triangle inequalities,

σij ≤ σik + σkj , 0 ≤ i, j, k ≤ 2. (1.5)

Our previous paper [1] discusses the special case σ01 = σ02 = σ12 = 1, which arises (for instance)
when W is symmetric with respect to permutations of the ui-axes. In this paper we consider the case of
unequal surface tensions σij , in which the geometry of minimizers can be quite different. Although it is
not motivated by Γ-convergence, we also consider a case where the triangle inequalities (1.5) are violated,
σ02 > σ01 + σ12.
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When the surface tensions σij obey the triangle inequalities (1.5), the variational problem (1.3) may
conveniently be posed with characteristic functions lying in BV spaces,{

u = (u1, u2, u0) : ui ∈ BV (T2; {0, 1}), i = 0, 1, 2;
2∑
i=0

ui = 1; 1
|T2|

ˆ
T2
ui(x)dx = Mi, i = 1, 2

}
. (1.6)

HereBV (T2; {0, 1}) is the space of functions of bounded variation that only take two values: 0 and 1. Thus,
each ui = χΩi where Ω1,Ω2,Ω0 is a partition of T2. The weighted perimeter is then re-expressed in terms
of the total variations of the components ui,

Pσ(Ω1,Ω2,Ω0) =
∑

0≤i<j≤2
σijH1(∂Ωi ∩ ∂Ωj) = 1

2

2∑
i=0

βi

ˆ
T2
|∇ui|, (1.7)

with weights

β1 = σ01 + σ12 − σ02, β2 = σ02 + σ12 − σ01, β0 = σ01 + σ02 − σ12. (1.8)

When (1.5) holds, each βi ≥ 0. Moreover, at most one of βi = 0, since we assume each σij > 0. We note that
since u0 = 1− u1 − u2, the state of the system is completely determined by the pair (u1, u2), or indeed any
pair of the triple (u1, u2, u0). In particular, the weighted perimeter Pσ is equivalent to the standard BV norm
on the cluster (Ω1,Ω2,Ω0), and thus is coercive and lower semicontinuous with respect to L1 convergence
in this case. The energy may then be expressed as

E(u) = 1
2

2∑
i=0

βi

ˆ
T2
|∇ui|+

2∑
i,j=1

γij
2

ˆ
T2

ˆ
T2
G(x− y)ui(x)uj(y)dxdy.

Our goal in this paper is to characterize global minimizers of this functional, both in the absence of the
nonlocal interaction (i.e., γij = 0) and in an appropriate “droplet scale” limit, in which minimizers form a
very dilute lattice of particles of two minority phases in a sea of the third phase [8, 2, 1].

The local isoperimetric problem

In section 2 we consider minimizers of the local isoperimetric problem, minimizing the perimeter among
clusters in R2 with given areas M1,M2, in the absence of the nonlocal term. We pose the problem in all of
R2 both because it is a natural setting, and because it plays an important role in the global minimization
of the nonlocal energy in the droplet regime, considered in section 4. The qualitative nature of minimizers
depends strongly on the choice of σij , and in particular on whether the triangle inequalities (1.5) hold strictly
or not. In case of strict triangle inequalities, isoperimetric sets with nonzero prescribed mass M1,M2 > 0
are double bubbles [11, 12, 13, 18, 15, 23, 24]; see (a) to (d) in Figure 2 and Figure 3 . This is consistent with
our result in our first paper, [1], in the unweighted case σij = 1, i 6= j, in which the isoperimetric sets are
standard double bubbles with equal angles 2π

3 at the triple junction points. In the weighted case, the angles
will be uniquely determined by the surface tensions via Young’s law [33, 25, 32, 29].

The case of equality in one of (1.5) is also interesting, and yields a completely different geometry for
minimizers. If β1 = 0, then we show that the optimal geometry is that of a core shell, CM1

M2
, with an inner

disk of area M2 surrounded by an annular region of area M1; see (e,f) in Figure 2 and Figure 3. While this
is a degenerate case, physically it is highly relevant as core shell constructions are often observed in nature.
Indeed, for an ABC triblock copolymer it seems more natural that minimizers form core shells than double
bubbles, because of the linear structure of the blocks. Since the bonding of the chains can only occur in
linear order, one might expect that between regions of phase A and phase C there must be a phase B region,
and that adjacency of phase A and C states should be energetically unfavorable.
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Figure 2: Numerical simulations: six stationary states in local ternary systems under different values of σ02.
Each stationary state evolves from random initial data. (a) A standard double bubble with σ02 = 1. (b)-(d)
Weighted double bubbles with σ02 = 1.6, 1.8, 1.9 respectively. (e) A tangential core shell with σ02 = 2. (f) A
generalized core shell with σ02 = 3. For all six simulations, σ01 = σ12 = 1, M1 = 0.12, M2 = 0.04.

This is indeed a degenerate setting, and the geometry of core shell minimizers is not uniquely deter-
mined by the perimeter alone, since the position of the interior disk in a core shell is arbitrary, from the
point of view of the weighted perimeter alone. The addition of the nonlocal term will resolve this degener-
acy, as we will see in Proposition 4.4.

For completeness, in numerical simulations, we also include the case β1 < 0. In this case, the optimal
geometry is also a core shell; see (f) in Figure 2 and Figure 3.

Finally, one may also consider the case β0 = 0, in which case minimization prefers the separation of the
cluster into disjoint single bubbles. Again, this is a degenerate case, and after adding the nonlocal term, the
relative position of the bubbles is not determined by the perimeter alone. Indeed, we expect that the effect
of the nonlocal repulsive term will be to push the two constituents far apart, as in the binary case.

Nonlocal effects

It is well-known that the Green’s function term in E(u) competes directly with the local isoperimetric term,
in the sense that it is maximized by disks. In order to analyze its role in global minimizers we adopt the
droplet regime scaling, introduced by Choksi-Peletier [8], a critical scaling in which both the isoperimetric
and nonlocal terms in the energy act at the same energy scale. This choice of material parameters (dis-
cussed in some detail in section 4) represents a dilute limit as the masses of phases A and B both tend
to zero, but with correspondingly large interaction coefficients on the Green’s function so that a rescaled
characteristic function of each’s phase domain behaves as Dirac delta measures in the limit. Introducing a
small parameter η > 0, which gives the length scale of a “droplet” of phaseA orB, we consider the rescaled
energy

Eη(vη) = η

2

2∑
i=0

βi

ˆ
T2
|∇vi,η|+

2∑
i,j=1

Γij
2| log η|

ˆ
T2

ˆ
T2
GT2(x− y)vi,η(x)vj,η(y)dxdy, (1.9)
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Figure 3: Numerical simulations. Compared to Figure 2, here we reverse the values of M1 and M2, that is,
M1 = 0.04, M2 = 0.12. For all six simulations, σ01 = σ12 = 1, and from (a) to (f), σ02 = 1, 1.6, 1.8, 1.9, 2, and
3, respectively.

for vη = (v1,η, v2,η) = η−2χΩη ∈ [BV (T2; {0, η−2})]2 with prescribed masses,
´
T2 vi,η = Mi, i = 1, 2. Here

Γij = | log η|η3γij ; see Section 4 for more details.
As in [8, 1], finite energy configurations Eη(vη) ≤ C have a concentration structure (see Lemma 4.1) by

which vη splits into an at most countable collection of indecomposable clusters (in the sense of Maggi [16,
Chapter 29]) with diameter O(η). For illustration, let’s take this structure as an ansatz: first, assume we
have an at most countable collection of finite perimeter 2-clusters in R2, {Ak}k∈N, where Ak = (Ak1 , Ak2),
with Aki ∈ R2, i = 1, 2, and

∑∞
k=1 |Aki | = Mi, i=1,2. Then choose distinct points ξk ∈ T2, and consider the

configuration,
Ωη =

⋃
k∈N

(ηAk + ξk), and vη = η−2χΩη .

Substituting into Eη yields:

Eη(vη) =
∞∑
k=1

2∑
i=0

η

2βi
ˆ
T2
|∇vki,η|+

Γij
2| log η|

∞∑
k,`=1

2∑
i,j=1

ˆ
T2

ˆ
T2
vki,η(x)GT2(x− y) v`j,η(y) dx dy

=
∞∑
k=1

Pσ(Ak) +
2∑

i,j=1

Γij
4π |A

k
i | |Akj |

+O(| log η|−1)

=
∞∑
k=1
Gσ(Ak) +O(| log η|−1),
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Figure 4: Numerical simulations: three stationary states in nonlocal ternary systems under different values
of σ02. Each stationary state evolves from random initial data. (a) Well-organized standard double bubbles
when σ02 = 1. (b) Well-organized weighted double bubbles when σ02 = 1.5. (e) Well-organized core shells
when σ02 = 2. For all three simulations, σ01 = σ12 = 1,M1 = 0.10,M2 = 0.05, γ11 = 16, 000, γ12 = γ21 =
0, γ22 = 54, 000. With changing σ02, here we can see the transition from multiple double bubbles to multiple
core shells.

with limiting energy of each component cluster (A1, A2),

Gσ(A) := Pσ(A) +
2∑

i,j=1

Γij
4π |Ai| |Aj |. (1.10)

The blow-up energy Gσ(Ak) is the weighted version of the energy of clusters studied in [1], and a ternary
extension of the one analyzed in the binary case in [8] in two dimensions. The nonlocality ofEη is expressed
in the quadratic terms which depend on the mass: the larger are M1,M2, the greater the need to split the
phase domains into more and more droplets. However, the nonlocal interaction does not affect the geom-
etry of minimizers, which are studied in section 2 for the various choices of weights σij . The deformation
in the shape of double-bubbles, from the equal-angles case (with equal weights σij = 1) to cases of very
different weight values, including well-organized weighted double bubbles and well-organized core shells,
are illustrated in Figure 4.

As in the unweighted case (and the binary case,) we prove two Γ-convergence results to describe the
behavior of minimizers (or low energy states) of Eη . The first limit (Theorem 4.8) describes the splitting of
masses and the fine scale geometry of the indecomposable clusters as minimizers of Gσ in R2. Let

e0(m) := min {Gσ(A) | A = (A1, A2) 2-cluster, with |Ai| = mi, i = 1, 2} , and (1.11)

e0(M) := inf
{ ∞∑
k=1

e0(mk) : mk = (mk
1 ,m

k
2), mk

i ≥ 0,
∞∑
k=1

mk
i = Mi, i = 1, 2

}
. (1.12)

Then, sequences of minimizers vη of Eη with mass M = (M1,M2) converge as measures vη ⇀ v0 =∑∞
k=1m

kδxk , where xk ∈ T2 and {mk}k∈N are determined by e0(M).
The second Γ-limit (Theorem 4.21) exploits the remainder terms, of order O(| log η|−1) in the expansion

of Eη(vη) above, to locate the centers xk of the droplets, and in the case of core shells, to determine the
explicit geometry of the shells. We recall from the discussion of the local isoperimetric problem above that
when β1 = 0 the perimeter term is degenerate, and the position of the interior disk is not determined
by minimizing Pσ . In Proposition 4.4 we show that the detailed geometry of core shells is determined at
the O(| log η|−1) level, depending on the relative values of the interaction coefficients Γ11,Γ12. When the
repulsion between phases is weak, that is, Γ12 is small, concentric core shells reduce the energy at second
order, while for stronger repulsion Γ12 > Γ11 core shells’ inner disks should be tangent to the exterior circle.
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Core shell assemblies

Ren & Wang have constructed critical points of E(u) representing dilute lattices of core shells [19] and
single bubbles [20], and stationary solutions with double-bubble lattices were constructed by Ren & Wei
[23]. Numerical studies of periodic minimizers suggest that these assemblies do appear as minimizers
of E(u) in many parameter regimes [28], and it is an interesting and challenging problem to verify this
rigorously. At least in the droplet regime limit described above, a first step is to study the limiting energy
Gσ , with given total mass M = (M1,M2) and weights σ. In our first paper [1] we proved many properties
of the minimizers of Gσ in the case of equal weights. We showed that the number of droplets is finite, and
the size of the constituent components is bounded in terms of the coefficients and masses. We showed that,
while a minimizer can exhibit both double-bubbles and single-bubbles, there can only be one species of
single-bubble if there is coexistence of single- and double-bubbles.

In section 3 we take up the same questions in case β1 = 0, and the local isoperimetric problem favors
core shell minimizers. In Lemma 3.1 we show that there is a lower bound m− on the mass of any droplet
constituent, whether single-bubble or component of a core shell, which depends only on the weights σij , the
coefficients Γij , and the total masses M1,M2. From this we may conclude (Corollary 3.2) that minimizing
configurations of Gσ can have only finitely many nontrivial indecomposable components. We note that
the finiteness of components in the binary case studied by Choksi & Peletier [8] was proven using the
concavity of the perimeter; as in our study of double-bubbles [1], the perimeter in the ternary case is not
globally concave, and so more delicate arguments are required.

As was the case with double-bubbles, many open questions remain. Numerical studies show regimes
in which minimizers appear to have only core shells, but we have no theorem which shows that this must
be the case. On the other hand, simulations also show that coexistence of core shells and single bubbles
can occur when one chooses values of Mi,Γij which are very different from each other, so any result in this
direction would have to take the ranges of values of the parameters into account.

On clusters

In this paper we use the framework of clusters of finite perimeter sets in R2, as set out in [16, Part IV].
A 2-cluster in R2 is a disjoint pairing A = (A1, A2) of finite perimeter sets, |A1 ∩ A2| = 0, each of finite
Lebesgue measure. We write the mass as m = (m1,m2), mi = |Ai|, i = 1, 2. It will be convenient for us to
permit one of the chambers to be empty, so the case where one of mi = 0 is allowed. The exterior domain
A0 = R2 \ (A1 ∪A2) has infinite measure, but its perimeter is included in the total weighted perimeter of
the cluster. As Ã0 = R2 \ A0 = (A1 ∪A2) has the same perimeter, it will often be convenient to replace A0

by Ã0 in calculating the perimeter, that is:

Pσ(A) = 1
2
î
β1PR2(A1) + β2PR2(A2) + β0PR2((A1 ∪A2))

ó
.

The chambers of a clusterA = (A1, A2) do not need to be connected, and indeed in studying the nonlocal
problem we expect that they will split into disjoint components. The proper measure theoretic definition
is that of indecomposability: a set E is indecomposable if whenever E = E1 ∪ E2 with |E1 ∩ E2| = 0 and
PR2(E) = PR2(E1) + PR2(E2), then one of |E1|, |E2| = 0. (See [5].)

Numerical methods

To minimize the free energy (1.1), we consider the L2 gradient flow dynamics. Periodic boundary condi-
tions are used here. To fulfill the mass constraints, we adopt a modified augmented Lagrange multiplier
approach. The coupled nonlocal Allen-Cahn equations with mass constraints are first reformulated via a
linear splitting scheme and then be solved efficiently by using the semi-implicit scheme to discretize the
time variable and the spectral method to discretize the space variables. The numerical simulations start
from random initial configurations satisfying the mass constraints.

7



Figure 5: One sample numerical simulation. The system starts from random initial data and converges
to a steady state of well-organized core shells. At the steady state, all core shells are concentric, of equal
size, and distributed in a perfect hexagon pattern. Here σ01 = σ12 = 1, σ02 = 2, M1 = 0.12, M2 = 0.04,
γ11 = 4, 000, γ12 = γ21 = 0, γ22 = 20, 000.
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2 The local isoperimetric problem

In this section, we discuss among all the partitions of R2, the minimizers of the local part Pσ ; that is,
minimizing

Pσ(A1, A2, A0) :=
∑

0≤i<j≤2
σijH1(∂Ai ∩ ∂Aj), (2.1)

among
{(A1, A2, A0) : |A1 ∩A2| = 0; |Ai| = mi, i = 1, 2;A0 = R2 \ (A1 ∪A2)}. (2.2)

As noted above, sinceA0 and Ã0 = A1 ∪A2 have the same boundary, the perimeter above may be expressed
in terms ofA1, A2 alone, and when convenient we may replace the exterior domain with the unionA1 ∪A2.
In particular, we may re-express the total perimeter as

Pσ(A) = Pσ(A1, A2, A1 ∪A2). (2.3)

In case the σij satisfy the triangle inequalites (1.5) we have the equivalent formulation of this isoperi-
metric problem in terms of BV characteristic functions, given in (1.7). We are also interested in the case of
σ02 > σ01 + σ12, in which the representation (1.7) is not coercive in the BV norm, and in this case a more
careful treatment of the minimization problem is required.

The geometry of minimizers depends strongly on the surface tension values σij , and we consider each
case separately.

2.1 Pattern 1: One Double bubble

When we assume that the triangle inequalities (1.5) hold with strict inequalities in each, minimizers of (2.1)
with m1 6= 0 6= m2 are double bubbles. This has been proven (in any dimension) by Lawlor [15]. This
geometrical problem was already studied (in the context of grain boundaries) by Mullins & Smith [25, 32].
Minimizers consist of smooth circular arcs which meet at triple junctions. The angle formed at a triple
junction must satisfy Young’s Law (also known as a Herring Condition): at each triple junction point, the
normal vectors nij to the arc separating phases i and j must satisfy the balancing condition,∑

i 6=j
σij nij = 0.
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This is equivalent to
sin θ1

σ02
= sin θ2

σ01
= sin θ0

σ12
; (2.4)

see Figure 6.

Figure 6: At triple junction points the angles θi between the normal vectors nki and nkj are determined by
the surface tensions σij via (2.4). On the left, a symmetric double bubble, with equal values of σij ; on the
right, σ02 > σ12 = σ01

.

The special case of identical weights σ01 = σ02 = σ12 = 1, has been studied in our previous paper [1]. In
this case,

Pσ(A1, A2, A0) =
∑

0≤i<j≤2
H1(∂Ai ∩ ∂Aj) = 1

2

2∑
i=0

PR2(Ai), (2.5)

which is a two component isoperimetric problem. The standard double bubble satisfying the 120 degree
requirement at the two triple junction points (where three interfaces meet) is the unique solution to this
isoperimetric problem [11, 13, 18]; see (a) in Figure 2 and Figure 3.

2.2 Pattern 2: One Core Shell

Core shell geometries can be expected in the degenerate case of the triangle inequality (1.5) where

σ02 ≥ σ01 + σ12, (2.6)

and that the other two inequalities in (1.5) hold strictly. With this hypothesis, the cost σ02 of a transition
from phase 2 to the background zero-phase is at least as large as a “composite interface” passing through
phase 1, so intuitively we expect a shell structure to minimize perimeter.

Definition 2.1. Given masses m1,m2 > 0, we define the class of generalized core shells, denoted Cm1
m2

, to consist of
pairs (A1, A2), |Ai| = mi, i = 1, 2, with an inner disk A2 of mass m2, and an outer annulus A1 of mass m1.

That is, A2 = Br2(p2) and A1 = Br1(p1) \Br2(p2), with r2 =
√
M2/π, r1 =

√
(M1 +M2)/π, and centers

p1, p2 ∈ R2 chosen such that A2 = Br2(p2) ⊂ Br1(p1). Note that this definition does not require the two
circles (the boundary of the disk and the outer boundary of the annulus) to be concentric; see (f) in Figure 2
and 3. In addition, this definition permits a special case in which the two circles are tangent to each other;

9



see (e) in Figure 2 and 3. Indeed, the position of the inner circle A2 does not affect the total perimeter of the
configuration, and so the local isoperimetric problem cannot distinguish between these generalized core
shells.

We expect the same geometry of minimizers in the more extreme case where σ02 > σ01 + σ12. In this
situation we cannot rely on the equivalent formulation (1.3) in BV in order to ensure existence of a mini-
mizer or lower semicontinuity, but we may still assert that core shell configurations Cm1

m2
must have smaller

perimeter than any other competitor. Hence, we state our geometry result for both cases at once:

Theorem 2.2. Let σij be given, such that
σ02 ≥ σ01 + σ12,

and let m1,m2 > 0 be given. Then the minimizer of Pσ is a core shell, ie, of the class Cm1
m2

.

In the case of equality in (1.5),
σ02 = σ01 + σ12, (2.7)

the proof is straightforward. So we start with the proof of this case.

Proof of Theorem 2.2, case of equality in (2.6). Applying (2.7) to (2.1), for any admissible cluster A1, A2, A0,

Pσ(A1, A2, A0) = σ01
[
H1(∂A0 ∩ ∂A1) +H1(∂A0 ∩ ∂A2)

]
+ σ12

[
H1(∂A1 ∩ ∂A2) +H1(∂A0 ∩ ∂A2)

]
= σ01PR2(A1 ∪A2) + σ12PR2(A2).

Since the area of A1 ∪A2 is fixed, that is, |A1 ∪A2| = m1 +m2, by the isoperimetric inequality, PR2(A1 ∪A2)
is minimized when ∂(A1 ∪A2) is a circle. Similarly, the area of A2 is fixed, PR2(A2) is minimized when ∂A2
is a circle. Since A2 ⊂ A1 ∪A2, we obtain a core shell, of the form Cm1

m2
. That is, given any admissible cluster

(A1, A2, A0) with masses m1,m2, its weighted total perimeter is bounded below by that of a core shell in
Cm1
m2

; a posteriori a minimizer exists, which is a core shell. Moreover, the inequality will be strict in case either
A1 ∪A2 or A2 are not disks, and so the class of minimizers is exactly Cm1

m2
.

When the inequality (2.6) is strict the situation is more delicate, as the weighted perimeter functional is
no longer lower semicontinuous. We need some preliminary results.

Lemma 2.3. Given σij , with σ02 > σ01 + σ12, then we can construct explicit sequences ui,n = 1Ai,n , i = 0, 1, 2,
converging to some ui = 1Ai in the strong L1 topology, such that

lim
n→+∞

Pσ(A1,n, A2,n, A0,n) < Pσ(A1, A2, A0).

Proof. Consider a sequence of configurations like in Figure 7, and we denote by Tn (resp. Bn) the thin layer
(resp. small ball) of type I material wrapping around the lobe of type II constituent (resp. hollowed out
from the lobe of type I material). Then by construction, we can choose |Bn| → 0 as n → +∞, and the
thickness of Tn also goes to zero. For any n, the perimeter of A2,n is completely insulated from A0,n, and
the contribution of the perimeter between type II and Tn is

+σ12H1(∂A2,n ∩ ∂Tn),

while that between Tn and A0,n is
+σ01H1(∂A0,n ∩ ∂Tn).

As the thickness of Tn goes to zero, both

H1(∂A0,n ∩ ∂Tn), H1(∂A2,n ∩ ∂Tn)

converge toH1(∂A2 ∩ ∂A0). Thus

lim
n→+∞

σ12H1(∂A2,n ∩ ∂Tn) + σ01H1(∂A0,n ∩ ∂Tn) = (σ01 + σ12)H1(∂A2 ∩ ∂A0). (2.8)
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But in the limit case, the boundary of the lobe of type II constituent will have no layer of type I constituent
insulating it anymore, so it will contribute

+σ02H1(∂A2 ∩ ∂A0)

to the perimeter term. This is greater than the sum (2.8). As the other terms are continuous when passing
to the limit n→ +∞, i.e.

lim
n→+∞

σ1jH1(∂(A1,n \Bn) ∩ ∂Aj,n) = σ1jH1(∂A1 ∩ ∂Aj), j = 0, 2

lim
n→+∞

σ01H1(∂(A1,n \Bn) ∩ ∂Bn) = 0,

we infer
lim

n→+∞
Pσ(A1,n, A2,n, A0,n) < Pσ(A1, A2, A0),

as desired.

Corollary 2.4. As a consequence of Lemma 2.3, the full nonlocal energy E(u) is also not lower semicontinuous with
respect to the strong L1 topology.

Proof. It suffices to notice that the interaction term is continuous with respect to the convergence from
Lemma 2.3.

As a consequence of Lemma 2.3, the existence of optimal configurations is significantly more challeng-
ing when σ02 > σ01 + σ12, as it prevents us from using most classical arguments relying on minimizing
sequences. Thus, we have to rely on an ad hoc construction.

We require a geometrical lemma which proves an inner-cone condition for minimizers of Pσ . We recall
that, since we are working with setsA1, A2, A0 of finite perimeter, both ∂Ai∩∂A0, i = 1, 2, areH1-rectifiable
and hence Lipschitz regular. The unit tangent vectors thus existH1-a.e, but there may be corners on any of
the components of the interfaces, and the following lemma restricts the sharpness of these angles. Define
the angle α0 as the the solution in (0, π2 ) of

1− sinα−
…
π

2 sin(2α) = 0.

Lemma 2.5. Let m1,m2 > 0, and (A1, A2, A0) in (2.2) be given. If there exists a point x0 ∈ Σ := ∂Ai ∩ ∂Aj such
that the interior (to Ai) angle between the right and left tangent lines to Σ at x0 has amplitude α < α0, then there
exists a perturbation of (A1, A2, A0) with the same respective masses but lower (weighted) perimeter.

Proof. Assume there exists a point x0 ∈ Σ := ∂Ai ∩ ∂Aj such that the angle between the right and left
tangent lines to Σ at x0 has amplitude 2α > 0. Then we perturb the entire configuration in the following
way:

1. first, we choose points pε, qε ∈ Σ such that the path distance on Σ between pε, qε and x0 is ε. Due
to the Lipschitz regularity, Σ is approximated in first order, near x0, by its tangent line, therefore we
have also

δε := |x0 − pε| = |x0 − qε| = ε+ o(ε).

2. Second, we connect pε and qε with a straight line segment Jpε, qεK, and define

Σ̃ε := Σ \ {portion of Σ between pε and qε} ∪ Jpε, qεK.

Geometrically, it is clear that
|pε − qε| = 2δε sinα+ o(ε),

thus
H1(Σ̃ε) = H1(Σ)− 2δε(1− sinα) + o(ε).

11



3. The construction in the previous step, however, alters the total masses of each type of constituent.
Indeed, it is clear that the mass of type i constituent inside the region delimited by

{portion of Σ between pε and qε} and Jpε, qεK,

whose area is
Aε := 1

2ε
2 sin(2α) + o(ε2),

has been simply removed, and been replaced with type j constituent. To balance this issue, we remove
a ball of area Aε from type j constituent, and replace it with type i constituent. Our final competitor
is the set obtained in this way.

By construction, such a competitor from the previous three steps will have the exact same total masses for
each type of constituent as the original configuration. The perimeter between types i and j constituents has
been decreased by 2δε(1− sinα) + o(ε) due to the construction in Step 2, and increased by 2

√
πAε in Step 3.

Since

2δε(1− sinα)− 2
√
πAε = 2ε[1− sinα−

…
π

2 sin(2α)] + o(ε),

which, since we assumed α < α0, where α0 is the solution of

1− sinα−
…
π

2 sin(2α) = 0,

becomes positive for all sufficiently small ε, we get that such a construction produces a competitor with less
total (weighted) perimeter. The proof is thus complete.

With this geometrical lemma we can then show that in the case of strict inequality in (2.6) that there
should be no interfaces between phases 2 and 0.

Lemma 2.6. Let σij be given, such that
σ02 ≥ σ01 + σ12.

Let m1,m2 > 0 be given, and let (A1, A2, A0) in (2.2) be a minimizer of (2.1). ThenH1(∂A0 ∩ ∂A2) = 0, i.e. A2 is
separated from the background A0 by A1.

Proof. Case I: σ02 > σ01 + σ12. Assume the opposite, i.e. H1(∂A0 ∩ ∂A2) > 0. We construct a competitor
with lower perimeter in the following way:

1. first, remove a ball Bε of area ε from A1, and fill it with background constituent A0. This step creates
a new perimeter ∂Bε, between A1 and the background A0. Thus the perimeter is increased by

+2σ01
√
πε.

2. Next, we claim that we can add a thin layer around ∂A2 ∩ ∂A0 of thickness ε/H1(∂A2 ∩ ∂A0), so the
total mass of type I constituent is preserved. This adds a new perimeter, again between A1 and the
background A0, of length

+σ01H1(∂A2 ∩ ∂A0) + f(ε)

for some function f(ε)→ 0 as ε→ 0. However, this step also completely erases the former boundary
∂A2 ∩ ∂A0, and transforms it into a boundary between A1 and A2: thus the perimeter decreases by a
term

(−σ02 + σ12)H1(∂A2 ∩ ∂A0).
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Figure 7: Construction of a competitor with lower perimeter

Assuming that step 2 can be achieved, we complete the proof of Lemma 2.6 and verify the details of the
construction of the modified domain below. The above construction induces a change in the perimeter of

+2σ01
√
πε+ f(ε)− (σ02 − σ01 − σ12)H1(∂A2 ∩ ∂A0) < 0,

which contradicts the minimality of (A1, A2, A0).
It remains to verify the details of the construction in step 2 above, constructing the insulating layer as in

Figure 7.

Step 1. Choosing the points. Take a curve Γ on ∂A2 ∩ ∂A0, and let γ : [0, 1] −→ Γ be a constant speed
parameterization. Furthermore, impose that the angle between the tangents γ′(0) and γ′(s), s ∈ [0, 1],
never exceeds 2π. Without loss of generality, assume the overall net turning from γ′(0) to γ′(1) is in the
counterclockwise sense, and we denote such turning by

A := ∠γ′(0)γ′(1) ∈ [0, 2π].

Let

Γn :=
n⋃
i=1

Jti−1,n, ti,nK, ti,n := γ(si,n), si,n := i

n
,

be the piecewise linear curve through all the ti,n. Note that this construction ensures H1(Γn) → H1(Γ).
Now, for each ti,n, i = 1, · · · , n − 1, denote by ν±i,n the left/right exterior (i.e. pointing towards the back-
ground) unit normal to Γn at ti,n, and let

tε,±i,n := ti,n + εν±i,n, i = 1, · · · , n− 1.

For i = 0, n, denote by νi,n the exterior unit normal to Γn.

Step 2. Constructing the layer. Connect t0,n to tε0,n, and tn,n to tεn,n, and then tε,+i−1,n to tε,−i,n , i = 1, · · · , n,
with line segments (with the convention tε,+0,n = tε0,n, tε,−n,n = tεn,n).

The resulting set

Jtε0,n, t0,nK ∪ Jtεn,n, tn,nK ∪
n⋃
i=1

Jtε,+i−1,n, t
ε,−
i,n K

however, might have two issues:

13



Figure 8: A schematic representation of the construction.

1. first, if the angle in ti,n is convex, then the line segments Jtε,+i−1,n, t
ε,−
i,n K and Jtε,+i,n , t

ε,−
i+1,nK do not intersect.

2. Second, if the angle in ti,n is concave, then the line segments Jtε,+i−1,n, t
ε,−
i,n K and Jtε,+i,n , t

ε,−
i+1,nK do cross

each other.

To overcome it, we do the following:

1. if the angle in ti,n is convex, then we connect the line segments , tε,−i,n and tε,+i,n with an arc of circle ωi,n
centered in ti,n.

2. If the angle in ti,n is concave, then define pεi,n := Jtε,+i−1,n, t
ε,−
i,n K ∩ Jtε,+i,n , t

ε,−
i+1,nK. Then, replace these two

segments with Jtε,+i−1,n, p
ε
i,nK ∪ Jpεi,n, t

ε,−
i+1,nK

Let Γεn be the resulting curve. By taking the limit n → +∞, we obtain a curve Γε that plays the role of
the outer boundary of the “insulating layer” from Figure 7.

Step 3. Estimating the length of Γεn. We want to estimate from above the difference H1(Γε) − H1(Γ), by
first estimatingH1(Γεn)−H1(Γn), and then pass to the limit n→ +∞.

Around a convex angle of amplitude 2α, there is

2εβ, β := π

2 − α,

extra length. See Figure 9.
Around a concave angle of amplitude 2α, there is

2ε tan β, β := π

2 − α,

less length. See Figure 10. Recalling that we have the extra pieces Jtε0,n, t0,nK and Jtεn,n, tn,nK, which might
add 2ε in length, we have

H1(Γεn)−H1(Γn) ≤ 2ε
[
1 +

N+∑
i=1

β+
i −

N−∑
i=1

tan β−i
]
, β±i := π

2 − α
±
i ,

where the α+
i (resp. α−i ) are the convex (resp. concave) angles.
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Figure 9: Geometry around a convex angle

Note that the tangent turns in opposite directions around a convex angle compared to a concave one,
thus the total turning of the tangent is

A+ −A− = A ∈ [0, 2π], A+ :=
N+∑
i=1

β+
i , A− :=

N−∑
i=1

β−i . (2.9)

Thus we need to bound
N+∑
i=1

β+
i −

N−∑
i=1

tan β−i

from above, subject to (2.9). Using the convexity of tan, and the fact that tan θ ≥ θ,

N+∑
i=1

β+
i −

N−∑
i=1

tan β−i ≤ A
+ −N− tan A−

N−
≤ A+ −A− = A.

Thus, combining all the above estimates,

H1(Γεn)−H1(Γn) ≤ 2(A+ 1)ε.

The right hand side is now independent of n, which allows to take the lim inf for n→ +∞: our construction
ensuredH1(Γn)→ H1(Γ), whileH1(Γε) ≤ lim infn→+∞H1(Γεn), hence

H1(Γε)−H1(Γ) ≤ 2(A+ 1)ε.

We may now complete the proof of Theorem 2.2, in the case of strict inequality in (2.6).

Proof of Theorem 2.2, remaining case. With the conclusion of Lemma 2.6, the conclusion of Theorem 2.2 fol-
lows as in the case of equality. Indeed, sinceH1(∂A0 ∩ ∂A2) = 0, we again obtain the following identity for
the total weighted perimeter,

Pσ(A1, A2, A0) = σ01H1(∂A0 ∩ ∂A1) + σ12H1(∂A1 ∩ ∂A2)
= σ01PR2(A1 ∪A2) + σ12PR2(A2).
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Figure 10: Geometry around a concave angle

Again,A2 ⊂ A1∪A2, and each is optimized by choosing a disk of the appropriate area, and thus Theorem 2.2
is proven in both cases.

It is interesting to think of the core shell as a limit case of the weighted double bubbles as we increase the
surface tension σ02 to a point where equality is attained in (1.5). The numerical experiments in Figure 2 and
Figure 3 illustrate this process. Beginning from the symmetric situation (all σij equal), we increase σ02; so
to reduce (2.1),H1(∂A0∩∂A2) will decrease and we observe a weighted double bubble will be the solution;
see (b) to (d) in Figure 2 and Figure 3. If we continue increasing σ02, when σ02 = σ01 + σ12, a generalized
core-shell with two circles tangential to each other is the minimizer; see (e) in Figure 2 and Figure 3. As the
location of the core shell is not determined by the geometry problem, we will see that it is the second order
Gamma convergence and the interaction term Γ12 that will determine the location.

2.3 Pattern 3: Two single bubbles

When σ12 ≥ σ01 + σ02, and strict inequality holds in the other two of (1.5), we expect to have single bubble
configurations. This case is similar to the previous one, except now it is the interface between A1 and A2
which is effectively penalized, and minimizers should prefer to insert a layer of A0 between these two
components. The consequence is that the optimal geometry separates the two minority phases into disjoint
balls.

Lemma 2.7. Let σij be given, such that
σ12 ≥ σ01 + σ02.

Let m1,m2 > 0 be given, and let (A1, A2, A0) in (2.2) be a minimizer of (2.1). Then H1(∂A1 ∩ ∂A2) = 0, and the
minimizer consists of disjoint balls A1, A2.

Proof. We can follow the same steps as in the proof of Lemma 2.6 in case σ12 = σ01 + σ02, but the situation
is simpler when σ12 > σ01 + σ02. Suppose for a contradiction that there exists a minimizer of (2.1) with
H1(∂A1 ∩ ∂A2) > 0. Let A′2 be a translation of A2, chosen such that A1 ∩ A′2 = ∅, and A′0 = R2 \ (A1 ∪A′2).
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Then, |A′2| = |A2|, and H1(∂A1 ∩ ∂A′2) = 0, while the other components of the boundary have the same
perimeter as before. Thus,

Pσ(A1, A
′
2, A

′
0) < Pσ(A1, A2, A0),

as σ01 + σ02 < σ12, which contradicts the minimality of (A1, A2, A0).
Now that we have established H1(∂A1 ∩ ∂A2) = 0, the total perimeter splits into the weighted sum of

the perimeters ofA1 andA2, and each is minimized independently, resulting in a disjoint union of two balls
of the given masses.

As in the core shell case, the degeneracy of the weighted perimeter is felt through the nonuniqueness of
minimizing configurations; the relative positions of the two bounded components of a minimizing cluster
is arbitrary.

3 The Geometry of Core Shell Configurations

In this section we study the combined effect of the local (weighted) isoperimetric energy and the nonlocal
interaction energy in the formation of core shell assemblies obtained by minimization of Eη (see (1.9)) in
the droplet regime limit. Following our analysis of the isoperimetric problem in the previous section, this
entails making the choice

σ02 = σ01 + σ12 (3.1)
in (1.5), in order that core shells are energetically preferred in Pσ . As described in the Introduction, in
Theorem 4.8 we will prove a Γ-convergence result for Eη as η → 0 to the limiting energy defined in (1.11),
(1.12), for any σij satisfying the triangle inequalities (1.5), including the case of equality above.

Figure 11: Another numerical simulation when σ02 = σ01 + σ12. These core shells are well-organized:
concentric, of equal size, and distributed in a hexagon pattern. Here σ02 = 2, σ01 = σ12 = 1, M1 = 0.12,
M2 = 0.06, γ11 = 20, 000, γ12 = γ21 = 0, γ22 = 100, 000.

By Theorem 2.2, with the choice (3.1) we have an explicit form for the local part of the energy,

inf

 ∑
0≤i<j≤2

σijH1(∂Ai ∩ ∂Aj) : |Ai| = mi, i = 1, 2;A0 = R2 \ (A1 ∪A2)


= 2σ01

»
π(m1 +m2) + 2σ12

√
πm2 (3.2)

which represents the total perimeter of a generalized core-shell when m1,m2 > 0. Then, substituting in
(1.10) and (1.11),

e0(m) = 2σ01

»
π(m1 +m2) + 2σ12

√
πm2 +

2∑
i,j=1

Γijmimj

4π . (3.3)
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In the case of m1 > 0,m2 = 0,

e0(m) = e0(m1, 0) = 2σ01
√
πm1 + Γ11m

2
1

4π . (3.4)

In the case of m1 = 0,m2 > 0,

e0(m) = e0(0,m2) = 2σ01
√
πm2 + 2σ12

√
πm2 + Γ22m

2
2

4π = 2σ02
√
πm2 + Γ22m

2
2

4π . (3.5)

In the above two cases, a core-shell is degenerated to a single bubble.
As in the previous studies of the droplet scaling for binary [8] and ternary systems [1], the limiting min-

imization problem (1.12) is very subtle since the division of the total masses M = (M1,M2) is determined
by minimization itself. In particular, although core shells are favored when both constituents m1,m2 > 0
are nontrivial, minimizers may exhibit a mixed state of core shells and single bubbles. In addition, it is
reasonable to expect that minimizers of e0(M) will only have finitely many connected components, and
that each constituent bubble should have a minimum size; these facts are known for the binary case, and in
some parameter regimes, for unweighted ternary systems [8, 1]. Such results are the goal of this section.

We recall (1.12)

e0(M) = inf
{ ∞∑
k=1

e0(mk) : mk = (mk
1 ,m

k
2), mk

i ≥ 0,
∞∑
k=1

mk
i = Mi, i = 1, 2

}
,

where M = (M1,M2).
First we show that having too small a mass is not energetically advantageous.

Lemma 3.1. There exists a lower bound m− depending on

Mi, σ01, and Γij , i, j = 1, 2,

such that no single bubble or core shell in a minimizing configuration can have total mass less than

m− := 32π3σ2
01

(1 +
√

2)2(Γ11 + 2Γ12 + Γ22)2(M1 +M2)2
.

Proof. Consider an arbitrary minimizing configuration. If there is only one bubble (single bubble or core
shell) then the thesis is trivial. Pick two bubbles (single bubble or core shell) whose masses are mk

i , i, k =
1, 2, where the index i denotes the constituent type, and mk

1 (resp. mk
2) is the “outer” (resp. “inner”) shell.

We allow for mk
i = 0 corresponding to the case of a single bubble. Their energy contribution is thus

2∑
k=1

2
√
π
[
σ01

»
mk

1 +mk
2 + σ12

»
mk

2

]
+

2∑
i,j,k=1

Γij
4π m

k
im

k
j . (3.6)

Combining them into a bubble, whose inner disk (resp. outer shell) has mass m1
2 +m2

2 (resp. m1
1 +m2

1), then
the energy contribution becomes

2
√
π

[
σ01

Ã
2∑
k=1

(mk
1 +mk

2) + σ12

Ã
2∑
k=1

mk
2

]
+

2∑
i,j=1

Γij
4π

( 2∑
k=1

mk
i

)( 2∑
k=1

mk
j

)
. (3.7)
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Denote mk := mk
1 +mk

2 , k = 1, 2. By subtracting (3.6) from (3.7) we get

2
√
π

[
σ01

Ã
2∑
k=1

(mk
1 +mk

2) + σ12

Ã
2∑
k=1

mk
2

]
+

2∑
i,j=1

Γij
4π

( 2∑
k=1

mk
i

)( 2∑
k=1

mk
j

)

−
2∑
k=1

2
√
π
[
σ01

»
mk

1 +mk
2 + σ12

»
mk

2

]
−

2∑
i,j,k=1

Γij
4π m

k
im

k
j

= 2
√
πσ01[

√
m1 +m2 −

√
m1 −

√
m2] + 2

√
πσ12[

»
m1

2 +m2
2 −
»
m1

2 −
»
m2

2]

+ 1
2π

[
Γ11m

1
1m

2
1 + Γ12(m1

1m
2
2 +m2

1m
1
2) + Γ22m

1
2m

2
2

]
.

By the optimality of our initial configuration, we need the above term to be nonnegative, i.e.

0 ≤ 2
√
πσ01[

√
m1 +m2 −

√
m1 −

√
m2] + 2

√
πσ12[

»
m1

2 +m2
2 −
»
m1

2 −
»
m2

2]

+ 1
2π

[
Γ11m

1
1m

2
1 + Γ12(m1

1m
2
2 +m2

1m
1
2) + Γ22m

1
2m

2
2

]
. (3.8)

Thus,

0 ≤ 2
√
πσ01[

√
m1 +m2 −

√
m1 −

√
m2] + 1

2π

[
Γ11m

1
1m

2
1 + Γ12(m1

1m
2
2 +m2

1m
1
2) + Γ22m

1
2m

2
2

]
Assume without loss of generality that m1 ≥ m2. Note that

√
m1 +

√
m2 −

√
m1 +m2 = 2

√
m1m2

√
m1 +

√
m2 +

√
m1 +m2

≥ 2
2 +
√

2
√
m2,

and

Γ11m
1
1m

2
1 + Γ12(m1

1m
2
2 +m2

1m
1
2) + Γ22m

1
2m

2
2 ≤ Γ11m

1m2 + Γ12(m1m2 +m2m1) + Γ22m
1m2

= (Γ11 + 2Γ12 + Γ22)m1m2

≤ (Γ11 + 2Γ12 + Γ22)(M1 +M2)m2

Thus (3.8) becomes

0 ≤ −4
√
πσ01

2 +
√

2
√
m2 + 1

2π (Γ11 + 2Γ12 + Γ22)(M1 +M2)m2

=⇒ m2 ≥ 32π3σ2
01

(1 +
√

2)2(Γ11 + 2Γ12 + Γ22)2(M1 +M2)2
,

concluding the proof since m1 ≥ m2.

Corollary 3.2. (Finiteness) For any M = (M1,M2), M1,M2 > 0, a minimizing configuration for e0(M) has
finitely many nontrivial components. That is, there exist N < ∞ and pairs m1, . . . ,mN , with mk = (mk

1 ,m
k
2) 6=

(0, 0), for which e0(M) =
∑N
k=1 e0(mk).

Proof. Lemma 3.1 gives that each single bubble / core shell must have total mass at leastm−. Since the total
combined mass of types I and II constituents is M1 +M2, we have

#core shells + #single bubbles ≤ M1 +M2

m−
=: N.
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Lemma 3.3. There exist computable lower bounds m−i , depending on

Mi, σ01, σ12, and Γij , i, j = 1, 2,

such that any bubble of type i constituent, be it a single bubble, or lobe in a core shell, in a minimizing configuration
must have mass at least m−i .

Proof. If type i constituent, i = 1, 2, is entirely in one bubble, then the lower bound on m−i is automatically
true. The proof is slightly different between the cases where there are at least two core shells, and where
there is only a single core shell with the rest being single bubbles.

Case 1: at least two core shells. Denote by mk
i , k = 1, 2 the masses of their lobes. By Lemma 3.1 we have

mk
1 + mk

2 ≥ m−, k = 1, 2, and assume that m2
2 is the smallest (for the other scenarios, the proof is similar).

We need to show that m2
2 cannot be both too small. The energy contribution of these two bubbles is

2∑
k=1

2
√
π
[
σ01

»
mk

1 +mk
2 + σ12

»
mk

2

]
+

2∑
i,j,k=1

Γij
4π m

k
im

k
j . (3.9)

Now we do the following construction: move the entire bubble of type II constituent, with mass m2
2, from

the second bubble to the first, Then take the equivalent amountm2
2 of type I constituent from the first bubble

and move it to the second. Therefore, this construction a core shell with inner disk (resp. outer shell) of
mass m1

2 + m2
2 (resp. m1

1 −m2
2), and a single bubble of type I constituent of mass m2

1 + m2
2. Their energy

contribution is thus

2
√
π
(
σ01

»
m1

1 +m1
2 + σ12

»
m1

2 +m2
2

)
+ Γ11(m1

1 −m2
2)2 + 2Γ12(m1

1 −m2
2)(m1

2 +m2
2) + Γ22(m1

2 +m2
2)2

4π

+ 2
√
πσ01

»
m2

1 +m2
2 + Γ11(m2

1 +m2
2)2

4π . (3.10)

Subtracting (3.10) from (3.9) gives

2
√
πσ12

[»
m1

2 +
»
m2

2 −
»
m1

2 +m2
2

]
− 1

2π

ï
Γ11(m2

1 −m1
1 +m2

2) + Γ12(m1
1 −m1

2 −m2
1 −m2

2) + Γ22m
1
2

ò
m2

2,

and due to the optimality of our initial configuration, such a difference must be negative. Thus we need

0 ≥ 2
√
πσ12

[»
m1

2 +
»
m2

2 −
»
m1

2 +m2
2

]
− 1

2π

ï
Γ11(m2

1 −m1
1 +m2

2) + Γ12(m1
1 −m1

2 −m2
1 −m2

2) + Γ22m
1
2

ò
m2

2

≥ 2
√
πσ12

2
√
m1

2m
2
2√

m1
2 +

√
m2

2 +
√
m1

2 +m2
2
− 1

2π

[
Γ11(m2

1 +m2
2) + Γ12m

1
1 + Γ22m

1
2

]
m2

2,

and using
m1

2 ≥ m2
2

the previous line gives

0 ≥ 2
√
πσ12

2
√
m1

2m
2
2√

m1
2 +

√
m2

2 +
√
m1

2 +m2
2
− 1

2π

[
Γ11(m2

1 +m2
2) + Γ12m

1
1 + Γ22m

1
2

]
m2

2

≥ 4
√
πσ12

(2 +
√

2)

»
m2

2 −
1

2π

[
Γ11(M1 +M2) + Γ12M1 + Γ22M2

]
m2

2.
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Therefore, for such inequality to hold, we need

1
2π

[
Γ11(M1 +M2) + Γ12M1 + Γ22M2

]»
m2

2 ≥
4
√
πσ12

(2 +
√

2)
,

and the proof of this case is complete.

Case 2: only one core shell. Using the same arguments from [8], we may conclude that all single bubbles
of the same type constituent have the same mass. Several cases are possible.

1. If there are two single bubbles of type i constituent, both with mass mk, then combining them into
one single bubble changes the energy by

2
√
πσ0i[

√
2mk − 2

√
mk]− Γii

2π [2|mk|2 − |2mk|2] = −2
√
π(2−

√
2)σ0i

√
mk + Γii

π
|mk|2.

Such change cannot be negative, as it would contradict the optimality of the initial configuration,
hence a necessary condition is

2π
√
π(2−

√
2)σ0iΓ−1

ii ≤ |m
k|3/2,

thus prohibiting mk from being too small. Then, by noting that the Euler-Lagrange equation contain
terms that diverge when a mass gets too small, we obtain a computable lower on the masses.

2. If there is only one other single bubble, then the entire configuration is made of a core shell and a
single bubble.

We first show that, in the core-shell, the type I constituent is forming the outer annulus contacting the
background, while the type II constituent is always concentrated in a ball. To this aim, we need to
compare the energies of the following configurations:

(a) a single bubble (of mass m3, and whatever constituent type), plus a core-shell where the type I
constituent (of mass m1) is forming the outer annulus and the type II constituent (of mass m2) is
concentrated in a ball.

(b) The same single bubble (of mass m3, and whatever constituent type), plus a core-shell where the
type II constituent (of mass m2) is forming the outer annulus and the type I constituent (of mass
m1) is concentrated in a ball.

The energy contribution of the single bubble is the same in both cases, as well as the interaction terms.
Thus only the (weighted) perimeters of the core-shells are different: in Case (a), this is equal to

2
√
π(σ12

√
m2 + σ01

√
m1 +m2), (3.11)

while in Case (b), this is equal to

2
√
π(σ12

√
m1 + σ02

√
m1 +m2),

which, since σ02 = σ01 + σ12, is equal to

2
√
π(σ12

√
m1 + σ01

√
m1 +m2 + σ12

√
m1 +m2). (3.12)

It is clear that (3.12) is always larger than (3.11), hence Case (b) is energetically unfavorable.

Thus we are left with two cases to consider:
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(a) a single bubble (of type I constituent and mass M1 − η), plus a core-shell where the type I con-
stituent (of mass η) is forming the outer annulus and the type II constituent (of mass M2) is
concentrated in a ball. The energy is thus

f1(η) = 2
√
π[σ12

√
M2 + σ01

√
M2 + η + σ01

√
M1 − η]

+ 1
4π

[
Γ11((M1 − η)2 + η2) + 2Γ12M2η + Γ22M

2
2

]
,

and

f ′1(η) = σ01
√
π
( 1√

M2 + η
− 1√

M1 − η

)
+ 1

2π

[
Γ11(2η −M1) + Γ12M2

]
.

Since f ′1(η) → −∞ as η ↗ M1, we conclude that the single ball cannot be too small. In order to
prevent critical configurations arising for very small (yet positive) η, we notice that the (algebraic)
equation

0 = f ′1(η) = σ01
√
π
( 1√

M2 + η
− 1√

M1 − η

)
+ 1

2π

[
Γ11(2η −M1) + Γ12M2

]
can be transformed in some 8th order polynomials by repeatedly taking the squares:

0 = f ′1(η) = σ01
√
π
( 1√

M2 + η
− 1√

M1 − η

)
+ 1

2π

[
Γ11(2η −M1) + Γ12M2

]
=⇒ 1√

M1 − η
− 1√

M2 + η
= 1

2πσ01
√
π

[
Γ11(2η −M1) + Γ12M2

]
=⇒

√
M2 + η −

√
M1 − η =

√
(M1 − η)(M2 + η)

2πσ01
√
π

[
Γ11(2η −M1) + Γ12M2

]
=⇒M2 +M1 − 2

»
(M1 − η)(M2 + η) = (M1 − η)(M2 + η)

4π3σ2
01

[
Γ11(2η −M1) + Γ12M2

]2
=⇒ 4(M1 − η)(M2 + η) =

ï (M1 − η)(M2 + η)
4π3σ2

01

[
Γ11(2η −M1) + Γ12M2

]2
− (M2 +M1)

ò2
(3.13)

As such, any solution of f ′1(η) = 0 is also root of (3.13), an 8th order polynomial, where the
coefficients depend only on Mi, Γij , σij . Therefore, the smallest (positive) root η∗ depends only
on Mi, Γij , σij , and no other critical configuration with 0 < η < η∗ can exist.

(b) A single bubble (of type II constituent and mass M2 − ζ), plus a core-shell where the type I
constituent (of mass M1) is forming the outer annulus and the type II constituent (of mass ζ) is
concentrated in a ball. The energy is thus

f2(η) = 2
√
π[σ12

√
η + σ01

√
M1 + η + σ02

√
M2 − η]

+ 1
4π

[
Γ22((M2 − η)2 + η2) + 2Γ12M1η + Γ11M

2
1

]
,

and

f ′2(η) =
√
π
( σ01√

M1 + η
+ σ12√

η
− σ02√

M2 − η

)
+ 1

2π

[
Γ22(2η −M2) + Γ12M1

]
.

Since
lim
η→0

f ′2(η) = +∞, lim
η→M2

f ′2(η) = −∞,

this means that there exists η0 > 0, depending only on Mi, σij , Γij , such that there cannot be any
stable configurations (and thus no optimal ones) if η < η0 or η > M2 − η0. Consequently, this
means that neither the single bubble, nor any lobes of the core-shell, can have too small a mass.

22



Combining all the above cases concludes the proof.

Lemma 3.4. For anyM = (M1,M2),M1,M2 > 0, when σ02 = σ01 +σ12 and Γ12 = 0, a minimizing configuration
for e0(M) can not have two different type of single bubbles.

Proof. Assume in a minimizing configuration for e0(M), there are two single bubbles (mk
1 , 0) and (0,ml

2).
Then replacing these two single bubbles by a core shell (mk

1 ,m
l
2) will reduce the energy

∑∞
k=1 e0(mk) since

e0(mk
1 , 0) + e0(0,ml

2)− e0(mk
1 ,m

l
2)

= 2σ01

»
πmk

1 + Γ11(mk
1)2

4π + 2σ02

»
πml

2 + Γ22(ml
2)2

4π

−
ñ

2σ01

»
π(mk

1 +ml
2) + 2σ12

»
πml

2 + Γ11(mk
1)2

4π + Γ22(ml
2)2

4π

ô
= 2σ01

√
π
[»

mk
1 +
»
ml

2 −
»

(mk
1 +ml

2)
]
> 0.

This contradicts with the minimality.

Existence of Core Shells: Lemma 3.4 implies that for any M = (M1,M2),M1,M2 > 0, when σ02 =
σ01 + σ12 and Γ12 = 0, any minimizing configuration for e0(M) must contain at least one generalized core
shell.

Remark 3.1. In a binary system [8] have shown that all bubbles are of equal size, by using the concavity of
e0(m) with respect to the single mass parameter m. In simulations it appears that the same phenomenon
should hold for double bubbles and core shells, that all components of a minimizer of the same type are
congruent. However, unlike the binary case, in ternary systems (3.3) a direct calculation of the Hessian
shows it to be indefinite, and so the observed congruence of forms remains an open question.

4 The nonlocal problem in the droplet regime

To see the effects of the nonlocal interaction we consider the Droplet rescaling, as in Choksi-Peletier ([8];
see also [1, 3].)

4.1 The Droplet Regime

We take a periodic domain T2. In the remainder of the paper, we assume that σij satisfies (1.5), and so
the perimeter term may be expressed in terms of total variation norms. Let ui = χΩi , i = 1, 2. As re-
marked upon earlier, while we must keep track of the perimeter of the exterior domain Ω0 = (Ω1 ∪ Ω2)c,
the perimeter term is the same for its complement, Ω̃0 = Ω1 ∪ Ω2. Thus, it will be convenient to define

u0 = χΩ1∪Ω2 ,

as it yields the same total variation,
ˆ
T2
|∇u0| =

ˆ
T2
|∇(1− u1 − u2)| =

ˆ
T2
|∇χΩ0 |.

Thus, the local part of the functional may be expressed in terms of the two “small” sets Ω1,Ω2 and the
constants βi ≥ 0, i = 0, 1, 2 as:

Pσ(Ω1,Ω2) =
∑

0≤i<j≤2
σijH1(∂Ωi ∩ ∂Ωj) = 1

2

2∑
i=0

βi

ˆ
T2
|∇ui|,
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with βi determined by (1.8), and so the energy becomes:

E(u) = 1
2

2∑
i=0

βi

ˆ
T2
|∇ui|+

2∑
i,j=1

γij
2

ˆ
T2

ˆ
T2
G(x− y)ui(x)uj(y)dxdy.

Remark 4.1. We note throughout that as long as the triangle inequalities (1.5) hold (even with βi = 0 in the
Core Shell or Single Bubble cases), the weighted perimeter Pσ(Ω1,Ω2) is equivalent to the standard norm
for the cluster in BV (T2; {0, 1}). That is, there exists a constant C = C(σij) with

1
C
Pσ(Ω1,Ω2) ≤

2∑
i=0

ˆ
T2
|∇χΩi | ≤ CPσ(Ω1,Ω2).

In particular, the compactness and convergence proofs done for the unweighted case βi = 1, ∀i = 0, 1, 2, in
[1] may be carried through to the weighted case with straightforward modifications.

As in [8, 1], we introduce a new parameter η which is to represent the characteristic length scale of the
droplet components. Thus, areas scale as η2, and so we choose mass constraints on u = (u1, u2),

ˆ
T2
ui = η2Mi

for some fixed Mi, i = 1, 2. We then rescale ui as

vi,η = ui
η2 , i = 0, 1, 2, with

ˆ
T2
vi,η = Mi, i = 1, 2, (4.1)

and thus the appropriate space for droplet configurations is:

Xη :=
ß
vη = (v1,η, v2,η) : η2vi,η ∈ BV (T2; {0, 1}), i = 1, 2; v1,ηv2,η = 0 a.e.,

ˆ
T2
vi,η = Mi, i = 1, 2

™
, (4.2)

We recall that we represent the exterior domain equivalently as v0,η = v1,η + v2,η .
In terms of vη ∈ Xη , the energy takes the form,

E(u) = η

Ñ
η

2

2∑
i=0

βi

ˆ
T2
|∇vi,η|+

2∑
i,j=1

γijη
3

2

ˆ
T2

ˆ
T2
vi,η(x)vj,η(y)dxdy

é
(4.3)

Finally, we scale the interaction matrix γ = [γij ] in such a way that both terms in (4.3) contribute at the same
order in η. This is accomplished by choosing

γij = 1
| log η|η3 Γij ,

with fixed constants Γij ≥ 0. Dividing by η, we thus obtain an O(1) valued energy for vη ∈ Xη , defined by:

Eη(vη) := 1
η
E(u) = η

2

2∑
i=0

βi

ˆ
T2
|∇vi,η|+

2∑
i,j=1

Γij
2| log η|

ˆ
T2

ˆ
T2
GT2(x− y)vi,η(x)vj,η(y)dxdy, (4.4)

and Eη(vη) = +∞ otherwise. This is the droplet scaling of [8], which we adopt in the remainder of the
paper.
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4.2 Expanding the energy in droplets

The advantage of the droplet regime for nonlocal isoperimetric problems is that it separates length scales
in the energy, so that both the local isoperimetric effects and the nonlocal repulsive interaction are both
observed but at different scales in η. As a result of this balancing of the strengths of the competing terms,
any finte energy configuration vη decomposes into an at most countable number of well-separated droplets,
each of diameter O(η).

In the following we assume that (vη)η>0 are a family in Xη with bounded energy, ∃C > 0 with Eη(vη) ≤
C, for all η > 0. Such configurations may be decomposed into indecomposable clusters (that is, connected
in a measure-theoretic sense) of diameter of O(η), for which the BV norm separates exactly. As in [1] we
may prove:

Lemma 4.1. Assume (1.5) holds, and let vη = η−2χΩη ∈ Xη with η
´
T2 |∇vη| ≤ C. Then, there exists an at most

countable collection vkη = η−2χΩkη ∈ Xη , with clusters Ωkη = (Ωk1,η,Ωk2,η), such that

(a) Ωki,η ∩ Ω`j,η = ∅, for k 6= ` and i, j = 1, 2.

(b) vη =
∑∞
k=1 v

k
η in Xη ; in particular,

ˆ
T2
|∇vi,η| =

∞∑
k=1

ˆ
T2
|∇vki,η|, i = 0, 1, 2.

(c) There exists C > 0 with diam(Ωkη) ≤ Cη for all k ∈ N.

Proof. Lemma 4.1 was proven in the case of equal weights in [1], and the same proof may be employed here.
However, it is also a consequence of the more general Decomposition Theorem [5, Theorem 1], for finite
perimeter sets in Rn; we sketch the argument here for completeness. Indeed, applying the Decomposition
Theorem in [5] to Ω0,η = Ω̄1,η ∪ Ω̄2,η for each η > 0 we obtain an at most countable disjoint collection of
finite perimeter sets,

Ω0,η =
⋃
k

Ωk0,η,

for which each Ωk0,η is indecomposable. In two dimensions, the diameter of each indecomposable compo-
nent is controlled by its perimeter, and so (c) holds for each Ωk0,η . Using the {Ωk0,η} to separate Ωi,η into
essentially disjoint components Ωki,η = Ωi,η ∩ Ωk0,η , i = 1, 2, the decomposition of the perimeters (b) then
follows.

In order to prove Gamma-convergence results and convergence of minimizers we need to expand the
energy in terms of the indecomposable clusters Ωkη = (Ωk1,η,Ωk2,η). Since the diameter of the support Ωkη
is small compared to T2, we may think of each vki,η as a function on R2. This enables us to blow up each
component at scale η to determine the fine structure of the configuration vη . For each fixed k ∈ N choose
any point ξkη ∈ Ωk0,η ⊂ T2. Then for i = 1, 2, we define a pair zki (x) : R2 → {0, 1} , i = 1, 2, by

zki (x) := η2vki,η(ξkη + ηx) = χAk
i,η

(x), i = 1, 2, (4.5)

where Aki,η = η−1 (Ωki,η − ξkη) ⊂ R2, i = 1, 2, with Akη = (Ak1,η, Ak2,η) a finite perimeter 2-cluster in R2. Then,
ˆ
R2
zki =

ˆ
T2
vki,η, and

ˆ
R2
|∇zki | = η

ˆ
T2
|∇vki,η|. (4.6)

As above, we set Ak0,η = Āk1,η ∪ Āk2,η , which has the same perimeter as the exterior domain.
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For a 2-cluster A = (A1, A2), Ai ⊂ R2, i = 1, 2 of finite perimeter, and A0 = A1 ∪A2, we define

Gσ(A) := Pσ(A) +
2∑

i,j=1

Γij
4π |Ai| |Aj |,

and for m = (m1,m2),

e0(m) := min {Gσ(A) | A = (A1, A2) 2-cluster, with |Ai| = mi, i = 1, 2}

By the results of Section 2, the minimum in e0(m) is attained for all m = (m1,m2) nonzero, with the
geometry of minimizers determined by the choice of weights σij , a double bubble, core shell, or single
bubble (which in particular occurs if either mi = 0, i = 1 or 2.) We expect that the effect of the nonlocal
interaction will be to enforce splitting of the mass into several droplets, but that energy minimization will
determine the distribution of the droplet masses. To this end, we define

e0(M) := inf
{ ∞∑
k=1

e0(mk) : mk = (mk
1 ,m

k
2), mk

i ≥ 0,
∞∑
k=1

mk
i = Mi, i = 1, 2

}
, (4.7)

where M = (M1,M2).
Expanding vη into component clusters, and separating the on-diagonal terms in the double sum,

Eη(vη) =
∞∑
k=1

2∑
i=0

η

2βi
ˆ
T2
|∇vki,η|+

Γij
2| log η|

∞∑
k,`=1

2∑
i,j=1

ˆ
T2

ˆ
T2
vki,η(x)GT2(x− y) v`j,η(y) dx dy

=
∞∑
k=1

2∑
i=0

βi
2

ˆ
R2
|∇zki |+

Γij
2| log η|

∞∑
k,`=1

2∑
i,j=1

ˆ
Ak
i

ˆ
A`
j

GT2(ξkη + ηx̃− ξ`η − ηỹ) dx̃ dỹ

=
∞∑
k=1

Pσ(Akη) +
2∑

i,j=1

Γij
4π |A

k
i,η| |Akj,η|

+ | log η|−1Φη

=
∞∑
k=1
Gσ(Akη) + | log η|−1Φη, (4.8)

where the remainder terms include a first piece depending on only the geometry of the indecomposable
clusters, and a second piece containing off-diagonal terms which encodes the interactions between them,

Φη =
∞∑
k=1

∑
i,j=1,2

Γij
2

ˆ
Ak
i,η

ˆ
Ak
j,η

Å 1
2π log 1

|x− y|
+RT2(η(x− y))

ã
dx dy

+
∞∑

k 6=`=1

∑
i,j=1,2

Γij
2

ˆ
Ak
i,η

ˆ
A`
j,η

GT2(ξkη + ηx̃− ξ`η − ηỹ) dx̃ dỹ

=: Φ1({Akη}k∈N) + Φ2
η({Akη}k∈N, {ξkη}k∈N) (4.9)

4.3 The first order limit

The decomposition (4.8) induced by Lemma 4.1 suggests a first order Gamma limit for the functional Eη ,
in which the mass splits via e0(M), encoding the geometric information from the weighted isoperimetric
energy Gσ .

We define a class of measures with countable support on T2,

Y :=
{
v0 =

∞∑
k=1

(mk
1 ,m

k
2) δxk |mk

i ≥ 0, xk ∈ T2 distinct points

}
,
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and a functional on Y ,

E0(v0) :=
ß ∑∞

k=1 e0(mk), if v0 ∈ Y,
∞, otherwise. (4.10)

As in [1], we have a first Gamma-convergence result:

Theorem 4.2 (First Γ-Limit). We have

Eη
Γ−→ E0 as η → 0.

That is,

(a) Let vη ∈ Xη be a sequence with supη>0Eη(vη) <∞. Then there exists a subsequence η → 0 and v0 ∈ Y such
that vη ⇀ v0 (in the weak topology of the space of measures), and

lim inf
η→0

Eη(vη) ≥ E0(v0).

(b) Let v0 ∈ Y with E0(v0) <∞. Then there exists a sequence vη ⇀ v0 weakly as measures, such that

lim sup
η→0

Eη(vη) ≤ E0(v0).

As the proof is very similar to that of [1, Theorem 3.2], we provide only a sketch here. For the lower
semicontinuity result (a), we take any sequence (vη)η>0 with uniformly bounded energy Eη(vη) ≤ C, and
apply [1, Lemma 3.5]. Note that the proof of Lemma 3.5 of [1], and of all the convergence results in that
paper, were given for the case of equal weights βi = 1, i = 0, 1, 2, but the proofs are identical for the
weighted case, as long as the triangle inequalities (1.5) hold. It states that, up to a subsequence η → 0 (not
relabelled,) there exist at most countably many 2-clusters {Ak} in R2 and corresponding points {xkη} in T2,
such that the domain Ωη =

⋃
k∈N Ωkη (with indecomposable clusters Ωkη ,) satisfies:∣∣∣Ak 4 (η−1 [Ωkη − xkη])∣∣∣ =

∣∣∣Ak 4Akη∣∣∣ η→0−−−→ 0, ∀k. (4.11)

Moreover, the masses of the clusters are preserved in the limit,

Mi = lim
η→0

∞∑
k=1

η−2|Ωki,η| =
∞∑
k=1
|Aki |, i = 1, 2, (4.12)

and the total energy is bounded below by e0(M).

lim inf
η→0

Eη(vη) ≥
∞∑
k=1
G(Ak) ≥ e0(M). (4.13)

At this point, note that (4.13) is the lower bound of the first Gamma convergence result, Theorem 4.2.
The remainder of the Gamma convergence then follows the proof of Theorem 3.2 in [1].

The geometrical structure can be made more precise for minimizers: the limiting clusters after blow-up
must minimize the weighted perimeter functional Gσ with the given mass distribution imposed by e0(M).
Indeed, it is enough to assume that Eη(vη)→ e0(M) to obtain this conclusion:

Proposition 4.3. Let v∗η = η−2χΩη ∈ Xη such that lim
η→0

Eη = e0(M). Then, there exists a subsequence η → 0 (still

denoted by η) such that:
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(i) there exist connected clusters (Ak)k∈N in R2 and points xkη ∈ T2, k ∈ N, for which

η−2

∣∣∣∣∣Ωη 4
∞⋃
k=1

(
ηAk + xkη

)∣∣∣∣∣ η→0−−−→ 0, (4.14)

and

Mi =
∞∑
k=1
|Aki |;

(ii) each Ak is a minimizer of Gσ :

Gσ(Ak) = e0(mk), mk = (mk
1 ,m

k
2) = |Ak|; (4.15)

Moreover,

e0(M) = lim
η→0

Eη(vη) =
∞∑
k=1
Gσ(Ak) =

∞∑
k=1

e0(mk). (4.16)

(iii) If k 6= `, d(xkη, x`η)� η; more precisely,

lim
η→0

| log d(xkη, x`η)|
| log η| = 0, ∀k 6= `.

Remark 4.2. In Corollary 3.2 we prove that in the core shell case β1 = 0, minimizers of e0(M) may only have
finitely many nontrivial clusters, A1, . . . , AK , for some K ∈ N. This was also the case in the unweighted
case, and in the cases of single bubbles (β0 = 0) as proven in [1, Theorem 1.1].

The proof of Proposition 4.3 follows exactly those of Lemmas 3.5 and 3.6 in [1] (recalling from Remark 4.1
that the weighted perimeter controls the relevant BV norms in the convergence steps.)

4.4 Second order limit

To obtain the Second Gamma Limit, Theorem 4.5, and the more detailed description of limiting configura-
tions, we must analyze the remainder term in (4.9). As the analysis in the case of strict triangle inequalities
(1.5) (leading to minimizers with double bubbles) or in case β0 = 0 (yielding only single bubbles) is essen-
tially identical to the unweighted case of our previous paper [1], we will concentrate on the case β1 = 0, in
which core shells are favored.

We subtract the first Γ-limit from Eη , which (from the decomposition (4.8), (4.9)) we expect to have scale
| log η|−1. For vη ∈ Xη , let

Fη(vη) := | log η|
[
Eη(vη)− e0(M)

]
. (4.17)

For the second Γ-limit we consider vη ∈ Xη for which Fη(vη) is bounded. For these vη , Proposition 4.3
applies, and we may thus assume that (along subsequences) the detailed concentration structure described
by (4.11), (4.12), (4.13) is observed. Given Lemma 2.6, each limiting cluster Ak = (Ak1 , Ak2) is either a core

shell Cm
k
1

mk2
(if mk

1 ,m
k
2 > 0,) or a single bubble (in case one of mk

i = 0.) We recall that minimization of Gσ does
not determine the centers of core shells; this will be addressed below.

Next we define the second order limit function, starting with its domain, which is suggested from the
first order limit Theorem 4.2 and the structure described in Proposition 4.3. For K ∈ N, mk

1 ≥ 0, mk
2 ≥ 0 and

mk
1 +mk

2 > 0, the sequence K ⊗ (mk
1 ,m

k
2) is defined by

(K ⊗ (mk
1 ,m

k
2))k :=

®
(mk

1 ,m
k
2), 1 ≤ k ≤ K,

(0, 0), K + 1 ≤ k <∞.

28



LetMM be the set of optimal sequences made of all clusters for the problem (4.7):

MM :=
{
K ⊗ (mk

1 ,m
k
2) : K ⊗ (mk

1 ,m
k
2) minimizes (4.7) for Mi, i = 1, 2,

and e0(mk) = e0(mk), mk = (mk
1 ,m

k
2)
}
.

Let YM denote the space of all measures v0 =
∑K
k=1m

kδxk with {x1, . . . , xK} distinct points in T2 and
K ⊗mk ∈MM . That is, v0 ∈ YM represents the limit (in the sense of distributions) of a sequence of energy
minimizers vη of mass M , which obey the conclusions of Proposition 4.3. We recall that the finiteness of
these components is a consequence of Corollary 3.2.

We now describe the terms appearing in the second Γ-limit, which arise from passage to the limit in Φη ,
defined in (4.9). First, the “self-interaction” terms making up Φ1({Akη}k∈N). For m = (m1,m2), m1,m2 ≥ 0
and not both zero, define

f0(m) = inf
ß ∑
i,j=1,2

Γij
2

ñ
1

2π

ˆ
Ai

ˆ
Aj

log 1
|x− y|

dx dy +mimj RT2(0)
ô

:

A = (A1, A2) minimizes Gσ with |A`| = m`, ` = 1, 2
™

(4.18)

The minimization here is only pertinent in case m1,m2 > 0, that is, where A = Cm1
m2

is a core shell; for single
bubbles the minimizers of Gσ with one of mi = 0 are unique up to rigid motion, and the set above is a
singleton. It is in this term that energy minimization of the nonlocal energy resolves the degeneracy in the
local isoperimetric problem, in favor of centered core shells:

Proposition 4.4. Let β1 = 0, and m = (m1,m2) with m1,m2 > 0.

(a) If Γ11 > Γ12, then the minimum in f0(m) is attained by a concentric core shell A = Cm1
m2

.

(b) If Γ11 < Γ12, then the minimum in f0(m) is attained by a core shell A = Cm1
m2

whose inner boundary circle is
tangent to the outside circle.

Proof. Given m1,m2 > 0, from Lemma 2.6 we know that all minimizers of Gσ with m1,m2 > 0 are core
shells, that is they are composed of two (round) balls B1 = Br1(0), B2 = Br2(p), with r1 > r2, and the outer
domain A1 = B1 \ B2, with inner disk A2 = B2. The distance between p (the center of B2) and 0 must be
small enough that A2 ⊂ A1. We must choose p to minimize the quantity

2∑
i,j=1

Γij
2 [Iij +mimjRT2(0)] , where Iij = 1

2π

ˆ
Ai

ˆ
Aj

log 1
|x− y|

dx dy.

Notice that I22 is independent of the location of p, as are of course the terms mimjRT2(0).
For any x ∈ R2 \B2, by the Mean Value Theorem for harmonic functions,

ˆ
B2

log 1
|x− y|

dy = |B2| log 1
|x− p|

.

Thus,

I12 = m2

2π

ˆ
B1\B2

log 1
|x− p|

dx = m2

2π

ïˆ
B1

log 1
|x− p|

dx−
ˆ
B2

log 1
|x− p|

dx

ò
= m2

2π

ˆ
B1

log 1
|x− p|

dx− I22.
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We claim that I12 = I12(p) is maximized when p = 0 and minimized when the circles are tangent.
By symmetry we may assume p = (t, 0), with t ≥ 0 lying in an interval t ∈ [0, α] for which A2 ⊂ A1.
Differentiating,

d

dt
I12(t, 0) = 1

2π

ˆ
B1

x1 − t
|x− (t, 0)|2 dx. (4.19)

Let ωt = {x ∈ B1 | x1 ≥ t}, and ω̃t its reflection in the line {x1 = t}. As the integrand in (4.19) is odd around
the line {x1 = t}, and B1 \ (ωt ∪ ω̃t) ⊂ {x1 < t}, we have ∀t ∈ (0, α],

d

dt
I12(t, 0) = 1

2π

ˆ
B1\(ωt∪ω̃t)

x1 − t
|x− (t, 0)|2 dx < 0.

Thus, I12(t, 0) is even and strictly monotone decreasing in t ∈ [0, α], so it attains its maximum value at t = 0
and minimum at the extreme value t = α, where the circles are tangent. This concludes the proof of the
claim.

To complete the argument, we note that,

I11 = 1
2π

ˆ
A1

ˆ
A1

log 1
|x− y|

dx dy = 1
2π

ˆ
A1

ˆ
B1

log 1
|x− y|

dx dy − I12

= −I12 + 1
2π

ïˆ
B1

ˆ
B1

log 1
|x− y|

dx dy −
ˆ
B2

ˆ
B1

log 1
|x− y|

dx dy

ò
= −2I12 + 1

2π

ˆ
B1

ˆ
B1

log 1
|x− y|

dx dy − I22.

As I22 and 1
2π
´
B1

´
B1

log 1
|x−y|dx dy are independent of the location of p, we have

2∑
i,j=1

Γij
2 Iij = Γ11

2 (−2I12(p)) + Γ12I12(p) + terms independent of p

= −(Γ11 − Γ12)I12(p) + terms independent of p. (4.20)

The stated conclusions then follow, depending on the sign of the coefficient (Γ11 − Γ12).

We note that in the case Γ11 < Γ12 it may be difficult to observe tangential core shells, since that choice
of strong repulsion between the two phases may result in core shells being split into single bubbles.

With this satisfactory resolution of the question of the specific geometry of optimal core shells, we may
now define the second Γ-limit functional, by including the formal limits of the two remainder terms from
(4.9). For v0 ∈ YM , we define

F0(v0) =
K∑
k=1

f0(mk) +
K∑

k,`=1
k 6=`

2∑
i,j=1

Γij
2 mk

im
`
jGT2(xki − x`j), (4.21)

and F0(v0) = +∞ otherwise. The first term in (4.21) is thus already completely determined by the first Γ-
limit and the fine structure of core shells as determined by Proposition 4.4, and only the spatial distribution
of droplets is at play in F0.

Theorem 4.5 (Second Γ-limit). We have

Fη
Γ−→ F0 as η → 0.

That is,
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(a) Let vη ∈ Xη be a sequence with supη>0 Fη(vη) < ∞. Then there exists a subsequence η → 0 and v0 ∈ YM
such that vη ⇀ v0 (in the weak topology of the space of measures), and

lim inf
η→0

Fη(vη) ≥ F0(v0).

(b) Let v0 ∈ YM with F0(v0) <∞. Then there exists a sequence vη ⇀ v0 weakly as measures, such that

lim sup
η→0

Fη(vη) ≤ F0(v0).

The tools required for the proof of the second limit are essentially included in our paper [1], in the
unweighted case. We provide a slightly more detailed sketch here for the case β1 = 0, as the paper [1]
concentrated on the first Γ-limit and the structure of minimizers and did not give details for the second
Γ-limit.

Sketch of the proof of Theorem 4.5. We begin with compactness and the lower limit. Take a sequence ηn → 0
and assume vηn ∈ Xη is a sequence with bounded Fηn(vηn). (Recall Fη is defined in (4.17).) For convenience,
we abuse notation and denote this sequence (and all forthcoming subsequences) simply as vη , and η → 0
along this sequence (and eventually, certain subsequences.) By the boundedness of Fη(vη) we immediately
conclude that

lim
η→0

Eη(vη) = e0(M),

and hence Lemma 4.1 and Proposition 4.3 (Lemma 3.5 in [1]) apply to the sequence vη . As a consequence,
vη = η−2χΩη splits into at most countably many indecomposable clusters, Ωη =

⋃
k Ωkη , whose energy

Eη(vη) breaks down via (4.8). Moreover, by Corollary 3.2 in the core shell case β1 = 0 minimizers of e0(M)
can only have a finite number K ∈ N of nontrivial components. Hence,

Eη(vη)− e0(M) =
K∑
k=1
Gσ(Akη)− e0(M) + | log η|−1Φη(Akη, ξkη )

≥
K∑
k=1

e0(|Akη|)− e0(M) + | log η|−1Φη(Akη, ξkη )

≥ | log η|−1Φη(Akη, ξkη ),

since e0(M) ≤
∑K
k=1 e0(mk) whenever

∑K
k=1m

k = M . That is, Φη(Akη, ξkη ) ≤ Fη(vη) ≤ C are uniformly
bounded as η → 0.

Next, we pass to the limit in Φ1({Akη}k∈N) in (4.9). By (4.14), for each k, the clusters |Akη4Ak| → 0.
In addition, by Lemma 4.1 (c), the diameters diamAkη ≤ C are uniformly bounded in k, η. As log 1

|x−y| is
locally integrable, we may then pass to the limit using dominated convergence,

lim
η→0

Φ1({Akη}k∈N) =
∑

i,j=1,2

Γij
2

ñ
1

2π

ˆ
Ai

ˆ
Aj

log 1
|x− y|

dx dy +mimj RT2(0)
ô
≥

K∑
k=1

f0(mk). (4.22)

Since Φ1 converges, we conclude that the second interaction term Φ2
η({Akη}k∈N, {ξkη}k∈N) is also bounded

above. To pass to the limit in this term, we first note that if for some pair k 6= `, d(ξkη , ξ`η) ≥ δk,` > 0 for
all η > 0, then by a similar argument as above we may pass to the limit in this k, ` term and obtain the
corresponding term in F0 (see (4.21).) We claim that this must be the case for all pairs k 6= `. Indeed,
we assume for some k 6= ` (and a subsequence η → 0 that rk,`η := d(ξkη , ξ`η) → 0, then recall that by
Proposition 4.3 (iii) we must nevertheless have for i, j = 1, 2,
ˆ
Ak
i,η

ˆ
A`
j,η

GT2(ξkη + ηx̃− ξ`η − ηỹ) dx̃ dỹ =
ˆ
Ak
i,η

ˆ
A`
j,η

ñ
1

2π log 1
|ξkη − ξ`η|

+RT2(ξkη + ηx̃− ξ`η − ηỹ)
ô
dx̃ dỹ

= |Aki,η||A`j,η|
Å 1

2π | log rk,`η |+RT2(0) + o(1)
ã
.
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Since |Ak| > 0 for k = 1, . . . ,K, there exists i, j ∈ {1, 2} for which |Aki ||A`j | > 0, and that term will be
unbounded above. This contradicts the upper bound on Φ2

η({Akη}k∈N, {ξkη}k∈N), and hence we conclude
that the points {ξkη}k=1,...,K must remain distinct as η → 0. Passing to a further subsequence if necessary,
we may assume ξkη → xk ∈ T2, with distinct xk 6= x`, k 6= `, and

lim inf
η→0

Fη(vη) ≥ lim inf
η→0

Φη(Akη, ξkη ) ≥ F0(v0),

where v0 =
∑K
k=1m

kδxk ∈ YM . Note that (repeating an argument from above) by (4.14) and the uniform
boundedness of the diameters of Akη , we may also conclude that vη ⇀ v0 in the weak topology on the space
of measures on T2. This concludes the proof of the compactness and lower limit of the second Γ-limit.

The construction of a recovery sequence for part 2 is straightforward: given points xk and masses mk =
(mk

1 ,m
k
2), it suffices to assemble a superposition of η-rescaled minimizers of e0(mk) at each xk. When the

minimizing cluster Ak is a core shell, the central disk is positioned centered when Γ12 is small according to
Proposition 4.4.
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