
ar
X

iv
:2

21
2.

01
12

7v
2 

 [
m

at
h.

N
A

] 
 2

7 
Ju

l 2
02

3

RANDOMIZED LOW-RANK APPROXIMATION FOR SYMMETRIC

INDEFINITE MATRICES∗

YUJI NAKATSUKASA† AND TAEJUN PARK†

Abstract. The Nyström method is a popular choice for finding a low-rank approximation to a
symmetric positive semi-definite matrix. The method can fail when applied to symmetric indefinite
matrices, for which the error can be unboundedly large. In this work, we first identify the main
challenges in finding a Nyström approximation to symmetric indefinite matrices. We then prove
the existence of a variant that overcomes the instability, and establish relative-error nuclear norm
bounds of the resulting approximation that hold when the singular values decay rapidly. The analysis
naturally leads to a practical algorithm, whose robustness is illustrated with experiments.
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1. Introduction. Low-rank structures are ubiquitous in the computational sci-
ences. They appear frequently as matrices having low numerical rank [35]. A low-rank
approximation to a matrix provides an efficient way to store and process the matrix
when the dimension is large. The Nyström method [14, 24, 38] has been a popular
choice for finding low-rank approximations to symmetric positive semi-definite (SPSD)
matrices, especially in the machine learning community for kernel-based methods.

Let A ∈ Rn×n be a SPSD matrix and let the positive integer r be the target rank.

Then the Nyström method is given by A
(s)
nys = CW †CT where C := AX ∈ Rn×s and

W := XTAX ∈ Rs×s with r ≤ s < n and X ∈ Rn×s is a sketching matrix. The
positive integer s is called the sketch size, and typically r < s ≪ n. Traditionally, X
is chosen to be a column sampling matrix, which has exactly one non-zero entry equal
to 1 in each column [14, 38]. In this case, C is a subset of s columns of A and W is
an s × s principal submatrix of A. There are different sampling schemes for column
sampling, including uniform sampling, leverage score sampling [14, 19, 38, 39, 21]
and k-means++ sampling [25]. In recent years, other choices for X have been shown
to be practical, including Gaussian matrices, subsampled randomized trigonometric
transforms (SRTTs) and sparse maps [15, 20]. These are random embeddings, which
are the focus of this paper, and unlike column sampling, they mix up the coordinates
of a vector when applied [20].

In this paper, we investigate the effect of using A
(s)
nys and its rank-restricted vari-

ants for symmetric matrices that are possibly indefinite. Low-rank approximation of
symmetric indefinite matrices arises in many applications, such as learning in repro-
ducing kernel Krĕin spaces [26], natural language processing [8, 27] and non-metric
proximity transformations [12], which has applications in bioinformatics and social
networks. The original matrix A does not have to be SPSD for one to form the

Nyström approximation A
(s)
nys. However, the theory does not translate directly to

symmetric indefinite matrices because it uses the fact that the original matrix is
SPSD [13, 14, 36]. Indeed, the Nyström approximation can be very poor for indefi-
nite A, as we illustrate below. In this work, we show that a judiciously constructed
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2 YUJI NAKATSUKASA AND TAEJUN PARK

rank-restricted variant of the Nyström approximation, when used with random em-
beddings, is robust even for symmetric indefinite matrices, which often outperforms
other existing methods as we show for synthetic datasets (Figure 5) and real datasets
(Figure 6) in Section 4. We also show in Section 3 that there exists a projection
for the core matrix W such that the Nyström approximation gives a good low-rank
approximation to any symmetric matrix when the singular values decay sufficiently
fast.

1.1. Nyström methods and related work. There are several variants of the
Nyström method for SPSD matrices. There are two rank-restricted versions that

give a rank-r approximation to A
(s)
nys where r < s. The first version, which is more

traditional, is defined by A
(s,r)
nys = CJW K†rC

T [9, 14, 18] where JW Kr denotes the best
rank-r approximation to the matrix W using the truncated SVD. The second version

is given by JA
(s)
nysKr = JCW †CT Kr [28, 32, 36], which was suggested more recently. The

difference between the two methods is that A
(s,r)
nys performs rank-truncation in the core

matrix, W , which makes this method cheaper to compute, while JA
(s)
nysKr performs

rank-truncation in the Nyström approximation A
(s)
nys, which makes this method take

advantage of the full Nyström approximation, C and W , when performing the rank-
truncation. There are also other variants of the Nyström method, including one for
rectangular matrices [22, 33] and one that guarantees numerical stability [22]. This

paper will mostly focus on A
(s,r)
nys .

It is known that for SPSD matrices, A
(s)
nys [14] and JA

(s)
nysKr [36] satisfy relative-

error bounds in the nuclear norm. This means that if Â is a low-rank approximation

to A (in this case, A
(s)
nys or JA

(s)
nysKr) and ǫ > 0 then

(1.1)
∥

∥

∥A− Â
∥

∥

∥

∗
≤ (1 + ǫ) ‖A− JAKr‖∗

holds with high probability under some conditions on the sketch X and the sketch
size s > r where ‖·‖∗ is the nuclear norm (the sum of the singular values). The details

are in the relevant papers [14, 36]. On the other hand, it is not known whether A
(s,r)
nys

satisfies a relative-error norm bound mentioned above [36]. In [28], an example of a 3×3
SPSD matrix is given, showing the downside of using A

(s,r)
nys for kernel approximations

which commonly uses a column sampling matrix. The authors propose JA
(s)
nysKr

1 as an
alternative, for which later Wang, Gittens and Mahoney derived a relative-error norm
bound [36]. For this example, the problem persists even if we use random embeddings.
However, this is a small example that can yield results with high variability, and
random embeddings do give a smaller expected relative-error in the nuclear norm
and a smaller variance result than column sampling, especially when the dimension
of the matrix is large. This hints that random embeddings can be more robust and
reliable than column sampling. This type of phenomena have been discussed before,
for example in [20] where the authors point out that column sampling is less reliable
than random embeddings due to their relatively high variance results.

For symmetric indefinite matrices, which are the focus of this paper, not much has
been shown. It is however known that the problem is rather difficult. We can easily

see that the plain Nyström approximation, A
(s)
nys can behave poorly for symmetric

1As in [28], for SPSD matrices, it should be noted that
∥

∥

∥
A− JA

(s)
nysKr

∥

∥

∥
≤

∥

∥

∥
A−A

(s,r)
nys

∥

∥

∥
will hold

in the spectral norm and the Frobenius norm.
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indefinite matrices. We can easily see that the plain Nyström approximation, A
(s)
nys

can be very bad for symmetric indefinite matrices. For example, let 0 < ǫ < 1 and

(1.2) A =

[

0 1
1 0

]

, X =

[

ǫ√
1− ǫ2

]

where A has eigenvalues ±1. Then the plain rank-1 Nyström approximation to A is

(1.3) A(1)
nys = AX(XTAX)†XTA =

1

2ǫ
√
1− ǫ2

[

1− ǫ2 ǫ
√
1− ǫ2

ǫ
√
1− ǫ2 ǫ2

]

and therefore

(1.4)
∥

∥

∥
A−A(1)

nys

∥

∥

∥

∗
=

1

2ǫ
√
1− ǫ2

,

which can be arbitrarily large as ǫ → 0, whereas the best rank-1 nuclear norm error of
A is 1. This type of issue has also been observed in a different context for a CUR ap-
proximation of rectangular matrices [6]. Essentially, the issue arises from the presence
of an eigenvalue of XTAX close to (or even equal to) 0, much smaller than σr(A) or
even σmin(A)—a phenomenon that is absent when A is SPSD. This blows up the norm
of the core matrix (XTAX)†, causing instability. While this is admittedly a contrived
example, the difficulty can be easily observed also in experiments. In Figure 1, the
two plots were generated using 100 × 100 symmetric indefinite matrices with Haar
distributed eigenvectors. In the left plot, the eigenvalues decay geometrically from 1
to 10−8 with random signs, and in the right plot, the first 20 eigenvalues are equal
to ±1 and the other 80 eigenvalues are equal to ±10−10 where the signs were applied

randomly with equal probability. We apply the plain Nyström approximation A
(r)
nys

using the Gaussian sketch to A. We can see that the plain Nyström approximation
can be unstable. This type of issue has also been observed in a different context for
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Fig. 1. Plain Nyström approximation A
(r)
nys using the Gaussian sketch to 100× 100 symmetric

indefinite matrices. We can see that A
(r)
nys can be unstable.

CUR approximations of rectangular matrices [6]. Essentially, the issue arises from
the possible presence of an eigenvalue of XTAX much smaller than σr(A) or even
σmin(A)—a phenomenon that is absent when A is SPSD. This blows up the norm of
the core matrix (XTAX)†, causing instability.
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Contributions. Our first contribution is to identify the main challenges in finding
a good Nyström approximation to symmetric indefinite matrices. We find that the
accuracy of the Nyström method is related to controlling the singular values of the
core matrix W = XTAX , and show that the accuracy can be lost even if the singular
values of W are sufficiently larger than the unit roundoff if W severely underestimates
the leading eigenvalues of A. We then perform an analysis in Section 3 that overcomes
the challenges. The analysis shows that a certain truncation in the core matrix can
give a reliable Nyström approximation that guarantees (1.1) to symmetric indefinite
matrices when the singular values decay sufficiently quickly. To our knowledge, this
is the first relative-error norm bound for the Nyström method concerning general
symmetric matrices that are possibly indefinite.

Our second contribution is providing a practical algorithm (Algorithm 2.1) that
gives a Nyström approximation to symmetric indefinite matrices. We show its robust-
ness by comparing the algorithm to some of the existing methods in Section 4 and
show that the algorithm performs robustly for symmetric indefinite matrices even in
the presence of small singular values in the core matrix, whereas the other algorithms
can fail. This algorithm is not new in the context of the Nyström method for SPSD
matrices. However, to our knowledge, it has not been suggested or studied before for
symmetric indefinite matrices.

Existing methods. We review three existing ideas for using the Nyström method
for indefinite matrices, among others. Cai, Nagy and Xi [3] derive an error bound for

the Nyström method, A
(s)
nys for symmetric indefinite matrices that arise from a sym-

metric function. This bound depends on how close the function values of the sampled
points are, which is not an attractive dependence and may not be very useful in more

general or practical situations. They suggest the plain Nyström method A
(r)
nys, which

can be unstable. They also suggest AX(XTAX)†ǫ(AX)T for the Nyström approxima-
tion motivated by [22] with the aim of improving the stability. This version truncates
the core matrix W = XTAX so that σmin((X

TAX)ǫ) > ǫ where ǫ is of the order of

the unit roundoff. However, this version can give worse approximations than A
(s)
nys

[3] and does not always improve the stability of the Nyström approximation. Second,
Ray et al. [29] suggest submatrix-shifted (SMS) Nyström to provide an efficient al-
gorithm that deals with symmetric matrices that have only few negative eigenvalues.
This method uses an eigenvalue shift based on the minimum eigenvalue of a small

principal submatrix before applying the plain Nyström method A
(r)
nys. The downside

of this method is that the eigenvalue shift can have serious negative impact on the
approximation quality. Lastly, the authors in [12, 26] devise strategies to form the
Nyström approximation to symmetric indefinite matrices. However, these methods
use eigenvalue information of the original matrix, which is expensive to compute. The
three existing methods described above use column sampling matrices for X , which
is different from random embeddings. In the final section (Section 5), we will revisit
their differences in relation to our method and discuss the implications.

Non-Nyström approaches. In [15], a low-rank approximation for symmetric ma-
trices in the form of the randomized SVD is given. This approximation is given by
QQTAQQT where Q ∈ Rn×s is the orthonormal matrix in the thin QR decomposi-
tion of AX and is known to satisfy a relative-error norm bound. The dominant cost
is O(n2s) flops for forming QTA (assuming A is dense), which becomes prohibitive
when n, s are large. Wang, Luo and Zhang derived in [37] a relative-error norm bound
to any symmetric matrices (possibly indefinite) for the prototype model. This model
computes the low-rank approximation by first forming the sketch C = AX and then
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approximating A by CXCT where X = C†A(C†)T . The authors show that if C
contains s = O(k/ǫ) columns of A chosen by adaptive sampling then the prototype
model has relative-error of at most (1 + ǫ). The dominant costs for the algorithm in
[37] are O(n2r log r) for computing C and O(n2r) for computing C†A, which becomes
very costly with large n.

Non-symmetric approaches. We can use non-symmetric low-rank approximation
to symmetric indefinite matrices. Examples are the randomized SVD [15], which is
given by QQTA using the notation in the previous paragraph and the generalized
Nyström method [4, 22, 33] given by AX(Y TAX)†Y TA where X and Y are indepen-
dent random embeddings of different dimensions. The details can be found in the
relevant papers. For both methods, since their representation is not symmetric, if we
want to force symmetry in their representations (e.g. by taking the symmetric part
(MT +M)/2), we may risk doubling the rank in the approximation. In addition, as
mentioned in the previous paragraph, the randomized SVD has the cost of comput-
ing QTA, which becomes prohibitive when n, s are large. For generalized Nyström,
we approximately double the number of matrix-vector multiplications needed as A
needs to be multiplied by two independent random embeddings X and Y and this,
in turn doubles the storage requirement (in fact, more than double because Y (or X)
is recommended to be larger [22]). In this paper, we focus on symmetric low-rank
approximations.

Notation. Throughout, we use ‖·‖2 for the spectral norm or the vector-ℓ2 norm,
‖·‖∗ for the nuclear norm (sum of singular values) and ‖·‖F for the Frobenius norm. We
use dagger † to denote the pseudoinverse of a matrix and JAKr to denote the best rank-
r approximation to A in any unitarily invariant norm, i.e., the approximation derived
from truncated SVD [16]. Unless specified otherwise, σi(A) denotes the ith largest
singular value of the matrix A and λi(A) the ith largest eigenvalue in magnitude.
Lastly, we use MATLAB style notation for matrices and vectors. For example, for
the kth to (k + j)th columns of a matrix A we write A(:, k : k + j).

2. Proposed method. When we use the Nyström method on symmetric in-
definite matrices, it can lead to problems. The main concern is in the core matrix
W = XTAX because the positive and negative eigenvalues of A can ‘cancel’ each
other out when forming W , making the eigenvalues of W much smaller than σr(A).
This causes inaccuracies and instabilities when computing the pseudo-inverse of W .
More specifically, if we use column sampling then W would be a principal submatrix
of A. By Cauchy’s interlacing theorem, the spectrum of W is contained in the interval
[λmin(A), λmax(A)] which contains both positive and negative values since A is indefi-
nite. Therefore the magnitude of the eigenvalues of W can be significantly smaller in
magnitude from those of A, resulting in the matrix W † blowing up. In addition, the
computation of the pseudo-inverse of W can be numerically unstable if σmin(W ) < u
where u is the unit roundoff. Thus, the main challenge is to ensure that W † does not
ruin the Nyström approximation quality. One approach is to introduce a potentially
large shift to make A SPSD, but this can severely affect the approximation quality
unless A is nearly definite, that is, the negative eigenvalues of A are very small in
magnitude, for example, on the order of machine precision. This idea is used for
SPSD matrices where a small shift is introduced to gain numerical stability, however
the shift here needs to be small enough to ensure that accuracy is still high [17, 32].

In light of these observations, we propose

A
(c,r)
indef = AXJXTAXK†r(AX)T
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for symmetric indefinite matricesA ∈ Rn×n whereX ∈ Rn×cr is a random embedding,
c > 1 is a modest constant, say c = 1.5 or c = 2, and r is the target rank. When A is

SPSD and the sketch size s is proportional to the target rank, A
(c,r)
indef is equivalent to

A
(cr,r)
nys . This rank-restricted version truncates the bottom (c− 1)r singular values of

W ∈ Rcr×cr, which can potentially be harmful even if they are sufficiently larger than
the unit roundoff. This is different to the truncation used in [3] as they use truncation
based on the magnitudes of the singular values of W , whereas for our method, the
number of bottom singular values we truncate is proportional to the target rank. This
intuition is justified by Andoni and Nguyên [1], who prove that the largest eigenvalues
(whose proportional to the sketch size) of symmetric matrices with rapidly decaying
singular values are approximately preserved under conjugation by a Gaussian sketch
with an appropriate normalization factor.

Now, let us define a quantity that will measure how well the singular values are
preserved in the core matrix W of the Nyström method. For a symmetric matrix
A ∈ Rn×n, a target rank r and a sketch size s ≥ r, define

(2.1) κW (A, r, s) :=

max
1≤i≤r

σi(X
TAX)/σi(A)

min
1≤j≤r

σj(XTAX)/σj(A)
= max

1≤i≤r
max
1≤j≤r

σi(X
TAX)

σj(XTAX)

σj(A)

σi(A)

where X ∈ Rn×s is a Gaussian embedding matrix. This quantity measures the ratio
between the worst over-approximation and the worst under-approximation of the lead-
ing singular values of A using the singular values in the core matrix W . κW (A, r, s)
will help us see how much the singular values of W have deviated from the leading
singular values of A, which directly affects the Nyström approximation quality as we
illustrate below.

In Figure 2, we show how important it is to ensure that the spectrum of W
does not ruin the approximation quality. In this experiment2, A ∈ R

1000×1000 is a
symmetric indefinite matrix constructed as in the left plot of Figure 1. The smallest
singular value in the core matrix was larger than 10−7 throughout this experiment.

For the truncated cases, A
(1.5,r)
indef and A

(r+5,r)
nys , the approximation is robust as seen

in Figure 2a. This robustness we see is illustrated in Figure 2b where the singular
values of W = XTAX behaves well in the sense that there is no wild fluctuations in
κW (A, r, r+5) and κW (A, r, 1.5r). However, when the sketch size is not proportional

to the target rank (s = r + 5), the relative approximation error for A
(r+5,r)
nys (when

compared with the truncated SVD) and κW (A, r, r+5) grow as we increase the target
rank. This problem can become worse and the approximation can become unstable
when we use SRTT matrices for efficiency with the sketch size s = r + 5 (See Figure
3 and Subsection 2.1). When the sketch size is proportional to the target rank,

κW (A, r, 1.5r) and the relative approximation error for A
(1.5,r)
indef are approximately a

constant, which motivates us to choose the oversample size to be proportional to
the target rank. On the other hand, without the truncation in the core matrix we
see that κW (A, r, r) behaves wildly. This indicates that the singular values of W
inaccurately approximates the leading singular values of A. As a result, the Nyström

approximations A
(1.5r)
nys and JA

(1.5r)
nys Kr can yield unstable results. Empirically, this

provides a reason to favour A
(c,r)
indef over other variants of the Nyström method for

symmetric indefinite matrices.

2All experiments were performed in MATLAB version 2021a using double precision arithmetic.
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Fig. 2. Accuracy of the Nyström approximations A
(1.5,r)
indef

, A
(r)
nys, A

(r+5,r)
nys and JA

(1.5r)
nys Kr to

a symmetric indefinite matrix A ∈ R1000×1000 . Figure 2a shows the Nyström error in the nuclear
norm and Figure 2b shows the accuracy of the singular values of W = XTAX when compared with
the singular values of A. We observe that the truncation in the core matrix W can significantly
increase the robustness and the accuracy of the Nyström approximation.

2.1. Random embeddings. A subspace embedding [30] is a linear map which
preserves the 2-norm of every vector in a given subspace, that is, S ∈ Rs×n is a
subspace embedding for the span of A ∈ R

n×n with distortion ǫ ∈ (0, 1) if

(2.2) (1− ǫ) ‖Ax‖2 ≤ ‖SAx‖2 ≤ (1 + ǫ) ‖Ax‖2

for every x ∈ R
n. A random embedding is a subspace embedding drawn at random

that satisfy Equation (2.2) with high probability.
Random embeddings have more attractive properties than column sampling ma-

trices [11, 20], one of which is that the results obtained using random embeddings
generally have smaller variance than the results obtained using column sampling.
Below are few important examples of random embeddings.

2.1.1. Gaussian matrices. A Gaussian embedding is a random matrix G ∈
Rs×n with i.i.d. entries Gij ∼ N(0, 1/s). The scaling ensures that E[‖Gx‖22] = ‖x‖22
for every x ∈ Rn. Gaussian embedding is the most widely used random embedding for
theoretical analysis3 and often has optimal guarantees [15, 20]. The cost of applying
a Gaussian embedding to an n × n matrix is O(n2s). This becomes prohibitive for
large n, so a more structured random embeddings are often used in practice.

2.1.2. SRTTs. A subsampled randomized trigonometric transform (SRTT) ma-
trix is an n× s matrix with n ≥ s of the form

(2.3) S =

√

n

s
DFRT

where D ∈ Rn×n is a random diagonal matrix whose entries are independent and
take ±1 with equal probability, F ∈ Cn×n is a unitary trigonometric transform and

3Other random embeddings often lack strong theoretical guarantees, however they behave simi-
larly to a Gaussian embedding in practice. For this reason, Gaussian theory is often used to provide
a rule of thumb for the general behavior [20].
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R ∈ Rs×n is a random restriction. In the complex case, F is the unitary discrete
Fourier transform (DFT) and in the real case, F is commonly the discrete cosine
transform (DCT). The sketch size needs to be s = O(r log r) for theoretical guarantees
[31], but in practice s = O(r) often suffices4 [15, 20]. The cost of applying SRTT to
an n× n matrix is O(n2 log r) [2] using the subsampled FFT algorithm [40].

2.1.3. Sparse maps. Sparse maps are sparse matrices with nonzero entries that
are random signs [4, 20, 23, 39]. They are particularly useful for sparse data and they
take the form

(2.4) S =
1√
s
[s1, ..., sn] ∈ R

s×n

where the columns of S, the si’s are statistically independent and has exactly ξ
nonzero entries that take ±1 with equal probability, placed uniformly at random
coordinates. We need the sketch size to be s = O(r log r) and the sparsity parameter to
be ξ = O(log r) for theoretical guarantees [5]. In [34], ξ = min{s, 8} was recommended
in practice. The cost of applying sparse maps to a matrix A is O(ξ · nnz(A)) where
nnz(A) is the number of nonzero entries of A if sparse data structures and arithmetic
are available.

2.2. Suggested algorithm. For a general symmetric matrix A ∈ Rn×n with
the target rank r, we suggest

(2.5) A
(c,r)
indef = AXJXTAXK†r(AX)T = CJW K†rC

T

where X ∈ Rn×s is a random embedding with the sketch size s = cr where c > 1 is a
modest constant. The algorithm is given in Algorithm 2.1. For the choice of random
embeddings, if A is sparse then we suggest sparse maps with sparsity ξ = min{cr, 8}
and when A is dense we suggest SRTT matrices. The recommended sketch size is
s = 1.5r for efficiency, but if one wants a better approximation quality guarantee
then the sketch size can be increased to, for example, s = 2r or s = 4r. Note that
the truncation is performed irrespectively of the singular values of W (unlike previous
studies, e.g. [3]); our analysis in Section 3 suggests that it is important that the
number of singular values to be truncated (s− r) = (c− 1)r is proportional to r.

Algorithm 2.1 Judiciously truncated Nyström approximation for indefinite matrices

Require: Symmetric matrix A ∈ Rn×n, target rank r < n, sketch size r < s < n (rec. s = 1.5r)

Ensure: C ∈ Rn×s and W
†
r ∈ Rs×s with rank(W ) ≤ r as in (2.5)

1: Draw a random embedding X ∈ Rn×s ⊲ Sparsity ξ = min{s, 8} for sparse maps
2: C ← AX

3: W ← XTC

4: [V,Λ] = eig(W ), eigendecomposition of W

5: W
†
r = V (:, 1 : r)Λ(1 : r, 1 : r)†V (:, 1 : r)T , pseudoinverse of the best rank-r approximation of W

6: Output C ∈ Rn×s and W
†
r ∈ Rs×s

Complexity. When a sparse map is used, the cost of Algorithm 2.1 isO(ξ·nnz(A)+
r3) which consists of O(ξ ·nnz(A)) flops for forming the sketch and O(r3) flops for the
eigendecomposition. With an SRTT sketch, the total cost is O(n2 log r + r3), where

4For difficult examples, say a coherent example, the log r factor is necessary. (See Figure 3)
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O(n2 log r) is needed for forming the sketch and O(r3) for computing the eigendecom-
position.5

Eigendecomposition of A
(c,r)
indef . Algorithm 2.1 as presented does not output the

eigendecomposition of A
(c,r)
indef . To do this, we require an extra O(nr2 + r3) flops. We

need O(nr2) flops to compute the thin QR decomposition of C = QR, O(r3) flops to
form and compute the eigendecomposition of RJW K†rR

T = UΣUT and O(nr2) flops

to form U1 = QU giving us the eigendecomposition, A
(c,r)
indef = U1ΣU

T
1 .

In Figure 3, we illustrate Algorithm 2.1 for the SRFT sketch and the sparse
map. The experiment was conducted with synthetic 2000×2000 symmetric indefinite
matrices. The top two plots have eigenvalues that decay geometrically from 1 to
10−12 each assigned a random sign with equal probability and the eigenvectors are
in a 2 × 2 block diagonal form, diag(I200, U) where I200 is the 200 × 200 identity
matrix and U ∈ R

1800×1800 is a Haar distributed orthogonal matrix. This eigenvector
matrix is a more coherent example than our previous examples and is known to be a
difficult example for SRTT matrices [2] (when the eigenvectors are Haar distributed,
SRTT (or essentially any sketch) behaves the same as a Gaussian sketch, giving good
results). The bottom two plots were generated using the same eigenvector matrix, but
with eigenvalues equal to ±1 for the first 100, ±10−4 for the next 100, ±10−8 for the
100 eigenvalues after that and ±10−16 for the last 1700 eigenvalues each assigned a
random sign with equal probability. In the two left plots, we see that the SRFT sketch
can fail if the sketch size is not large enough. This instability in the approximation
can be fixed by enlarging the sketch size. We see that s = r + 5 does not do well,
but when s = 4r the approximation becomes more accurate and robust. In the right
plot, we see that the SRFT sketch with the sketch size s = r log r, which comes with
theoretical guarantees has excellent approximation quality. Finally, we see that the
sparse map with sparsity ξ = 8 gives a robust approximation throughout, which can
be improved by enlarging the sketch size.

3. Analysis. For a general symmetric matrix A ∈ Rn×n, there are no known
relative-error norm bounds for the Nyström method. Here we show that for general
symmetric matrices, the Nyström method when used with a Gaussian sketch satisfies
in expectation a relative-error nuclear norm bound under some orthogonal projection
in the core matrix, when the singular values decay sufficiently fast. The analysis that
follows establishes the accuracy not of Algorithm 2.1, but of a closely related variant
of the Nyström method. The last paragraph of this section discusses this in more
detail.

Let A ∈ Rn×n be a symmetric matrix and let the eigendecomposition of A be

(3.1) A = V ΛV T = [V1, V2, V3]





Λ1 0 0
0 Λ2 0
0 0 Λ3



 [V1, V2, V3]
T

where V ∈ Rn×n is the orthogonal eigenvector matrix of A and Λ ∈ Rn×n is a diagonal
matrix containing the eigenvalues of A. The matrices with subscript 1 have r columns,
those with subscript 2 have (c1 − 1)r columns and subscript 3 have (n− c1r) columns
where r < c1r < n and c1 > 1 is a constant such that c1r is a positive integer. The
eigenvalues are ordered in non-increasing order with respect to their magnitude, so
we have σi(A) = |λi(A)| for all i.

5Since we are using random embeddings for robustness, Algorithm 2.1 is strictly more expensive
than classical Nyström methods (column subsampling) if the columns can be sampled quickly.
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Fig. 3. Algorithm 2.1: A difficult (coherent) example for the SRFT sketch. The approximation
can be unstable if the sketch size is too small for the SRFT sketch (left plots). This problem can
be fixed by enlarging the sketch size. The right plots show that sparse maps have no issue with this
example and the approximation is robust.

Now we state our main theorem, and discuss the three key facts that will accom-
pany our proof before getting to the proof immediately.

Theorem 3.1. Let A ∈ R
n×n be a symmetric matrix as in (3.1) and assume that

λr(A) 6= 0. Let c1 and c2 be constants with 1 < c1 < c2 < n
r − 1 such that c1r

and c2r are positive integers. Define Xi := V T
i X for i = 1, 2, 3 where X ∈ Rn×c2r

is a Gaussian matrix, and set B = X3Q⊥(X1Q⊥)
† ∈ R(n−c1r)×r where Q⊥ ∈

Rc2r×(c2−c1+1)r is an orthogonal complement of XT
2 ∈ Rc2r×(c1−1)r. Let (X1Q⊥)

† =
Q̂R̂ be the thin QR decomposition of (X1Q⊥)

† and set U := Q⊥Q̂ ∈ Rc2r×r. Then

the orthogonal projector P = UUT ∈ Rc2r×c2r satisfies

(3.2) E [‖E‖∗ |ΩF ] ≤ (1 + ǫr,A) ‖A− JAKr‖∗
where

(3.3) E := A−AX(PXTAXP )†XTA

is the associated Nyström error, ΩF is an event defined as

(3.4) ΩF :=

{

∥

∥

∥|Λ3|1/2B
∥

∥

∥

2

F
≤ 0.5|λr(A)|

}

where |Λ3| is defined element-wise and

(3.5) ǫr,A := 2b
√
r

(

1 +
|λc1r+1(A)|
|λr(A)|

+
2√
b

) ‖Λ3‖∗
‖Λ2‖∗ + ‖Λ3‖∗

where b = r
(c2−c1)r−1 .
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In the above theorem, c1 and c2 are oversampling factors which are of modest size,
say c1 = 1.5 and c2 = 2. We need two factors because we need X1Q⊥ ∈ Rr×(c2−c1+1)r

and X3Q⊥ ∈ R(n−c1r)×(c2−c1+1)r to be rectangular Gaussian matrices, which makes
them well-conditioned with high probability [7]. We can view c1 as c in Algorithm 2.1
and c2 to be the oversampling factor introduced to make the analysis possible. By
making c1, c2 and (c2 − c1) larger, we can improve the bound in the above Theorem.
The orthogonal projector P = UUT truncates the core matrix W = XTAX by remov-
ing the largest ‘unwanted’ eigenvalues of A, i.e. the eigenvalues in Λ2, using X⊥ factor
in U . This helps the core matrix to not be corrupted by the interaction between the
target and the large ‘unwanted’ singular values and singular vectors of A, which can
happen when forming XTAX . Lastly, the ǫr,A in the theorem plays a similar role to
the distortion ǫ in Equation (1.1) and ΩF is roughly the event that the eigenvalues of
A decay rapidly enough. If we assume that A has a low-rank structure, for example,
|λr(A)| ≫ |λc1r+1(A)|, then ΩF would hold with high probability and ǫr,A would be a
moderately-sized constant, which tells us that the relative-error nuclear norm bound
in (3.2) is good.

We now introduce three key facts that will be useful for our proof. The first fact
follows closely the analysis in [22]. Let P := ΛV TX(PXTAXP )†XTV be an oblique
projector. Then we can rewrite the associated Nyström error as

(3.6) E = V (I − P)ΛV T .

As shown in [22], it is straightforward to see that we can rewrite the associated
Nyström error as

(3.7) V TEV = (I − P)Λ = (I − P)Λ(I − V TXUM)

for any M ∈ Rr×n. Let Vr = [Ir , 0]
T ∈ Rn×r and set M = (V T

r V TXU)†V T
r then we

get

(3.8) V TEV = (I − P)Λ(I − VrV
T
r )(I − V TXU(V T

r V TXU)†V T
r ).

This modification of the associated Nyström error will be important for our proof.
The second fact is the following. Let f(x) be convex in the interval [x1, x2] with

x1 < x2. Define g(x) on [x1, x2] to be the linear function joining the endpoints of f on

[x1, x2], that is, g(x) =
f(x2)−f(x1)

x2−x1

x + f(x1)x2−f(x2)x1

x2−x1

. Then f(x) ≤ g(x) on [x1, x2].
Let Y be a random variable with Y ∈ [x1, x2] almost surely. Then f(Y ) ≤ g(Y ) almost
surely. Furthermore, if Y ∈ [x1, x2] conditional on an event Ω, then conditional on Ω
we get

(3.9) f(Y ) ≤ g(Y ).

The last fact is based on expected norm bounds for Gaussian matrices from [15,
App. A]. We can deduce the following lemma.

Lemma 3.2. Let B be the matrix as in Theorem 3.1 and let S be a fixed real

matrix such that SB is defined. Then

(3.10) E ‖SB‖2F = b ‖S‖2F

where b = r
(c2−c1)r−1 as in Theorem 3.1.
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Proof. Since conditional on X2, X3Q⊥ and X1Q⊥ are two independent Gaussian
matrices, we have

EX1,Q⊥,X3
‖SB‖2F = EX1,Q⊥

[

EX3

[

∥

∥SX3Q⊥(X1Q⊥)
†
∥

∥

2

F

∣

∣

∣

∣

X1, X2

]]

= ‖S‖2F EX1,Q⊥

∥

∥(X1Q⊥)
†
∥

∥

2

F

=
r

(c2 − c1)r − 1
‖S‖2F

using the tower property and the propositions in [15, App. A].

Now using these three key facts we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Since U is an orthonormal matrix we have

AX(PXTAXP )†XTA = AX(UUTXTAXUUT )†XTA

= AXU(UTXTAXU)†UTXTA.

Now since X1Q⊥ ∈ Rr×(c2−c1+1)r is a fat rectangular Gaussian matrix, hence full
rank with probability 1, we have X1Q⊥(X1Q⊥)

† = Ir . Therefore

(3.11) X1Q⊥Q̂ = R̂−1

and we get

(3.12) V TXU =





X1

X2

X3



Q⊥Q̂ =





X1Q⊥Q̂
0

X3Q⊥Q̂



 =





R̂−1

0

BR̂−1





where B = X3Q⊥(X1Q⊥)
† ∈ R(n−c1r)×r.

Now we use the first key fact (Equation (3.8)) and get

(3.13) V TEV = (I − P)Λ(I − VrV
T
r )(I − V TXU(V T

r V TXU)†V T
r )

where P = ΛV TX(PXTAXP )†XTV and Vr is as below. Using

(3.14) V TXU =





R̂−1

0

BR̂−1



 ,Λ =





Λ1 0 0
0 Λ2 0
0 0 Λ3



 , Vr =

[

Ir
0

]

we get

V TEV = (I − P)Λ

[

0
In−r

]

[0, In−r]



I −





R̂−1

0

BR̂−1





(

R̂−1
)†

[Ir , 0]





= (I − P)





0 0 0
0 Λ2 0

−Λ3B 0 Λ3



 .
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We also get

P =





Λ1R̂
−1

0

BR̂−1















R̂−1

0

BR̂−1





T 



Λ1R̂
−1

0

Λ3BR̂−1











†




R̂−1

0

BR̂−1





T

=





Λ1R̂
−1

0

Λ3BR̂−1





(

R̂−T
(

Λ1 +BTΛ3B
)

R̂−1
)†





R̂−1

0

BR̂−1





T

=





Λ1

0
Λ3B





(

Λ1 +BTΛ3B
)†

[Ir, 0, B
T ]

by taking out a factor of R̂−1 and R̂−T from the pseudo-inverse. This is possible
because if we condition on ΩF then (Λ1 + BTΛ3B) is a non-singular r × r matrix.
Now for shorthand let S := Λ1 +BTΛ3B. Then

I − P =





Ir − Λ1S
† 0 −Λ1S

†BT

0 I(c1−1)r 0
−Λ3BS† 0 In−c1r − Λ3BS†BT



 .

Therefore

V TEV = (I − P)





0 0 0
0 Λ2 0

−Λ3B 0 Λ3





=





Λ1S
†BTΛ3B 0 −Λ1S

†BTΛ3

0 Λ2 0
−Λ3B + Λ3BS†BTΛ3B 0 Λ3 − Λ3BS†BTΛ3





=





Λ1S
†BTΛ3B 0 −Λ1S

†BTΛ3

0 Λ2 0
−Λ3BS†Λ1 0 Λ3 − Λ3BS†BTΛ3



 .

We now bound E in the nuclear norm. For shorthand, define the following

a1 = Λ1S
†BTΛ3B

a2 = Λ1S
†BTΛ3

a3 = Λ3 − Λ3BS†BTΛ3.

We then have

‖E‖∗ ≤ ‖Λ2‖∗ + ‖a1‖∗ + 2 ‖a2‖∗ + ‖a3‖∗ .

Let us note

(3.15) Λ1S
† = Λ1

(

Λ1 +BTΛ3B
)†

=
(

Ir +BTΛ3BΛ−1
1

)†

conditional on ΩF since λr(A) 6= 0 and

(3.16)
∥

∥BTΛ3B
∥

∥

F
=
∥

∥

∥BT |Λ3|1/2 sgn (Λ3)|Λ3|1/2B
∥

∥

∥

F
≤
∥

∥

∥|Λ3|1/2B
∥

∥

∥

2

F
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where |Λ3| and sgn(Λ3) are defined element-wise.
We now bound E[‖a1‖∗ |ΩF ], E[‖a2‖∗ |ΩF ] and E[‖a3‖∗ |ΩF ] using the second

(Equation (3.9)) and the third (Lemma 3.2) key fact. We start with a1. Conditional
on ΩF , we have

‖a1‖∗ ≤
√
r
∥

∥Λ1S
†BTΛ3B

∥

∥

F

≤
√
r
∥

∥

∥

(

Ir +BTΛ3BΛ−1
1

)†
∥

∥

∥

2

∥

∥BTΛ3B
∥

∥

F

≤
√
r

∥

∥BTΛ3B
∥

∥

F

1− ‖BTΛ3B‖F
∥

∥Λ−1
1

∥

∥

2

≤
√
r

∥

∥Λ−1
1

∥

∥

2

∥

∥|Λ3|1/2B
∥

∥

2

F

∥

∥Λ−1
1

∥

∥

2

1−
∥

∥|Λ3|1/2B
∥

∥

2

F

∥

∥Λ−1
1

∥

∥

2

≤
√
r

∥

∥Λ−1
1

∥

∥

2

(

2
∥

∥

∥|Λ3|1/2B
∥

∥

∥

2

F

∥

∥Λ−1
1

∥

∥

2

)

where the last inequality was obtained using the second fact with Y =
∥

∥|Λ3|1/2B
∥

∥

2

F

∥

∥Λ−1
1

∥

∥

2
, the event ΩF , the interval [0, 0.5], f(x) = x

1−x which is con-
vex on [0, 0.5] and g(x) = 2x. Now taking conditional expectation and using the third
fact (Lemma 3.2) we get

E [‖a1‖∗ |ΩF ] ≤ 2
√
rE

[

∥

∥

∥|Λ3|1/2B
∥

∥

∥

2

F

∣

∣

∣

∣

ΩF

]

= 2
√
rb
∥

∥

∥|Λ3|1/2
∥

∥

∥

2

F

= 2
√
rb ‖Λ3‖∗ .

For a2, it is similar to a1. Conditional on ΩF we have

‖a2‖∗ ≤
√
r
∥

∥Λ1(Λ1 +BTΛ3B)†BTΛ3

∥

∥

F

≤
√
r
∥

∥(Ir +BTΛ3BΛ−1
1 )†

∥

∥

2

∥

∥

∥|Λ3|1/2B
∥

∥

∥

F

∥

∥

∥|Λ3|1/2
∥

∥

∥

F

≤
√
r
√

‖Λ3‖∗
√

∥

∥Λ−1
1

∥

∥

2

∥

∥|Λ3|1/2B
∥

∥

F

√

∥

∥Λ−1
1

∥

∥

2

1−
∥

∥|Λ3|1/2B
∥

∥

2

F

∥

∥Λ−1
1

∥

∥

2

≤
√
r
√

‖Λ3‖∗
√

∥

∥Λ−1
1

∥

∥

2

2
∥

∥

∥|Λ3|1/2B
∥

∥

∥

F

√

∥

∥Λ−1
1

∥

∥

2

where we used the second fact for the last inequality with Y =
∥

∥|Λ3|1/2B
∥

∥

F

√

∥

∥Λ−1
1

∥

∥

2
,

the interval [0,
√
0.5], f(x) = x

1−x2 and g(x) = 2x. Therefore we get

E[‖a2‖∗ |ΩF ] ≤ 2
√
r
√

‖Λ3‖∗E
[∥

∥

∥|Λ3|1/2B
∥

∥

∥

F

∣

∣

∣ΩF

]

≤ 2
√
r
√

‖Λ3‖∗
√

E

[

∥

∥|Λ3|1/2B
∥

∥

2

F

∣

∣

∣ΩF

]

≤ 2
√
rb ‖Λ3‖∗
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using Lemma 3.2.
Finally for a3, we get

‖a3‖∗ ≤ ‖Λ3‖∗ +
√
r
∥

∥

∥|Λ3|1/2
∥

∥

∥

2

2

∥

∥

∥|Λ3|1/2B
∥

∥

∥

2

F

∥

∥(Λ1 +BTΛ3B)†
∥

∥

2

in a similar manner, and conditional on ΩF we have

∥

∥

∥|Λ3|1/2B
∥

∥

∥

2

F

∥

∥(Λ1 +BTΛ3B)†
∥

∥

2
≤
∥

∥

∥|Λ3|1/2B
∥

∥

∥

2

F

∥

∥Λ−1
1

∥

∥

2

∥

∥Λ1(Λ1 +BTΛ3B)†
∥

∥

2

≤
∥

∥|Λ3|1/2B
∥

∥

2

F

∥

∥Λ−1
1

∥

∥

2

1−
∥

∥|Λ3|1/2B
∥

∥

2

F

∥

∥Λ−1
1

∥

∥

2

≤ 2
∥

∥

∥|Λ3|1/2B
∥

∥

∥

2

F

∥

∥Λ−1
1

∥

∥

2

using the second fact with the same values as the a1 case. Therefore

E[‖a3‖∗ |Ω2] ≤ ‖Λ3‖∗ + 2
√
r ‖Λ3‖2

∥

∥Λ−1
1

∥

∥

2
E

[

∥

∥

∥|Λ3|1/2B
∥

∥

∥

2

F

∣

∣

∣

∣

ΩF

]

≤ ‖Λ3‖∗ + 2
√
rb ‖Λ3‖2

∥

∥Λ−1
1

∥

∥

2
‖Λ3‖∗ .

Finally, combining everything together we get

(3.17) E [‖E‖∗ |ΩF ] ≤ ‖Λ2‖∗ + ‖Λ3‖∗ + 2b
√
r

(

1 +
|λc1r+1(A)|
|λr(A)|

+
2√
b

)

‖Λ3‖∗ .

Therefore

(3.18) E [‖E‖∗ |ΩF ] ≤ (1 + ǫr,A) (‖Λ2‖∗ + ‖Λ3‖∗) = (1 + ǫr,A) ‖A− JAKr‖∗

with

(3.19) ǫr,A = 2b
√
r

(

1 +
|λc1r+1(A)|
|λr(A)|

+
2√
b

) ‖Λ3‖∗
‖Λ2‖∗ + ‖Λ3‖∗

.

Remark 3.3.
1. The relative-error nuclear norm bound is informative if ǫr,A is small. Now

since b ≈ (c2 − c1)
−1 = O(1), we have

(3.20) ǫr,A = O

( √
r ‖Λ3‖∗

‖Λ2‖∗ + ‖Λ3‖∗

)

.

Therefore the relative-error nuclear norm bound is good if

(3.21)
√
r

n
∑

j=c1r+1

|λj(A)| =
√
r ‖Λ3‖∗ . ‖Λ2‖∗ =

c1r
∑

j=r+1

|λj(A)|.

2. Using a similar proof technique we can obtain mixed norm bounds. The
2-norm version of Theorem 3.1 would give

(3.22) E [‖E‖2 |ΩF ] ≤ ‖A− JAKr‖2 +
ǫr,A√
r
‖A− JAKr‖∗
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and the Frobenius norm version would give

(3.23) E [‖E‖F |ΩF ] ≤ ‖A− JAKr‖F +
ǫr,A√
r
‖A− JAKr‖∗

where ǫr,A is as in Theorem 3.1. Therefore the constant in front of the best
rank-r nuclear norm error improves to ǫr,A/

√
r = O(1) using the second

remark (3.20). This type of mixed norm bounds along with the relative-error
nuclear norm bound in Theorem 3.1 are fairly consistent with the SPSD
versions in Table 1 of [14].

3. We can relax the condition ΩF to Ω2 :=
{

∥

∥|Λ3|1/2B
∥

∥

2

2
≤ 0.5|λr(A)|

}

at the

cost of a slightly worse bound in Equation (3.2). It is easy to show that the
bound in Equation (3.2) then changes to

(3.24) E [‖E‖∗ |Ω2] ≤ (1 +
√
rǫr,A) ‖A− JAKr‖∗ .

Probability of ΩF . The probability of the event ΩF happening can be computed
by following the proof of Theorem 10.8 in [15] using k = r and p = (c2 − c1)r and
Lemma 3.2. We get

P

(

∥

∥

∥
|Λ3|1/2B

∥

∥

∥

F
≤
√

‖Λ3‖∗

√

3r

(c2 − c1)r + 1
t+
√

‖Λ3‖2
e
√

(c2 − c1 + 1)r

(c2 − c1)r + 1
tu

)

≥ 1− 2t−(c2−c1)r − e−u2/2

for u, t > 0. Now using (x+ y)2 ≤ 2(x2 + y2), we get

(

√

‖Λ3‖∗

√

3r

(c2 − c1)r + 1
t+
√

‖Λ3‖2
e
√

(c2 − c1 + 1)r

(c2 − c1)r + 1
tu

)2

≤ 2t2

(

‖Λ3‖∗
3r

(c2 − c1)r + 1
+ ‖Λ3‖2

e2(c2 − c1 + 1)r

((c2 − c1)r + 1)
2u

2

)

.

Therefore

(3.25) P (ΩF ) = P

(

∥

∥

∥|Λ3|1/2B
∥

∥

∥

2

F
≤ 0.5|λr(A)|

)

≥ 1− 2t−(c2−c1)r − e−u2/2

if

(3.26) 0.5|λr(A)| ≥ 2t2

(

‖Λ3‖∗
3r

(c2 − c1)r + 1
+ ‖Λ3‖2

e2(c2 − c1 + 1)r

((c2 − c1)r + 1)
2 u

2

)

,

i.e., ΩF holds with high probability when the tail singular values of A decay rapidly.
A similar result can also be derived for Ω2 by following the same results in [15].

Mixed norm bounds. We can obtain mixed norm bounds for Theorem 3.1. The
2-norm version of Theorem 3.1 would give

(3.27) E [‖E‖2 |ΩF ] ≤ ‖A− JAKr‖2 +
ǫr,A√
r
‖A− JAKr‖∗

and the Frobenius norm version would give

(3.28) E [‖E‖F |ΩF ] ≤ ‖A− JAKr‖F +
ǫr,A√
r
‖A− JAKr‖∗
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where ǫr,A is as in Theorem 3.1. This improves the constant in front of the best rank-r
nuclear norm error to ǫr,A/

√
r = O(1) using the first remark (3.20) in Remark 3.3.

The proof for the two mixed norm bounds above can be obtained by following the
proof of Theorem 3.1. More specifically, the proof for the mixed norm bounds stay
the same until we bound a1, a2 and a3. To get the mixed norm bound, we use the
appropriate norms to bound a1, a2 and a3. For example, to bound ‖a1‖F , we start
similarly as in the nuclear norm case by conditioning on ΩF to obtain

‖a1‖F ≤
∥

∥

∥

(

Ir +BTΛ3BΛ−1
1

)†
∥

∥

∥

2

∥

∥BTΛ3B
∥

∥

F

≤
∥

∥BTΛ3B
∥

∥

F

1− ‖BTΛ3B‖F
∥

∥Λ−1
1

∥

∥

2

≤ 1
∥

∥Λ−1
1

∥

∥

2

(

2
∥

∥

∥
|Λ3|1/2B

∥

∥

∥

2

F

∥

∥Λ−1
1

∥

∥

2

)

.

We then get

E [‖a1‖∗ |ΩF ] ≤ 2E

[

∥

∥

∥|Λ3|1/2B
∥

∥

∥

2

F

∣

∣

∣

∣

ΩF

]

= 2b ‖Λ3‖∗ .

The bound for ‖a2‖F , ‖a3‖F , ‖a1‖2 , ‖a2‖2 and ‖a3‖2 follows similarly. The mixed
norm bounds (3.27) and (3.28) along with the relative-error nuclear norm bound in
Theorem 3.1 are fairly consistent with the SPSD versions in Table 1 of [14].

Theorem 3.1 and its proof cannot simply be translated into an algorithm because
the proof relies on the eigendecomposition of A, which is too expensive to compute.
However, the proof naturally suggests Algorithm 2.1. From the proof of Theorem
3.1, under the condition that the matrix has a low-rank structure discussed in this
section, for example in the paragraph after the statement of Theorem 3.1 or in the
remark above, we have that a projection is desired in the core matrix. This projection
gets rid of the large ‘unwanted’ eigenvalues of A, i.e. the eigenvalues in Λ2. In the
Nyström method, a natural analogue is to truncate the smallest few singular values
in the core matrix W = XTAX to achieve the target rank r, which is what has been
done in Algorithm 2.1. The theorem also suggests that the sketch size should be
proportional to the target rank r, which is what we suggest in Algorithm 2.1. Despite
Algorithm 2.1 lacking complete theory (even for the SPSD case), we suggest it because
the algorithm does seem to work well in practice as we illustrate below.

4. Numerical illustration. We first illustrate Theorem 3.1 and Algorithm 2.1
through experiments. In Figure 4, we show a priori and a posteriori error in Theorem
3.1, and Algorithm 2.1 using 1000 × 1000 symmetric indefinite matrices. In the left
plot, the matrix A has eigenvalues that decay geometrically from 1 to 10−12 each
assigned a random sign with equal probability. In the right plot, A has eigenvalues
equal to ±1 for the first 100 eigenvalues and ±10−10 for the other 900 eigenvalues
each assigned a random sign with equal probability; this example illustrates the per-
formance when there is a gap in the singular values. The eigenvectors for both plots
are in a 2× 2 block diagonal form, diag(I100, U) where I100 is the 100× 100 identity
matrix and U ∈ R900×900 is a Haar distributed orthogonal matrix. Both the algorithm
and the theorem were constructed using the Gaussian sketch with the sketch size 1.5r
for the algorithm and c1r = 1.5r and c2r = 2r for the theorem. We see that ΩF

holds whenever there is a rapid decay of eigenvalues, i.e., when |λr| ≫ |λc1r+1|. But
more importantly, we see that the bound holds when the event ΩF occurs (circles)
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and frequently holds even if the event ΩF did not occur (crosses). The theorem does
extremely well when ΩF has occurred. We see that the algorithm gives a good robust
approximation that is a modest factor worse than the best approximation given by
the SVD. Although the theorem does better than the algorithm when ΩF holds, the
theorem can give unstable approximation when ΩF does not hold. This illustrates
that the algorithm, which arose from the theorem, works well in practice.

0 100 200 300 400 500
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10 -2

10 -1

100
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103

0 100 200 300 400 500
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10 -6

10 -4

10 -2
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Fig. 4. Two plots showing the empirical results for Theorem 3.1 and Algorithm 2.1. Algorithm
2.1 is robust with the approximation being a modest factor worse than the best approximation.
Theorem 3.1 bound holds when ΩF has occurred (circles on Theorem 3.1) and also frequently holds
even it ΩF has not occurred (crosses on Theorem 3.1). Theorem 3.1 does extremely well when ΩF

has occurred.

In experiments not shown here, we compared Algorithm 2.1 with randomized
SVD [15] and the generalized Nyström method [4, 22, 33, 40], which are applicable to
nonsymmetric (and rectangular) matrices and do not preserve symmetry. We observe
that Algorithm 2.1 tends to obtain a slightly better approximant for a fixed rank r.

4.1. Synthetic examples. We now compare some of the existing algorithms
against Algorithm 2.1 using different kernel functions and synthetic dataset. We
illustrate the following algorithms

1. Algorithm 2.1 with the SRFT sketch and the sketch size s = 2r,
2. Algorithm 2.1 with uniform column sampling and the sketch size s = 2r,
3. Algorithm 2.1 with leverage score column sampling and the sketch size s = 2r,
4. Submatrix-Shifted (SMS) Nyström [29] with uniform column sampling and

s1 = r, s2 = 2r and α = 1.5,
5. Submatrix-Shifted (SMS) Nyström [29] with the Gaussian sketch and s1 = r,

s2 = 2r and α = 1.5,
6. Stabilized Nyström [3] with the SRFT sketch, s = r and ǫ = 10−14

where r is the target rank and the parameters for SMS Nyström and Stabilized
Nyström are as recommended in their original papers.6 For SMS Nyström method,

6For stabilized Nyström method, s = r was chosen to ensure that all approximations in the
experiment have rank at most r and ǫ = 10−14 as suggested in the original paper was chosen to try



INDEFINITE NYSTRÖM APPROXIMATION 19

the Gaussian sketch was not used in the original paper [29]. We use the following
kernel functions

1. Epanechnikov kernel: k1(x, y) = max{1− ‖x− y‖2 , 0}
2. Multiquadric kernel: k2(x, y) =

√

1 + ‖x− y‖2

3. Thin plate spline: k3(x, y) = ‖x− y‖2 ln
(

‖x− y‖2
)

to generate the kernel matrices. The kernel matrices K(1),K(2) and K(3) correspond-
ing to the kernel functions k1, k2 and k3 were generated by sampling 1000 random

numbers {xi}1000i=1 from the standard normal distribution, i.e., K
(ℓ)
ij = kℓ(xi, xj). All

the kernel matrices are symmetric indefinite.
In Figure 5, we illustrate the results. The eigenvalue histogram is shown in the left

plots. The right plots show the approximation. We see that SMS Nyström performs
poorly in all 3 examples except the Gaussian case for the multiquadric kernel. This
is possibly because the extreme eigenvalues are large in magnitude so the large shift
is ruining the approximation quality. The stabilized Nyström works well for the
multiquadric kernel and the thin plate spline, but the approximation is very unstable
for the Epanechnikov kernel. This is possibly because the number of positive and the
negative eigenvalues are about the same with similar magnitudes for the Epanechnikov
kernel, which can increase the chance of instability in the core matrix.7 This also tells
us that the truncation in the core matrix should not depend on the magnitude of the
singular values of W , but the truncation should always happen proportional to the
target rank. Algorithm 2.1 using uniform column sampling and leverage score column
sampling are both unstable for all 3 examples, which shows the unreliability of using
column sampling matrices. On the other hand, Algorithm 2.1 using the SRFT sketch
works well in all cases.

4.2. Dataset examples. We now compare the three different methods using
two different high-dimensional datasets, the Covertype and the Anuran Calls (MFCC)
from the UC Irvine Machine Learning Repository [10]. We illustrate the following
algorithms

1. Algorithm 2.1 with the SRFT sketch and the sketch size s = 2r,
2. Algorithm 2.1 with k-means++ samples and the sketch size s = 2r,
3. Algorithm 2.1 with uniform column sampling and the sketch size s = 2r,
4. Stabilized Nyström with k-means++ samples, the sketch size s = r and

ǫ = 10−14

where r is the target rank. We use the following kernel functions

1. Thin plate spline kernel: ‖x− y‖2 log
(

‖x− y‖2
)

2. Sigmoid kernel: tanh
(

1 + ‖x− y‖2
)

3. Multiquadric kernel:

√

1 + ‖x− y‖2
with the datasets

1. Covertype (n = 581012) with dimension d = 54,
2. Anuran Calls (MFCC) (n = 7195) with dimension d = 22.

For each dataset, we sample n = 4000 data uniformly at random and then center the
mean and normalize all features to have variance 1.

diminish the error that might come from taking the pseudo-inverse of the core matrix W .
7To our knowledge, the numerical behavior of stabilized Nyström method is an open problem;

the stability analysis in [22] applies only to an algorithm where A is sketched from both sides using
independent sketches of different dimensions.
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Fig. 5. Comparison of different methods for symmetric indefinite matrices: SMS-Nyström [29],
stabilized Nyström [3] and Algorithm 2.1. The first two methods and Algorithm 2.1 using uniform
column sampling and leverage score column sampling can fail on some kernels while Algorithm 2.1
using the SRFT sketch (random embedding) works well for all the kernels in the experiment.

The results are illustrated in Figure 6. We observe that the cause of instability in
the Nyström approximation for symmetric indefinite matrices is not necessarily com-
ing from the core matrix W having very small singular values as Stabilized Nyström
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can give unstable approximations as seen in Figure 6. Also, although Algorithm 2.1
using k-means++ samples is more accurate than uniform column sampling, they both
do not give robust low-rank approximations. This shows that it is difficult to find
a column sampling scheme that guarantees stable Nyström approximation for sym-
metric indefinite matrices. On the other hand, Algorithm 2.1 using the SRFT sketch
gives robust approximation throughout the experiment and sometimes outperforms
the other methods in this experiment such as in Figure 6a and 6e.

5. Discussion. Much of the literature on approximating symmetric matrices us-
ing any of the variants of the Nyström method is based on column sampling. In this
work, we used random embeddings for our algorithm (Algorithm 2.1) and a special
class of random embeddings for the analysis, namely Gaussian embeddings. Random
embeddings were used as they are more robust than column sampling, and Gauss-
ian embeddings were used for analysis because we can leverage their rich theoretical
properties. The general behaviour when we use the Nyström method with column
sampling matrices on symmetric indefinite matrices is unknown. In Figure 5, we
see that the two frequently used column sampling schemes, uniform sampling and
leverage score sampling can be unstable. It appears to be difficult to find a column
sampling scheme that guarantees robust Nyström approximation for symmetric indef-
inite matrices and, to our knowledge, is an open problem. We hope that our results
would shed light on the development of a robust indefinite Nyström method based on
column subsampling.
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tional Conference on Machine Learning, PMLR, 2019, pp. 4912–4921.

[27] B. Piccoli and F. Rossi, Generalized Wasserstein Distance and its Application to Transport
Equations with Source, Archive for Rational Mechanics and Analysis, 211 (2014), pp. 335–
358, https://doi.org/10.1007/s00205-013-0669-x, https://arxiv.org/abs/1206.3219.

[28] F. Pourkamali-Anaraki, S. Becker, and M. Wakin, Randomized clustered Nyström for
large-scale kernel machines, Proceedings of the AAAI Conference on Artificial Intelligence,
32 (2018), pp. 3960–3967, https://doi.org/10.1609/aaai.v32i1.11614.

[29] A. Ray, N. Monath, A. McCallum, and C. Musco, Sublinear time approximation of text sim-
ilarity matrices, Proceedings of the AAAI Conference on Artificial Intelligence, 36 (2022),
pp. 8072–8080, https://doi.org/10.1609/aaai.v36i7.20779.

[30] T. Sarlos, Improved approximation algorithms for large matrices via random projections, in
Proc. IEEE 47th Annu. Symp. Found. Comput. Sci., 2006, p. 143–152, https://doi.org/10.
1109/FOCS.2006.37.

[31] J. A. Tropp, Improved analysis of the subsampled randomized Hadamard transform, Ad-
vances in Adaptive Data Analysis, 03 (2011), pp. 115–126, https://doi.org/10.1142/
S1793536911000787.

[32] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher, Fixed-rank approximation of a
positive-semidefinite matrix from streaming data, in Proceedings of the 31st International

http://archive.ics.uci.edu/ml
https://doi.org/10.48550/ARXIV.2110.02820
https://doi.org/https://doi.org/10.1016/j.neucom.2015.04.017
https://doi.org/https://doi.org/10.1016/j.neucom.2015.04.017
https://doi.org/10.48550/ARXIV.1110.5305
https://doi.org/10.1137/090771806
https://doi.org/10.1017/9781139020411
https://doi.org/10.1145/3004053
https://doi.org/10.1109/TNNLS.2014.2359798
https://doi.org/10.1073/pnas.0803205106
https://doi.org/10.1073/pnas.0803205106
https://doi.org/10.1017/s0962492920000021
https://doi.org/10.1017/s0962492920000021
https://proceedings.neurips.cc/paper_files/paper/2017/file/a03fa30821986dff10fc66647c84c9c3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/a03fa30821986dff10fc66647c84c9c3-Paper.pdf
https://arxiv.org/abs/2009.11392
https://doi.org/10.1109/FOCS.2013.21
https://doi.org/10.1007/BF02547521
https://doi.org/10.1007/BF02547521
https://doi.org/10.1007/BF02547521
https://proceedings.mlr.press/v70/oglic17a.html
https://doi.org/10.1007/s00205-013-0669-x
https://arxiv.org/abs/1206.3219
https://doi.org/10.1609/aaai.v32i1.11614
https://doi.org/10.1609/aaai.v36i7.20779
https://doi.org/10.1109/FOCS.2006.37
https://doi.org/10.1109/FOCS.2006.37
https://doi.org/10.1142/S1793536911000787
https://doi.org/10.1142/S1793536911000787


24 YUJI NAKATSUKASA AND TAEJUN PARK

Conference on Neural Information Processing Systems, 2017, p. 1225–1234.
[33] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher, Practical sketching algorithms for

low-rank matrix approximation, SIAM J. Matrix Anal. Appl., 38 (2017), p. 1454–1485,
https://doi.org/10.1137/17m1111590.

[34] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher, Streaming low-rank matrix ap-
proximation with an application to scientific simulation, SIAM J. Sci. Comp., 41 (2019),
pp. A2430–A2463, https://doi.org/10.1137/18M1201068.

[35] M. Udell and A. Townsend, Why are big data matrices approximately low rank?, SIAM
Journal on Mathematics of Data Science, 1 (2019), pp. 144–160, https://doi.org/10.1137/
18M1183480.

[36] S. Wang, A. Gittens, and M. W. Mahoney, Scalable kernel k-means clustering with Nyström
approximation: Relative-error bounds, J. Mach. Learn. Res., 20 (2019), p. 431–479.

[37] S. Wang, L. Luo, and Z. Zhang, SPSD matrix approximation vis column selection: Theories,
algorithms, and extensions, J. Mach. Learn. Res., 17 (2014), pp. 49:1–49:49.

[38] C. Williams and M. Seeger, Using the Nyström method to speed up kernel machines,
in Advances in Neural Information Processing Systems, T. Leen, T. Dietterich, and
V. Tresp, eds., vol. 13, MIT Press, 2000, https://proceedings.neurips.cc/paper/2000/file/
19de10adbaa1b2ee13f77f679fa1483a-Paper.pdf.

[39] D. P. Woodruff, Sketching as a tool for numerical linear algebra, Found. Trends Theor.
Comput. Sci., 10 (2014), p. 1–157, https://doi.org/10.1561/0400000060.

[40] F. Woolfe, E. Liberty, V. Rokhlin, and M. Tygert, A fast randomized algorithm for
the approximation of matrices, Appl. Comput. Harmon. Anal., 25 (2008), pp. 335–366,
https://doi.org/https://doi.org/10.1016/j.acha.2007.12.002.

https://doi.org/10.1137/17m1111590
https://doi.org/10.1137/18M1201068
https://doi.org/10.1137/18M1183480
https://doi.org/10.1137/18M1183480
https://proceedings.neurips.cc/paper/2000/file/19de10adbaa1b2ee13f77f679fa1483a-Paper.pdf
https://proceedings.neurips.cc/paper/2000/file/19de10adbaa1b2ee13f77f679fa1483a-Paper.pdf
https://doi.org/10.1561/0400000060
https://doi.org/https://doi.org/10.1016/j.acha.2007.12.002

	Introduction
	Nyström methods and related work

	Proposed method
	Random embeddings
	Gaussian matrices
	SRTTs
	Sparse maps

	Suggested algorithm

	Analysis
	Numerical illustration
	Synthetic examples
	Dataset examples

	Discussion
	References

