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Abstract

Dirac cones are conical singularities that occur near the degenerate points in band

structures. Such singularities result in enormous unusual phenomena of the correspond-

ing physical systems. This work investigates double Dirac cones that occur in the vicinity

of a fourfold degenerate point in the band structures of certain operators. It is known

that such degeneracy originates in the symmetries of the Hamiltonian. We use two dimen-

sional periodic Schrödinger operators with novel designed symmetries as our prototype.

First, we characterize admissible potentials, termed as super honeycomb lattice poten-

tials. They are honeycomb lattices potentials with a key additional translation symmetry.

It is rigorously justified that Schrödinger operators with such potentials almost guarantee

the existence of double Dirac cones on the bands at the Γ point, the origin of the Brillouin

zone. We further show that the additional translation symmetry is an indispensable in-

gredient by a perturbation analysis. Indeed, the double cones disappear if the additional

translation symmetry is broken. Many numerical simulations are provided, which agree

well with our analysis.
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1 Introduction

The Dirac cone is a conical structure near the degenerate point on the energy bands. It

is deeply rooted in the symmetries of operators. Single Dirac cones near a twofold de-

generate point have been found in many physical systems. It is a hallmark and reveals

the underlying mechanism of versatile electronic or photonic properties of topological ma-

terials [7, 10, 15, 26, 19]. A typical system possessing the single Dirac cone is the two-

dimensional material–graphene, which has the atomic honeycomb lattice made of carbon

atoms [21, 20, 25]. Its great success in many fields has brought the blooming time for both

experimental and theoretical understanding of such degenerate points on spectral bands.

Meanwhile, other types of conically degenerate points were reported. Among those, double

Dirac cones have attracted considerable attention [31, 34]. Such conical structures consist of

two cones that share a fourfold degenerate apex. Due to the higher degeneracy, the corre-

sponding wave patterns and physical properties are different from those in systems possessing

single Dirac cones [30, 24, 33, 22]. It is known that the nontrivial topology of energy bands

and corresponding significant properties of materials are born from the singularity. Thus,

investigating the underlying symmetries and degeneracy related to the double Dirac cone

will help us better understand the unusual physical properties.

Regarding single Dirac cones, a lot of analyses about the related time reversal symmetric

operators have been done through different models and vehicles, especially when the material

has a honeycomb structure. The tight-binding approximation was first developed by Wallace

to describe the band structure of graphite [29], and later used systematically by others [27, 18].

The perturbation theory and multiscale analysis help to solve shallow potential cases success-

fully [1, 16]. One pioneering rigorous result on characterizing the honeycomb potentials and

demonstrations of the existence of Dirac points was given by Fefferman and Weinstein [13].

They paved the way to rigorously analyzing such degenerate spectral points by combining

Lyapunov-Schmidt reduction, perturbation theories, and multidimensional complex analy-

sis. Based on their results, many other problems were solved such as the evolution of wave

packets spectrally concentrated near Dirac points [14], edge states and valley Hall effect [8],

lower dimensional degenerate points [12] and threefold Weyl points in the three-dimensional

problems [17]. Ammari and collaborators did a lot of work on the Dirac cone and edge

states using layer potential theory in the subwavelength regime [3, 4, 2]. Besides, the group

representation theory has been used by Berkolaiko and Comech to describe the symmetric

structure [6]. Despite the aforementioned progress in this blooming area, there is rarely any

rigorous result on double Dirac cones as those in single Dirac cones.

In this paper, we investigate the two dimensional Schrödinger operator HV = −∆+V (x)

with V (x) specially structured such that HV has a double Dirac cone on its energy surfaces.

Our goal is to find the precise mathematical description of this special kind of V (x), and

establish the rigorous proof about the existence of the double Dirac cone. We first define

a class of potentials V (x), termed as the super honeycomb lattice potentials. They are

honeycomb lattice potentials equipped with an additional translation symmetry. Then we

prove that such V (x) is enough for the existence of a double Dirac cone at Γ point, the origin

3



of the Brillouin zone, as is stated in the main theorem Theorem 3.1. To achieve our goal, we

utilize Lyapunov-Schmidt reduction, perturbation theory, and spectral theories about infinite

dimensional linear operators. The rigorous analysis is inspired by pioneering works on single

Dirac cones by Fefferman and Weinstein [13]. However, due to higher multiplicity and the

additional symmetry, we need a more delicate decomposition of the working function spaces

and the bifurcation matrix, see Sections 2.3 and 3.2. We also show that the extra translation

symmetry is indispensable. Namely, a small perturbation that breaks this symmetry leads to

the separation of the fourfold degeneracy and disappearance of the double cone in the band

structure, see Section 4. Besides, we give two typical examples of potentials that are in the

class of admissible potentials. Numerical simulations are provided to support our analysis.

Our results will shine a light on the study of more complicated symmetries of operators and

higher degeneracy on energy bands.

The rest of the paper is organized as follows. Section 2 provides the preliminaries. The def-

inition of super honeycomb lattice potentials and the decomposition of the working function

space are given based on symmetries. In Section 3, we state and prove the main theorem–

the existence of the double Dirac cone at the Γ point of the Schrödinger operator with a

super honeycomb lattice. Inspired by [13], the proof is divided into two main parts. First,

we show that the fourfold degeneracy at the Γ point leads to a double cone in the vicinity

under proper assumptions. Secondly, we justify the assumptions for shallow potentials and

then extend the shallow potentials to generic potentials. In Section 4, we discuss the band

structures under perturbations which break the additional translation symmetry. The double

Dirac cone separates into two parts and a local energy gap appears near the Γ point. At the

end, corresponding numerical simulations for the two typical potentials are given in Section

5.

2 Super honeycomb lattice potential and symmetries

Symmetries of an operator are the origin of many novel properties of its spectrum. In this

section, we introduce a large class of potentials, termed as super honeycomb lattice potentials,

which are characterized by several symmetries. Their properties and corresponding spectral

theory are discussed.

2.1 Super honeycomb lattice potentials

We first introduce the parity, complex-conjugation, and rotation operators for a function f(x)

defined in R2 as below:

P[f ](x) = f(−x), C[f ](x) = f(x), Rθ[f ](x) = f(R∗
θx),

where

Rθ =

(
cos θ sin θ

− sin θ cos θ

)
(2.1)
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represents the clockwise rotation by an angle of θ ∈ [0, 2π] in R2 and its Hermitian R∗
θ =

R−1
θ represents the anticlockwise rotation. A function f(x) is called P−invariant (or parity

symmetric) if P[f ](x) = f(x), and similar for C− invariant (or conjugation symmetric) and

Rθ−invariant (or rotation symmetric). Besides, being PC invariant is also called having the

time reversal symmetry. In this work, we are interested in R 2
3
π, so we omit the subscript,

i.e., R = R 2
3
π and R = R 2

3
π for simplicity.

We also use the following notation for the translation operator of a nonzero vector u in

this article:

Tu[f ](x) = f(x+ u).

In this work we are interested in the spectra of HV = −∆+V (x) with the potential V (x)

being equipped with the above symmetries. Namely, we have the following definitions.

Definition 2.1 V (x) ∈ L∞(R2) is called a honeycomb lattice potential, if

1. V (x) is real and even,

2. V (x) is R-invariant,

3. V (x) has a period u1 ̸= 0, and thus u2 − periodic with u2 = −R∗u1.

Remark 2.2 All these three properties are discussed in L∞(R2), that is to say, V (x) =

CV (x) = PV (x) = RV (x) = Tu1V (x) = Tu2V (x) is valid almost everywhere. The following

discussion about super honeycomb lattice potential is also in L∞(R2) in the same way.

Therefore, the non-relativistic Schödinger operator HV (x) = −∆+V (x) has time reversal

symmetry, rotation symmetry, and translation symmetry if V (x) is a honeycomb lattice

potential. The honeycomb lattice can refer to the blue lattice in Figure 1. As shown in

this Figure, the black lattice is a honeycomb lattice, too. But it has an extra translation

symmetry with periods v1 and v2, where

v1 =
1

3
(2u1 − u2), v2 =

1

3
(u1 + u2). (2.2)

We call it a super honeycomb lattice because of this additional symmetry.

Definition 2.3 A honeycomb lattice potential V (x) ∈ L∞(R2) is called a super honeycomb

potential if

4. V(x) is v1 and v2 periodic, where v1 and v2 are as in (2.2) and the non-degeneracy

condition holds:
1

|Ω|

∫
Ω
e−iq1·yV (y)dy ̸= 0, (2.3)

where Ω is a unit cell of honeycomb lattice as in (2.7).

By definitions, a super honeycomb lattice potential is a honeycomb lattice potential with

an additional translation symmetry. In other words, it has a smaller lattice structure. Since

in applications we need to break this symmetries to obtain bands with different topological
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(a) (b)

Figure 1: (a) the figure of lattice, and (b) the figure of dual lattice. The blue lattices are

the cases of honeycomb lattice, with periods u1 and u2 and dual periods k1 and k2. The

black lattices are the cases of corresponding super honeycomb lattice, with periods v1 and v2

and dual periods q1 and q2. Obviously, the super honeycomb lattice is a kind of honeycomb

lattice, but not vice versa.

indices [5, 24], see also Figure 2. We still consider the super honeycomb lattice potential in

the bigger lattice structure.

We remark that the non-degeneracy condition (2.3) in the definition ensures the lowest

Fourier coefficients of V (x) do not vanish. As a consequence, the degeneracy occurs at

2nd − 7th bands. While higher bands should be considered if the non-degeneracy condition

does not hold, which will be investigated in future works.

Here we give a typical example of super honeycomb lattice potentials which is a dimer-

ization of a honeycomb lattice potential. It is a more general mathematical construction of

the case studied in [31]. Our approach is first dimerizing in one direction, and then applying

rotations to get the final results. Beginning from a honeycomb lattice potential, there should

be three directions for dimerization: u1, u2, and u3 = u2 −u1. Thus, the following steps are

needed to construct the dimer model.

Assume that f(x) is a function such that f(x+ 1
2u3) is a honeycomb lattice potential, to

be specific:

f(x+ u1) = f(x), f(x+ u2) = f(x), Rf(x+
1

2
u3) = f(x+

1

2
u3), ∀x ∈ R2. (2.4)

First dimerize in the u3 direction:

g(x, r) = f(x− 1

2
ru3) + f(x+

1

2
ru3). (2.5)

Here r ∈ [0, 1] is the distance ratio for dimers. Then rotates the obtained g(x) :

W (x, r) = g(x, r) +Rg(x, r) +R2g(x, r). (2.6)
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W (x, r) is the dimer model we want. Using (2.4)-(2.6), it is easy to check the conclusion

below.

Proposition 2.4 Any W (x, 13) constructed by the above steps is a super honeycomb lattice

potential.

Figure 2 shows a discrete example.

(a) (b) (c)

Figure 2: Discrete honeycomb-dimer model examples with r taking values (a) 13
60 , (b)

1
3 , and

(c) 1
2 . The blue hexagon is a unit cell of honeycomb lattice, and the black hexagon is a

unit cell of the super honeycomb lattice. Blue points are elements before dimerization and

rotation, red points are dimers. Elements in a dimer are connected by a red line.

Before all the detailed analysis of the energy surfaces of Schrödinger operators with super

honeycomb lattice potentials, we try to first explain our method using symmetries. If V (x)

is a super honeycomb lattice potential, the operator HV has following properties.

Lemma 2.5 Assume that V (x) is a super honeycomb lattice potential, then

[HV , Tv1 ] = [HV , Tv2 ] = [HV ,R] = 0

[HV ,P] = [HV , C] = [HV ,PC] = 0

Proof Take [HV ,P] = 0 as an example and others are the same. For any ϕ(x),

HV Pϕ(x) = (−∆+ V (x))ϕ(−x) = (−∆−x + V (−x))ϕ(−x) = PHV ϕ(x),

because V (x) is even, and the Laplace operator is rotation invariant. □

The spectrum of HV on L2(R2) is equivalent to such a union by Floquet-Bloch theorem:

σL2(R2)(HV ) =
⋃

k∈Ω∗

σχ(HV (k)),

where the notations are introduced in the following two subsections. χ is as in (2.12). Thus,

finding eigenvalues of HV on L2(R2) is transformed into finding eigenvalues of HV (k) on

χ. It is clear that HV (0) = HV - the operator corresponding to Γ point are commutative

with Tv1 and R. Tv1 and R are unitary and have three eigen-subspaces corresponding to

different eigenvalues ξ1 = 1, ξ2 = e
2
3
πi, and ξ3 = e−

2
3
πi on χ. Suppose ϕl(x) and ϕj(x) are

any normalized eigenfunctions of R with eigenvalues ξl and ξj , then:

⟨HV ϕl(x), ϕj(x)⟩ = ⟨RHV ϕl(x),Rϕj(x)⟩
= ξlξj⟨HV ϕl(x), ϕj(x)⟩ = δl,j⟨HV ϕl(x), ϕj(x)⟩,
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where the inner product is as in (??). This tells that eigen-subspaces of R are invaraint

spaces of HV , and similar for Tv1 . Thus, we can further decompose the spectrum of HV on

χ to the spectrum of HV on these subspaces. Finally, we associate these subspaces by P, C,
and PC and construct the degeneracy by the fact that they are commutative with HV .

2.2 A quick review of Floquet-Bloch theory

In this subsection, we review the Floquet-Bloch theory briefly. Let {u1,u2} be linear inde-

pendent vectors in R2. Its corresponding equilateral lattice is U = Zu1⊕Zu2. Denote a unit

cell

Ω = {u = c1u1 + c2u2, c1, c2 ∈ [0, 1]}. (2.7)

Dual lattice of U is

U∗ = Zk1 ⊕ Zk2 ul · kj = 2πδl,j l, j = 1, 2.

Ω∗ = R2/U∗ is the Brillouin zone. We can divide the eigenvalue problem of HV on L2(R2)

into the following eigenvalue problems of HV traversing all the k in the Brillouin zone [9, 28].

For k ∈ Ω∗, consider the eigenvalue problem

HV Φ(x,k) = µ(k)Φ(x,k), x ∈ R2, (2.8)

Φ(x+ u,k) = eik·uΦ(x,k), u ∈ U, x ∈ R2 (2.9)

Let Φ(x,k) = eik·xϕ(x,k), where ϕ(x) is periodic. Then (2.8) is equal to:

(−∆+ V (x))(eik·xϕ(x,k)) = µeik·xϕ(x,k)

that is

(−(∇+ ik) · (∇+ ik) + V (x))ϕ(x,k) = µϕ(x,k) .

Let HV (k) = −(∇+ ik) · (∇+ ik)+V (x). Thus, the eigenvalue problem can be rewritten as:

HV (k)ϕ(x,k) = µϕ(x,k), x ∈ R2 (2.10)

ϕ(x+ u,k) = ϕ(x), u ∈ U (2.11)

(2.8)-(2.9), or equivalently (2.10)-(2.11), has a real, discrete and lower bounded spectrum

[11]:

µ1(k) ≤ µ2(k) ≤ µ3(k) ≤ ...

These energy bands have the following property [13].

Lemma 2.6 Any µb(k) is periodic and Lipschitz continuous. Its periods are k1 and k2.
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2.3 Function spaces and symmetries at Γ point

For honeycomb lattice potentials, let u2 = −Ru1. We concern about the spectrum at Γ point

most, so define

χ = {f(x) ∈ L2
loc(R2), f(x+ u) = f(x), ∀u ∈ U}. (2.12)

χ is a Hilbert space under the inner product:

⟨f(x), g(x)⟩ = 1

|Ω|

∫
Ω
f(x)g(x)dx (2.13)

Our aim is to find the fourfold degeneracy of HV on χ and the double Dirac cone in the

vicinity of this highly degenerate point Γ. We also define the limitation of χ in H1
loc(R2):

H1
per = {f(x) ∈ H1

loc(R2), f(x+ u) = f(x), ∀u ∈ U}. (2.14)

A super honeycomb lattice potential V (x) is not only real and in χ, but also in

χs = {f ∈ L2
loc(R2), f(x+ v) = f(x), x ∈ R2,v ∈ Zv1 ⊕ Zv2}, (2.15)

where v1 and v2 are in the form of (2.2). It is easy to see that

u1 = v1 + v2, u2 = −v1 + 2v2, (2.16)

which means χs ⊂ χ, or functions in χs have smaller periods than those in χ, as we have

mentioned before. Dual vectors for {v1,v2} such that viqj = δi,j are:

q1 = k1 − k2, q2 = k1 + 2k2. (2.17)

First, we claim a decomposition of χ. This decomposition associates the extra translation

symmetry with parity symmetry perfectly.

Proposition 2.7 χ = χs ⊕ χk1 ⊕ χ−k1, where

χk1 = {f(x) = eik1·xp(x), p(x) ∈ χs}, (2.18)

χ−k1 = {f(x) = e−ik1·xp(x), p(x) ∈ χs}. (2.19)

And χs, χk1 and χ−k1 are eigen-spaces of Tv1 with eigenvalues 1, e−
2
3
πi and e

2
3
πi.

Proof It is obvious that χs, χk1 , and χ−k1 are subsets of χ. Also, it is easy to verify they

are eigenspaces after some very simple calculations. Thus, only need to prove that they are

orthogonal to each other and χ ⊂ χs ⊕ χk1 ⊕ χ−k1 .

According to Fourier analysis,

{ei(m1k1+m2k2)·x}(m1,m2)∈Z2 (2.20)

forms a Hilbert basis of χ. Similarly,

χs = span{ei(n1q1+n2q2)·x, (n1, n2) ∈ Z2} (2.21)
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From (2.17), (2.21) is equivalent to

χs = span{ei((n1+n2)k1+(2n2−n1)k2)·x, (n1, n2) ∈ Z2} (2.22)

And therefore

χk1 = span{ei((n1+n2+1)k1+(2n2−n1)k2)·x, (n1, n2) ∈ Z2} (2.23)

χ−k1 = span{ei((n1+n2−1)k1+(2n2−n1)k2)·x, (n1, n2) ∈ Z2} (2.24)

The Z2 solutions of equations {
n1 + n2 = m1

2n2 − n1 = m2

exists: (n1, n2) = (2m1−m2
3 , m1+m2

3 ), which means ei(m1k1+m2k2)·x is in χs, if and only if

(m1 +m2) ≡ 0 (mod 3). It is easy to check, similarly, ei(m1k1+m2k2)·x is in χk1 if and only

if (m1 + m2) ≡ 1 (mod 3) and ei(m1k1+m2k2)·x is in χ−k1 if and only if (m1 + m2) ≡ 2

(mod 3). It follows that ei(m1k1+m2k2)·x must be in one and only one of χs, χk1 and χ−k1 .

This completes the proof. □

Obviously, multiplications by elements in χs will map χs, χk1 , and χ−k1 into themselves.

To some extent, this shows functions in χs, or to be specific, our potential V (x) possesses

higher symmetry. Besides, the decomposition above has the following symmetry:

Proposition 2.8 If f(x) is in χk1, then f(−x) is in χ−k1, and vice versa.

Thus, the transformation P[f ](x) = f(−x) takes χk1 and χ−k1 exactly to each other.

Secondly, we introduce rotation eigen-subspaces of χs, χk1 , and χ−k1 according to Fourier

analysis. It is easy to get

Rk1 = k2, Rk2 = −k1 − k2, R(−k1 − k2) = k1, (2.25)

and

Rq1 = q2, Rq2 = −q1 − q2, R(−q1 − q2) = q1. (2.26)

Note the fact that:

Lemma 2.9 χs, χk1 , χ−k1 are invariant function spaces of R.

Proof From (2.26), clearly R maps χs to itself. Since

R(eik1·x) = eik1·R∗x = eiRk1·x = eik2·x = eik1·xe−iq1·x

is in χk1 , R maps χk1 to itself, too. It is similar for χ−k1 with

R(e−ik1·x) = e−ik2·x = e−ik1·xeiq1·x.

□

The next proposition gives detailed properties of these spaces with respect to the trans-

formation R by separating χs, χk1 , and χ−k1 into eigenspaces of R. This decomposition

helps to associate the rotation symmetry with conjugation symmetry, as in Proposition 2.11.
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Proposition 2.10 The R-invariant spaces χs, χk1 and χ−k1 have the following decomposi-

tion:

χs = χs,1 ⊕ χs,τ ⊕ χs,τ (2.27)

χk1 = χk1,1 ⊕ χk1,τ ⊕ χk1,τ (2.28)

χ−k1 = χ−k1,1 ⊕ χ−k1,τ ⊕ χ−k1,τ (2.29)

where τ = e2πi/3 and χσ,ξ = {f ∈ χσ,R[f ](x) = ξf(x)}, for σ = s,k1,−k1, and ξ = 1, τ, τ .

Proof Take (2.28) as an example, others are similar.

According to (2.23), let (n1, n2) denote

ei(k1+n1q1+n2q2)·x = ei((n1+n2+1)k1+(2n2−n1)k2)·x

, then

(n1, n2)
R−→ (−n2 − 1, n1 − n2)

R−→ (n2 − n1 − 1,−n1 − 1) (2.30)

are all in χk1 . Note that

(n1, n2) = R(n1, n2) = (−n2 − 1, n1 − n2),

(n1, n2) = R2(n1, n2) = (n2 − n1 − 1,−n1 − 1)

have no integer solutions. Thus, we can define the equivalence relation: (n1, n2) ∼ (−n2 −
1, n1 − n2) ∼ (n2 − n1 − 1,−n1 − 1) and equivalence class S+ = Z2/ ∼.

Now it is clear that:

χk1,1 = {f(x) ∈ χ : f(x) =
∑

(n1,n2)∈S+

c(n1, n2)(e
i(k1+n1q1+n2q2)·x+

eiR(k1+n1q1+n2q2)·x + eiR
2(k1+n1q1+n2q2)·x), c(n1, n2) ∈ C}

(2.31)

χk1,τ = {f(x) ∈ χ : f(x) =
∑

(n1,n2)∈S+

c(n1, n2)(e
i(k1+n1q1+n2q2)·x+

τeiR(k1+n1q1+n2q2)·x + τeiR
2(k1+n1q1+n2q2)·x), c(n1, n2) ∈ C}

(2.32)

χk1,τ = {f(x) ∈ χ : f(x) =
∑

(n1,n2)∈S+

c(n1, n2)(e
i(k1+n1q1+n2q2)·x+

τeiR(k1+n1q1+n2q2)·x + τeiR
2(k1+n1q1+n2q2)·x), c(n1, n2) ∈ C}

(2.33)

□

Again, given below is some information about symmetry properties between these sub-

spaces.

Proposition 2.11 If f(x) is in χ±k1,τ , then PC[f ](x) = f(−x) is in χ±k1,τ , and vice versa.
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3 Double Dirac cone in the band structure

In this section, we shall state the main theorem of the fourfold degeneracy and doubly coni-

cal structures at the Γ point for the two-dimensional non-relativistic Schödinger operator HV

with super honeycomb lattice potentials. And a rigorous proof follows. Our proof is mainly

inspired by the pioneering works [13, 12, 17, 23]. The proof is divided into two parts. First,

we show that the fourfold degeneracy and a particular non-degenerate condition about eigen-

function are sufficient for the existence of double Dirac cones. Due to the higher degeneracy,

we need deal with a more complicated bifurcation matrix. However, taking advantage of the

higher symmetries and corresponding novel decomposition of working space in last section,

we find that the bifurcation matrix can be pretty concise. Then we establish the existence

of the degenerate point and the prescribed condition to complete the proof. Specifically, we

first justify the prescribed conditions for shallow potentials, and then extend the justification

for generic potentials.

3.1 Main theorem of double Dirac cone

The main theorem of our paper is as follows.

Theorem 3.1 Let V (x) be a super honeycomb lattice potential in the sense of Definition 2.3.

H(ϵ) = −∆+ ϵV (x) is the corresponding Schrödinger operator. Then the following is true for

all ϵ ∈ R \A, where A is a discrete subset of R:

1. there exists a real number µD such that µD is an eigenvalue of H(ϵ) on χ of multiplicity

four. Namely, there exists b ∈ N such that

µb(0) < µD = µb+1(0) = µb+2(0) = µb+3(0) = µb+4(0) < µb+5(0), (3.1)

2. there exists a number vF > 0, such that for k sufficiently small, the four spectral bands

are of the form:
µb+1(k) = µD − vF |k|(1 + η1(k))

µb+2(k) = µD − vF |k|(1 + η2(k))

µb+3(k) = µD + vF |k|(1 + η3(k))

µb+4(k) = µD + vF |k|(1 + η4(k))

(3.2)

where ηj(k) = O(|k|), j = 1, 2, 3, 4.

(3.2) is the strict description of the double Dirac cone mathematically. Thus, this theorem

tells that there always exist two tangent cones with the same apex for the non-degenerate

super honeycomb lattice potentials.

The rest of this section is proof of this theorem. First, we give the conclusion that the

fourfold degeneracy under some conditions always yields the double Dirac cone for super

honeycomb lattice potentials. Thus, our attention should be paid mainly to the existence of

this condition and fourfold degeneracy.
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3.2 Fourfold degeneracy and double Dirac cone

Due to (2.5), if ϕ(x) ∈ ker(HV −µI), then Pϕ(x), Cϕ(x),PCϕ(x) ∈ ker(HV −µI). That is to
say, if HV does have an eigenvalue on χk1,τ of multiplicity one, then the fourfold degeneracy

of HV on χ can be realized by symmetries. In this subsection, we want to verify that energy

bands intersect conically in a small vicinity of this kind of eigenvalues under some necessary

assumptions.

Proposition 3.2 Let V (x) be a super honeycomb lattice potential. Assume that:

1. there exists a real number µD and b ∈ N such that (3.1) holds for energy bands of HV ,

2. µD is a simple eigenvalue on χk1,τ of HV with eigenfunction ϕ1(x) and

< ϕ1(x), ϕ1(x) >= 1,

3. v♯ =< ϕ1(x),∇PC[ϕ1](x) ≯= 0.

Then (3.2) holds for energy bands of HV .

Remark 3.3 The assumption that µD is of multiplicity four is necessary, because for higher

degeneracy, obviously more branches are included, and thus the bands near the Γ point will

be more complex. Hence, we need to verify this condition in the later subsections.

Proof Using Proposition 2.8, 2.11 and 2.5, we easily deduce that µD is also a simple

eigenvalue on χk1,τ , χ−k1,τ , χ−k1,τ with eigenfunctions ϕ2(x), ϕ3(x), and ϕ4(x) :

ϕ2(x) = PCϕ1(x), ϕ3(x) = Pϕ1(x), ϕ4(x) = Cϕ1(x), (3.3)

Based on this, let us observe how the dispersion surfaces develop. First rewrite down

the eigenvalue problem near k = 0. Assume k is sufficiently small, the k quasi-momentum

eigenproblem (2.10)-(2.11) is:

HV (k)ϕ(x) = µ(k)ϕ(x), x ∈ Ω (3.4)

ϕ(x+ u) = ϕ(x), u ∈ U. (3.5)

Now let µ(k) = µD + λ and

ϕ(x) = αjϕj(x) + ψ(x) (3.6)

with ϕ(x) ∈ χ and ψ(x) ⊥ ker(HV − µDI). We use the same superscript and subscript to

represent summation over this script throughout the article. Since ker(HV −µDI) is a closed

subspace of χ, there exists projection operator Q∥ from χ to ker(HV − µDI) and Q⊥ from χ

to ker(HV − µDI)
⊥. It is trivial that (HV − µDI)ψ(x) ∈ ker(HV − µDI)

⊥.

Substitute (3.6) into (3.4):

(HV − µDI)ψ(x) = (2ik · ∇ − |k|2 + λ)(αjϕj(x) + ψ(x)). (3.7)
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Project (3.7) by Q∥,

0 = Q∥(2ik · ∇ − |k|2 + λ)αjϕj(x) +Q∥2ik · ∇ψ(x); (3.8)

by Q⊥,

(HV − µDI)ψ(x) = Q⊥2ik · ∇αjϕj(x) +Q⊥(2ik · ∇ − |k|2 + λ)ψ(x). (3.9)

Eigenvalue problem (3.4)-(3.5) is equivalent to (3.8)-(3.9). First, solve ψ(x) from (3.9,

and then go back to (3.8) to obtain λ by linear approximation to complete the proof. This is

exactly a Lyapunov-Schmidt reduction strategy.

Consider (3.9). Note that the resolvent operator (HV − µDI)
−1 is a bounded map from

ker(HV − µDI)
⊥ to Q⊥(H

1
per). Accordingly,(

I − (HV − µDI)
−1Q⊥(2ik · ∇ − |k|2 + λ)

)
ψ(x) = (HV − µDI)

−1Q⊥2ik · ∇αjϕj(x)

Let A = (HV −µDI)
−1Q⊥(2ik ·∇−|k|2+λ). With |k|+ |λ| sufficiently small, operator norm

of A should be less than 1, which means I −A is invertible, and (I −A)−1 is bounded and

we have

ψ(x) = (I −A)−1(HV − µDI)
−1Q⊥2ik · ∇αjϕj(x). (3.10)

Let Tj [k, λ](x) = (I − A)−1(HV − µDI)
−1Q⊥2ik · ∇ϕj(x). It is a bounded map from

a sufficient small neighborhood of (k, λ) = (0,0) in R2 × C to H1
per. Its norm is less than

C(|k| + |λ|) in the small neighborhood. Thus, ∥ ∇Tj [k, λ](x)) ∥L2≤ C(|k| + |λ|). Rewrite

(3.10) as

ψ(x) = αjTj [k, λ](x) (3.11)

Substituting into (3.8),

Q∥

(
(2ik · ∇ − |k|2 + λ)ϕj(x) + 2ik · ∇Tj [k, λ](x)

)
αj = 0 (3.12)

This equation has a nonzero solution {αj} when the matrix

M(k, λ) = (< ϕl(x), (2ik · ∇ − |k|2 + λ)ϕj(x) + 2ik · ∇Tj [k, λ](x) >)l,j (3.13)

has a nonzero solution, which is equivalent to

det(M(k, λ)) = 0 (3.14)

Our aim is to solve λ from this equation. Divide M(k, λ) into two parts M0 and M1:

M0(k, λ) = (< ϕl(x), (λ+ 2ik · ∇)ϕj(x) >)l,j (3.15)

M1(k, λ) = (−|k|2 < ϕl(x), ϕj(x) >)l,j + (< ϕl(x), 2ik · ∇Tj [k, λ](x) >)l,j . (3.16)

Fix k, let (k, λ(k)) be the solution of (3.14). Taking advantage of (2.6), λ(k) should be Lip-

schitz continuous with k on each branch of the solutions. Thus,M1 is of order O(|k|2). That is
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to say, M1 will only contribute a term of order (|k|8) to det(M(k, λ)) when det(M(k, λ)) = 0.

We first solve the truncated equation of (3.14):

det(M0(k, λ)) = 0 (3.17)

The M0 here, is the linear truncation of the original question, and is called a bifurcation

matrix.

We already have ⟨ϕ1(x), ϕ1(x)⟩ = 1. Because that the subspaces are orthogonal, ⟨ϕl(x), ϕj(x)⟩ =
0 for l ̸= j. And it is also obvious that ⟨ϕl(x), ϕl(x)⟩ = 1 for all l due to (3.3) and some

simple calculations. Note that

< ϕ1(x), 2ik · ∇ϕ2(x) > = 2ik · v♯
< ϕ2(x), 2ik · ∇ϕ1(x) > = < ϕ1(x), 2ik · ∇ϕ2(x) > = 2ik · v♯,
< ϕ3(x), 2ik · ∇ϕ4(x) > =< ϕ1(x),−2ik · ∇ϕ2(x) >= −2ik · v♯,
< ϕ4(x), 2ik · ∇ϕ3(x) > =< ϕ2(x),−2ik · ∇ϕ1(x) >= −2ik · v♯.

(3.18)

Besides, we also have the following results.

Proposition 3.4 For ψj(x) satisfies Rψj(x) = ξjψj(x), ξj ∈ {1, τ, τ}, j = 1, 2

ξ1 = ξ2 ⇒ < ψ1(x),∇ψ2(x) >= 0

Proof Since the transformation R is unit, if ξ1 = ξ2, we can attain that

< ψ1(x),∇ψ2(x) > =< Rψ1(x),R∇ψ2(x) >= ξ1 < ψ1(x),∇R∗xψ2(R
∗x) >

= ξ1 < ψ1(x), R
∗∇Rψ2(x) >= ξ1ξ2 < ψ1(x), R

∗∇ψ2(x) >

= ξ1ξ2R
∗ < ψ1(x),∇ψ2(x) >= R∗ < ψ1(x),∇ψ2(x) >

Here R∗ is the rotation matrix. Because 1 is not an eigenvalue of R∗,

< ψ1(x),∇ψ2(x) >= 0.

Besides, this equation tells us that < ψ1(x),∇ψ2(x) > must be 0 or an eigenvector of R∗. □

From the proof of this lemma, we know v♯ is an eigenvector of R∗ with eigenvalue τ . Thus

it can be written as :

v♯ =
vF
2

(
1

i

)
eiθ. (3.19)

We can choose an appropriate θ such that vF > 0 because v♯ ̸= 0.

Proposition 3.5 For ϕ(x) ∈ χ±k1, each component of ∇ϕ(x) is in χ±k1 too.

Proof If ϕ(x) ∈ χ±k1 , it can be written as ϕ(x) = e±ik1·xp(x), where p(x) ∈ χs. Therefore

each component of ∇ϕ(x) = ±ik1e
±ik1·xp(x) + e±ik1·x∇p(x) is in χ±k1 too. □

Now using (3.4), (3.5), and again the orthogonality of subspaces, we can obtain the

bifurcation matrix
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M0(k, λ) =


λ 2ik · v♯ 0 0

2ik · v♯ λ 0 0

0 0 λ −2ik · v♯
0 0 −2ik · v♯ λ

 . (3.20)

And det(M0(k, λ)) = (λ2 − 4|k · v♯|2)2. Now solve the whole equation (3.14). Thanks to all

the discussion above, it can be written in the form that:

(λ2 − 4|k · v♯|2)2 +O(|k|8) = 0 (3.21)

This equation’s solution (k, λ(k)) gives four branches of the dispersion surfaces by µ(k) =

µ + λ(k). Due to (3.19), for k ∈ R2, 2|k · v♯| = vF |k|. Thus, for |k| sufficiently small, they

are exactly:
µb+1(k) = µD − vF |k|(1 + η1(k))

µb+2(k) = µD − vF |k|(1 + η2(k))

µb+3(k) = µD + vF |k|(1 + η3(k))

µb+4(k) = µD + vF |k|(1 + η4(k))

(3.22)

where ηj(k) = O(|k|), j = 1, 2, 3, 4. □

3.3 Fourfold degeneracy with shallow potentials

Due to the discussion in section 2.1 , the left thing to do is finding a single eigenvalue of H(ϵ)

on χk1,τ which is not an eigenvalue on χ±k1,1 and χs for all ϵ except a discrete set. In this

subsection, we discuss the situation of ϵ sufficiently small.

First, take ϵ = 0. The eigenvalue problem is

−∆ϕ(x) = µϕ(x), x ∈ R2, (3.23)

ϕ(x+ u) = ϕ(x), u ∈ U. (3.24)

The operator −∆ is positive semi-definite on H1
per. It is quite easy to know its spectrum

from Sturm-Liouville Theorem and Fourier series’ presentations. Pay attention to the first

eight eigenvalues:

µ1 = 0 < µ2 = µ3 = µ4 = µ5 = µ6 = µ7 = |k1|2 < µ8

Obviously, a group of eigenfunctions for µ2-µ7 are:

{eik1·x, eiRk1·x, eiR
2k1·x, e−ik1·x, e−iRk1·x, e−iR2k1·x}
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After some linear combinations, it is equivalent to:

{ ϕ
(0)
1 (x) =

1√
3
(eik1·x + τeiRk1·x + τeiR

2k1·x) ∈ χk1,τ ,

ϕ
(0)
2 (x) =

1√
3
(eik1·x + τeiRk1·x + τeiR

2k1·x) ∈ χk1,τ ,

ϕ
(0)
3 (x) =

1√
3
(e−ik1·x + τe−iRk1·x + τe−iR2k1·x) ∈ χ−k1,τ ,

ϕ
(0)
4 (x) =

1√
3
(e−ik1·x + τe−iRk1·x + τe−iR2k1·x) ∈ χ−k1,τ ,

ϕ
(0)
5 (x) =

1√
3
(eik1·x + eiRk1·x + eiR

2k1·x) ∈ χk1,1,

ϕ
(0)
6 (x) =

1√
3
(e−ik1·x + e−iRk1·x + e−iR2k1·x) ∈ χ−k1,1, }

. (3.25)

Secondly, for ϵ small enough, the 2nd−7th eigenvalues ofH(ϵ) on χmust also be eigenvalues

on χk1 or χ−k1 and separated from other eigenvalues by the continuity of the eigenvalues in ϵ.

Thus, whether the fourfold degeneracy on χ±k1,τ and χ±k1,τ given by parity and conjugation

symmetry and twofold degeneracy on χ±k1,1 given by conjugation symmetry will separate is

most concerned about in this subsection.

Proposition 3.6 Assume that V (x) is a super honeycomb lattice potential. And H(ϵ) =

−∆ + ϵV (x) is the corresponding Schrödinger operator. Then there exists an ϵ0 > 0 such

that, for all ϵ ∈ (−ϵ0, ϵ0) \ {0}, there exists µ(ϵ)
D

and v
(ϵ)
♯ ̸= 0 satisfies:

1. µ(ϵ)
D

is an eigenvalue of H(ϵ) on χ of multiplicity four,

2. µ(ϵ)
D

is a simple eigenvalue on χk1,τ with eigenfunction ϕ
(ϵ)
1 (x),

3. v
(ϵ)
♯ =< ϕ

(ϵ)
1 (x),∇PCϕ(ϵ)1 (x) > .

Remark 3.7 From Lemma 2.5, we know that the conclusion 1 and 2 can deduce that µ(ϵ)
D

is

not an eigenvalue on χ±k1,1.

Proof The eigenvalue problem with shallow potentials on χ is

(−∆+ ϵV (x))ϕ(ϵ)(x) = µ(ϵ)ϕ(ϵ)(x), x ∈ R2 (3.26)

with ϕ(ϵ)(x) ∈ χ. Due to discussion above and Lemma 2.6, only need to concern about the

second to seventh eigenvalues.

Taking advantage of the discussion in section 2.1, we can limit this problem to each space

χσ,ξ, where σ ∈ {k1,−k1} and ξ ∈ {1, τ, τ}. Now ϕ(ϵ)(x) ∈ χσ,ξ. Analogous to the process in

the proof of the last theorem, we rewrite the eigenvalue problem and divide it into two parts

by projections.

Let µ(ϵ) = µ0 + λ, ϕ(ϵ)(x) = ϕ(0)(x) + ψ(x). Here µ0 = |k1|2 and ϕ(0)(x) is the cor-

responding eigenfunction on χσ,ξ in (3.25). ψ(x) ∈ span{ϕ(0)(x)}⊥ = ker(H(0) − µ0I)⊥.
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Introduce new projection operators Q∥ from χσ,ξ to ker(H(0) − µ0I) and Q⊥ from χσ,ξ to

ker(H(0) − µ0I)⊥. Perform Q∥ and Q⊥ on (3.26) to obtain

ϵQ∥V (x)ψ(x) = Q∥(λ− ϵV (x))ϕ(0)(x), (3.27)

and

(H(0) − µ0I)ψ(x) = ϵQ⊥V (x)ϕ(0)(x)−Q⊥(ϵV (x)− λ)ψ(x). (3.28)

These two equations are equivalent to the original equation, so only need to solve them. Note

that (H(0) − µ0I)−1 is a bounded operator from ker(H(0) − µ0I)⊥ to H1
per. Thus,(

I + (H(0) − µ0I)−1Q⊥(ϵV (x)− λ)
)
ψ(x) = ϵ(H(0) − µ0I)−1Q⊥V (x)ϕ(0)(x) (3.29)

Assume |ϵ|+ |λ| is small enough,
(
I+(H(0)−µ0I)−1Q⊥(ϵV (x)−λ)

)−1
exists and is bounded.

Use notation

T [ϵ, λ](x) =
(
I + (H(0) − µ0I)−1Q⊥(ϵV (x)− λ)

)−1
(H(0) − µ0I)−1Q⊥V (x)ϕ(0)(x).

T is bounded in H1
per when |ϵ|+ |λ| is small enough. Substituting ψ(x) = ϵT [ϵ, λ](x) into

(3.27), we have

ϵ2Q∥V (x)T [ϵ, λ](x) = Q∥(λ− ϵV (x))ϕ(0)(x) (3.30)

It is the same with:

ϵ2 < V (x)T [ϵ, λ](x), ϕ0(x) >=< (λ− ϵV (x))ϕ(0)(x), ϕ(0)(x) >

Solve it to attain

λ(ϵ) =< V (x)ϕ(0)(x), ϕ(0)(x) > ϵ+ < V (x)T [ϵ, λ](x), ϕ(0)(x) > ϵ2 (3.31)

Thus, we solve out a λ(ϵ) of order O(|ϵ|). This means there exactly exists a Floquet-Bloch

eigenpair (µD(ϵ), ϕ
(ϵ)(x)) with µ(ϵ)

D
changing in order O(|ϵ|) on χσ,ξ.

First we take σ = k1 and ξ = τ , consider ϕ
(ϵ)
1 (x) = ϕ

(0)
1 (x) + ϵT [ϵ, λ](x). Provided |ϵ|

sufficiently small, ∥ T [ϵ, λ(ϵ)] ∥H1
per

is of order O(|ϵ)|, therefore

v
(ϵ)
♯ =< ϕ

(0)
1 (x),∇PCϕ(0)1 (x) > +O(|ϵ|) ̸= 0.

Secondly, traversing all σ and ξ, the six eigenpairs on χσ,ξ give the second to seventh

eigenvalues for the original problem on χ when ϵ is quite small. As mentioned above, four on

χk1,τ , χk1,τ , χ−k1,τ and χk1,τ are bound to each other due to symmetry. The same for χk1,1

and χ−k1,1. After some basic calculations, the λ(ϵ) on χσ,ξ is

λσ,ξ(ϵ) = (c1 + (ξ + ξ)c2)ϵ+O(|ϵ|2), (3.32)

where c1 =< 1, V (x) > and c2 =< eiq1·x, V (x) >. c2 ̸= 0 is the non-degeneracy condition

of super honeycomb lattice potentials. It is obvious that λ+,τ = λ+,τ = λ−,τ = λ−,τ ̸=
λ+,1 = λ−,1. This explains these six branches will separate into fourfold and twofold for

super honeycomb lattice potentials. □

18



Proposition 3.8 With conditions in Proposition 3.6 and ϵ sufficiently small, for the eigen-

value problem (3.26) on χ, if < eiq1·x, V (x) > is positive, then

µϵ2 = µϵ3 = µϵ4 = µϵ5 < µϵ6 = µϵ7,

and if < eiq1·x, V (x) > is negative, then

µϵ2 = µϵ3 < µϵ4 = µϵ5 = µϵ6 = µϵ7

Proof It is easy to verify using (3.32). □

3.4 Proof of the main theorem

Last subsection gives the result of shallow potentials, and this subsection briefly shows the

method to verify Theorem 3.1, the generic case. The key strategy is constructing an analytic

function E(µ, ϵ) on each χσ,ξ, whose zero points are eigenvalues of HV on function spaces

we concern. This function is actually the determinant of infinite dimensional linear operator

H(ϵ) = −∆ + ϵV (x) by some renormalization using trace class. Because of the symmetry

in Lemma 2.5 again, obviously the eigenvalue should exist simultaneously on χk1,τ , χk1,τ ,

χ−k1,τ and χ−k1,τ . And this eigenvalue should be different from those on other subspaces.

The main work is focused on establishing this analytic function and prove the three conditions

in Proposition 3.2.

Without loss of generality, let us assume that 0 ≤ V (x) ≤ Vm. On each χσ,ξ, the eigenvalue

problem is:

(−∆+ ϵV (x))Φ(x) = µΦ(x).

In this subsection, we consider ϵ ∈ C. First consider ϵ with nonnegative real part Re(ϵ) ≥ 0.

Our aim is to derive an operator whose determinant can be defined. Hence, we rewrite it as

(I −∆+ ϵV (x))Φ(x) = (µ+ 1)Φ(x), (3.33)

Note that (I −∆+ ϵV (x)) is invertible. Let A(ϵ) = (I −∆+ ϵV (x))−1, then

(I − (µ+ 1)A(ϵ))Φ(x) = 0. (3.34)

The jth eigenvalue λj on χ of A(ϵ) is asymptotic to j−1. Thus, it is a Hilbert-Schmidt

operator:

∥ A2(ϵ) ∥=
∑
j

|λj |−2 ∼
∑
j

|j|−2 <∞.

Now a determinant for (I − (µ+ 1)A(ϵ)) can be defined through a regularized way:

det2(I − (µ+ 1)A(ϵ)) = det(I +R2((µ+ 1)A(ϵ))). (3.35)

The right-hand side is Fredholm determinant. It is well-defined because the regularized form:

R2((µ+ 1)A(ϵ)) = (I + (µ+ 1)A(ϵ))e−(µ+1)A(ϵ) − I (3.36)

is a trace class.

We already have the following lemma.
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Lemma 3.9 For all σ ∈ {s,k1,−k1} and ξ ∈ {1, τ, τ}, the following is true:

1. ϵ→ A(ϵ) is an analytic mapping from {ϵ ∈ C, Re(ϵ) ≥ 0} to the space of Hilbert-Schmidt

operators on χσ,ξ,

2. The regularized determinant on χσ,ξ

Eσ,ξ(µ, ϵ) = det2(I − (µ+ 1)A(ϵ))

is analytic for both µ and ϵ with Re(ϵ) ≥ 0,

3. For ϵ real and nonnegative, µ is a χσ,ξ eigenvalue for HV of multiplicity m if and only

if it is a zero of Eσ,ξ(µ, ϵ) of multiplicity m.

Therefore we first need to prove that except a discrete set in R for ϵ, Ek1,τ has a simple

zero (ϵ, µ) which is not a zero of E±k1,1 and Es,ξ for all ξ. Then prove that the eigenfunction

on χk1,τ corresponding to this µ has nonzero v♯, which is defined in Proposition 3.2. This is

totally the same with the proof in [13], based on the previous subsection’s conclusion about

shallow potentials. The only difference is about symmetry, which will not influence the proof.

For ϵ with real part negative, just replace (3.33) with

(I −∆+ ϵ(V (x)− Vm))Φ(x) = (µ+ 1− ϵVm)Φ(x) (3.37)

and replace (3.34) with

(I − (µ+ 1− ϵVm)Ã(ϵ)Φ(x) = 0, (3.38)

where Ã(ϵ) = (I −∆+ ϵ(V (x)− Vm))−1. The rest is similar.

4 Instability under symmetry breaking perturbations

We already show the existence of double cones for the operator HV with a super honeycomb

lattice potential V (x). This section focuses on what will happen if the additional translation

symmetry of the potential is broken. In other words, we investigate the behaviour of the

band structures of HV after some perturbations.

4.1 Perturbations breaking additional translation symmetry

Let us observe small perturbations which break this additional translation symmetry as in

Figure 3. Shrinking and expanding the hexagons in super honeycomb lattice obtain the new

lattices with red vertices. These perturbed lattices are not super honeycomb lattices any

longer, and the four branches of energy bands intersecting under super honeycomb lattice

potentials’ cases separate into two parts as in Figure 4.

Generally, let W (x) be a bounded real function that can be written in the form

W (x) = eik1·xp(x) + e−ik1·xp(−x), eik1·xp(x) ∈ χk1,1 (4.1)
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(a) (b)

Figure 3: Perturbed lattice based on a super honeycomb lattice: (a) the shrunk hexagonal

lattice, and (b) the expanded hexagonal lattice. Grey points show the structure of super

honeycomb lattice, and red points show the perturbed case. The scalar r is the ratio of the

distance of the components in a dimer to the length of periodicity of honeycomb lattice.

Obviously, W (x) is even, and it is R-invariant.

After adding a perturbation of W (x), the Schrödinger operator is

Hδ = HV + δW (x) = −∆+ V (x) + δW (x) (4.2)

The potential V (x)+δW (x) here has R-symmetry, PC-symmetry and translation symmetry.

It is still a honeycomb lattice potential, but it is no more a super honeycomb lattice potential

.

Remark 4.1 Different ways to break the additional translation symmetry shown above repre-

sented by shrinking and expanding the lattices give different topological properties, which can

be characterised by the Chern number. And gluing these two different topological materials

together, say, the shrunk one and expanded one, by a domain wall, generates a new material

with interesting edge states. This phenomenon will be researched in our forthcoming paper.

4.2 Band Structures after perturbations

Consider the perturbed eigenvalue problem:

HδΦ(x) = µδ(k)Φ(x), x ∈ R2 (4.3)

Φ(x+ u) = eik·uΦ(x), u ∈ U (4.4)

Here k is in Ω∗. Again, let Φ(x) = eik·xϕ(x) and denote Hδ(k) = −(∇ + ik) · (∇ + ik) +

V (x) + δW (x). We deduce that

Hδ(k)ϕ(x) = µδ(k)ϕ(x), x ∈ R2, (4.5)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Top: honeycomb dimer potentials W (x, r) defined by (5.1), (2.5), and (2.6) with

r taking value (a) 1.05
3 , (b) 1

3 , and (c) 0.975
3 . We paint three periods in both u1 and u2

directions. Middle: corresponding 2nd−5th energy surfaces ofH(r) = −∆+W (x, r). Bottom:

corresponding 2nd − 7th energy bands along λk1.
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ϕ(x+ u) = ϕ(x), u ∈ U. (4.6)

The following theorem shows that the fourfold degeneracy and double Dirac cone are not

protected after the symmetry breaking perturbations we discuss in last subsection.

Theorem 4.2 Let V (x) be a super honeycomb lattice potential and W(x) be as in (4.1). Hδ

is as in (4.2). Assume that:

1. µD is an eigenvalue of HV on χ of multiplicity four:

µ0b(0) < µD = µ0b+1(0) = µ0b+2(0) = µ0b+3(0) = µ0b+4(0) < µ0b+5(0),

2. µD is a simple eigenvalue on χk1,τ with normalized eigenfunction ϕ1(x),

3. v♯ =< ϕ1(x),∇PC[ϕ1](x) ≯= 0,

4. c♯ =< ϕ1(x),W (x)ϕ3(x) ≯= 0.

Then due to Proposition 3.2, there exists double Dirac cone in the vicinity of the Γ point for

HV . We claim that exists δ0 > 0, such that for all δ ∈ (−δ0, δ0)\{0}, the (b+1)th to (b+4)th

energy bands of Hδ will open a gap in a small neighbourhood of the Γ point.

Proof Again, employ the Lyapunov- Schmidt reduction strategy. Without loss of general-

ity, assume < ϕl(x), ϕj(x) >= δl,j .

Now settle (4.5)-(4.5). Let µδ(k) = µD +λ and ϕ(x) = αjϕj(x)+ψ(x). ψ(x) ∈ ker(HV −
µDI)

⊥. Then (4.5) is:

(HV − µDI)ψ(x) = (2ik∇− |k|2 − δW (x) + λ)(αjϕj(x) + ψ(x))

Apply the projection Q∥ from χ to ker(HV − µDI) and Q⊥ from χ to ker(HV − µDI)
⊥ to

obtain the equation:

Q∥(δW (x)− 2ik∇)ψ(x) = Q∥(2ik∇− |k|2 − δW (x) + λ)αjϕj(x), (4.7)

and
(HV − µDI)ψ(x) =Q⊥(2ik∇− δW (x))αjϕj(x)

+Q⊥(2ik∇− |k|2 − δW (x) + λ)ψ(x).
(4.8)

After the analogous procedure to Proposition 3.2, Let

A =
(
I − (HV − µDI)

−1Q⊥(2ik∇− |k|2 − δW (x) + λ)
)−1

,

Tj [k, δ, λ](x) = A(HV − µD)
−1Q⊥(2ik∇− δW (x))ϕj(x).

These operators exist and Tj a bounded operator from R3 to H1
per of order O(|k| + |δ|) for

(|k|+ |δ|+ |λ|) small enough. Now ψ(x) = αjTj [k, δ, λ](x). Put it into (4.7), and apply inner

production with {ϕl(x)}l. Finally, we get linear equations M(k, δ, λ)(αj) = 0, where

M(k, δ, λ) = (< ϕl(x), (λ+ 2ik∇− δW (x)− |k|2)ϕj(x)
+(2ik∇− δW (x))Tj [k, δ, λ](x) >)l,j .
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The truncated linear part of M(k, δ, λ), or the bifurcation matrix is

M0(k, δ, λ) = (< ϕl(x), (λ+ 2ik∇− δW (x))ϕj(x) >)l,j (4.9)

The rest part is of order O(|k|2 + |k||δ|+ |δ|2) when |λ| is sufficiently small:

M1(k, δ, λ) = (< ϕl(x),−|k|2ϕj(x) + (2ik∇− δW (x))Tj [k, δ, λ](x) >)l,j (4.10)

Thus,
det(M(k, δ, λ)) = det(M0(k, δ, λ) +M1(k, δ, λ))

= det(M0(k, δ, λ)) +O((|k|2 + |k||δ|+ |δ|2)4)

To calculate M0(k, δ, λ), first note that:

Proposition 4.3 There exists a real number c♯ such that

(< ϕl(x),W (x)ϕj(x) >)l,j =


0 0 c♯ 0

0 0 0 c♯
c♯ 0 0 0

0 c♯ 0 0

 . (4.11)

Proof P, C and R are unit transformations. Because W (x) is even , real and R-invariant,

it is true that for any f , g ∈ χ:

< f(x),W (x)g(x) > =< Pf(x),P(W (x)g(x))) >

=< Pf(x),W (x)Pg(x)) >,
(4.12)

< f(x),W (x)g(x) > =< Rf(x),R(W (x)g(x))) >

=< Rf(x),W (x)Rg(x)) > .
(4.13)

First use (4.12) to obtain c♯ is real:

c♯ = < ϕ1(x),W (x)ϕ3(x) > =< ϕ3(x),W (x)ϕ1(x) >=< ϕ1(x),W (x)ϕ3(x) >= c♯.

In addition,
< ϕ2(x),W (x)ϕ4(x) > =< Cϕ3(x), C(W (x)ϕ1(x)) >= c♯

=< ϕ4(x),W (x)ϕ2(x) >= c♯.

Then take f(x) = ϕ1(x) and g(x) = ϕ2(x). Since ϕ1(x) and ϕ2(x) are eigenfunctions with

different eigenvalues for R, < ϕ1(x),W (x)ϕ2(x) >= 0. The same for < ϕ3(x),W (x)ϕ1(x) >,

< ϕ2(x),W (x)ϕ4(x) > and < ϕ4(x),W (x)ϕ2(x) >. Then taking f(x) = g(x) = ϕ1(x), using

(4.1), due to the orthogonality of χs, χk1 and χ−k1 , we have

< ϕ1(x),W (x)ϕ1(x) >=< ϕ1(x), (e
ik1·xp(x) + e−ik1·xp(−x))ϕ1(x) >= 0.

It is the same that < ϕl(x),W (x)ϕl(x) >= 0 for all l. Taking advantage of the discussion

above, it is trivial to verify the result. □
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Apply the equations (3.18) and the proposition above to get the bifurcation matrix after

perturbations:

M0(k, δ, λ) =


λ 2ik · v♯ −δc♯ 0

2ik · v♯ λ 0 −δc♯
−δc♯ 0 λ −2ik · v♯
0 −δc♯ −2ik · v♯ λ

 (4.14)

Thus, det(M0(k, δ, λ)) = (λ2 − (δc♯)
2 − 4|k · v♯|2)2. Now solve det(M(k, δ, λ)) = (λ2 −

(δc♯)
2− 4|k ·v♯|2)2+O((|k|2+ |k||δ|+ |δ|2)4). Use notation (3.19) here. For δ small, with |k|

small enough too, this gives four branches of this eigenvalue problem are:

µδb+1(k) = µD −
√
(δ|c♯|)2 + |vF · k|2 +O(|δ|2 + |δ||k|+ |k|2),

µδb+2(k) = µD −
√
(δ|c♯|)2 + |vF · k|2 +O(|δ|2 + |δ||k|+ |k|2),

µδb+3(k) = µD +
√
(δ|c♯|)2 + |vF · k|2 +O(|δ|2 + |δ||k|+ |k|2),

µδb+4(k) = µD +
√
(δ|c♯|)2 + |vF · k|2 +O(|δ|2 + |δ||k|+ |k|2).

Therefore, it is obvious that if c♯ ̸= 0, these four bands will open a gap near k = 0 for δ

sufficiently small but nonzero, which means the fourfold degeneracy and double cone are not

protected. □

5 Numerical results

In this section, we numerically compute the band structures for a smooth and a piecewise

constant potentials to illustrate our analysis in above sections. We use the Fourier collocation

method [32] to solve eigenvalue problems.

In our numerical simulations, we take

u1 =

(√
3
2
1
2

)
, u2 =

(√
3
2

−1
2

)
.

v1 and v2 are as in (2.2). k1 and k2 are dual periods of u1 and u2. q1 and q2 are dual

periods of v1 and v2.

The first super honeycomb lattice potential is of the form:

V (x) = cos(q1 · x) + cos(q2 · x) + cos(q3 · x).

Also we introduce the perturbation, which violates the additional translation symmetry in

Definition 2.3:

W (x) = cos(k1 · x) + cos(k2 · x) + cos(k3 · x).

We compute the lowest seven bands of Hδ = −∆+ V (x) + δW (x) for δ = −0.3, 0, and

0.3. The 2nd − 7th bands along the k1 direction are displayed in Figure 5. Apparently, with
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(a) (b) (c)

Figure 5: The 2nd-7th bands for the operator Hδ(k) = HV (k) + δW (x) with k = λk1, where

δ takes the value (a) −0.3, (b) 0, and (c) 0.3.

the additional translation symmetry, a double Dirac cone occurs at the Γ point. When the

additional translation symmetry is broken, the fourfold degeneracy disappears and a local

gap opens between the 3rd and 4th bands.

We construct a piecewise constant potential as follows. In the unit cell Ω, take

f(x) =

{
1, if |x− 1

2(u1 + u2)| < 0.1

30, else
(5.1)

And construct f(x) in R2 by translation along u1 and u2. Let g(x, r) and W (x, r) be in the

form of (2.5) and (2.6). We compute the bands of H(r) = −∆+W (x, r) for r = 1.05
3 , r = 1

3 ,

and r = 0.975
3 respectively. The potentials W (x, r) are displayed in the top panel of Figure 4.

The corresponding bands are displayed in the bottom panel accordingly. We remark that (b)

corresponds to the super honeycomb case, i.e, possessing the additional translation symmetry.

Apparently, this potential admits a fourfold degeneracy at the Γ point and a double Dirac

cone in the vicinity, but they disappear for other two cases.
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