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Abstract. This paper proposes a decoupled numerical scheme of the time-

dependent Ginzburg–Landau equations under the temporal gauge. For the

magnetic potential and the order parameter, the discrete scheme adopts the
second type Nedélec element and the linear element for spatial discretization,

respectively; and a linearized backward Euler method and the first order ex-

ponential time differencing method for time discretization, respectively. The
maximum bound principle (MBP) of the order parameter and the energy dis-

sipation law in the discrete sense are proved. The discrete energy stability and

MBP-preservation can guarantee the stability and validity of the numerical
simulations, and further facilitate the adoption of an adaptive time-stepping

strategy, which often plays an important role in long-time simulations of vor-
tex dynamics, especially when the applied magnetic field is strong. An optimal

error estimate of the proposed scheme is also given. Numerical examples ver-

ify the theoretical results of the proposed scheme and demonstrate the vortex
motions of superconductors in an external magnetic field.
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1. Introduction

In this paper, we consider the transient behavior and vortex motions of supercon-
ductors in an external magnetic field H which is described by the time-dependent
Ginzburg–Landau (TDGL) model [20]. This model was first established in [21]
with some detailed descriptions in [2, 9, 40]. The TDGL equations in the non-
dimensional form satisfy

(1)


(∂t + iκϕ)ψ +

(
i

κ
∇+A

)2

ψ + (|ψ|2 − 1)ψ = 0 in Ω× (0, T ],

σ (∇ϕ+ ∂tA) +∇× (∇×A) +Re

[
ψ∗(

i

κ
∇+A)ψ

]
= ∇×H in Ω× (0, T ],

with boundary and initial conditions

(2)

(∇×A)× n = H × n, (
i

κ
∇+A)ψ · n = 0 on ∂Ω,

ψ(x, 0) = ψ0(x), A(x, 0) = A0(x) on Ω,
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where Ω is a bounded domain in Rd(d = 2, 3), n is the unit outer normal vec-
tor, the electric potential ϕ is a real scalar-valued function, the Ginzburg-Landau
parameter κ is an important positive material constant representing the ratio of
penetration length to the coherence length, the relaxation parameter σ is a given
positive constant, the magnetic potential A is a real vector-valued function and
the order parameter ψ is a complex scalar-valued function. Physically speaking,
the magnitude of the order parameter |ψ| represents the superconducting density,
where |ψ| = 0 stands for the normal state, |ψ| = 1 for the superconducting state,
and 0 < |ψ| < 1 for a mixed state. It is proved in [4] that the order parameter in
the TDGL equations (1) satisfies the MBP in the sense that the magnitude of the
order parameter is bounded by 1, i.e.

(3) ∥ψ(·, t)∥∞ ≤ 1, ∀ t > 0

if the initial condition ∥ψ0∥∞ ≤ 1. The solution of the corresponding stationary
Ginzburg–Landau equations minimizes the Gibbs energy functional [26, 39]

(4) G(A, ψ) =
1

2
∥( i
κ
∇+A)ψ∥20 +

1

2
∥∇ ×A−H∥20 +

1

4
∥|ψ|2 − 1∥20.

As analyzed in [34], the energy dissipation law below holds for (1)

(5)
d

dt
G(A, ψ) ≤ −4π(M , ∂tH),

where the magnetizationM = 1
4π (∇×A−H). Particularly, if the applied magnetic

field H is stationary, the Gibbs energy of a solution of (1) decreases in time. As
stated in [7], the solution of (1) is not unique, that is given any solution (ψ,A, ϕ), a
gauge transformation Gχ(ψ,A, ϕ) = (ψeiκχ,A+∇χ, ϕ−∂tχ) gives a class of equiv-
alent solutions sharing the same |ψ| and magnetic induction field ∇×A, which are
of physical interests. Although the solutions of (1) under different gauges are the-
oretically equivalent, numerical schemes under various gauges are computationally
different. The temporal gauge is adopted in the paper since the corresponding
TDGL equations can be viewed as a gradient flow and admits the energy dissipa-
tion property when H is stationary. The existence and uniqueness of the TDGL
equations (1)-(2) were given in [4, 7, 31].

For the TDGL equations, some numerical schemes using finite difference meth-
ods for spatial discretization were proposed and analyzed to preserve the discrete
MBP and energy bound in [8, 10, 15]. These MBP-preserving finite difference
schemes require uniform or rectangular meshes, and the bound of the discrete en-
ergy may be very large in long-time simulations. Numerical schemes using finite
element methods for spatial discretization can simulate the motion of superconduc-
tors with more general shapes, and are easy to be extended to three-dimensional
simulations. Many finite element based numerical schemes were proposed and ana-
lyzed for different gauges, especially the temporal gauge ϕ = 0 (see e.g., [6, 33, 34])
and the Lorentz gauge ϕ = −∇ · A (see e.g., [3, 16, 18, 27]) under an additional
boundary condition. This boundary condition is indispensable to guarantee the
wellposedness of the discrete problems and analyze the convergence rate of numer-
ical solutions. However, the regularity of the finite element solution under such
boundary conditions is higher than expected, which leads to some nonphysical phe-
nomena if the mesh is not refined enough. Two mixed finite element methods using
Hodge decomposition in [28, 30] weakly impose this additional boundary condition
on the approximation of A for the TDGL equations under the Lorentz gauge, which
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avoid the nonphysical phenomenon to a certain extent for the TDGL equations in
nonconvex polygons. Recently, a nonlinear numerical scheme with no additional
boundary condition was proposed in [13, 24] for the TDGL equations under the
temporal gauge, which resolves physical-interested phenomena on relative coarse
meshes. The energy dissipation law was proved under a strict restriction on time
steps in [24]. But no MBP analysis was provided for this scheme.

It is of great importance to analyze the MBP (3) and energy dissipation law (5)
for these finite element based schemes in the literature. Although the discrete MBP
for the TDGL equations is usually observed for finite element based schemes, it has
not been proved theoretically. The magnitude of the discrete order parameter was
proved to be bounded above in [34] under the assumption τ ≲ h

11
12 and τ ≲ h2 in

two and three dimensions, respectively. The TDGL equations under the Lorentz
gauge cannot be viewed as a gradient flow of the Gibbs energy, and thus the energy
stability analysis of numerical schemes concerning this gauge is difficult and the
relevant work is very limited in the literature. The boundedness of a modified
energy with an extra term 1

2∥ψ∥
2
0 was analyzed for the scheme in [31] concerning

the Lorentz gauge with the bound depending on the terminal time. The TDGL
equations under the temporal gauge can be viewed as an L2-gradient flow with
respect to G(A, ψ) and

(6)
d

dt
G(A, ψ) + ∥∂tA∥20 + ∥∂tψ∥20 = −4π(M , ∂tH),

which benefits the energy stability analysis of numerical schemes under this par-
ticular gauge. The discrete energy dissipation law was analyzed for the nonlinear
schemes in [6, 24], where the uniqueness of solution for both schemes requires time
step sizes τ ≲ hd/2 where d is the dimension of space. A modified energy was
proved to be bounded in [34], where the bound tends to infinity as the perturbed
model tends to the original one.

In this paper, we propose a decoupled numerical scheme for the TDGL equations
under the temporal gauge

(7)


∂tψ +

(
i

κ
∇+A

)2

ψ + (|ψ|2 − 1)ψ = 0 in Ω× (0, T ]

σ∂tA+∇× (∇×A) +Re

[
ψ∗(

i

κ
∇+A)ψ

]
= ∇×H in Ω× (0, T ]

with boundary and initial conditions (2). The scheme employs the lowest order
second type Nedélec element and the linear Lagrange element with mass lumping
for finite element discretization of A and ψ in space, respectively. For time dis-
cretization, the proposed scheme solves A first by the backward Euler method with
the nonlinear term treated explicitly, and then ψ by the first order exponential time
differencing (ETD) method [1, 5, 22, 23]. The ETD method has been proved to
preserve the discrete MBP in many applications, see e.g., [11, 12, 25, 29]. Different
from the MBP analysis for real-valued differential equations, the complexity of the
order parameter ψ leads to a complex-valued matrix that is not diagonally domi-
nant, and poses difficulty in the MBP analysis for (7). Besides, the highly coupled
terms in (7) add to the difficulty in analyzing the energy dissipation and error esti-
mate for the proposed decoupled scheme. For the proposed decoupled scheme, we
analyze the discrete MBP-preserving property and the discrete energy dissipation
law with respect to the original Gibbs energy, and give an optimal error estimate.
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This is the first finite element based scheme that preserves the strict discrete MBP
(3) theoretically, and the first decoupled finite element based scheme that admits
the discrete energy dissipation law (5) with respect to the original energy (4).
These stabilities are of great benefit since they allow the application of adaptive
time-stepping strategy in [38] to significantly speed up long-time simulations.

The rest of the paper is organized as follows. The decoupled numerical scheme
is presented in Section 2. The discrete MBP for the order parameter and an
unconditional energy stability are analyzed in Section 3.1 and Section 3.2, respec-
tively. The error estimate of the numerical scheme is given in Section 4. Some
numerical experiments are carried out in Section 5 to verify the theoretical results
and demonstrate the performance of the proposed scheme in long-time simulations.
The paper ends with some concluding remarks in Section 6.

2. Fully discrete scheme for the TDGL equations

In this section, we present the fully discrete scheme for (7). Some standard
notations are given below. Let C be the set of complex numbers, L2(Ω,R), and
H1(Ω,R) be the conventional Sobolev spaces defined on a domain Ω ⊂ Rd (d = 2
or 3). For any two complex functions v, w ∈ L2(Ω,C), denote the L2(Ω,C) inner
product and the norm by (v, w) =

∫
Ω
vw∗ dx, ∥v∥20 =

∫
Ω
|v|2 dx, respectively, where

w∗ is the conjugate of w and |v| is the magnitude of v. Denote the complex-valued
Sobolev space as

H1(Ω,C) = {ϕ = u+ iv : u, v ∈ H1(Ω,R)},
and the vector-valued space with d components as

H(curl) = {B : B ∈ L2(Ω,Rd), ∇×B ∈ L2(Ω,Rd)}.
The weak formulation of the TDGL equations (7) with boundary conditions (2) is
specified as follows: find (A, ψ) ∈ H(curl)×H1(Ω,C) such that

(8)

{
(σ∂tA,B) +D(ψ;A,B) + (g(ψ),B) = (H,∇×B), ∀B ∈ H(curl),

(∂tψ, ϕ) +B(A;ψ, ϕ)− (f0(ψ), ϕ) = 0, ∀ϕ ∈ H1(Ω,C),

with A(x, 0) = A0(x) ∈ H(curl) and ψ(x, 0) = ψ0(x) ∈ H1(Ω,C), where

(9)
D(ψ;A,B) = (∇×A,∇×B) + (|ψ|2A,B), g(ψ) =

i

2κ
(ψ∗∇ψ − ψ∇ψ∗),

B(A;ψ, ϕ) = ((
i

κ
∇+A)ψ, (

i

κ
∇+A)ϕ), fµ(x) = (1− |x|2)x+ µx.

Let Th be a regular partition of Ω, Eh be the set of all interior edges of Th, te
be the unit tangent vector of an edge e ∈ Eh and hK be the diameter of element
K ∈ Th. Define the mesh size h = maxK∈Th

hK . Let P1(K,C) be the set of all
polynomials with degree not greater than one. Define the linear element space by

Vh = {ϕh ∈ H1(Ω,C) ∩ C0(Ω,C) : ϕh|K ∈ P1(K,C)},
and the lowest order second type Nedélec element space by

Qh = {Bh ∈ H(curl) : Bh|K ∈ P1(K,R),
∫
e

Bh·te ds is continuous on any e ∈ Eh}.

Let ΠL be the canonical interpolation operator of the linear element, namely

ΠLv(x) =
∑N
i=1 v(xi)ϕi(x), where N is the number of vertices {xi}Ni=1 of Th, and

ϕi ∈ Vh is the corresponding basis function with respect to vertex xi with ϕi(xj) =
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δij . Let ωi be the support of ϕi(x). Define a diagonal matrix D = diag(d1, · · · , dN )
with entries di = |ϕi|0,1,ωi

. Denote the inner product (V,W )ℓ2 = WHDV =∑N
i=1 ViW

∗
i |ϕi|0,1,ωi

for any V , W ∈ CN , and the operators Ih : Vh → CN and

Πh : CN → Vh by Ihw = (w(x1), · · · , w(xN ))T and ΠhW =
∑N
i=1Wiϕi(x), respec-

tively. Note that

(10) (Ihv, Ihw)ℓ2 = (ΠL(vw
∗), 1), ∥v∥0 ≲ ∥Ihv∥ℓ2 ≲ ∥v∥0,

where the notation A ≲ B means that there exists a positive constant C, which
is independent of the mesh size, such that A ≤ CB. Define the Ritz projection
RhA ∈ Qh by

(11) (∇× (A−RhA),∇×Bh) + (A−RhA,Bh) = 0, ∀Bh ∈ Qh,

which admits the following estimates on a convex domain [32]:

(12) ∥∇ × (I −Rh)A∥0 + ∥(I −Rh)A∥0 ≲ h(|A|1 + |∇ ×A|1),

provided that A,∇×A ∈ H1(Ω,Rd) and

(13) h∥∇ × (I −Rh)A∥0 + ∥(I −Rh)A∥0 ≲ h2|A|2,

provided that A ∈ H2(Ω,Rd). Given a positive integer Kt and time steps {τi}Kt
i=1,

we divide the time interval by {tn =
∑n
i=0 τi : 0 ≤ n ≤ Kt} and T = tKt

. For any
function F (·, t), define Fn = F (·, tn) and ∂nt F = ∂tF (·, tn). For any given sequence
of functions {Fn}, denote dnt F = (Fn − Fn−1)/τn.

Let A0
h = RhA

0 and Ψ0
h = Ihψ

0. Given the approximation (An−1
h ,Ψn−1

h ) ∈
Qh × CN at the previous time step tn−1, we first solve the approximation to An

by applying the backward Euler method for time discretization and treating the
nonlinear terms explicitly. That is to find An

h ∈ Qh such that for any Bh ∈ Qh,

(14) (dntAh,Bh) +D(ψn−1
h ;An

h,Bh) = (Hn,∇×Bh)− (g(ψn−1
h ),Bh),

where ψn−1
h = ΠhΨ

n−1
h . We adopt the first order exponential time differencing

method (ETD1) with stabilization for time discretization of ψ and the linear fi-
nite element method with mass lumping for spatial discretization by treating the
nonlinear terms B(A;ψ, ϕ) and f0(ψ) in (8) explicitly. To be specific, we seek
uh ∈ C1([tn−1, tn];Vh) such that ψnh = uh(·, tn) ∈ Vh with uh(·, tn−1) = ψn−1

h such
that for any ϕh ∈ Vh and t ∈ [tn−1, tn],

(ΠL(∂tuhϕ
∗
h), 1) +B(An

h;uh, ϕh) + µn(ΠL(uhϕ
∗
h), 1)− (ΠL(fµn

(ψn−1
h )ϕ∗h), 1) = 0,

where µn > 0 is the stabilization parameter and An
h is given by (14). The matrix

form of this formulation reads

(15)


d

dt
Uh(t) = Lnµn,hUh(t) + fµn

(Ψn−1
h ), ∀t ∈ [tn−1, tn],

Uh(tn−1) = Ψn−1
h ,

where Uh(t) = Ihuh(·, t) ∈ CN and the entries of the complex matrix Lnµn,h
are

(16) Lnµn,h = D−1L̂n − µnI, with (L̂n)ij = −B(An
h;ϕj , ϕi).

Since the diagonal matrix D is positive definite and the Hermitian matrix L̂n is
negative semi-definite, Lnµn,h

is negative definite for any µn > 0, i.e.

(17) W ∗Lnµn,hW ≤ −µnW ∗W, ∀ W ∈ CN .
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An equivalent form of (15) is

Ψnh =ϕ0(τnL
n
µn,h)Ψ

n−1
h +τnϕ1(τnL

n
µn,h)fµn

(Ψn−1
h ),(18)

where ϕ0(a) = ea and ϕ1(a) = (ea − 1)/a for a ̸= 0. We use the Krylov subspace
method in [36] to compute the exponential integral in (18).

3. Discrete energy stability and maximum bound principle

In this section, we will show that the proposed scheme (14)-(15) inherits the
maximum bound principle (3) and the energy dissipation law (5) at the discrete
level.

3.1. Discrete Maximum Bound Principle. In this section, we consider the
discrete MBP for the complex order parameter ψh of the proposed decoupled scheme
(14)-(15). To begin with, we consider an ODE system taking the form

(19)


du

dt
+ µu = Lu+N [u]

u(0, x) = u0(x)

with real-valued constant µ, L, N(ξ) = µξ + h(ξ). An analytical framework was
established in [12] to give some sufficient conditions that lead to the MBP for (19).
This framework can be extended to complex-valued systems, which is presented
below.

Lemma 3.1. Given any real-valued positive constant µ and T , assume that

(a) for any U ∈ CN , it holds that Re(U∗
i (LU)i) < 0 if |Ui| = max1≤j≤N |Uj |;

(b) there exists λ0 > 0 such that λ0I − L is reversible;
(c) |N(ξ)| ≤ µβ for any |ξ| ≤ β and |N(ξ1) − N(ξ2)| ≤ 2µ|ξ1 − ξ2| for any

|ξ1| ≤ β and |ξ2| ≤ β.

If ∥u0∥L∞ ≤ β and µ ≥ max|ξ|≤β |h′(ξ)|, it satisfies ∥u(t)∥L∞ ≤ β for any t ∈ [0, T ].

Assumptions (a) and (b) in Lemma 3.1 indicate that the linear operator L is a
generator of a contraction semigroup since assumption (a) implies

∥(λI − L)U∥2ℓ∞ ≥|λUi − (LU)i|2

=λ2|Ui|2 + |(LU)i|2 − 2Re(U∗
i (LU)i) > λ∥U∥2ℓ∞ .

Lemma 3.1 follows directly from this fact and a similar analysis in [12]. The detailed
proof is omitted here.

Notice that for real-valued systems, the first assumption reduces to Ui(LU)i < 0
if |Ui| = max1≤j≤N |Uj | for any U ∈ RN , which is exactly the assumption in [12]. It
is widely used in the MBP analysis of ETD schemes that if all the diagonal entries of
a strictly diagonally dominant matrix L are negative, assumption (a) holds for the
real-valued system. For the classic two-dimensional heat equation, since the sign
of diagonal entries Lij =

∫
Ω
∇ϕj · ∇ϕi dx and the corresponding Ui(LU)i depends

on the interior angles, the discrete maximum principle holds for the mass lumping
method in the case that the triangulations contain no obtuse triangles [35].

Similarly, if L is a Hermitian matrix with negative entries on the diagonal and
strictly diagonally dominant, assumption (a) still holds. Although the real part
of the Hermitian matrix Lnµn,h

is strictly diagonally dominant, the complex-valued
off-diagonal entries make the matrix itself not even weakly diagonally dominant.
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If the triangulation contains some right triangles, the imaginary part of Lnµn,h
will

dominate the sign of Re(U∗
i (L

n
µn,h

U)i) when the stabilization parameter µn is of

O(h−1+α) with α > 0. However, the sign of the imaginary part of Lnµn,h
is uncertain,

and thus the linear operator Lnµn,h
is not necessarily the generator of a contraction

semigroup on a triangulation with right interior angles. Therefore, the discrete
MBP is not guaranteed.

To guarantee the discrete MBP of the complex order parameter ψh, we consider
the scheme on triangulations satisfying the following assumption.

Assumption 1. The triangulation is shape regular and quasi-uniform, where all
the interior angles (d = 2) or dihedral angles of faces (d = 3) are acute.

By Lemma 3.1, the key to analyzing the discrete MBP of the solution to the
ETD1 scheme (15) is to prove that Lnµn,h

is a generator of a contraction semigroup,
namely

(20) Re(U∗
i (L

n
µn,hU)i) < 0, for some i ∈ {1, · · · , N}

holds for any U ∈ CN . Note that even though the real part of the matrix Ln0,h is
diagonally dominant, the matrix itself is not necessarily weakly diagonally domi-
nant. To derive the discrete MBP for the proposed scheme, we need to look into
the properties of the linear operator Lnµn,h

. Denote the entries of Lnµn,h
∈ CN×N

by (Lij)
N
i,j=1 with Lij = Lre

ij + iLim
ij and

(21)

Lre
ij =

1

di

(
− 1

κ2

∫
Ω

∇ϕj · ∇ϕi dx−
∫
Ω

|An
h|2ϕiϕj dx− µnδij |ϕi|0,1,Ω

)
,

Lim
ij =

1

κdi

∫
Ω

An
h · (ϕj∇ϕi − ϕi∇ϕj) dx,

where di = |ϕi|0,1,Ω. It follows Assumption 1 that there exist positive constants

C1, C̃2 and C3, which are independent on the mesh size, such that for any i ̸= j,∫
Ω

∇ϕj · ∇ϕi dx ≤ −C1h
d−2, |κdiLim

ij | ≤ C̃2h
1
2 (d−2)∥An

h∥0,ωij
, |ϕi|0,1,ωi

≥ C3h
d,

where the second estimate employs the Cauchy Schwarz inequality and ωij =
ωi ∩ ωj is the intersection of the support of ϕi and ϕj . For any 1 ≤ i, j ≤ N ,
define vector v⃗ij = (aij , bij , cij) by

aij = −h
2−d

κ2

∫
Ω

∇ϕj · ∇ϕi dx, bij = dih
1−dLim

ij , cij = µnh
−d

∫
Ω

ϕiϕj dx,

where constant µn is to be determined later. It follows that each entry of the
vector v⃗ij is independent of the mesh size h and

(22) aij ≥
C1

κ2
, 0 ≤ |bij | ≤

C̃2

κ
h−

1
2d∥An

h∥0,ωij
, cij ≥ µnC3.

Assumption 1 implies that the number of elements sharing the vertices xi and xj
is bounded above. Thus, there exists a positive constant C2 such that

(23)
∑
j ̸=i

|bij |2 <
C2

κ2
h−d∥An

h∥20,ωi
.
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For each element K, it holds that
∫
K
ϕi dx = 1

3 |K| and
∫
K
ϕ2i dx = 1

6 |K|. Then

(24)
∑
j ̸=i

cij = µnh
−d

∫
Ω

(ϕi − ϕ2i ) dx =
1

6
µnh

−d|ωi|.

The following theorem shows that the operator Lnµn,h
is a generator of a contrac-

tion semigroup and the discrete MBP holds for ψh of (18) when the stabilization
parameter

(25) µn ≥ max
1≤i≤N

{
3C2∥An

h∥20,ωi

C1|ωi|
,
3∥An

h∥20,ωi

8|ωi|
, 2},

where the constants C1 and C2 are independent of the spatial mesh size h and
Ginzburg-Landau parameter κ, ωi is the support of basis function ϕi, and An

h is
given by (15).

Theorem 3.2. Assume that matrix Lnµn,h
is assembled with stabilization parameter

µn satisfying (25) and Assumption 1 holds. Then the discrete MBP holds for ψh
of (18), i.e.

∥Ψnh∥ℓ∞ ≤ 1, if ∥ψ0∥∞ ≤ 1.

Proof. Define a matrix T ∈ CN×N with entries Tij = U∗
i Uj = T re

ij + iT im
ij . Then,

(26) Re(U∗
i

N∑
j=1

LijUj) =L
re
iiT

re
ii +

∑
j ̸=i

(Lre
ijT

re
ij − Lim

ij T
im
ij ).

It follows from
∑N
i=1 ϕi(x) = 1,

∑N
i=1 ∇ϕi(x) = 0 and (21) that

(27)

Lre
ii =

1

di

∑
j ̸=i

∫
Ω

(
1

κ2
∇ϕj · ∇ϕi − µnϕiϕj) dx−

∫
Ω

|An
h|2ϕ2i dx− µn|ϕi|0,1,Ω

 .

Substituting (21) and (27) into (26) yields

(28) Re(U∗
i

N∑
j=1

LijUj) =
1

di
(R1

i +R2
i ),

where the stabilization parameter µn = µ̃1 + µ̃2 is to be determined later and

R1
i = −

∑
j ̸=i

ℓi(Uj ; v⃗ij), ℓi(Uj ; v⃗ij) = aijh
d−2(T re

ii − T re
ij ) + bijh

d−1T im
ij + cijh

dT re
ii ,

R2
i = −

N∑
j=1

∫
Ω

|An
h|2ϕiϕj dxT re

ij − µn|ϕi|0,1,ΩT re
ii .

Let (rj , θj) be the polar coordinates of Uj . We can find i ∈ {1, · · · , N} such that

ri = max1≤j≤N rj . Then, Tii − Tij = r2i − rirje
i(θj−θi). Note that

ℓi(Uj ; v⃗ij) = aijr
2
i h
d−2 − aijrirjh

d−2 cos(θj − θi)− bijrirjh
d−1 sin(θj − θi) + cijr

2
i h
d

≥ hd−2(aijr
2
i − rirj

√
a2ij + b2ijh

2 + cijr
2
i h

2).

The inequality (22) indicates that aij is positive. Since
√
a2ij + b2ijh

2 ≤ aij +
b2ijh

2

2aij
,

(29) ℓi(Uj ; v⃗ij) ≥ aijr
2
i h
d−2 − aijrirjh

d−2 + (cij −
b2ij
2aij

)r2i h
d ≥ (cij −

b2ij
2aij

)r2i h
d,
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and the equation holds only if ri = rj and bij = 0. It follows that

(30) R1
i = −

∑
j ̸=i

ℓi(Uj ; v⃗ij) ≤ −
∑
j ̸=i

(cij −
b2ij
2aij

)r2i h
2.

When µn ≥ 3C2∥An
h∥

2
0,ωi

C1|ωi| , it follows (23) and (24) that∑
j ̸=i

b2ij
2aij

≤ C2

2C1
h−d∥An

h∥20,ωi
<

∑
j ̸=i

cij ,

which implies that

(31) R1
i = −

∑
j ̸=i

ℓi(Uj ; v⃗ij) < 0.

Since ϕi ≥ 0 and
∑
j ̸=i ϕj = 1− ϕi and |ϕi|0,1,Ω =

∫
Ω
ϕi dx = 1

3 |ωi|,

R2
i ≤

∑
j ̸=i

∫
Ω

|An
h|2ϕiϕj dxT re

ii −
∫
Ω

|An
h|2ϕ2i dxT re

ii − µn|ϕi|0,1,ΩT re
ii

= −2

∫
Ω

|An
h|2(ϕi −

1

4
)2 dxT re

ii − (
1

3
µn|ωi| −

1

8
∥An

h∥20,ωi
) dxT re

ii .

It follows from T re
ii > 0 and µn ≥ 3∥An

h∥
2
0,ωi

8|ωi| that R2
i ≤ 0. A substitution of R2

i ≤ 0

and (31) into (28) leads to Re(U∗
i

∑N
j=1 LijUj) < 0, which verifies the assumption

(a) in Lemma 3.1. The assumption (b) in Lemma 3.1 holds following the negative
definite property (17) of the matrix Lnµn,h

. For any x1, x2 ∈ C with the magnitude

not larger than 1, it is easy to verify that |fµn
(x1) − fµn

(x2)| ≤ 2µn|x1 − x2|. As
proved in [11],

|fµn
(x1)| = fµn

(|x1|) ≤ µn if µn ≥ 2,

which verifies the assumption (c) in Lemma 3.1 with β = 1 and completes the
proof. □

Remark 3.1. Consider the stabilization parameter µn in (25). The value of

µn mainly depends on the value of max
1≤i≤N

∥An
h∥20,ωi

|ωi|
. Note that

∑N
i=1 ∥A

n
h∥20,ωi

is

bounded by a multiple of ∥An
h∥20,Ω from both above and below. This, together with

the error estimate in Theorem 4.4 and the fact that N = O(h−d) = O(|ωi|−1),
implies that there exists positive constants c1 and c2 such that

c1∥A(tn)∥20,Ω ≤ 1

N

N∑
i=1

∥An
h∥20,ωi

|ωi|
≤ c2∥A(tn)∥20,Ω.

The stabilization parameter µn depends on the maximum of
∥An

h∥
2
0,ωi

|ωi| , where its

average is bounded by ∥A(tn)∥20,Ω. Thus, the value of the parameter µn depends on

the regularity of An
h, and usually will be bounded when the exact solution A(tn) is

not too singular. Note that the approximation An
h is already known when generating

the stabilization parameter µn for the computation of Ψnh. Thus, we can always find
a stabilization parameter µn satisfying the condition (25) to guarantee the discrete
MBP even if the solution is not smooth.
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3.2. Discrete energy stability. Define the discrete energy Gnh in an analogue
form to (4) by

Gnh =
1

2
∥( i
κ
∇+An

h)ψ
n
h∥20 +

1

2
∥∇ ×An

h −Hn∥20 +
1

4
∥|Ψnh|2 − 1∥2ℓ2 ,

and Mn
h = 1

4π (∇×An
h −Hn).

Theorem 3.3. For any positive {τn}Kt
n=1, the solution {(An

h, ψ
n
h)}

Kt
n=0 generated by

the discrete system (14)-(15) with stabilization parameter µn satisfying (25) satisfies
the energy inequality

dnt Gh + ∥dntAh∥20 + (µn − 1)τn∥dnt Ψh∥2ℓ2 ≤ −4π(Mn
h, d

n
tH), ∀1 ≤ n ≤ Kt.

Furthermore, if H is independent of t,we have

Gnh ≤ Gn−1
h , ∀1 ≤ n ≤ Kt,

i.e., the proposed scheme is unconditionally energy stable.

Proof. The difference between discrete energies at two consecutive time levels yields

dnt Gh =
1

2
dnt ∥(

i

κ
∇+Ah)ψh∥20 +

1

2
dnt ∥4πMh∥20 +

1

4
dnt ∥|Ψh|2 − 1∥2ℓ2 .

It follows from (9) that

dnt ∥(
i

κ
∇+Ah)ψh∥20 =

1

τn
(B(An

h, ψ
n
h , ψ

n
h)−B(An−1

h , ψn−1
h , ψn−1

h )),

and therefore,

(32)

1

2
dnt ∥(

i

κ
∇+Ah)ψh∥20 =

1

2τn

(
B(An

h, ψ
n
h , ψ

n
h)−B(An

h, ψ
n−1
h , ψn−1

h )
)

+
1

2
(dnt |Ah|2, |ψn−1

h |2) + (g(ψn−1
h ), dntAh).

Note that
1

2
dnt |u|2 = Re(un, dnt u)−

τn
2
|dnt u|2.

Thus,

(33) (Mn, dntMh) =
1

2
dnt ∥Mh∥2 +

τn
2
∥dntMh∥2.

Let Bh = dntAh in the scheme (14). It holds that

∥dntAh∥20 + (4πMn
h, 4πd

n
tMh + dntH) + (|ψn−1

h |2An
h, d

n
tAh) = −(g(ψn−1

h ), dntAh).

A summation of (32), (33) and the equation above yields

1

2
dnt ∥(

i

κ
∇+Ah)ψh∥20 +

1

2
dnt ∥4πMh∥20 + ∥dntAh∥20 +

τn
2
∥4πdntMh∥20

=
1

2τn

(
B(An

h, ψ
n
h , ψ

n
h)−B(An

h, ψ
n−1
h , ψn−1

h )
)
− (4πMn

h, d
n
tH)

− (|ψn−1
h |2An

h, d
n
tAh) +

1

2
(dnt |Ah|2, |ψn−1

h |2).

Note that

(|ψn−1
h |2An

h, d
n
tAh)−

1

2
(dnt |Ah|2, |ψn−1

h |2) = τn
2
∥|ψn−1

h |dntAh∥20 ≥ 0

and

B(An
h;ϕh, ϕh) = −(Ihϕh)

H L̂n(Ihϕh) = (Ln0,h(Ihϕh), Ihϕh)ℓ2 , ∀ϕh ∈ Vh.
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It follows that

1

2
dnt ∥(

i

κ
∇+Ah)ψh∥20 +

1

2
dnt ∥4πMh∥20 + ∥dntAh∥20 +

τn
2
∥4πdntMh∥20

≤− 1

2τn

(
(Ln0,hΨ

n
h,Ψ

n
h)ℓ2 − (Ln0,hΨ

n−1
h ,Ψn−1

h )ℓ2
)
− (4πMn

h, d
n
tH).

(34)

By (17),

(35)

−
(
(Ln0,hΨ

n
h,Ψ

n
h)ℓ2 − (Ln0,hΨ

n−1
h ,Ψn−1

h )ℓ2
)

=− 2τnRe(L
n
0,hΨ

n
h, d

n
t Ψh)ℓ2 + τ2nRe(L

n
0,hd

n
t Ψh, d

n
t Ψh)ℓ2

≤− 2τnRe(L
n
0,hΨ

n
h, d

n
t Ψh)ℓ2 .

Suppose a and b are complex numbers and |a| ≤ 1, |b| ≤ 1. It holds that

1

4
((a2 − 1)2 − (b2 − 1)2) ≤(b2 − 1)Re(b∗(a− b)) + (a− b)∗(a− b),

which implies that for any µn ≥ 1,

(36)
1

4
dnt ∥|Ψh|2 − 1∥2ℓ2 + (µn − 1)τn∥dnt Ψh∥2ℓ2 ≤ Re(µnΨ

n
h − fµn

(Ψn−1
h ), dnt Ψh)ℓ2 .

Substituting (35) and (36) into (34) yields

dnt Gh + ∥dntAh∥20 + (µn − 1)τn∥dnt Ψh∥2ℓ2 +
τn
2
∥dnt (∇×Ah −H)∥20

≤−Re(fµn
(Ψn−1

h ) + Lnµn,hΨ
n
h, d

n
t Ψh)ℓ2 − (4πMn

h, d
n
tH).

(37)

The ETD1 scheme in (18) indicates that

fµn
(Ψn−1

h ) =− (1− eL
n
µn,hτn)−1Lnµn,h(Ψ

n
h − eL

n
µn,hτnΨn−1

h )

=− (1− eL
n
µn,hτn)−1Lnµn,h(Ψ

n
h −Ψn−1

h + (I − eL
n
µn,hτn)Ψn−1

h )

=− τn(1− eL
n
µn,hτn)−1Lnµn,hd

n
t Ψh − Lnµn,hΨ

n−1
h .

Define g(x) = −x+ x/(1− ex) and the operator ∆1 = g1(L
n
µn,h

τn). It follows that

−Lnµn,hΨ
n
h − fµn

(Ψn−1
h ) = ∆1(d

n
t Ψh).

Since g(x) < 0 for all x < 0 and Lnµn,h
is self-adjoint and negative definite, the

operator ∆1 is also negative definite. Thus,

−Re(fµn
(Ψn−1

h ) + Lnµn,hΨ
n
h, d

n
t Ψh) ≤ 0,

which combined with (37) gives

dnt Gh + ∥dntAh∥20 + (µn − 1)τn∥dnt Ψh∥2ℓ2 +
τn
2
∥4πdntMh∥20 ≤ −(4πMn

h, d
n
tH).

If H is stationary, the right-hand side of the above inequality equals zero, which
indicates Gnh ≤ Gn−1

h and completes the proof. □

4. Error estimate

In this section, we analyze the convergence of the numerical solutions by the
proposed scheme (14)-(15) under the regularity assumption below.
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Assumption 2. Assume that Ω is a convex polygon (or polyhedron). The solution
of the initial boundary value problem (7) with (2) satisfies the regularity conditions

ψ, ∂tψ ∈ L∞(0, T ;H2(Ω,C)), A, ∂tA ∈ L∞(0, T ;VA),

∂ttA ∈ L∞(0, T ;H1(Ω,Rd)).

where VA = {B ∈ H1(Ω,Rd) : ∇×B ∈ H1(Ω,Rd)}.

To begin with, we explore the relation between the errors enA and Enψ at two
consecutive time levels by use of the error equations, where

ejA = Aj
h −RhA

j , Ejψ = Ψjh − Ihψ
j , ejψ = ΠhE

j
ψ.

By the estimate (12) and the interpolation error of the linear element

(38) ∥An−RhAn∥0+h∥∇×(An−RhAn)∥0+∥ψ−ΠLψ∥0+h∥∇(ψ−ΠLψ)∥0 ≲ h2.

Lemma 4.1. Assume that Assumption 1 and 2 hold. Let A0
h = RhA

0 and Ψ0
h =

Ihψ
0 with ∥ψ0∥∞ ≤ 1. The approximation solution {(An

h,Ψ
n
h)}

Kt
n=1 is generated by

the numerical scheme (14)-(15) with stabilization parameter µn satisfying (25) and
uniform time step τn = τ . For any 1 ≤ n ≤ Kt,

σ∥enA∥2 + 2τ∥∇ × enA∥20 ≤σ(1 + Cτ)∥en−1
A ∥2 + τ∥( i

κ
∇+An−1

h )en−1
ψ ∥20

+ Cτ
(
∥En−1

ψ ∥2ℓ2 + h2 + τ2
)
,

(39)

∥∇ × enA∥20 ≤∥∇× en−1
A ∥20 + Cτ(∥( i

κ
∇+An−1

h )en−1
ψ ∥20 + ∥en−1

A ∥20 + ∥enA∥20

+ ∥En−1
ψ ∥2ℓ2 + h2 + τ2).

(40)

Proof. By the definition of the Ritz projection Rh in (11) and (14),

σ(dnt eA,Bh) + (∇× enA,∇×Bh)

+ (Re[(ψn−1
h )∗(

i

κ
∇+An

h)ψ
n−1
h − (ψn)∗(

i

κ
∇+An)ψn],Bh)

=σ(∂nt A− dntA,Bh) + σ((I −Rh)d
n
tA,Bh)− ((I −Rh)A

n,Bh).

(41)

Since

∂nt A− dntA =
1

τ

∫ tn

tn−1

∂nt A− ∂tA(s) ds,

(42) |(∂nt A− dntA,Bh)| ≲ τ∥Bh∥0.

By the estimate (12),

(43) |σ((I −Rh)d
n
tA,Bh)|+ |((I −Rh)A

n,Bh)| ≲ h∥Bh∥0.

Note that

(ψn−1
h )∗(

i

κ
∇+An

h)ψ
n−1
h − (ψn)∗(

i

κ
∇+An)ψn

=(en−1
ψ )∗(

i

κ
∇+An)ΠLψ

n−1 + (ψn−1
h )∗(

i

κ
∇+An)en−1

ψ + (ψn−1
h )∗(An

h −An)ψn−1
h

+ (ΠLψ
n−1)∗(

i

κ
∇+An)ΠLψ

n−1 − (ψn)∗(
i

κ
∇+An)ψn,



An energy stable and MBP-preserving scheme for TDGL equations 13

where Assumption 2 and the error estimates in (38) and (12) imply that

|(en−1
ψ )∗(

i

κ
∇+An)ΠLψ

n−1,Bh)| ≲ ∥en−1
ψ ∥0∥Bh∥0,

|((ψn−1
h )∗(

i

κ
∇+An)en−1

ψ ,Bh)| ≤ ∥( i
κ
∇+An)en−1

ψ ∥0∥Bh∥0∥ψn−1
h ∥∞,

|((ψn−1
h )∗(An

h −An)ψn−1
h ,Bh)| ≤ (∥enA∥0 + Ch)∥Bh∥0∥ψn−1

h ∥2∞,

|((ΠLψn−1)∗(
i

κ
∇+An)ΠLψ

n−1 − (ψn)∗(
i

κ
∇+An)ψn,Bh)| ≲ (τ + h)∥Bh∥0.

By Theorem 3.2, ∥ψn−1
h ∥∞ ≤ 1. It follows that

(44)

|(Re[(ψn−1
h )∗(

i

κ
∇+An

h)ψ
n−1
h − (ψn)∗(

i

κ
∇+An)ψn],Bh)|

≤
(
∥( i
κ
∇+An)en−1

ψ ∥0 + ∥enA∥0 + C∥en−1
ψ ∥0 + Cτ + Ch

)
∥Bh∥0.

It follows from ∥en−1
ψ ∥∞ ≤ ∥Ihψn−1∥∞ + ∥ψn−1

h ∥∞ ≤ 2 and (12) that

(45)
∥( i
κ
∇+An)en−1

ψ ∥0 ≤∥( i
κ
∇+An−1

h )en−1
ψ ∥0 + ∥(An −An−1

h )en−1
ψ ∥0

≤∥( i
κ
∇+An−1

h )en−1
ψ ∥0 + 2∥en−1

A ∥0 + C(τ + h).

Let Bh = enA in (41). By Young’s inequality, a combination of (41), (42), (43), (44)
and (45) leads to

σ∥enA∥2 + 2τ∥∇ × enA∥20

≤σ(1 + Cτ)∥en−1
A ∥2 + τ∥( i

κ
∇+An−1

h )en−1
ψ ∥20 + Cτ

(
∥en−1
ψ ∥20 + τ2 + h2

)
.

Let Bh = dnt eA in (41). A similar analysis yields

∥∇ × enA∥20 ≤∥∇× en−1
A ∥20 + Cτ(∥( i

κ
∇+An−1

h )en−1
ψ ∥20 + ∥en−1

A ∥20 + ∥enA∥20

+ ∥en−1
ψ ∥20 + τ2 + h2),

which completes the proof. □

Given any µ ≥ 0 and B ∈ H1(Ω), denote the linear operator Lµ[B]ψ = −( iκ∇+

B)2ψ − µψ. The matrix Lnµn,h
in (15) relates to a spatial discretization of the

operator Lµn
[An]. Let Sψ(t) = Uh(t) − Ψ(t) with Uh defined in (15) and Ψ(t) =

Ihψ(·, t). A subtraction of (15) from (7) reads
(46)

d

dt
Sψ = Lnµn,hSψ + δ1n + δ2n + δ3n + fµn

(Ψn−1
h )− fµn

(Ihψ
n−1), t ∈ [tn−1, tn],

Sψ(tn−1) = En−1
ψ ,

where

(47)
δ1n = Lnµn,hIhψ − IhLµn

[An]ψ, δ2n = Ih(Lµn
[An]− Lµn

[A])ψ,

δ3n = fµn(Ihψ
n−1)− fµn(Ihψ).

The first term δ1n represents the consistency error of the numerical scheme (15) and
the other two terms relate to the error in time discretization.
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Lemma 4.2. Under Assumption 2, it holds for any Wh ∈ CN that

|(δ1n,Wh)ℓ2 | ≲ (∥enA∥0 + h)(∥( i
κ
∇+An

h)ΠhWh∥0 + ∥ΠhWh∥0).

Proof. Let wh = ΠhWh. It follows from (10) that

(48) |(IhLµn [A
n]ψ,Wh)ℓ2 − (Lµn [A

n]ψ,wh)| ≲ h∥( i
κ
∇+An)2ψ∥1∥wh∥0.

By the definition of Lµn,h[A
n
h] in (16),

(Lnµn,hIhψ,Wh)ℓ2 = −((
i

κ
∇+An

h)ΠLψ, (
i

κ
∇+An

h)wh)− µn(ΠLψ,wh).

It follows from the above equation and the integration by parts that

(49) (Lnµn,hIhψ,Wh)ℓ2 − (Lµn [A
n]ψ,wh) =

5∑
i=1

Ii,

where I1 = ( iκ∇(ψ−ΠLψ), th), I2 = (An(ψ−ΠLψ), th), I3 = ((An−An
h)ΠLψ, th),

I4 = (( iκ∇ +An)ψ, (An −An
h)wh) and I5 = µn((I − ΠL)ψ,wh) with th = ( iκ∇ +

An
h)wh. It follows from the estimate (38) that

(50) |I1|+ |I2|+ |I3|+ |I4|+ |I5| ≲ (∥enA∥0 + h)∥th∥0 + (∥enA∥0 + h2)∥wh∥0.

This, together with (48) and (49) , leads to∣∣(δ1n,Wh)ℓ2
∣∣ ≲(∥enA∥0 + h)∥( i

κ
∇+An

h)wh∥0 + (∥enA∥0 + h)∥wh∥0,

which completes the proof. □

Lemma 4.3. Assume that Assumption 1 and 2 hold. Let A0
h = RhA

0 and Ψ0
h =

Ihψ
0 with ∥ψ0∥∞ ≤ 1. {(An

h,Ψ
n
h)}

Kt
n=1 is generated by the discrete system (14)-(15)

with the stabilizing parameter stabilization parameter µn satisfying (25) and time
step τn = τ . For any 1 ≤ n ≤ Kt,

(51) ∥Enψ∥2ℓ2 + τ∥( i
κ
∇+An

h)e
n
ψ∥20 ≤ (1 + Cτ)∥En−1

ψ ∥2ℓ2 + Cτ(∥enA∥20 + τ2 + h2).

Proof. It follows from (46) that

Enψ = eτL
n
µn,hEn−1

ψ +

∫ τ

0

e(τ−s)L
n
µn,h(δ1n + δ2n + δ3n + fµn

(Ψn−1
h )− fµn

(Ihψ
n−1)) ds.

Acting I − τLnµn,h
on both sides of the equation above and taking ℓ2 inner product

with Enψ yield

(52)

∥Enψ∥2ℓ2 + τ∥( i
κ
∇+An

h)e
n
ψ∥20 + µτ∥Enψ∥2ℓ2

=(q1(τL
n
µn,h)E

n−1
ψ + τq2(τL

n
µn,h)(fµn(Ψ

n−1
h )− fµn(Ihψ

n−1)), Enψ)ℓ2

+

∫ τ

0

((I − τLnµn,h)e
(τ−s)Ln

µn,hδ1n, E
n
ψ)ℓ2 ds

+

∫ τ

0

((I − τLnµn,h)e
(τ−s)Ln

µn,h(δ2n + δ3n), E
n
ψ)ℓ2 ds,

where q1(x) = (1− x)ex, q2(x) = (1− x)(ex − 1)/x. Note that for any x < 0,

0 < q1(x) < 1 < q2(x) < 2.
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Since Lnµn,h
is negative definite,

(53)
|(q1(τLnµn,h)E

n−1
ψ , Enψ)ℓ2 | ≤ ∥En−1

ψ ∥ℓ2∥Enψ∥ℓ2 ,

|τ(q2(τLnµn,h)(fµn
(Un−1

h )− fµn
(Ihψ

n−1)), Enψ)ℓ2 | ≤ Cτ∥En−1
ψ ∥ℓ2∥Enψ∥ℓ2 .

It follows from Lemma 4.2 that

|((I − τLnµn,h)e
(τ−s)Ln

µn,hδ1n, E
n
ψ)ℓ2 | ≲ (∥enA∥0 + h)(∥( i

κ
∇+An

h)t
n
h∥0 + ∥tnh∥0),

where
tnh = (I − τ(Lnµn,h)

T )e(τ−s)(L
n
µn,h)

T

Enψ.

Since 0 < q1(x) < 1, ∣∣∣∣∫ τ

0

((I − τLnµ,h)e
(τ−s)Ln

µn,hδ1n, E
n
ψ)ℓ2 ds

∣∣∣∣
≲τ(∥enA∥0 + h)(∥( i

κ
∇+An

h)e
n
ψ∥0 + ∥Enψ∥ℓ2).

(54)

Note that ∥δ2n∥0 + ∥δ3n∥0 ≲ τ . Thus,

(55)

∣∣∣∣∫ τ

0

((I − τLnµn,h)e
(τ−s)Ln

µn,h(δ2n + δ3n), E
n
ψ)ℓ2 ds

∣∣∣∣ ≲ τ2∥Enψ∥ℓ2 .

A substitution of (53), (54) and (55) into (52) gives

∥Enψ∥2ℓ2 + τ∥( i
κ
∇+An

h)e
n
ψ∥20 +

µnτ

2
∥En−1

ψ ∥2ℓ2

≤(1 + Cτ)∥En−1
ψ ∥ℓ2∥Enψ∥ℓ2 + Cτ(∥enA∥0 + h)∥( i

κ
∇+An

h)e
n
ψ∥0

+ Cτ∥Enψ∥0(∥enA∥ℓ2 + ∥Enψ∥ℓ2 + τ + h).

By the Young’s inequality,

∥Enψ∥2ℓ2 + τ∥( i
κ
∇+An

h)e
n
ψ∥20 ≤ (1 + Cτ)∥En−1

ψ ∥2ℓ2 + Cτ(∥enA∥20 + τ2 + h2),

which completes the proof. □

The following theorem presents the main result of the error estimate of the
proposed numerical scheme (14)-(15).

Theorem 4.4. Assume that Assumption 1 and 2 hold. Let A0
h = RhA

0 and

Ψ0
h = Ihψ

0 with ∥ψ0∥∞ ≤ 1. {(An
h,Ψ

n
h)}

Kt
n=1 is generated by the discrete system

(14)-(15) with the stabilizing parameter stabilization parameter µn satisfying (25)
and time step τn = τ . For any 1 ≤ n ≤ Kt,

∥An
h −An∥0 + ∥∇ × (An

h −An)∥0 + ∥ψnh − ψn∥0 ≲ τ + h.

Proof. Denote

Tn = ∥Enψ∥2ℓ2 + σ∥enA∥20 + τ∥( i
κ
∇+An

h)e
n
ψ∥20 + 2τ∥∇ × enA∥20.

By the estimates (39) and (51),

Tn ≤ (1 + Cτ)Tn−1 + Cτ(h2 + τ2),

which implies that

Tn ≤ (1 + Cτ)nT 0 + Cτ(τ2 + h2)

n∑
i=1

(1 + Cτ)i.
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Note that there exists constant C0 such that

|(1 + Cτ)n|+ |τ
n∑
i=1

(1 + Cτ)i| ≤ C0.

This, together with the fact that |T 0| ≲ h2, leads to

(56) ∥enA∥0 + ∥Enψ∥ℓ2 ≲ τ + h.

As a consequence, the estimate (51) reads

∥Enψ∥2ℓ2 + τ∥( i
κ
∇+An

h)e
n
ψ∥20 ≤ (1 + Cτ)∥En−1

ψ ∥2ℓ2 + Cτ(τ2 + h2),

which leads to

∥Enψ∥2ℓ2 + τ

n∑
j=1

∥( i
κ
∇+Aj

h)e
j
ψ∥

2
0

≤(1 + Cτ)n∥E0
ψ∥2ℓ2 + Cτ(τ2 + h2)

n−1∑
j=0

(1 + Cτ)j ≤ C(τ2 + h2).

Substituting this into the estimate (40) yields

∥∇ × enA∥20 ≤∥∇× e0A∥20 + Cτ

n−1∑
j=0

∥( i
κ
∇+Aj

h)e
j
ψ∥

2
0 + C(τ2 + h2) ≤ C(τ2 + h2).

A combination of the estimate above and (56) gives

∥enA∥0 + ∥Enψ∥ℓ2 + ∥∇ × enA∥0 ≲ τ + h.

This, together with the estimate (38), completes the proof. □

Remark 4.1. In the decoupled numerical scheme (14)-(15), the first order con-
vergence rate of ∥An

h −An∥0 is one degree lower than that of the projection error
∥RhAn −An∥0 provided that A ∈ H2(Ω,Rd). The gap is caused by nonlinearity,
that is the explicit gradient term g(ψn−1

h ) in (14). We can fix the gap by applying

the gradient recovery technique in [41] and replace g(ψn−1
h ) in (14) by the recovered

gradient, that is to seek (Ân
h, ψ̂

n
h) such that

(dnt Âh,Bh) +D(ψ̂n−1
h ; Ân

h,Bh) = (Hn,∇×Bh)− (gM (ψ̂n−1
h , ψ̂n−1

h ),Bh),

for any Bh ∈ Qh and Ψ̂nh = Ûh(tn) satisfying (15) with Ψ̂0
h = Ihψ

0 and Â0
h =

RhA
0, where gM (ψh, ψh) = i

2κ (ψ
∗
h(Khψh) − ψh(Khψ

∗
h)) with recovered gradient

Khψh.

Remark 4.2. Note that the convergence analysis in Theorem 4.4 relies on the
interpolation error of the solutions, thus the first order convergence rate does not
hold theoretically for the numerical scheme when the domain is not convex. Nev-
ertheless, the discrete MBP in Theorem 3.2 and the energy dissipation property in
Theorem 3.3 still hold for non-convex superconductors.

5. Numerical Examples

In this section, we present some numerical examples to verify the theoretical
results and show the vortex motions of superconductors in an external magnetic
field.
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5.1. Example 1: convergence test. Consider the artificial example on Ω =
(0, 1)2 with κ = 1

(57)


∂tψ = −

(
i

κ
∇+A

)2

ψ + ψ − |ψ|2ψ + g in Ω,

∂tA =
1

2iκ
(ψ∗∇ψ − ψ∇ψ∗)− |ψ|2A−∇×∇×A+ f in Ω,

and boundary and initial conditions (2). The functions f , g, ψ0 and A0 are chosen
corresponding to the exact solution ψ = e−t(cos(2πx)+i cos(πy)), A = [etx1.001(1−
x)5/4y, ety1.001(1−y)1.001x]T with H = ∇×A We set the terminal time T = 1 and
the stabilization parameter µn = 2 in this example. Table 1 records the L2-norm
errors of Ah, ∇ × Ah, ψh and ∇ψh on uniform triangulations with spatial mesh
size h, which coincide with the convergence result in Theorem 4.4 and show the
accuracy of the proposed numerical scheme when the solution is smooth enough.

1/h ∥A − Ah∥0 rate ∥∇ × (A − Ah)∥0 rate ∥ψ − ψh∥0 rate ∥∇(ψ − ψh)∥0 rate
4 1.81E+00 9.75E-01 8.18E-01 1.28E+00
8 1.31E+00 0.46 4.58E-01 1.09 3.36E-01 1.28 4.91E-01 1.38
16 6.32E-01 1.05 2.29E-01 1.00 2.23E-01 0.59 2.21E-01 1.15
32 3.01E-01 1.07 1.14E-01 1.00 1.26E-01 0.83 1.07E-01 1.04
64 1.48E-01 1.02 5.70E-02 1.00 6.60E-02 0.93 5.35E-02 1.01
128 7.39E-02 1.00 2.85E-02 1.00 3.38E-02 0.97 2.67E-02 1.00
256 3.70E-02 1.00 1.43E-02 1.00 1.71E-02 0.98 1.34E-02 1.00

Table 1. Errors and convergence rates with time step τ = 10−5.

5.2. Example 2: L-shaped superconductor. We use the proposed formulation
to simulate the vortex dynamics in the superconductor Ω = (−0.5, 0.5)2\[0, 0.5] ×
[−0.5, 0] with the Ginzburg–Landau parameter κ = 10. The initial conditions and
applied magnetic field are ψ0 = 0.6 + 0.8i, A0 = (0, 0) and H = 5. This example
was tested before by different methods, see [14, 30] for reference. We simulate the
problem on a uniform triangulation with M = 16 nodes per unit length on each
side with stabilization parameter µn = 2 and time step τ = 1/16. Fig. 1 plots
the discrete energy of the proposed scheme and the maximum norm of the discrete
order parameter, which verifies the theoretical results in Theorems 3.3 and 3.2.

Figure 1. Discrete energy and maximum bound of the discrete
order parameter for Example 2.

Fig. 2 plots |ψh| and ∇ × Ah at different times by the scheme (14)–(15). It
shows that one vortex enters the material from the reentrant corner as the time
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t = 5 t = 10 t = 20 t = 40

Figure 2. |ψh| (above) and ∇×Ah (below) at t = 5, 10, 20 and
40 for Example 2.

increases, which is similar to those reported in [14, 30]. Physically speaking, the
superconducting density should be between 0 and 1, and the average magnetic
field should be less than H when the superconductor is in a mixed state [9]. The
numerical results in Fig. 1 and Fig. 2 coincide with this physical observation.

Comparing with the numerical schemes in [14, 17, 18, 24, 28, 30, 31] where this
example was tested, there are four virtues of the proposed scheme. Firstly, it is
easy for the proposed scheme to implement the boundary condition, where the
conventional finite element method and the second order scheme in [16] need to
deal with the extra boundary condition. Secondly, the physical boundary condi-
tion for the proposed scheme avoids the appearance of the nonphysical numerical
phenomena, where the aforementioned schemes generate incorrect solutions when
M = 16 and 32 as reported in [14, 30]. Thirdly, the proposed scheme solves a de-
coupled linear system of two variables without introducing any auxiliary variables
as in the mixed element schemes in [14, 17, 28, 30], and the computational cost of
the linear system is smaller compared to the nonlinear systems of the numerical
schemes in [24, 27]. Moreover, the unconditionally energy stability is guaranteed
for the proposed scheme, which allows relatively larger time steps and therefore the
application of adaptive time stepping strategies to speed up simulations.

5.3. Example 3: hollow superconductor. We present simulations of vortex
dynamics of a type-II superconductor in a square domain [0, 10]2 with four square
holes {(x, y) : x and y ∈ [2, 3] ∪ [7, 8]}. We set σ = 1, κ = 4, ψ0 = 1.0, A0 = (0, 0),
and test on two different external magnetic fieldsH = 1.1 and 1.9 with µn = 2. The
example was tested before in [17, 24, 37]. We simulate the motion on triangulations
generated by Gmsh [19]. Since the discrete energy decays as proved in Theorem
3.3, we adopt the adaptive time-stepping strategy in [38] which takes the form

(58) τn = max{τmin,
τmax√

1 + α|G
n−1
h −Gn−2

h

τn−1 |2
},

where the positive constant α = 105, τmax = 0.2 and τmin = 0.02.
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Figure 3. Discrete energy and time steps for Example 3 with H = 1.1.

Figure 4. Discrete energy and time steps for Example 3 with H = 1.9.

Figure 5. Discrete maximum bound of |ψh| for Example 3 with
H = 1.1 (left) and H = 1.9 (right).

Fig. 3 and Fig. 4 plot the discrete energy and time steps of the proposed
scheme with H = 1.1 and H = 1.9 when t ≤ 1000, respectively. As shown in
Fig. 3, the adaptive time-stepping strategy can successfully capture the change of
discrete energy and save computational time. Note that the time steps are nearly
τmax = 0.2 when t ≥ 100 for H = 1.1, which is much larger than τ = 0.005 and
τ = 0.02 in [17] and [24], respectively. When the applied magnetic field H = 1.9,
the new approach gives a physical simulation of the vortex motion until t = 1000
with the time step nearly τmax = 0.2 when t ≥ 400 as shown in Fig. 4. The vortex
motion under H = 1.9 was simulated for t ≤ 150 in [17] with time step τ = 0.002
on a triangulation with 405416 elements. A nonphysical phenomenon starts to
appear in the simulation when t = 10. We use the proposed scheme (14)-(15) with
the adaptive time-stepping strategy (58) on a triangulation with 516526 elements
and the simulation exhibits physical phenomenon before t = 800 and nonphysical
behavior starts to appear after t = 800. As shown in Fig. 4, Fig. 5 and Fig. 7, our
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approach on a triangulation with 786482 elements gives a physical simulation of the
vortex motion under H = 1.9 until t = 1000 with the time step nearly τmax = 0.2
when t ≥ 400. This implies that the proposed scheme (14)-(15) with adaptive
time-stepping strategy is much more stable and efficient in long-time simulations.
As shown in Fig. 4, the discrete energy decays even when the time step is not
changing continuously which also verifies the unconditional energy decay property
of the proposed numerical scheme.

t = 10 t = 50 t = 200 t = 1000

Figure 6. |ψh| (above) and ∇ × Ah (below) at t = 10, 50, 200,
1000 for Example 3 with H = 1.1 on a triangulation with 516526
elements.

t = 10 t = 50 t = 200 t = 1000

Figure 7. |ψh| (above) and ∇ × Ah (below) at t = 10, 50, 200,
1000 for Example 3 with H = 1.9 on a triangulation with 786482
elements.

Fig. 6 and Fig. 7 plot |ψh| and ∇×Ah at t = 10, 50, 200 and 1000 for H = 1.1
and H = 1.9, respectively. As observed in Fig. 6 and Fig. 7, the vortices start
to penetrate the material near the four square holes. When H becomes larger,
more vortices are generated and triangulation with a much smaller mesh size is
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required to resolve the singularity of solutions, which coincides with the physical
phenomenon. Physically speaking, the penetrated magnetic flux will separate into
the smallest bundle to guarantee the largest interface area since the interface energy
in type-II superconductors is negative, and the vortices form a lattice because of
the weak repulsive interactions among them. In long-time simulations, numerical
schemes with high convergence accuracy may produce some nonphysical numerical
phenomenon because of the lack of stability. This nonphysical phenomenon often
happens near the reentrant corners when the applied magnetic field is strong. The
vortex dynamics in Fig. 6 and Fig. 7 show that the proposed numerical scheme is
robust and stable even when H = 1.9.

6. Conclusions

In this paper, we propose a decoupled scheme for the TDGL equations under the
temporal gauge by combining the ETD method and the backward Euler method
for time discretization and finite element methods for spatial discretization. Com-
pared to the existing schemes for the TDGL equations, the proposed numerical
scheme admits four advantages. Firstly, the scheme and all the energy stability
analysis, MBP analysis and error estimate work for superconductors with compli-
cated shapes. Secondly, an unconditional energy dissipation law is proved for the
proposed scheme. This allows the application of an adaptive time-stepping strategy
which can significantly speed up simulations compared to other numerical schemes
for the TDGL equations in the literature using a fixed time step. Thirdly, the
discrete MBP is proved for the order parameter which indicates the stability of the
numerical scheme, while no other numerical schemes using finite element methods
can preserve the MBP property theoretically. The analyzing technique can also be
used in other problems with complex order parameters. Finally, the relatively low
regularity of the numerical solutions prevents the appearance of some nonphysical
numerical solutions.

For the discrete scheme in Remark 4.1 with gradient recovery techniques, the
discrete MBP is also guaranteed under the mesh requirements in Assumption 1.
But how to preserve the energy dissipation law in a discrete sense is still an open
problem. A major difficulty comes from the discretization of the coupling nonlinear
terms in the equations for both the magnetic field and the order parameter. The
proposed scheme (14)-(15) is only of first order in time. The fact that the differential
operator L[A] depends on the variable A leads to the failure in constructing high
order MBP-preserving numerical schemes using the standard ETD methods with
second order accuracy. How to design an MBP-preserving numerical scheme with
higher accuracy in time is also open, which requires some delicate treatment with
respect to the coupling terms of the TDGL equations. A fast solver of numerical
schemes is important in simulating the vortex motion of superconductors, especially
when the shape of the superconductor is not smooth and a strong external magnetic
field is applied. The design of fast solvers for the proposed numerical scheme and the
theoretical analysis to guarantee the efficiency of the solver deserve deeper study.
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