
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Quantification of Errors Generated by Uncertain Data in a Linear Boundary Value
Problem Using Neural Networks

© 2023 the Authors

Accepted version (Final draft)

Halonen, Vilho; Pölönen, Ilkka

Halonen, V., & Pölönen, I. (2023). Quantification of Errors Generated by Uncertain Data in a
Linear Boundary Value Problem Using Neural Networks. SIAM/ASA Journal on Uncertainty
Quantification, 11(4), 1258-1277. https://doi.org/10.1137/22M1538855

2023

Quantification of Errors Generated By Uncertain Data in a Linear Boundary1

Value Problem Using Neural Networks∗2

Vilho Halonen† and Ilkka Pölönen†3

4

Abstract. Quantifying errors caused by indeterminacy in data is currently computationally expensive even in5
relatively simple PDE problems. Efficient methods could prove very useful in for example scientific6
experiments done with simulations. In this paper, we create and test neural networks which quantify7
uncertainty errors in the case of a linear one-dimensional boundary value problem. Training and8
testing data is generated numerically. We created three training datasets, three testing datasets and9
trained four neural networks with differing architectures. The performance of the neural networks10
is compared to known analytical bounds of errors caused by uncertain data. We find that the11
trained neural networks accurately approximate the exact error quantity in almost all cases and the12
neural network outputs are always between the analytical upper and lower bounds. The results of13
this paper show that after a suitable dataset is used for training even a relatively compact neural14
network can succesfully predict quantitative effects generated by uncertain data. If these methods15
can be extended to more difficult PDE problems they could potentially have a multitude of real-world16
applications.17

Key words. PDE, Uncertainty Quantification, Machine Learning, Neural Network18

MSC codes. 65G99, 68T01, 65L1019

1. Introduction. Mathematical models in real-world applications are always burdened20

by uncertainty in measurements. Solutions to real-world problems are usually created by21

numerical methods such as the finite element method [2] and the data used is never exactly22

known. Uncertainty in data causes errors in the outputs of mathematical models. Currently23

in PDE problems the methods used to quantify these errors include propabilistic methods24

[10], the worst case scenario method [5] and a posteriori error estimates [6].25

There are two major issues with current methods. Analytical methods are not always26

available and even if they exist the results may be too coarse. Numerical methods can suffer27

from unreasonably high computational costs. If a solution seems good enough an engineer28

may disregard uncertainty error estimation completely.29

The problem of uncertainty analysis is close to the area of scientific research where modern30

machine learning models such as neural networks are used. In this paper, we investigate the31

possibility of using neural networks to quantify errors generated by uncertain data. First we32

create datasets which have as inputs the uncertainty in data and as outputs the uncertainty33

error represented by some error metric. These datasets are used to train various different34

neural networks. To analyse effects of uncertain data we chose an example differential equation35

which is presented in section 3. For the chosen problem, analytical error bounds were derived36

in [4].37

The uncertainty information is not a discrete set of values which can be directly input to38

a neural network so we need to characterize the uncertainty in an approximated way. This is39

∗Submitted to the editors 07.12.2022.
†University of Jyväskylä, Faculty of Information Technology. Mattilanniemi 2, 40100, Jyvaskylä, Finland.

1

This manuscript is for review purposes only.

2 V. HALONEN, I. PÖLÖNEN

done by scanning the set of possible values for parameters on some amount of specific points.40

The prototype problem we use has uncertain parameter functions which are one-dimensional,41

so the scanning is done on the edge of the maximum and minimum values of a function in the42

indeterminacy set. In our case, we used eight points for this scanning operation (see Figure43

2).44

The paper is organized as follows. First we introduce the uncertainty problem in an45

abstract setting in section 2. In section 3 we show the prototype problem used, methods46

to create datasets, the neural network models and how network performance is evaluated.47

Results are given in section 4, and the conclusions follow in section 6.48

2. Problem Setting. Consider an abstract differential problem49

Au = f,(2.1)5051

where u ∈ V is the unknown function in some suitable solution space, A is a differential52

operator and f is the source term. In practice, the differential operator A and source term53

f depend on measured data which is subject to inaccuracies in measurements. For example,54

if 2.1 were a linear elasticity problem the operator A would contain information about the55

Láme parameters of the deformed material and f would describe the outside forces subjected56

to the material. Such measured quantities are only known up to some accuracy. A solution57

to 2.1 is therefore not unique but rather there is a set of possible solutions.58

Assume that instead of knowing A and f exactly we only know that59

(A, f) ∈ D := DA ×Df .(2.2)6061

We call the set D the set of admissible data. Each element of the set D may produce a different62

solution u to the problem 2.1. For this purpose we define the set of solutions which is the63

image of the following solution mapping.64

Definition 2.1. The solution mapping S : D → V is a function such that S(A, f) = u,65

where u is the exact solution to 2.1. The image S(D) is called the solution set.66

If possible, we would like to know quantitatively what the solution set S(D) is like. For this67

purpose the quantity of interest is the diameter of this set with respect to some suitable norm.68

Definition 2.2. The diameter of the solution set is

Diam(S(D)) := sup
u1,u2∈S(D)

||u1 − u2||,

where the norm || · || is a suitable norm in the vector space V .69

The quantity Diam(S(D)) is useful for two things. Firstly, if there is a priori knowledge of what70

this quantity is expected to be, the accuracy of measurements related to D can be considered71

suitable or unsuitable. This quantity can also give us an accuracy limit on approximation72

errors. If approximation errors are lower then the diameter the approximation may already73

be within the solution set so sharpening approximation schemes is a wasted effort (see Figure74

1). Our research objective is to create neural networks which use the indeterminacy set D as75

input and outputs an approximation of the diameter Diam(S(D)).76

This manuscript is for review purposes only.

ERROR QUANTIFICATION OF AN UNCERTAIN ODE WITH NN’S 3

Diam(S(D))

S(D)

v

u

||u− v|| < Diam(S(D))

Figure 1. Since approximation error is less then the diameter sharpening the approximation scheme is not
useful.

3. Methods. We investigate the effects of uncertain data in the context of a prototype77

problem which is presented in section 3.1. Our process of creating neural network models78

consists of three distinct steps. First, we describe and implement creation of training and79

test data in section 3.2. Afterwards we create and train neural networks on the made data in80

section 3.4. In section 3.5, we explain how network performance is tested.81

3.1. Prototype problem. The effects of indeterminacy are studied in the case of the82

following boundary value problem. Problem P: Find u ∈ H1
0 (0, 1), such that83

(α(x)u′(x))′ − β(x)u(x) = f(x),(3.1)84

u(0) = u(1) = 0,(3.2)85

0 < α	 < a(x) < α⊕, 0 < β	 < β(x) < β⊕, f ∈ L2(0, 1).(3.3)8687

Uncertainty in (3.1)-(3.3) is introduced by assuming that α, β and f are not known exactly.88

Instead we only know that89

(α, β, f) ∈ D = Dα ×Dβ ×Df ,9091

where92

Dα :={α◦ + δ1g : ||g||∞ ≤ 1},93

Dβ :={β◦ + δ2g : ||g||∞ ≤ 1},94

Df :={f◦ + δ3g : ||g||∞ ≤ 1}.9596

The functions α◦, β◦ and f◦ are referred to as the ”mean” or ”central” elements of the97

admissible data and the functions δ1, δ2 and δ3 are the maximum perturbations from them.98

The image of the solution mapping (see 2.1) is in the space H1
0 (0, 1), so S : D → H1

0 (0, 1). In99

this space the suitable norm that we use for the diameter Diam(S(D)) (see 2.2) is the energy100

norm101

||u||◦ :=

(∫ 1

0
α◦|u′|2 + β◦|u|2 dx

) 1
2

,(3.4)102
103

where u◦ = S(α◦, β◦, f◦).104

For this one-dimensional problem the input for a neural network is formed by scanning105

each of the sets Dα,Dβ and Df on the edge of what the maximum and minimum function in106

these sets are (see Figure 2) on eight equidistant points on the domain [0, 1].107

This manuscript is for review purposes only.

4 V. HALONEN, I. PÖLÖNEN

Figure 2. Example of how the set Dα is turned into a discrete input for a neural network. The y-coordinate
of each red dot is put into a vector of length 16 in a chosen order. This vector is part of the neural network
input together with similar vectors scanned from the sets Dβ and Df .

3.2. Creating Data. We created three training datasets and three testing datasets. The108

training datasets consist of examples where the admissible datasets Dα,Dβ and Df have a109

piecewise constant maximum and minimum element (see Figure 4) Examples in the made110

test datasets are less restricted in terms of smoothness and oscillation. Rather then being111

piecewise constant on their edges the edge is smooth and can oscillate (see Figure 3) more and112

more for the subsequent test datasets. This will let us see how the networks generalize when113

trained with a fairly constrained dataset. It is also noticeably easier and faster to generate114

training examples with tighter constraints. In our case, the piecewise constraints make it115

so that different solutions in the solution set can be found by solving relatively small linear116

systems of equations which is done very quickly on modern computers.117

First the method of generating a single example is discussed and in the following subsec-118

tions the specific characteristics of each dataset are presented. A training example consists of119

the input which is a discrete version of the admissible dataset D and the output A which is120

an approximation of the quantity Diam(S(D)). Discrete inputs are created by scanning the121

admissible dataset on eight points on the domain (see Figure 2).122

To approximate the diameter we randomly select a finite amount of elements from the123

admissible dataset and compute the solution for each choice. From the resulting finite solution124

set the diameter can be approximated by brute force calculation of the maximum energy125

distance between two elements. In our case, the finite set was chosen to have 2000 solutions.126

In testing different sizes it was found that after around size 1500 the diameter approximation127

This manuscript is for review purposes only.

ERROR QUANTIFICATION OF AN UNCERTAIN ODE WITH NN’S 5

Figure 3. Diameter approximation for solution sets of different sizes. The approximation was computed
200 times for the different sizes of solution sets [10, 20, · · · , 3000]. After 1500 solutions are reached the approx-
imation did not change so when making training examples we use 2000 solutions to approximate the diameter.

tends to not increase (see Figure 3). To be safer we go a little beyond and choose 2000.128

Note however that if we are unlucky even with such an amount of solutions the diameter129

approximation may be inaccurate. For our purposes it is sufficiently accurate.130

It is not trivial to decide what the random elements chosen from D should be. If they are131

too complex generating solutions may be slow. If they are too simple the finite set will not be132

a good representation of D. For the training datasets we chose piecewise constant functions.133

For such functions the solutions can be generated very fast. The specifics of how the problem134

(3.1)-(3.3) becomes a linear system when using piecewise constant functions α, β and f are135

described in 3.2.1. The reason we chose to use these piecewise datasets for training is to136

see if a somewhat limited type of training data can train a network such that it generalizes137

to more complex functions. If the PDE at hand were more complicated it may provide a138

substantial increase in computational cost to make a training dataset that is somehow limited139

in complexity.140

After the finite solution set has been generated the diameter is calculated by brute force141

computation which compares each pair of solutions in the solution set and computes the142

energy distance between them. The maximum distance found is the approximated diameter143

which is used as the output of the training example. This procedure is rather computationally144

expensive and takes almost all of the time used to generate a single example.145

This manuscript is for review purposes only.

6 V. HALONEN, I. PÖLÖNEN

3.2.1. Training Datasets. In all of the datapoints in the training datasets the mean146

functions α◦, β◦, f◦ and the indeterminacy functions δi are piecewise constant such that147

α◦(x) = αk, when x ∈ [xk−1, xk],(3.5)148

β◦(x) = βk, when x ∈ [xk−1, xk],149

f◦(x) = fk, when x ∈ [xk−1, xk],150

δi(x) = δki ,when x ∈ [xk−1, xk], i = 1, 2, 3.151152

The amount of subintervals is the same for the first two datasets and increased for the last153

dataset. The indeterminacy functions have a magnitude limit given by154

δ1(x) ≤ 0.3α◦(x), δ2(x) ≤ 0.3β◦(x), δ3(x) ≤ 0.3f◦(x).(3.6)155156

From the admissible dataset with the above constraints we pick 2000 individual solutions157

to (3.1)-(3.3) by sampling random functions α, β and f from the admissible dataset. In every158

sample the functions α, β and f are also chosen to be piecewise constant. This lets us generate159

each solution in this set of 2000 solutions by solving linear system of equations. How this is160

done is described as follows:161

Assume that the functions α, β, f are constant on the subintervals (xi, xi+1), i = 0, N .162

α(x) = αk, when x ∈ [xk−1, xk],163

β(x) = βk, when x ∈ [xk−1, xk],164

f(x) = fk, when x ∈ [xk−1, xk].165166

A differential equation of the form167

αu′′ − βu = f168169

where α, β and f are constant has a general solution of the form170

u = c1e

(√
β/α
)
x + c2e

−
(√

β/α
)
x − f

β
.(3.7)171

172

With n subintervals we will have n equations of the form (3.7). We denote the solutions173

u1, u2, · · · , un such that174

uk(x) = ck1e

(√
βk/αk

)
x + ck2e

−
(√

βk/αk

)
x − fk

βk
.175

176

This gives us 2n unknown parameters cij . On the boundary of each subinterval the value177

of the solution u and the value of the flux αu′ must coincide. On top of that we have the178

boundary conditions u(a) = A, u(b) = B at the boundary of the full interval. This gives us179

the required 2n equations to solve this system. This is a linear system with the matrix form180

Ac = F . Solving this system gives us the unknowns cij . For this reason it is very efficient to181

create a representation of the solution cloud by sampling piecewise constant functions from182

the admissible data D.183

This manuscript is for review purposes only.

ERROR QUANTIFICATION OF AN UNCERTAIN ODE WITH NN’S 7

Figure 4. Example of what admissible sets Dα in the training datasets can look like. The constraint on each
subinterval is that the functions in the admissible set are between two constants and the amount of subintervals
is chosen for each training dataset. The y-coordinates of the red dots are used as inputs for neural networks.

We created three training datasets and the examples in each dataset have the following184

constraints on top of the indeterminacy magnitude constraint 3.6 and the piecewise constant185

mean and indeterminacy function constraint 3.2.1.186

Training dataset 1:187

• The domain [0, 1] is split into four pieces:188

[x0, x1, x2, x3, x4] = [0, 0.25, 0.5, 0.75, 1].189

• 4 ≤ α◦(x) ≤ 8, 4 ≤ β◦(x) ≤ 8, 0 ≤ f◦(x) ≤ 10.190

Training dataset 2:191

• The domain [0, 1] is split into four pieces:192

[x0, x1, x2, x3, x4] = [0, 0.25, 0.5, 0.75, 1].193

• 4 ≤ α◦(x) ≤ 14, 4 ≤ β◦(x) ≤ 14, −20 ≤ f◦(x) ≤ 20.194

Training dataset 3:195

• The domain [0, 1] is split into eight pieces:196

[x0, x1, x2, · · · , x8] = [0, 0.125, 0.25, · · · , 1].197

• 4 ≤ α◦(x) ≤ 14, 4 ≤ β◦(x) ≤ 14, −20 ≤ f◦(x) ≤ 20.198

Each training dataset contains a total of 2000 datapoints. A single datapoint consists of the199

discrete scanned vector of length 48 generated by scanning the admissible set D (see Figure200

4) and the approximated diameter of the solution set.201

3.2.2. Test Datasets. We created three test datasets. The difference compared to the202

training datasets is the smoothness of the admissible datasets D, the amount of oscillation in203

This manuscript is for review purposes only.

8 V. HALONEN, I. PÖLÖNEN

the domain and the range in which the mean functions α◦, β◦ and f◦ are. The first two test204

sets have the mean functions in the same ranges as all of the training datasets while the last205

test set has mean functions which have higher values then in any of the training examples.206

Oscillation is included in all three being the lower in the first and third set and substantially207

higher in the second test set. With these choices of test sets we can see if the piecewise208

constrained training data is sufficient to generalize to less constrained admissible data D.209

The admissible datasets for test sets are generated by randomly picking some number of210

points between a maximum and minimum value and fitting a spline curve to these points.211

This spline curve is used as the mean function of the admissible dataset. The indeterminacy212

functions δi are created in the same way. This produces smoother admissible datasets as213

shown in figure 5. All test sets have 130 datapoints.214

The values which we can pick to create different kinds of test sets are:215

1. The range of values for α◦(x) ∈ [α−, α+] (similarily for β◦ and f◦).216

2. The range of values for δi ∈ [δi−, δi+].217

3. The amount of random points used to make the splines (controls how much oscillation218

is possible).219

These values are picked as follows for each set:220

Test set 1:221

• α◦, β◦ ∈ [4, 8]222

• f◦ ∈ [4, 10]223

• δi ∈ [0.1, 0.3]224

• Amount of spline points is 4225

Test set 2:226

• α◦, β◦ ∈ [4, 8]227

• f◦ ∈ [4, 10]228

• δi ∈ [0.1, 0.3]229

• Amount of spline points is 9230

Test set 3:231

• α◦, β◦ ∈ [14, 24]232

• f◦ ∈ [20, 40]233

• δi ∈ [0.1, 0.3]234

• Amount of spline points is 4235

3.3. Neural Networks. A feed-forward neural network is a machine learning model which
can be used for a variety of classification and regression problems. The structure of such a
model has an input layer, one or more hidden layers and an output layer. The input layer
consists of as many neurons as there are dimensions in a datapoint. Hidden layers consist of
a chosen number of neurons on each layer and the output layer in the case of a regression
problem has a single neuron from which the approximated output value is extracted. In a
dense feed-forward neural network like the ones we used each layer is ”fully-connected” to the
next layer such that each neuron is connected to every neuron of the next layer and adjusted
by a weight parameter w. Each neuron in the hidden layers performs the operation

n(x) = a(wT + b),

This manuscript is for review purposes only.

ERROR QUANTIFICATION OF AN UNCERTAIN ODE WITH NN’S 9

Figure 5. Example of what admissible sets in the test datasets can look like. In the test datasets, the
admissible sets Dα have a smooth edge and oscillate randomly as fast as chosen for the particular test dataset.
The y-coordinates of the red dots are used as inputs for neural networks.

where x is the vector of outputs of the neurons in the previous layer, w are the weights of236

each connection from the previous layer to the given neuron, b is additional bias and the237

function a is the activation function of the neuron. The activation function may be one of238

many different functions but some common ones are the Sigmoid function S(x) = 1
1+e−x and239

the ReLU (Rectified linear unit) fuction which is the piecewise defined function R(x) = 0240

when x < 0 and R(x) = x when x ≥ 0.241

The machine learning part in using a neural network is when the weights w and biases b
of each neuron are optimized on a given dataset. In such a task when the training dataset
inputs are X and outputs are Y the problem is finding

inf
w,b
||F (X,w, b)− Y ||,

where F (X,w, b) is the output of the neural network for the entire training dataset with the242

weights and biases w, b. In practice the exact minimizer with respect to the weights and243

biases is not available. However, using numerical methods such as gradient descent such a244

minimization problem can be solved to a satisfactory level in many cases. For a more detailed245

introduction to the various different kinds of neural networks and the methods used to train246

them see for example [3].247

3.4. Architecture. Four neural networks were created. One for each of the three training248

datasets and an extra one which uses all three training datasets combined as training data.249

This manuscript is for review purposes only.

10 V. HALONEN, I. PÖLÖNEN

All networks have an input layer with 48 nodes. This corresponds to the admissible datasets of250

each parameter being scanned at eight points (see Figure 5). Implementation of the networks251

was done with Python version 3.8.12 [11] and Pytorch 1.9.0 [8]. Hyperparameter tuning was252

done with Optuna version 2.10.0 [1]. Optuna is a hyperparameter tuning package which253

uses various algorithms to scan the search space to find optimal parameters. In our case,254

the parameters being tuned are the number of hidden layers, number of nodes per hidden255

layer, activation function type, batch size and the hyperparameters of the Adam optimization256

algorithm. In Optuna, for sampling we picked the TPE (Tree-structured Parzen Estimator)257

algorithm, which is recommended in the documentation.258

The choice of network architecture is a difficult open problem and our choices are based on259

intuition and trial and error. First, models with various structures were tested to give a broad260

idea of what kind of model could work and we found that relatively small networks with as few261

as two hidden layers and 20 neurons per layer are trained relatively well. We also tested ReLU262

and Sigmoid activation functions and found that both can give good results. In preliminary263

tests we used default settings of the Adam optimization algorithm but the hyperparameters264

of Adam will be tuned by Optuna. This gives us a good starting point to select a search space265

for Optuna. For the first three networks the search space given to Optuna was the following:266

1. Number of hidden layers ≤ 3267

2. Number of nodes in every hidden layer ≤ 100 (each hidden layer has the same amount268

of nodes)269

3. Activation function of all nodes either Sigmoid or ReLU (all nodes have the same270

activation)271

4. Batch size between 20 and 150.272

5. Adam hyperparameters α (learning rate), β1, β2 and ε:273

• 1× 10−5 ≤ α ≤ 1× 10−2274

• 0.01 ≤ β1 ≤ 0.9999275

• 0.01 ≤ β2 ≤ 0.9999276

• 0 ≤ ε ≤ 1× 10−3277

For the final network where we use all three datasets combined to train it the search space278

was adjusted to allow more hidden layers and nodes in each layer. The motivation for this is279

the fact that a larger dataset with more varied data should require a larger model to get a280

good training fit. The change done was the following:281

1. Number of hidden layers ≤ 5282

2. Number of nodes in every hidden layer ≤ 300 (each hidden layer has the same amount283

of nodes)284

Each dataset was used over 2000 trials to create a neural network that works well for that285

specific dataset. The architectures that were found best by Optuna trials can be found in286

table 1. The first network for the simplest dataset (Network 1) is also a lot smaller in terms287

of neurons and layers then the latter ones with more complex training datasets. We can see288

that the level of complexity of the network increases when the training datasets complexity289

increases. For the last three networks the ReLU activation function outperforms Sigmoid290

however the differences are not massive so Sigmoid or some other nonlinear activation function291

may work reasonably well too.292

This manuscript is for review purposes only.

ERROR QUANTIFICATION OF AN UNCERTAIN ODE WITH NN’S 11

Network 1 2 3 4

Activation Sigmoid ReLU ReLU ReLU

Hidden Layers 2 3 3 5

Nodes per layer 12 82 83 159

Batch Size 24 32 20 29

Learning Rate 0.0005 0.0068 0.0047 0.0052

β1 0.7792 0.9018 0.7822 0.9151

β2 0.8268 0.8606 0.4533 0.8770

ε 3.9× 10−5 2.9× 10−4 1.9× 10−4 3.9× 10−4

Table 1
Best parameter values for neural networks found for each dataset over 2000 Optuna trials. These values

are used in the final trained neural networks. Network 1 was optimized while training with training dataset
1, Network 2 with training dataset 2, Network 3 with training dataset 3 and Network 4 with all three training
datasets (1,2,3) combined.

3.5. Tests. Neural network performance is evaluated in two ways. The first one is to293

simply present the mean absolute error percentage (MAPE) which is defined as follows:294

MAPE(c, p) =
100%

n

n∑
t=1

∣∣at − pt
at

∣∣,295

296

where c is the set of correct values, p is the set of predicted values and n is the amount of297

value-pairs.298

The second way we evaluate performance is by comparing the networks outputs with299

known analytical upper and lower bounds. This comparison is done visually by plotting the300

correct approximation, predicted value and bounds for the test sets and the test portions of301

the training sets. These type of error bounds are well studied in [9] and [6]. The particular302

bounds that we use for problem (3.1-3.3) were derived in ([4], section 2.2).303

For the analytical bounds we need some notations. Define304

c1 := min
x∈(0,1)

δ1(x)

α◦(x)− δ1(x)
, c2 := min

x∈(0,1)

δ2(x)

β◦(x)− δ2(x)
,305

306

307

K :=
√

1 + max {c1, c2} and K :=
√

1−max {c1, c2}.308309

The lower and upper bounds are defined in the next theorems.310

Theorem 3.1. The diameter of the solution set S(D) of the uncertain problem P with ad-311

missible dataset D has a guaranteed lower bound given by312

Diam(S(D)) ≥ K
∫ 1
0 δ1|u

′
◦|2 + δ2|u◦|2 + δ3|u◦| dx(

||u◦||2◦ −
∫ 1
0 δ1|u′◦|2 + δ2|u◦|2 dx

) 1
2

,313

314

This manuscript is for review purposes only.

12 V. HALONEN, I. PÖLÖNEN

Network Test portion of training set Test set 1 Test set 2 Test set 3

1 6.17(4.40) 7.94(6.71) 9.16(7.01) 37.08(7.33)

2 13.69(13.68) 10.97(6.31) 11.49(6.67) 30.86(10.63)

3 16.16(14.58) 11.07(7.01) 10.92(5.83) 38.86(14.92)

4 14.37(13.03) 7.58(5.32) 7.34(5.53) 45.09(11.36)

Table 2
Performance of each neural network on test sets expressed as the mean absolute error percentage (Standard

Deviation) rounded to two decimal digits. Each network is evaluated on their respective training datasets test
split which had 200 datapoints in the first column. In the three later colums are the performances of each
network on the three testing datasets.

Theorem 3.2. The diameter of the solution set S(D) of the uncertain problem P with ad-315

missible dataset D has a guaranteed upper bound given by316

Diam(S(D)) ≤ 2K

((∫ 1

0

(δ1u
′
◦)

2

α◦ − δ1
dx

) 1
2

+ CF ||δ2|u◦|+ δ3||

)
,317

318

where CF = 1
π (ess supα∈Dα,x∈[0,1] α(x)−1)

1
2 .319

The proofs of Theorems 3.1 and 3.2 with all the required preliminaries can be found in [4]320

section 2. Creating such analytical bounds is based on a posteriori error estimates of the321

functional type which are discussed at length in [9] and [6]. Since the proofs are rather long322

and technical we omit them here.323

4. Results. The performance of each neural network in terms of the MAPE value is324

shown in table 2. In figures 6-8 the performance of the networks compared to the brute325

force approximations and analytical bounds is compared using the test portion of the training326

datasets. In figures 10-14 the networks performances are similarily showcased on the test327

datasets.328

In some cases the MAPE value is high but the figure still has some reasonability in what329

the network outputs look like compared to the analytical bounds (e.g. Figure 14).330

On the test portion of their respective training datasets network 1 has the highest accuracy.331

This is expected since the dataset used to train network 1 is the most constrained. Looking at332

the images (6)-(9) the performance of all four networks on the test sets related to their training333

datasets seem decent. Each network outputs values which are always within the analytical334

bounds. Network 4 is the only one with a few examples where the network output is rather335

far away from the approximation but still within the bounds.336

Performance on the three test sets varies. Network 1 and network 4 perform the best337

on test set 1 in terms of the MAPE value. Network 4 keeps performing similarily well on338

test set 2 while network 1 gets slightly worse. The added oscillation in test set 2 has this339

effect since network 1 has not seen such highly oscillating data while network 4 has seen more340

oscillating data (see Figures (10)-(12)). Networks 2 and 3 seem to suffer from the fact that341

the range in which their training datasets are is larger then the test sets. This means there342

are less training examples in the same range as the test set which explains why network 1343

This manuscript is for review purposes only.

ERROR QUANTIFICATION OF AN UNCERTAIN ODE WITH NN’S 13

Dataset Average time to create one datapoint

Training 1 1m 31s

Training 2 2m 28s

Training 3 6m 11s

Test 1 18m 27s

Test 2 29m 30s

Test 3 15m 42s

Table 3
Computational time to create datapoints in each training and testing dataset.

performs better. Still, both networks 2 and 3 are not completely lost on these test sets and344

keep performing within the analytical bounds. From this we can tell that piecewise constant345

oscillations approximate the smoother oscillations of the test sets reasonably well.346

All four networks have a much higher error on test set 3 which shows us that the networks347

do not easily generalize to examples where the admissible data has functions which are not348

in the same range as the ones in the training examples. In Figure 14 the performance of349

network 4 on test set 3 is shown. Here we can see that the network overestimates the value of350

the diameter but there is still a linear growth which coincides with the growth of the correct351

outputs. The network outputs are still within the analytical bounds.352

Depending on the size of the neural network and luck the time to train them varied from353

as little as five seconds to at most two minutes on a normal laptop. The total time to create354

the optimised models using Optuna with 2000 trials took between five and ten hours for each355

model. The computational time to create each dataset is shown in table 3. Training datasets356

with their piecewise constant restrictions are generated more quickly in all cases. Test set 2357

was much slower to create because of the higher oscillation allowed.358

The amount of time saved when using a neural network rather then a Monte Carlo com-359

putation is very large. Each of the neural networks created can be used to calculate an360

approximation in less then one millisecond. The Monte Carlo method we implemented takes361

an average of 56 seconds to create the solutions and another 188 seconds to compute the362

maximum distance between the solutions. In total the time to use the Monte Carlo algorithm363

to approximate the error quantity is 244 seconds.364

This manuscript is for review purposes only.

14 V. HALONEN, I. PÖLÖNEN

Figure 6. Network 1 performance on test part of training dataset 1 which has 200 datapoints sorted by the
ground truth approximation value. Blue dots are the brute-force approximation of the diameter, error bars in
blue are the analytical bounds given in 3.1 and 3.2, and red triangles are the neural network outputs.

Figure 7. Network 2 performance on test part of training dataset 2 which has 200 datapoints sorted by the
ground truth approximation value. Blue dots are the brute-force approximation of the diameter, error bars in
blue are the analytical bounds given in 3.1 and 3.2, and red triangles are the neural network outputs.

This manuscript is for review purposes only.

ERROR QUANTIFICATION OF AN UNCERTAIN ODE WITH NN’S 15

Figure 8. Network 3 performance on test part of dataset 3 which has 200 datapoints sorted by the ground
truth approximation value. Blue dots are the brute-force approximation of the diameter, error bars in blue are
the analytical bounds given in 3.1 and 3.2, and red triangles are the neural network outputs.

Figure 9. Network 4 performance on 200 random samples from the test part of the combined dataset sorted
by the approximation values. Blue dots are the brute-force approximation of the diameter, error bars in blue
are the analytical bounds given in 3.1 and 3.2, and red triangles are the neural network outputs.

This manuscript is for review purposes only.

16 V. HALONEN, I. PÖLÖNEN

Figure 10. Network 1 performance on test set 1. Datapoints sorted by approximation values. Blue dots
are the brute-force approximation of the diameter, error bars in blue are the analytical bounds given in 3.1 and
3.2, and red triangles are the neural network outputs.

Figure 11. Network 1 performance on test set 2. Datapoints sorted by approximation values. Blue dots
are the brute-force approximation of the diameter, error bars in blue are the analytical bounds given in 3.1 and
3.2, and red triangles are the neural network outputs.

This manuscript is for review purposes only.

ERROR QUANTIFICATION OF AN UNCERTAIN ODE WITH NN’S 17

Figure 12. Network 4 performance on test set 1. Datapoints sorted by approximation values. Blue dots
are the brute-force approximation of the diameter, error bars in blue are the analytical bounds given in 3.1 and
3.2, and red triangles are the neural network outputs.

Figure 13. Network 4 performance on test set 2. Datapoints sorted by approximation values. Blue dots
are the brute-force approximation of the diameter, error bars in blue are the analytical bounds given in 3.1 and
3.2, and red triangles are the neural network outputs.

This manuscript is for review purposes only.

18 V. HALONEN, I. PÖLÖNEN

Figure 14. Network 4 performance on test set 3. Datapoints sorted by approximation values. Blue dots
are the brute-force approximation of the diameter, error bars in blue are the analytical bounds given in 3.1 and
3.2, and red triangles are the neural network outputs.

5. Discussion. When trying to make an error quantifying machine learning model three365

things had to be considered. How to create data, model architecture and verifying model366

accuracy. In this paper the way we created data is the simplest method but it is also com-367

putationally expensive. Similar methods as the ones used to create data for training models368

which solve PDE’s (see e.g. [7]) could be used to make this process quicker. In more diffi-369

cult problems this may even be practically necessary since such brute force methods may be370

unreasonably expensive.371

When making data for a specific real-world problem one can more carefully select the type372

of training examples. The problem we discussed was not related to any physical values but373

only serves to show that such a model can perform in some constrained situation. It is most374

likely important that the training data coincides with the range of values that the practical375

application will deal with. Choosing very constrained datapoints for training data may help376

with quickly generating the dataset but accuracy may be sacrificed if this is done to too large377

an extent. In our example, using a rather constrained dataset still produced good results for378

some less constrained test datasets.379

Dense neural networks worked well in our example but there is no reason to think that380

more complicated models like CNN’s can’t be used for quantifying uncertainty errors in some381

problem. For the example we provided even simpler regression models like nonlinear support382

vector machines could be tried. For more difficult problems it is hard to say how sophisticated383

the models required to tackle this problem are.384

Accuracy verification of models may also be very difficult in higher dimensional nonlinear385

problems. For our example problem, both analytical and numerical methods can be used to386

This manuscript is for review purposes only.

ERROR QUANTIFICATION OF AN UNCERTAIN ODE WITH NN’S 19

verify results but this is not always the case. In most real-world problems analytical methods387

not at our disposal and one would like to avoid expensive computational methods as well.388

Future research on this topic will be focused on creating machine learning models that es-389

timate uncertainty errors of higher dimensional PDE’s. A particularily interesting application390

of uncertainty quantification models is in simulations. Scientific experiments in the future will391

be done more and more by simulations and in order for a simulated experiment to be reliable392

error quantification has to be addressed. Complex simulations by themselves are costly and393

in such cases there are no efficient ways to quantify uncertainty errors quickly.394

There are other interesting quantities that could be approximated with similar machine395

learning models as the ones described. The error metric we used was the total error described396

by the energy norm diameter of the solution set but depending on the use-case this is not397

always the most valuable information. In certain applications for example local errors are more398

useful then the global error. For such problems a model should be trained to approximate a399

local error metric instead.400

6. Conclusions. The experiments show that a neural network can be used to accurately401

approximate errors caused by uncertainty in the case of a linear differential equation. In all of402

the tests conducted the neural networks work well enough to be considered as an option instead403

of previously known analytical methods. These results show that if a suitable training dataset404

can be created it is feasible to use machine learning models for uncertainty quantification.405

Compared to the brute-force approximation and known analytical bounds the models perform406

with similar accuracy. The approximation is essentially a Monte Carlo type quantity which407

means there is hope of replacing this type of slow and expensive methods with faster machine408

learning model inference. In terms of time saving the neural networks are much faster to use409

then a Monte Carlo method. For this simple linear problem the Monte Carlo approximation410

still takes around four minutes to compute while the neural network is inferenced in less then411

one millisecond.412

In our example, the training datasets and test datasets had some differences. Even though413

the test data was more general, the neural networks performed in a good way. It is very useful414

if training examples can be picked from a more constrained class of examples since in some415

cases this makes the generation of the training example much more computationally fast. The416

only test set on which the models did not perform very well is the last one. In that case, the417

range of values for functions in the admissible data of test examples was outside of the range418

in which they were for training datasets. Higher oscillation of the admissible datasets in test419

examples did not have a catastrophic effect.420

Creation of networks and data took a fair amount of time even for this simple problem.421

The data was generated on a normal laptop and it took around two minutes to generate a single422

training datapoint. The datapoints in the test datasets took longer at around ten minutes423

for a single datapoint. It is clear that the process of data generation for higher dimensional424

problems will have to be done by organisations with large computational resources or by using425

more clever methods which require less computation.426

Doing the same thing for 2-D and 3-D problems will be computationally more difficult427

for both creation of data and training models. However neural networks even when they are428

much more complicated then the ones we have used in this paper are trained with relatively429

This manuscript is for review purposes only.

20 V. HALONEN, I. PÖLÖNEN

small amounts of computational resources. The main computational time problem will be430

with creating the data. In this paper the Monte Carlo method used required creating 2000431

different solutions for a simple ODE and that took one minute or so. For a complicated432

non-linear high dimensional PDE generating this set of solutions may take a very long time433

depending on what type of solvers can be used for that problem. Computing the maximum434

distance between solutions will also be more expensive when more dimensions are introduced435

since numerical integration gets more expensive with more dimensions. It may also require436

more datapoints to have a suitable training dataset for a network to learn properly. It is437

reasonable to expect that the more complicated the PDE model and the more general the438

restrictions on the dataset are the more training data is required.439

Acknowledgments. Thanks to Professor Sergei Repin for fruitful discussions and contri-440

butions.441

REFERENCES442

[1] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, Optuna: A next-generation hyperparame-443
ter optimization framework, in Proceedings of the 25rd ACM SIGKDD International Conference on444
Knowledge Discovery and Data Mining, 2019.445

[2] P. G. Ciarlet, The finite element method for elliptic problems, SIAM, 2002.446
[3] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, 2016. http://www.447

deeplearningbook.org.448
[4] V. Halonen, Accuracy analysis of uncertain variational problems with analytical and machine learning449

methods, University of Jyväskylä, 2021. Master’s Thesis.450
[5] I. Hlavacek, J. Chleboun, and I. Babuska, Uncertain input data problems and the worst scenario451

method, Elsevier, 2004.452
[6] O. Mali, P. Neittaanmäki, and S. Repin, Accuracy verification methods: Theory and algorithms,453

vol. 32, Springer Science & Business Media, 2013.454
[7] A. Muzalevskiy, P. Neittaanmäki, and S. Repin, Generation of Error Indicators for Partial Dif-455

ferential Equations by Machine Learning Methods, Springer International Publishing, Cham, 2022,456
pp. 63–96, https://doi.org/10.1007/978-3-030-70787-3 6.457

[8] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,458
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,459
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, Pytorch: An460
imperative style, high-performance deep learning library, in Advances in Neural Information Pro-461
cessing Systems 32, Curran Associates, Inc., 2019, pp. 8024–8035, http://papers.neurips.cc/paper/462
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.463

[9] S. I. Repin, A posteriori estimates for partial differential equations, in A Posteriori Estimates for Partial464
Differential Equations, de Gruyter, 2008.465

[10] G. Schuëller, A state-of-the-art report on computational stochastic mechanics, Probabilistic Engineering466
Mechanics, 12 (1997), pp. 197–321, https://doi.org/https://doi.org/10.1016/S0266-8920(97)00003-9,467
https://www.sciencedirect.com/science/article/pii/S0266892097000039.468

[11] G. Van Rossum and F. L. Drake, Python 3 Reference Manual, CreateSpace, Scotts Valley, CA, 2009.469

This manuscript is for review purposes only.

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1007/978-3-030-70787-3_6
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/https://doi.org/10.1016/S0266-8920(97)00003-9
https://www.sciencedirect.com/science/article/pii/S0266892097000039

	Introduction
	Problem Setting
	Methods
	Prototype problem
	Creating Data
	Training Datasets
	Test Datasets

	Neural Networks
	Architecture
	Tests

	Results
	Discussion
	Conclusions

