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Abstract

We consider the unconstrained optimization of multivariate trigonometric polynomials by the sum-
of-squares hierarchy of lower bounds. We first show a convergence rate of O(1/s?) for the relaxation
with degree s without any assumption on the trigonometric polynomial to minimize. Second, when the
polynomial has a finite number of global minimizers with invertible Hessians at these minimizers, we
show an exponential convergence rate with explicit constants. Our results also apply to the minimization
of regular multivariate polynomials on the hypercube.

1 Introduction

Sum-of-squares hierarchies provide an elegant framework for global optimization for a variety of hard
optimization problems. Starting from continuous polynomial optimization and combinatorial optimization
problems [13, 22], they now apply to many other infinite-dimensional optimization problems such as optimal
transport or optimal control (see a thorough review in [15, 10]).

Within optimization, they are often cast as the minimization of multivariate polynomials over sets defined
by essentially arbitrary polynomial constraints. They work by solving a sequence of semi-definite program-
ming problems of increasing sizes, often referred to as a sum-of-squares (SOS) “hierarchy” of optimization
problems.

The convergence rate of the minimal values of these problems towards the optimal value is empirically
much faster than can actually be shown. Current theoretical results can be summarized as follows:

e In dimension one, there is no need for hierarchies, as the most direct formulations are tight [20].

e In higher dimensions, under mild assumptions, the hierarchies are always converging, due to powerful
representation results of strictly positive polynomials [24, 29]. However, finite convergence can only
be shown when strict second-order local optimality conditions are satisfied, but without a bound on
the level at which the finite convergence is achieved [21]. Similar finite convergence results may be
obtained in other situations, such as convexity [14, 4].
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e In terms of asymptotic convergence rates (in dimension greater than one), they are quite slow, at best
O(1/5?) in the simplest situations for the relaxation with polynomials of degree s [7, 16, 31], already
improving on more generic results with rates in O(1/s¢) for an unspecified value of ¢ [30, 1, 2].

Hierarchies for polynomial optimization come in two main types, using two different representations for
non-negative polynomials under polynomial constraints. The “Putinar representation” adds as many poly-
nomials as the number of constraints [24], while the “Schmiidgen representation” adds an exponential
number [29]. In this paper, we focus on one of the simplest formulations of minimizing polynomials on
-1, 1]d with the Schmiidgen representation, which, as we show below through the use of Chebyshev poly-
nomials, can be formulated as minimizing specific instances of trigonometric polynomials on [0, 1], which
will be our primary focus, since for unconstrained optimization of trigonometric polynomials, most results
simplify.

We make the following contributions:

e We provide in Section 3 an O(1/s?) convergence result for the level of the hierarchy corresponding
to trigonometric polynomials of degree s, without any assumptions, that extends the work of [16] for
polynomials on [—1,1]¢, with a similar proof technique (taken from [7]), but with simpler arguments
and explicit constants.

e When we add local optimality conditions similar to [21], we prove in Section 4 an exponential con-
vergence rate with explicit (but more complex) constants. The proof technique is taken from [26, 34],
who showed convergence rates faster than any polynomial in s, but without explicit constants.

Our proof techniques deviate from previous work on polynomial hierarchies by focusing on the smoothness
properties of the optimization problems rather than their algebraic properties. More precisely, this allows
us (1) to use square roots and matrix square roots (which will typically lead to non-polynomial functions
when taken on polynomials) together with their differentiability properties, and (2) to consider all infinitely
differentiable functions with specific control of all derivatives, which trigonometric polynomials are only a
sub-class of.

2 Problem set-up

Periodic functions and trigonometric polynomials We consider 1-periodic continuous functions f
on R?, which we restrict to f : [0,1]% — R, with summable Fourier series, that is, for which the “F-norm”:

Ifle =D If(w)

w€eZ4

is finite, where f(w) = / f (a:)e_QiWT“” dx is the Fourier series of f. We can then represent such functions
[0,1]

as sums of complex exponentials f(x) = > cza f (w)emme , where the series is uniformly convergent. A
key property of the F-norm is its relationship with the Lo-norm, that is, || f]lco < ||f]|F-

We consider real-valued functions f, that is, such that f (—w) = f (w) for all w € Z?. This implies we can
write f(z) as real linear combinations of cos 27w’z and sin 27w 'z, and thus as a linear combination of



monomials in cos 2wxy, ..., cos2mxy, sin27wxy,...,sin 2wrzy. This includes, but is not limited to, trigono-
metric polynomials of degree 2r, which corresponds to functions with vanishing Fourier series coefficients

f(w) for ||w]|eo > 2r, that is,
Tl’

f@)= Y flw)erm™

llwlloo <2r

We denote by z, any minimizer of f on [0,1]¢ and by f. the minimal value (which does not depend on the
chosen minimizer).

Hierarchies of SOS optimization problems We consider the maximization of ¢ such that f — ¢
is a sum of squares of trigonometric polynomials of degree s. We denote the optimal value by c.(f,s).
The principle behind SOS hierarchies is that when f is a trigonometric polynomial, this optimization
problem can be solved as a finite-dimensional semi-definite programming (SDP) problem that we describe
in Section 2.1 and thus be solved with a variety of algorithms (see, e.g., [9]).

If f is a trigonometric polynomial of degree 2r with r < s, then the value is finite, and we always have
cx(f,8) <infyepgqpa f(z) = fi. Our main goal is to provide a bound:

0< inf f(x)—c(f,s) <e(f,s), (1)
z€[0,1]¢

depending on simple properties of f, and that tends to zero when s tends to +o0o with an explicit dependence
in s.

Beyond polynomials When f is not a trigonometric polynomial (of sufficiently low degree), then the
SDP is not feasible (and the value thus equal to —o0), but as shown in [34], by using ¢ — || f — ¢ — ¢||¥
as an objective function (with g an SOS trigonometric polynomials of degree 2s), we always get feasible
problems with values less than the minimal value of f. They can then be solved with appropriate sampling
schemes (see [34] for details).

2.1 Semidefinite programming formulations

In this section, we provide an explicit description of the semi-definite program for the SOS relaxation, as
well as the associated spectral relaxation. For trigonometric polynomials, the optimization problems can
be compactly written.

For an integer s, we consider the feature map ¢ : [0,1]¢ — C@stD? indexed by w € {—s,...,s}? with
values:
_ T
vu(x) = st 12 exp(2iTw ' x). (2)
It satisfies ||¢(2)| = 1 for all z € [0, 1]¢, where || - || denotes the standard Hermitian norm.

We can represent any trigonometric polynomial of degree 2s as a quadratic form in ¢(x), that is, we can
write f (non-uniquely) as f(z) = ¢(z)*Fyo(z), where F is a Hermitian matrix of dimension (2s5+1)%x (2s+
1)4. We denote by V, the set of multivariate Hermitian Toeplitz matrices in dimension (2s+1)% x (2s+1),
that is, Hermitian matrices ¥ such that ¥, depends only w — w’ € Z%. It turns out that the span of all



matrices p(x)p(z)* for € [0,1]¢ is exactly V5. We denote by Vi the orthogonal complement of V, for
the dot-product (M, N) — tr(M*N).

Primal-dual formulations The SOS relaxation is obtained by solving

d _ *
chax such that Vz € [0,1]%, f(x) =c+ ¢(z)"Ap(x).

It can be re-written using V; as:

h that Vz € [0,1]%, t “(F—cl —A)] =0
ce%}afw c suc a z € [0,1]% T[@(l“)@(x)( c )]

= max ¢ suchthat F—cI—A+Y =0
ceR, Ax0, YeVL

= )\min F+Y ) 3
[nax ( ) 3)

s

whose optimal value is ¢, (f, s). Its dual can be written as, using standard semi-definite duality:

érg?}si Anin(F+Y) = IZn;I(} 31/%%7}; tr[X(F +Y)] such that tr(¥X) =1
= rznir(} tr(XF) such that tr(X) =1, ¥ € V,, (4)
>

which corresponds to an outer approximation of the convex hull of all p(z)¢(x)*, = € [0,1]%, by the set of
positive semi-definite matrices such that tr(¥) =1 and ¥ € V;.

Spectral relaxation We can further relax the problem by equivalently setting Y = 0 in Eq. (3), or
removing the constraint 3 € Vg in Eq. (4), and we simply obtain Api,(F'), which is the natural spectral
relaxation of the minimization of ¢(z)*Fp(x), by only considering that ||¢(x)| = 1. This relaxation is
appealing computationally as it can be solved in quadratic time in the dimension of F' as opposed to
more than cubic for the SDP corresponding to the SOS problem, but it leads in general to slow rates (see
Appendix B).

2.2 Relationship with polynomial hierarchies on [—1,1]?

In this section, we show how results on trigonometric polynomials on [0,1]% lead to results on regular
polynomials on [—1,1]%.

Given a real polynomial P on RY of degree 2r, we define the function f : [0,1] — R as

f(y) = P(cos2my,...,cos2my,),

which is a trigonometric polynomial on [0, 1]%.

If the function f is a sum of squares of trigonometric polynomials, it is the sum of terms of the form
[Q(cos 27y1, ..., COS 2MY4, Sin 27y, . . ., Sin 27ryd)] 2, where @ is a regular multivariate polynomial.



We can then use the unique decomposition of multivariate trigonometric polynomials as'

Q(cos2myy, . .., o8 2mwyq, sin 27wyy, . . ., sin 27wy,)
= Z Qj(cos2myy, ..., o8 2Ty, ) H sin 2my;,
Jc{1,...,d} jeJ

where ()7 is a multivariate polynomial. Then, when taking the square, we get the following terms for all
J,J c{l,...,d}:

Qy(cos 2wy, .. .,co82myq)Q j (cos 2wy, . . . , COS 2TY,) H sin 27y, H sin 27y ;.
jeJ j'ed’

When J = J', writing #1 = cos 2my1, ..., xq = cos 2y, for € [~1,1]%, we get the term

QJ(.’Bl,...,.Z‘d)QH(l—{I)?), (5)

jedJ

while for J # J', the sum of all terms coming from all squares must vanish because the original trigonometric
polynomial f has no sine terms.

Thus, using Chebyshev polynomials, we get precisely the Schmiidgen representation [29] of polynomials on
[~1, 1], as the sum of terms of the form in Eq. (5) for all subsets J C {1,...,d}. Therefore, the existence
of an SOS decomposition for f leads to the existence of the corresponding Schmiidgen representation for
P on [—1,1]¢. Thus our results also provide convergence rates for this hierarchy. We therefore actually
extend results from [16], which themselves provide a quantitative rate in O(1/s?), improving on the rates
of the form O(1/s¢), for an unspecified value of ¢, obtained in the more general set-up of all Schmiidgen
representations by [30] (see [1] for a similar result for Putinar representations).

Note that our explicit results need to express a polynomial in the basis of Chebyshev polynomials, and
then we consider the ¢1-norm of the associated coefficients.

Transfer of local optimality conditions While Theorem 1 (Section 3) will apply directly to regular
polynomials with the construction above, Theorem 2 (Section 4) will require the function f to have finitely
many isolated second-order strict minimizers. We show below that local second-order strict optimality con-
ditions for the minimization of a regular polynomial on [—1,1]¢ translates to second-order strict optimality
conditions for the corresponding problem on trigonometric polynomials.

By symmetry, any = € (—1,1)? is represented by 2¢ potential y’s such that z; = cos2my;, for i €

{1,...,d}, and if the minimum of P on [~1,1]? is attained in x, in the interior (—1,1)%, represented
by y« € [0,1]% (any of the 2% possible ones), we have g—z(az*) = 0 for all @ € {1,...,d}, and thus

!This is a simple consequence of the definitions of Chebyshev polynomials of the first and second kinds (see, e.g., [6]), that
show that for w > 1, cos2nwz is a polynomial in cos 27z, while sin 27(w + 1)z is the product of sin 27z and a polynomial in
cos 2mz.



O (y.) =—2m sin[2m(y.)i] 9 (2,) =0, and

Oy;
o f B OP
+(2m)? sin[27 ()] sin[27 (1) ] m(ﬂf*)
. . 0*P

Since x. € (—1,1)¢, sin[2m(y.);] # 0 for all 4 € {1,...,d}, and thus, if the Hessian of P at x. is positive
definite, so is the one f at v, and therefore we obtain 2% strict second-order minimizers for the trigonometric
polynomial if the original polynomial had such a minimizer in the interior of [—1, l]d.

If the minimizer z, is on the boundary, we obtain a similar result. Indeed, assume without loss of gen-
erality that (z.); = 1 for i € {1,...,r} and (x.); € (—1,1) for i € {r +1,...,d}. We consider the

following standard sufficient conditions for a strict local minimizer: g—;(x*) < 0 for i € {1,...,7},
g—f;(a:*) =0 fori € {r+1,...,d}, and the square submatrix of the Hessian corresponding to indices
in {r +1,...,d} is positive definite. Then, using the partial derivative computations above, we have

%@*) = —2r sin[27r(y*)i]g—£(x*) =0 for all i € {1,...,d}, since either g—fi(x*) = 0 or sin[27(y«);] = 0.

Moreover, the Hessian of f is block diagonal with one block composed of a diagonal matrix with elements

—(2n)? cos[27r(y*)i]g—£(x*) (which are strictly positive for i € {1,...,7}), and another block with elements

(2m)? sin[27 (s );] sin[27 (ys) ] o°P (x4), which is a positive definite block by assumption. Thus the Hessian

0x;0x;
is positive definite, and we obtain a second-order strict minimizer.

2.3 Review of existing results

In this section, we briefly review results about SOS hierarchies for the particular case of unconstrained
optimization of trigonometric polynomials:

e If d =1, and f is a trigonometric polynomial of degree 2r, it is well-known that (f, s) = 0 as soon
as s > r, as all non-negative trigonometric polynomials are sums-of-squares [8, 25].

e When d = 2, then for any trigonometric polynomial f, the relaxation is tight with s sufficiently large
(but unknown a priori bound), that is £(f,s) is equal to zero for s greater than some so(f) (as a
consequence of [28, Corollary 3.4)).

e When d > 1, any strictly positive trigonometric polynomial is a sum-of-squares [23, 18], but there
exist non-negative polynomials which are not SOS [19]. Thus SOS hierarchies have to converge but
cannot always be finitely convergent.

e When the set of zeroes of the non-negative function f is finite and with invertible Hessians at these
points, the hierarchy is finitely convergent, but with no a priori bound on the required degree [21].

The goal of this paper is to provide upper-bounds of (f, s) in Eq. (1) for d > 1, first without assumptions
with a rate O(1/s?) (Section 3), and then with stronger assumptions regarding the Hessian at optimum
and explicit exponential rates (Section 4).



3 0O(1/s*) convergence without assumptions for polynomials

We now show that the hierarchy of degree s leads to a convergence rate in O(1/s?) with explicit simple
constants and few assumptions. Since no assumptions are made on polynomials except their degrees, this
directly leads to an approximation result for moment matrices presented in Section 3.1.2

Theorem 1 For any trigonometric polynomial f of degree less than 2r, we have, for any s > 3r, and for
f = f(0) the mean-value of f:

(1) <1 = Al [(1=8) ™ =] e 1 = - 2.

Proof We here follow the proof technique of [7, 16] based on integral operators by adapting it to trigono-
metric polynomials of degree 2r, which are easier to deal with than spherical harmonics or regular polyno-
mials through the use of Fourier series. We consider the following integral operator on 1-periodic functions
on [0,1]? to R, defined as

Thix) = [ late = p)Phay (©

for a well-chosen 1-periodic function ¢ which is a trigonometric polynomial of degree s. The function
x + |g(z — y)|? is an element of the finite-dimensional cone of SOS polynomials of degree s, thus, by
design, if h is a non-negative function, then Th is a sum of squares of polynomials of degree less than s.
We will find A such that Th = f — f. + b for a constant b > 0, for f, the minimal value of f, which will
prove the result, since then f = f, — b+ Th, and f, — b is smaller than the value of the SOS relaxation
ce(f, ), leading to f. — ci(f,s) < b.

In the Fourier domain, since convolutions lead to pointwise multiplication and vice-versa, we have for all
w € Z4, where § * (w) is a shorthand for (¢ * §)(w) :
Th(w) = ¢ *4(w) - h(w),

and thus, the candidate h is defined by its Fourier series, which is equal to zero for ||w||eo > 27, and to

f(w) + (b - f*)lw:O
g+ q(w)

otherwise. If we impose that ¢ * §(0) = 1, we then have

~ 1 .
[—fi+b—h = szd f(w)(l — (j*d(u))> exp(2inw )
= fw — ; exp(2imw ! -
- w%j()f( (1= i) o).

We then get: [|f — fu +b— hlleo = H Zwﬂ) f(w)(l — #) exp(QiTer-)Hoo

gq(w)

2Sections 3 and 4 are independent, and thus can read in any order.



Using that || - [|co < || - |7, We get:

1 1

ax | < f = f”F — — 1
lez2r |G gw) wllazar |G # 4(w)

If = fe+b = hllso <Z |f(w
The goal is now to find a good function ¢ : [0,1]? — R with Fourier support within the ball of radius s, so
that § % g(w) is close to 1 for ||w||s < 2r, and simply check when ||f — f. + b — h|loo < b.

A simple candidate is §(w) = Wl\\wllw@’ based on a “box kernel”; we can then compute the convolu-

tion and obtain that ¢*§(w) = H (1 — 2|5jr|1) ( or +1) , leading to b = || f — f||r- [(1 — 2511)_d— 1].
When s goes to infinity, we have the equivalent b ~ ||f — f||r - 24 = O(1/s), which thus converges to zero,
but at a slow rate.

A better candidate leads to a rate in O(1/s?) (like in [7, 16]), is based on a a“triangular kernel” as:

I A
w) ag(l . )+

with ¢ a normalizing constant. A tedious computation including sums of powers of consecutive integers,
detailed in Appendix A, leads to, for any ||w||c < s (note that §x§(w) is only equal to zero for ||w||c > 2s),

S =1)]. (7)

=1
Thus we need a? = @ to get ¢ * ¢(0) = 1 and thus
3 3s
d 2 d 2
a ), 2 I0-30),
G q(w H ( L4414 s/+ - H 252
i=1 38 i=1

which is greater than (1 — 65%2)1, when in addition |Jw||oc < 2r. This leads to, for s > 3r > V/6r,

b lf = - [(1- ) 1]~ 0r - Al 2

Above, the asymptotic equivalent is taken with s tending to infinity, with » and d being fixed. |

We can make the following observations:

e The proposed bound follows a series of earlier bounds with similar behavior in O(1/s?) for the con-
vergence rate of Lasserre’s SOS hierarchies and uses the same proof technique based on integral
operators [7, 16, 31, 32]. The most closely related is the one of [16], which considers regular polyno-
mials on [—1,1]¢ with Schmiidgen’s representation, but with a different choice for the function ¢ in
Eq. (6). As shown in Section 2.2, our bound also applies to this case through a change of variable; it
differs in the choice of normalization of coefficients (for us, ¢1-norm of the expansion in Chebyshev
polynomials).



e Note that we could extend this result to other tyIQ)es of regularity beyond finite support and bounded
6r°d

F-norm, with the asymptotic bound || f — f||r - %5% + D wloo>2r | f(w)], and by optimizing over r < s.
e We believe the proof technique based on integral operators cannot lead to a better rate than O(1/s2),
with the following informal argument. To obtain a faster rate in the simplest one-dimensional case,
the function 7 : [0,1] — R defined as r(z) = |g(x)|?, should be so that its Fourier series (w) is of
the form f(w/s) for a function f : R — R such that f”(0) = 0 and with support in [—2,2]. Thus,
when s gets large, 7(2) = >_), <05 f(W/ 5)e?m should be proportional to the Fourier transform of f.

Thus the Fourier transform of f should be non-negative with f”(0) o [ z* f(x)2dz = 0, which is
impossible.

e A natural open question is the optimality of the “assumption-free” bound in O(1/s?) (regardless of
the proof technique). We show in the next section that adding extra assumptions leads to significantly
better rates.

e As shown in Appendix B, it turns out that a simple spectral relaxation of the problem already
achieves a rate in ||f — f||r - %, which is worse than the O(1/s?) rate that we show in this section,
but not representative of the empirical differences between the two methods. Our following result
will show an explicit benefit of the SOS relaxation by obtaining exponential convergence rates (with
extra assumptions on f).

3.1 Approximation of moment matrices

We denote by K, the closure of the convex hull of all Hermitian matrices ¢(z)p(z)* € CEsHD > @s+1)? fo;
x € [0,1]4. It contains exactly all moment matrices; SOS relaxations can then be interpreted by relaxing
it to the set 5/%3 of “pseudo-moment matrices” ¥ such that ¥ € Vg, ¥ = 0, and tr(X) = 1. For r < s,
we denote by ng) the linear operator on V, that sets of elements H,., to zero as soon as |w|e > 7 or
||| > 7, and multiply all other elements by (2s+ 1)4/(2r +1)¢ (making it essentially an element of V,.).

A classical duality argument leads to the following corollary of Theorem 1. See proof in Appendix C.

Corollary 1 For any s > 3r, and any X2 € 5/%8, there exists 3’ € K such that

) 5 =l < [ (1- 5) - 1),

where || M||gob denotes the Frobenius norm of M.

This corollary shows that matrices in X, can be well approximated by projections of matrices in 5ACS. Note
that the factor (2r + 1)~ is an outcome of our choice of normalization to unit traces.

4 Exponential convergence with local optimality conditions

We consider the simplest situation where the minimum of f is attained at a unique point x, on the torus,
and we assume that the Hessian f”(z,) is invertible. This implies that there exist “conditioning” constants



a€[0,1/2),8 >0, and A > 0 such that:
lo = 2ulloe <@ = /(@) 2 AL and o =2l > 5 = f@) = fl2) 2 B, (8)

that is, (a) in the /-ball of radius a around x, the Hessian of f has strictly positive eigenvalues greater
than A (which we can take to be 2 Amin(f”(2+))), and hence f is strictly convex, and (b) away from a
slightly smaller ball, f — f(x,) is strictly positive and greater than 8 > 0. See the illustration below in one
dimension.

Ty TG Te  Tet§  Teta T

The proof technique is based on the one introduced in Lemma 1 and Theorem 2 of [26] (for the non-periodic
case and without explicit constants) and can be extended directly to situations where the global minimum
is attained at finitely many points with the same local Hessian condition (see also [17] for cases where
minimizers are whole manifolds).

Note that in that regime, the hierarchy is known to be finitely convergent [21], but without bounds on
the required degree s. The following theorem gives an explicit bound on the convergence rate for any
infinitely differentiable function with a specific growth condition for derivatives. We denote by V™ f(z) the
symmetric m-th order tensor of m-th order derivatives, with element V™ f(x);, ., = %(m), where
Jis---yJm €{1,...,d}. Throughout the proofs, we will use the notation V™ f(x)[d,...,d] € R to denote the
contraction of the tensor along the m copies of 9, that is, V™ f(z)[d, ..., 0] = 2?1,...,jm=1 V(@) g1, im0 = O
We consider bounds on derivatives of the form

V™ flleo = max sup |[V™f(z)[d,...,d]
€01 5]l <1
Up to a constant that depends on m, this is equivalent to imposing a bound on all partial derivatives (see

Appendix E for a precise relationship). This can also be seen as a bound on all directional derivatives,
that is, of all |¢™)(0)|, for g(t) = f(x + t).

Theorem 2 Assume that f : [0,1] — R is infinitely differentiable and such that |[V™f|e < ||f —
felle(4mr)™ for all m > 0. Assume there exist . € [0,1]¢, as well as, a € [0,1/2),8 > 0, and X > 0 such
that Eq. (8) is satisfied. Then, we have:

s \ 1+¢£
e(s, f) < Arexp ( - (E) )
for any € € (0,1/2], with
Ay = (B4 A% (32B3%) ™ Ay = dB, (9)

275 8nr||f — fi|lp 6 :
E7#>Xuf_f*”F(4WT)d}~

where B = max{

10



Before describing the proof, we can make a few simple observations:

e Trigonometric polynomials of degree 2r satisfy the required growth condition, because for f : x +—
T
2™ T where w € Z% such that ||w||ee < 27, we have: |V flloo < (27 - 20)™.

e The result extends a prior result [34], that was showing convergence rates faster than any power
of s, but without explicit constants, which are needed to obtain the exponential rate. When the
conditioning constant A, «, 8 tend to zero, the constant As in Eq. (9) tends to infinity, and the rate
is not informative. In this situation, we could add a regularizer and optimize its strength to obtain
a rate.

e We could easily consider weaker growth conditions for the m-th order derivatives (with slower con-
vergence rates), such as ||[V™ f|lcc = O(r™ml!).

e We could optimize over £ € [0,1/2) to get a better dependence in s.

e The result can be extended to functions with finitely many isolated second-order strict minimizers
(following [26, Theorem 2]).

4.1 Proof technique

The main technical result is to show that the non-negative function f — f. can be approximated by a
trigonometric polynomial g which is a sum of squares of polynomials of degree at most s, with an error
bound measured in the norm || - ||r as || f — f« — gllr < €'(s, f). Thanks to the following technical lemma
whose proof is in Appendix D, this leads to the desired result with (s, f) = (2s + 1)%/(s, f).

Lemma 1 Assume f is a trigonometric polynomial of degree less than 2s, with minimal value f,. If there
exists a trigonometric polynomial g which is a sum of squares of polynomials of degree at most s such that
lf — f« —gllr <E'(s, f), then the optimal value c.(f,s) of Eq. (3) and Eq. (4) satisfies

0< fo—culfys) < (25 +1)%/ (s, f).

To obtain the desired approximant g, we follow the approach of [34] and builds an exact representation
of f — f. as the sum of squared infinitely differentiable functions. We then truncate the Fourier series of
these functions to obtain the approximation.

To provide the exact SOS decomposition, following [26], we provide a decomposition around z,, where the
function f — f. has a zero, and away from =z, where the function is strictly positive. This is then glued
together with “partitions of unity” which we now present.

We consider two infinitely differentiable 1-periodic functions u,v : R? — [0, 1] such that
|z — Z4]|oo < 5= u(z) =1 and ||z — 24|lec = a = u(x) =0,

and for all x € R?, u(x)? + v(x)? = 1. See the illustration below in one dimension.

11
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These are usually referred to as partitions of the unity and will be built in Section 4.2 using standard tools.
Following [26], we can then decompose f as, using Taylor’s formula with integral remainder:

F(@) = f(a)
= w@2[f (@) — f@)] +u(@)[f(z) — f(2.)]

_ _ _ 1
= [o() f(fv)—f(fv*)_er_U(:v)Q / (1= 1) = 2)T (e + (o — 2.))(@ — 2.)d]
= [o@VF@ = f@)] + [u@)@ - ) RE@) @ - 2.)]

_ _ _ d
= [o() f(w)—f(w*)_2+_U(:r)QZ(x—:v*)TR( ) Pugu] R(z) (@ - )]

] ] d =1
= [o)VF@ @] + 3 [ule)e - z) R@)Y]

=1

1
A
with R(x) = / (1—t)f"(xs+t(z—x4))dt = = 5 if |2 — 24]|oo < @, and (21, ..., zg) € R¥? any orthonormal
0
basis of R9.
We thus get an explicit SOS decomposition with d 4+ 1 functions as

d+1
Vo € 0,17, f(x Zgz :
with
gi(®) = u@)(@—az,) R(x)"?z forie{l,...,d}, (10)
gar1(z) = v(@)V/ f(z)— f(2s), (11)

which are infinitely differentiable functions (just taking the square root of f — f, without taking care of
the region around the minimizer as we do above would not lead to a differentiable function).

We consider the truncations g; obtained by keeping in g; only frequencies such that ||w|. < s, leading to,
using lemmas from [34] about the F-norm (see also [12, Section I1.6]):

d+1 d+l d+1 d+1
lr-r=-34 - HZ% Zgz < S (lgille + 1g:lle) g — gille
i=1 i=1
d+1 d+1
< 2Z||91||F > 1a@) =2 llgille - llg: (12)
llwl[>s =1

12



where we denote || f[[Fs = >2u) > |f(w)|. We thus need to find bounds on ||g;||r and ||gi||r.s, for i €
{1,...,d + 1}, and then multiply the bound in Eq. (12) above by the term (2s 4 1) from Lemma 1.

Since these functions are C™ (i.e., infinitely differentiable), the decay of their Fourier series is faster than
any power, as already noted in [34]. In the present paper, we provide explicit constants that allow us to
obtain an exponential convergence rate.

We will obtain bounds on Fourier series coefficients of the functions g; defined in Eq. (10) and Eq. (11) by
bounding their derivatives. Since they are defined as products, we need to bound the derivatives of each
part: the partitions of unity u and v (Section 4.2), the scalar square root (f — f,)'/? (Section 4.3), and the
matrix square root R'/2 (Section 4.4). The bounds are then put together in Section 4.5.

The key in obtaining bounds on order m derivatives is to track the dependence in m, with bounds of the
form c{”m!lﬂ2 for constants c¢q, cs.

4.2 Partitions of unity

Following [11, Section 3.1], we consider for n € (0, 1], the function a : R — R defined as a(x) = exp(—(1 —
x2)~1/") on [~1,1], and zero otherwise. We then consider the function b : R — R, defined as b(t) =
t
d
%, which is non-decreasing, equal to zero for ¢ < 1, and equal to 1 if ¢ > 1. These two functions

are infinitely differentiable on R. See the illustrations below.

b(t)

\
~y

1 T -1 1

We have, from [11, Section 3.1], |a{™ ()| < (%)mm(lﬂ)m, for any m > 0, and any x € [—1,1]. Moreover,
we have

+o0 n/2
/ a(x)dr > 2/ exp(—(1 — 22)" V") dx
0

> V2nexp(—(1—n/2)7") = /2nexp (—exp (-~ ;log (1-2))-

Using log(1 — z) = —(2log2)x for x € [0,1/2], we get the lower bound?

“+o0o
/ a(x)dx > \/%exp(—exp(logZ))) =V2e 72 = /1/8.

—00

4 3
We consider the function w defined on [—3, 3] as w(z) = b[a(|$| - Ta)], and extended by 1-periodicity

to R. It is of the form plotted below.

3Note that the bound from from [11] is incorrectly independent of 7.
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Moreover we have, through the explicit expression of w and the bounds on the derivatives of a and b:

11 64\ m
Ve € [ 5, 5) W@ <8V1/n (T )" mm,

which leads to for m > 0

Vo€ [~ 5o5) ™M@ <8V (>

64) m(1+77) gc m(1+17)m

with ¢ = 2—2, an equality which is also valid for m = 0 (where |w(x)| < 1).

We then consider the functions

w(z) = sin [g ﬁ (1= w(a; — (x*)i))} (13)

v(z) = cos [g ﬁ (1 —w(z; — (x*)l))} (14)

These functions satisfy exactly the constraints from Section 4.1, that is, u(z)? + v(x)? = 1 for all x, and,
as soon as ||z — ZT«lleo < /2, u(x) = sin(w/2) = 1, as well as, when ||z — z4||co = @, u(x) = 0. The next
lemma provides bounds on their derivatives.

Lemma 2 For the function u defined in Eq. (13) and Eq. (14), we have for all m > 0:

2
N

"l 1
an)mm, (15)

with the same bound for v in Eq. (14).

Proof We consider the function g(t) = u(z + 6t) = sin [J f(t)], with f(t) = Hle (1 —w(z; — (z4)i)). We
can expand the derivatives of the product function f using the Leibniz formula to get for all ¢:

d
(m) n m a; (14 coy
ol < 3 2 (") el
ar+--+ag=m =1
d
™ m 1+ 2
ST O R DIl
a1t o= Lyee,Qa/) -2

= g[cml—’_n”é"l]m < 21 [cemanﬂl] mm' , USiIlg m™m < m!em—l.
(&
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We have, using Faa di Bruno’s formula (see, e.g., [3]) for the sine function, with the Bell polynomials B, j:

8™ <D B (o feetIo1h] 1L o [eelm— ko4 17100 m — k4 1))
k=1
< ZBm,k(%[cem"HMl]ll!,...,;r—e[cem”HéHl]m_kH(m—k—F1)!),

i
I

using the fact that Bell polynomials have non-negative coefficients (and are thus non-decreasing functions
over the positive orthant). Thus, using that

Bpx(aBz,...,af™ " 1) = "B Brk(21, - - s Zmkt1)

we get, using an explicit formula for Bell polynomials,*

m = ™ kJ m
FARIGIIES ;(26) [cem™[[6]11]™ B i (11, ..., (m — k + 1)!)
= [cem”|6]1] ”f: (m =1t (m
(k—1)!
k=1
< [eem™||5]y nz m'< ) [cem|[8]|1] " m!(1 + 7/2e)™
=1
de(1 2 m
an an
which leads to [V™uld, ..., ]| < [27775771’7]]5\\ |"m!, and thus to the desired result. [ |

4.3 Scalar square root

Since our SOS decomposition relies on the square root of the function f — f. for the function g44; in
Eq. (11), we need to bound square roots of functions which are strictly positive and bounded away from
zero. By applying Lemma 3 below to the function g : ¢ — f(x + t§) — f(x.), for an arbitrary 6 € R? such
that ||6]]1 < 1 and ||z — 24[|ec = §, With ¢ = 3, C = [|f — fi|lr and D = 4xr|[6||1, we obtain that for

h:x—\/f(z)— fe

8 — T k
V")l = s, (97 (... 8] < 3612 (L) By (16)

Lemma 3 We consider a C* function g defined on a neighborhood of zero (on the real line) such that
g(0) > ¢ > 0 and such that for all m € N, |g""™)(0)| < C - D™, with C > ¢. For b(t) = \/g(t), we have:

b®)(0)] < 3¢1/2(2DE) k! .

4See a summary of properties in https://en.wikipedia.org/wiki/Bell_polynomials.
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Proof We will use Faa di Bruno’s formula (see, e.g., [3]), with the k-th derivative of y — ,/y being
y%_k(—l)kﬂﬁ(g!% = y%_kbk = y%_kk!Ck,ﬂl*% for k > 0, where C), = = (Zkk) is the Catalan

k+1
1 (2n)!
n+1 (n!)?
to, with the Bell polynomials By, ;, and Stirling numbers of the second kind s(k,1):

number. Using the classical bound C,, = < 24" we get |bx| < k!. Faa di Bruno’s formula leads

k

b 0) = 3 g(0)2 biBii(g(0), ... g* D (0)).
=1

This leads to
k 1 . . k .1 .
pP0)] < Y exTilBy(CD,CD?,...,CDF ) =Y " DFCier il By (1,1, ., 1)
; =1

=1
k .
C
= DFe g (—)li!|s(k:,i)| using properties of Bell polynomials,
c
i=1

k
C\E
DFcl/? (—) g i!|s(k, )| which is the ordered Bell number Ay,
c

<
i=0
k
< 3012 (2D9) k!
c
using the bound Ak%c < ﬁ, taken at © = 1/2. [ |

4.4 Matrix square root

Since our SOS decomposition relies on matrix square roots for the functions g, ..., g4 in Eq. (10), we need
the following lemma (||M||op denotes the largest singular value of the matrix M), which can be seen as a
matrix extension of Lemma 3.

Lemma 4 We consider a C™ function G : R — R with values in positive semidefinite matrices and
defined on a neighborhood of zero (on the real line) such that G(0) = cI, with ¢ > 0, and such that for all
m €N, |G (0)|op < C - D™, with C > c. For h(z) = tr[MG(x)"/?], with M a symmetric matriz such
that | M |lop = 1, we have [h®)(0)] < 3¢/2(2D<)" k.

Proof We use results from [5] and Lemma 5 below, with the operator norm on the set of symmetric matrices

and the symmetric square root, where [5, Theorem 1.1] exactly shows that we can take a(k) = %01/ 2=k

which is exactly the bound on k-th derivative of the square root which we used in Lemma 3 above. Thus,
the exact same derivations can be applied. |

Lemma 5 We consider functions f : R* - R and g : R — R%, and o = fog: R — R that are infinitely
differentiable. For a certain norm || -| on R, we assume that

IV* £(9(0))[61, - - - k)| < aR)l|da ] - - - 11wl
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for some a(k) > 0. Then for any n > 1, for the Bell polynomials By, 1, we have:

n

™) <Y ak)Bax (gD O, 19"+ (0)]]).
k=1

Proof We follow the proof of Faa di Bruno’s formula that considers a Taylor expansion of g around
zero as, for any m > 0: g(t) — g(0) = >, %g(k)(O), and of f around ¢(0), as f(g(0) + ) — f(g(0)) =
S 5 VR f(9(0))[8,...,6]. Thus f(g(t)) can be expanded as a polynomial in ¢, with coefficients composed
of factors of the form ¢V* f(g(0))[g?*(0),..., g% (0)], with a non-negative coefficient c. Each of them can
then be bounded by the term ca(k)|g*t(0)]| - - - [[g® (0)]||, which is then equivalent to the formula obtained
by applying the univariate Faa di Bruno’s formula, with a function with derivatives a(k), and the other
one with derivatives ||g¥(0)||. We then use the usual formulation with Bell polynomials. [ |

We can now apply it to bound derivatives of g : = — (z — z,) R(z)"/2z for z € R% We consider
©(t) = g(z +td). We have, using the Leibniz formula:

m—1

a—R(a: +t0)22 +md " 0 R(z +t6)/2z. (17)

otm otm—1
We have, from expressions in Section 4.1, with h(t) = R(z + t6),

P (0) = (z — )"

1
h(t) = R(x 4+ t) = / (1 —8)f"(zs + s(x + 5 — x4))ds,
0
with derivatives which can be computed as, for any v € R%:
1
v R (0) = / (1 —8)V™ 2 f (2, + s(x 4+ 16 — 2.))[6, ..., ,v,v]s™ds.
0

Using assumptions from Theorem 2, in operator norm, h(™(0) is less than the supremum over |[v]jz = 1

of (using ||v[|? < d||v||3 and integration):

! d
Hf—f*HF(47”“)m+2H5M”HUH?/O (1= 5)s™ds < ||f = flle (4mr)™ 2 |3]J7"—

Moreover, we have h(t fo (1 —s)\lds = )‘I This leads to constants ¢ = 5, C = ||f — f.||[p(47r)%d and
D = 4xr||6||; for the functlon h, and thus, to the function g : z — (x — x. )TR( )1/2,2, with all derivatives
of order m less than (using Lemma 4 and Eq. (17)):

Va-3A(S 1~ fulle(amr)a) "t +m -3y /ATR (S Flle(arr)?d) " 1t

which is less than

WA(SIS ~ Fulle(amr)?d) "m (18)

17



4.5 Precise bound

We start with bounds on all derivatives of functions g;, i = 1,...,d + 1, defined in Eq. (10) and Eq. (11),
and then translate them into bounds on their Fourier series coefficients and thus |/g;||r and |/g;||F s

To get our bound, we first realize that all of these functions are products of two functions, and thus we
can use Lemma 6 below, proved in Appendix E.2, that bounds derivatives of products.

Lemma 6 (Derivatives of products) Assume that hy,hy : [0,1]* — R is C* and such Ym > 0,
IV™hil|leo < C1-BTml-k1(m), and ||V ha|lee < Co-BY*m!l-ka(m), Then ||[V™(h1h2)|lec < C1C2k1(m)k2(m)(m+
1)!maX{B1,Bg}m

With the estimates in Eq. (15) and Eq. (18), we get:
_ . 275 6 5™ .
Vie {1,...,d}, IVl <dﬁmax{a—n,x|]f—f*\|p(4w) } ml - m™. (19)

For g411, we need to consider two cases: one where v is uniformly zero, and thus g4 is zero as well,
and one where v is strictly positive, where f — f, is lower-bounded by (3, and we can apply bounds on
derivatives of products. We thus get explicit bounds on all derivatives, from Eq. (15) and Eq. (16):

275 8nr||f — fillr

m
vagd+1\|oo < 3/81/2 max{ , 5 } m) - mm (20)
am

We can now use Lemma 7 below (see proof in Appendix E.1) that relates the growth of derivatives to the
(truncated) F-norm.

Lemma 7 (From derivatives to Fourier decay) Assume that g: [0,1]* — R is C> and such that for
allm >0, [|[V™glleoc < C-B™-m!-k(m), with k non-decreasing. Then, for k > d+ 1,

dBkN\Fk _
lole < C(2+5) w(h)-2(2e)"
dBEkN\Fk

”gHF,s < 0(24—?) H(k)2(2e)d_2(3+1)d—k

2 *
With B = max{ [E —87rer felle 6

Hf fllp(47r) } > 275, we get from Lemma 7 above, Eq. (19),

B
and Eq. (20), for all k > d + 1:
d 1)y d+1
Josille < 352 (24 PR @ ayneed ey
< 351/2( dBk) Lk o (2€)d—28d—k
d+ 1)\ d+1 -
lole < ava(2+ ZAEEDY gy pacyi-2
dBEkN\Fk
lgillps < d\f)\<2+7> kR 2(2e) 12507
27
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and thus a bound from Eq. (12):

B 1)\ d+1 Bk k
¢ < 898+ (2+ d(;i:)) (2+ L%k) (2¢)24-4 50—k ik

< (B4 Ad)(6Bd?)*! (%kysd—wk.

The main term is of the form (%)k. We then select k = (eg%)l/(lJm), leading to the term

6s \1/01 28 \1/(1
exp ( _ (ﬁ) /( +77)) < exp ( _ (E) /( +77))'
Overall,using the identity e™* (ez) applied to ¢ = 3d and z = 2 ( d%)l/ (4m) , and multiplying the bound

in Eq. (12) above by the term (23 + )d from Lemma 1 and using n € (0, 1], we get:

S8 < (25 1B+ M) (6B) s exp (— (o))
3 CH'l 3d/2 . 78 1/(1+77)
< (B+ M ( ) ( (dB) )
2
< B2 (9B exp (= (5) ) e (- ()"
d+1 2d s 10
< (B+ AP (9B Qd( (dB/s)"/( 1+n)> exp (— (=) sy
d+1 2d s \1/(1
< (B+ AP (9B ( d23> exp (- (E) /( +n))
d+1 S \1/(1
< Md‘“’ (8% e (- (5)" ).
We then consider £ =1 — —— € (0,1/2] to obtain the constants in Eq. (9).

1+n

5 Discussion

Our convergence results could be extended in several ways:

e While explicit polynomial convergence rates already exist for the Boolean hypercube [32], it would
be interesting to obtain improved rates with some form of local condition.

e Our proof technique relies on Fourier series and the characterization of various orders of differentia-
bility using the corresponding orthonormal basis. It could thus be extended to all cases where such
tools can be used, such as on the Euclidean hypersphere [7] and beyond [27].

e Almost all the techniques that we used to derive explicit constants can be extended easily to the
more general kernel case [26] (noting that the function ¢ that we used is a specific instance of a
translation-invariant periodic kernel), as well as the case where minimizers are manifolds [17].

e It would be interesting to extend our second result to provide an explicit bound on the degree for
finite convergence.

e We only focused on the unconstrained global optimization problem, but adding constraints and
extending to more general problems (e.g., optimal control and optimal transport) is natural.
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A Computation of convolutions

Given the function b : Z — R defined as b(w) = (s — |w|)+, we need to compute the convolution bxb(w)
for |w| < s. Since b is even, so is bxb and we can thus consider w € [0,s]. We want to show that

bib(w) = 2254w g2 @l

We can split the sum bxb(w) = >, b(i)b(w — i) as follows,

0 w s
Yo s+i)s—wti)+ Y (s—i)(s—wti)+ Y (s—i)(s—i+w)
I=w—S$ =1 1=w+1
0 w
= D [P+ @s—whits(s—w)]+ ) [—i*+wits(s—w)]
I=w—S$ i=1

+ Z [ — (25 + w)i + s(s + w)].

1=w—+1
Then, using Y¢_ i = t(t;I) =12 +t)and >\ ;i = % = (263 + 3t2 + t), we get:
1 1
6(8 —w)(s—w+1)(2s —2w+1) — 5(8 —w)(s—w+1)(2s —w)

+s(s—w)(s—w+1)— Q%w(w +1)(2w+1)+ %w(w +1)(2s + 2w) + s(s — w)w

—i—és(s +1)(2s+1) — %s(s +1)(25s +w) + s(s +w)(s —w),

leading to
1
6(8—w)(s—w+1)(w+1—4s)+s(s—w)(2s—|—w+1)
1 1 1
+6(283+332+8)—§(2w3+3w2+w)+(w2+w)(s+w)—§(s2+s)(23+w)
1 2 1
= [+t +[-(1-4s—s—1—8)—s—1+s+1]w?
6 3 6
1 1 1
—i—[g((s—i—l)(éls—l)—3(1—43)+s(s+1))+82—s(23+1)—§+s—§(32+s)]w

+[s(s+ 1)%(1 —4s) + s%(2s+ 1) + é(233 + 352+ 5) — s(s? + s)]

To get Eq. (7), we then use § * §(w) = a® [, Zbxb(|wi).
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B Performance of the spectral relaxation

Given a trigonometric polynomial f of degree 2r, with r < s, we can represent it as a quadratic form in
¢(z) defined in Eq. (2) as:

d

f(z) = p(x) T Fo(z) with Fuy = fw-o) ] (1 B W)*’
=1

which is the unique Toeplitz representation F' for f. We denote by g : [0, 1]d — R the function with Fourier
. ~ o A d |wl| —1
series g(w) = f(w) [ i, (1 — 25+1) .

For any z € C5tD" of unit norm, we have:

Fz = Z zwz:},/ g(x) exp(—2im(w — ') " z)dx
[0,1]4

[[w]loo [l [loo <5
E 2, exp(—2inw ' x)

- [ s
[0, 1) loollco<s

> inf g(af)- /
x'€]0,1]¢ [0,1]¢

Thus Amin(F) = inf,¢jg 170 g(x). We have moreover:

2
dx

2

dr = inf g(2).

Z 2z, exp(—2inw ' x) It
z )

lwlloo<s

d
I =gl < X 1@ IO 52007 1]
=1

wezZd
= 2r \—d - rd
< =Fle[(1-gmg) =1~ 15 = Flle -
which leads to
- 2r \—d - rd
0> huaalF) = fo 2 = = Flle[(1= 5.75) = 1] ~amvsoo =I1F = Fllp- 75

C Proof of corollary 1

For ||7] s < 25, let Q(7) denote the set of (w,w’) € Z x Z¢ such that ||w|leo < 7, [|&']loo < 7, and w—w' = 7.
We consider the norm © on the set of Hermitian matrices of dimension (2r 4 1)? defined as:

1/2
o) =@+t Y <\9<T>|—1 3 rzm) |

[[7lloo <27 (w,w)eQ(r)

This norm is constructed so that, for a trigonometric polynomial f of degree less than 2r represented by a
Hermitian matrix F', then || f|lp = infy ¢y ©*(F +Y) (taking into account the normalizing factor defining
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©). Thus, we have, applying Theorem 1:

inf OIIM(2—-%)) = inf sup tr[FIM(Z -5
gnf O ( ) S [FTI ( )]
= sup t[FOUY] + inf tr[—FI0Y
o (F)<1 YeKs
612\ —d
< sup t[FIOT)+ inf tr[—anﬂz’]Jr[(l——Q) —1}
o*(F)<1 sreXs S

612\ —d
1— —) —1},
[( 52
by selecting ¥’ = ¥ in the bound above. The bound using the Frobenius norm is obtained by computing
a lower bound on ©* as done in Appendix D below (but applying to r instead of s.

N

D Proof of Lemma 1

Proof Assuming f, = 0 without loss of generality, let f be represented by the Hermitian matrix F', and
g by the PSD Hermitian matrix G, that is, for all x € [0,1]¢, f(x) = ¢(z)*Hp(z) and g(x) = ¢(z)*Gp(z).
For ||7]|oo < 2s, if Q(7) is the set of (w,w’) € Z¢ x Z¢ such that [|w|ee < 5, ||w']leo < 5, and w — ' = T,
then, using that the space V, of Hermitian Toeplitz matrices H is characterized by equal values for H,,.,
for (w,w’) € Q(7) for each 7,

Ilf=gllr = Z 1f(w) = §(w)]
lolloo <25
! Y (120 X (F-Ge vl
Y - LG +Y)
2 1)d an_ < ww )
(@2s+ 1) vevy =, () ER(r)
L mingey <o [Q(7)]1 2\ 2
P f F— Y ww’
yevs (25 + 1)d 2. 2 PG4 Yul

I7llo0 <25 (wyw")€Q(T)

V2o V2o

We can then take the maximizer above Y € V¥, and we have

e(£,8) 2 Amin(F +Y) = Awin(G) = [|F = G + Y lop > 0 — /(s ),

where || - ||frob denotes the Frobenius norm and || - ||op the largest singular value. ]

E Proof of generic lemmas about derivatives

In this appendix, we prove lemmas about derivatives and Fourier decays.
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E.1 Proof of Lemma 7

Proof We will show a bound on the Fourier series of g of the form

1

19(w)] < D(k)w7

(21)

for a constant D(k) to be determined, since it implies, for k£ > d 4 1:

1 s 1 d+t—1
§(w)| < D(k S — ,
> B <00 Y G = POY g ( " )
||W||oc>>5 WEZ t=s

by counting the number of w € Z? such that ||w||; = ¢. This leads to the desired results (in particular by
taking s = 0).

We first start by a simple upper bound on (d:gf;l), as (using the identity n™ < nle” ! applied ton = d—1):
d+t—1 1 (t+d—1)%1
= —— (t+1)---(t+d-1) <2
( d—1 ) oot trd =D S =g
td_l + (d _ 1)d—1 2d—2
d—1)! @it T
This leads to:
- 2972 i d—2
g < 7+ (2e)”
g;d [9(w)l ;(2“ ( —1)! (2€) )
24-2 1 1
< D - 9 d—2
(k)[(d Wk—d +(2€) k—lD
2d—2 (26)d_2 3
< D(k)[(d_ 3t ]) < 2(2e)472D (k).
> 1 2d—2
9w)| < D(k) t1 4 (2e)2
”w%% ; (2+t)’f((d— 1)! )
2d4-2 1 (2e)4-2 1
< D
(k) [(d — 1) (s+1)k—d + d (s+ 1)’“—1}

< 2(20)472(s + 1)TFD(k).

Proof of Eq. (21) To obtain Eq. (21), we need to be able to bound the product |§(w)||w;|** - - |wg|*
for any « such that a; 4+ --- + ag = k. For this, we need uniform bounds on all partial derivatives, which

we need to obtain from bounds on V¥g(x)[d,...,d] for all § and k. From the polarization Lemma 8, we
have
1 1, k
VEg(@) b1, O —,(Z I00) 194 gloe < (S 61010) € B k- w(h),
i=1



by definition of || V¥¢||« and because of the assumptions of the lemma. For any « such that aj-+- - -+aq = k,

the partial derivative d,g(x) = %(m) can be written as %(x) for j1,...,jk € {1,...,d}. Thus,
Oz, ', Lj1 " O%jy,

applying the inequality above with d; the indicator vector of the set {j;} for each i € {1,...,k}, we get

Oag(@)] < [FHg(@)01, ., 0k]| < C - B* - K - w(k).

Then, by expanding (2 + ||w||1)* with the multinomial formula, and using the bound §(w) H?Zl |27mw; | <
SUP,efo,1)¢ |0ag ()], we get:

. k! a0, |a a
|g<w>|”2ka0!a1!_“ad!2 O - g
all1=
k! B\ k-0 dBk\ k
< 72‘”00(—) KRk (k) < 0(2 —) k).
l%kao!all---ad! 2w H( ) + 2 Fd( )
alli1=
. dBk\k .
This leads to D(k) < C’(Z + 2—) k(k), and thus the desired result. [ ]
7r

Lemma 8 (Polarization) Let u: E™ — R be a symmetric m-multi-linear form on some normed vector
space E. Then for all z1,...,zm € E, we have:

1 /& m
[ulzrs szl < (Do laill) - sup uz.,2).
=1

2l <1

Proof We use the polarization identity for the m-multilinear form « : E™ — E and its diagonal @ : z —
u(z,...,z), see [33, Eq. (A.4)],

m

u(zl,...,zm):2m1m' S a3 1),

T eef{0,1}m i=1

which leads to

N

ezl € gy 3 (Llh)” s i)

M|
2mml Ty i 2l <1
m

1 m -
= (X lallh)” sup ),
T o=l

[zl <1

which is the desired result. [ |
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E.2 Proof of Lemma 6

Proof Using Leibniz formula applied to ¢1(t) = hi(x + td), w2(t) = ho(z + td), we have:

S (1)l (0)5™ ()

C1Ca16]17 Y21 () Bi B il (m — i)k (i) ko (m — i)
C1Corir (m)ro(m)||8]|7"m! Y1) Bi By~
C1Cak1(m)k2(m)||6]|7" (m + 1)! max{ By, Ba}"™.

(p192)™(0)
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