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Abstract

Considering the two-dimensional sloshing problem, our main focus is to con-
struct domains with interior high spots; that is, points, where the free surface
elevation for the fundamental eigenmode attains its critical values. The so-
called semi-inverse procedure is applied for this purpose. The existence of high
spots is proved rigorously for some domains. Many of the constructed domains
have multiple interior high spots and all of them are bulbous at least on one
side.

1 Introduction

The sloshing problem (it describes natural frequencies and the corresponding wave
eigenmodes in an inviscid, incompressible, heavy fluid bounded above by a restricted
free surface) is of great interest to engineers, physicists and mathematicians. Its two-
dimensional version concerns transversal free oscillations of fluid in an infinitely long
canal of uniform cross-section. A historical review of studies in this area going back
to the 18th century can be found in [1], whereas various aspects of the problem
are presented in the monographs [2], [3] and [4]; the last one provides an advanced
mathematical approach to the problem based on spectral theory of operators in a
Hilbert space.

Our aim is to consider time-harmonic sloshing in two dimensions and to show
that there exist fluid domains in which ‘high spots’ (points, where the free surface
elevation of a fundamental sloshing mode attains its extrema) are located inside the
mean free surface. It should be recalled that the free surface elevation of a fluid
in the sloshing motion is proportional to the trace of the velocity potential on this
horizontal part of domain’s boundary. Therefore, at every moment high spots are
determined by the trace’s maxima and minima provided a time-harmonic factor is
removed.
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The notion of high spot was introduced in [5] by analogy with a hot spot; a
conjecture about the latter (formulated by J. Rauch in 1974; see, e.g., the extensive
article [6]) says that any eigenfunction, corresponding to the smallest nonzero eigen-
value of the Neumann Laplacian in a bounded domain F ⊂ Rm, attains its maximum
and minimum values on ∂F . The latter has been proven for some domains, most
of which are special domains in the plane; there is also a counterexample to the
conjecture involving F ⊂ R2 with two holes. For highlights of these results, see the
recent article [7].

It is well-known that the problem, that describes sloshing in a three-dimensional
container having a constant depth and vertical walls, is equivalent to the eigenvalue
problem for the Neumann Laplacian in the domain F ⊂ R2, which is the container’s
free surface (indeed, separation of variables immediately yields this). Hence, the
absence of interior high spots for such a container follows from the hot spot result
for F .

For other container’s geometries, the situation with high spots is not as simple
and not directly connected to hot spots of the free surface. Indeed, it was proved
rigorously [8] and established experimentally [9, Fig. 7], that locations of high spots
may vary essentially for convex axisymmetric containers when their form changes
slightly. High spots are located inside the free surface of bulbous containers (see [9,
Fig. 2]) and on the boundary of the free surface when the container’s cross-section
decreases with the depth or is constant (see [9, Fig. 1]); see also [10] for further
details. The latter (boundary location of high spots) is also proved rigorously [11]
for sloshing in troughs of uniform cross-section, whose bottom—the graph of a
C2-function— forms nonzero angles with the undisturbed free surface. Earlier, the
same statement was proved for sloshing in two dimensions [5].

Recently, the first study [12] was published which investigates the effects of
surface tension on the location of high spots in two- and three-dimensional ice-
fishing problems. Computational methods are used to demonstrate that the high
spot is in the interior of the free surface for large Bond numbers, but for sufficiently
small Bond number the high spot is on the boundary of the free surface.

Along with the classical linear sloshing problem considered in the present paper,
there are various approaches to nonlinear sloshing phenomena; see, for example,
the monograph [13] and references cited in its Chapter 8, in which some typical
nonlinear phenomena discovered experimentally long ago are listed; in particular,
dependence of the sloshing frequency on wave amplitude, mobility of nodal curves
on the free surface, etc. In this chapter, special attention is paid to sloshing in
cylindrical containers, which allowed the author to obtain some qualitative results.

Another phenomenon similar to nonlinear sloshing is that of standing waves.
Their existence on the surface of an infinitely deep perfect fluid under gravity is
established in the extensive article [14], where the two-dimensional waves periodic
both in space and time are studied in the framework of fully nonlinear model. Also,
several approximate approaches developed earlier by a number of authors are re-
viewed.
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The plan of the present paper is as follows. Statement of the sloshing problem
is formulated in Sect. 2, where general results about it (including the properties
of nodal domains) are also described. Rigorously proved results are presented in
Sect. 3; the so-called semi-inverse procedure is applied for this purpose. An example
of domain with a single interior high spot is investigated in detail in Sect. 3.1, whereas
similar results are outlined for another domain in Sect. 3.2. Further examples are
obtained numerically and considered in Sect. 4. In Sect. 5, some characteristic
features of domains with interior high spots are summarized.

2 Statement of the problem and general results

Let an inviscid, incompressible, heavy fluid occupy an infinitely long canal of uniform
cross-section bounded above by a free surface of finite width. The surface tension is
neglected and the fluid motion is assumed to be irrotational and of small-amplitude.
The latter assumption allows us to linearize boundary conditions on the free surface;
see [15, Sect. I.1] for details briefly outlined below. In the case of the two-dimensional
motion in planes normal to the generators of canal’s bottom, the following relations
arise:

gη(x, t) + ϕt(x, 0, t) = 0 , ηt(x, t)− ϕy(x, 0, t) = 0 . (1)

In these relations, η(x, t) and ϕ(x, y, t) are the time-dependent free surface profile
and velocity potential, respectively, whereas rectangular Cartesian coordinates (x, y)
are taken in the plane of motion so that the x-axis lies in the mean free surface,
whereas the y-axis is directed upwards.

The second condition (1) is a kinematic condition; it is a consequence of con-
tinuity of the fluid motion and the assumption that the latter is irrotational. The
first condition (1) follows from the Hamilton’s principle

δL = 0 , where L =
ρ

2

∫ t

0

[∫
W

|∇ϕ|2 dxdy − g

∫
F
η2 dx

]
dt

is the standard Lagrangian in which ρ stands for the fluid’s density. Here the cross-
section W of the canal is a bounded simply connected domain whose piecewise
smooth boundary ∂W has no cusps. One of the open arcs forming ∂W is an inter-
val F of the x-axis (the free surface of fluid in equilibrium).

In view of relations (1), if time-harmonic oscillations at the radian frequency ω
having the form

η(x, t) = ζ(x) sinω(t− a) , ϕ(x, y, t) = u(x, y) cosω(t− a) (2)

exist for some real a, then the real-valued velocity potential u(x, y) must satisfy the
following boundary value problem:

uxx + uyy = 0 in W, (3)

uy = νu on F, (4)

∂u/∂n = 0 on B. (5)
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Here the bottom B = ∂W \F is the union of open arcs lying in the half-plane y < 0
and complemented by corner points (if there are any) connecting these arcs, where
the normal derivative ∂/∂n is defined.

The Laplace equation (3) expresses the zero-divergence condition for the velocity;
(5) is the no-flow condition on the rigid bottom. Relation (4) arises by excluding
η from relations (1), whereas the free surface elevation ζ(x) is proportional to the
trace u(x, 0) of the velocity potential according to (2).

We suppose the orthogonality condition∫
F
udx = 0 (6)

to hold, thus excluding the eigenvalue ν = 0 of problem (3)–(5), and so the spectral
parameter is ν = ω2/g, where g is the constant acceleration due to gravity.

It is known since the 1950s that problem (3)–(6) has a discrete spectrum; that
is, there exists a sequence of eigenvalues

0 < ν1 ≤ ν2 ≤ · · · ≤ νn ≤ . . . , (7)

each counted according to its finite multiplicity and such that νn → ∞ as n → ∞.
The set of corresponding eigenfunctions {un}∞1 belongs to the Sobolev space H1(W )
and forms a complete system in an appropriate Hilbert space. These results can be
found in many sources; see, for example, [4] for a comprehensive mathematical
treatment.

2.1 Nodal domains and their properties

Let N(u) = {(x, y) ∈ W : u(x, y) = 0} be the set of nodal lines of a sloshing
eigenfunction u. A connected component of W \N(u) is called a nodal domain for u.
Properties of the nodal lined and domains are closely related to our considerations,
and so we provide a summary of assertions proved in [16]:

(i) If R is a nodal domain of u, then R ∩ F is a subinterval of F .
(ii) The number of nodal domains corresponding to un is less than or equal to n+1.
(iii) The sloshing eigenfunction un cannot change sign more than 2n times on F .

Combining these properties and condition (6), one arrive at the following statement.

Proposition 1. A fundamental sloshing eigenfunction u1 has a single nodal line
which divides W into two nodal domains; this line has one or both ends on F .

2.2 Sloshing in terms of the stream function; auxiliary results

The approach applied in the paper [16] demonstrates that another spectral problem
equivalent to (3)–(6) is convenient to deal with; it involves the stream function v
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(a harmonic conjugate of u in W defined up to an additive constant):

vxx + vyy = 0 in W, (8)

− vxx = νvy on F, (9)

v = 0 on B. (10)

Notice that condition (10) is obtained from (5) with an appropriate choice of the
additive constant; moreover, it implies both conditions (5) and (6). It is obvious
that all eigenvalues of problems (8)–(10) and (3)–(6) have the same multiplicity.

Let N(v) = {(x, y) ∈ W : v(x, y) = 0} denote the set of nodal lines of a sloshing
eigenfunction v. A connected component of W \ N is called a nodal domain of v.
The following results obtained in [16] are of importance for our considerations.

Proposition 2. Let v be a stream eigenfunction in W corresponding to the eigen-
value ν1, then

(i) the single nodal domain of v is W ;
(ii) the trace v(x, 0) cannot change sign on F and has a single extremum there.

Notice that the first assertion is analogous to the Courant nodal domain theorem
for the Dirichlet Laplacian.

3 Fluid domains with interior high spots
(rigorous results)

A version of the so-called inverse method is applied here. It is worth mentioning
that this method was widely used in continuum mechanics in the pre-computer era;
see [17] for a survey. There are two forms of this method that distinguish by the
use of boundary conditions. The method is referred to as semi-inverse if some of
these conditions, but not all of them, are prescribed at the outset which is conve-
nient for applications in the linear water-wave theory. In particular, Troesch [18]
sought a solution of the sloshing problem in the form of a combination of harmonic
polynomials satisfying the free-surface boundary condition for a certain frequency.
Then the homogeneous Neumann condition was applied for determining the shape
of container’s bottom, thus giving a family of paraboloids of revolution as bottom
surfaces. A similar procedure is applied below for construction of fluid domains with
interior high spots.
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3.1 Semi-inverse method for ν = 3/2

A particular pair of conjugate harmonic velocity potential/stream functions is used
in our version of semi-inverse method, namely:

u(x, y) =

∫ ∞

0

cos k(x− π) + cos k(x+ π)

k − ν
eky dk , (11)

v(x, y) =

∫ ∞

0

sin k(x− π) + sin k(x+ π)

ν − k
eky dk . (12)

If ν = 3/2 (this pair and similar ones were introduced in [19, Subsection 4.1.1]), then
both numerators vanish at k = ν = 3/2, and so the integrals are the usual converging
infinite integrals. Similar functions were originally proposed by M. McIver [20], who
used them in her construction of modes trapped by a pair of two-dimensional bodies
in the water wave problem.

It is easy to verify that u and v are conjugate harmonic functions in R2
−, and

u(−x, y) = u(x, y) and v(−x, y) = −v(x, y).

Moreover, u and v are infinitely smooth up to ∂R2
− \ {x = ±π, y = 0}, and well-

known facts from theory of distributions imply that [uy − νu]y=0 is equal to a linear
combination of Dirac’s measures at x = π and x = −π. Therefore,

uy = νu on ∂R2
− \ {x = ±π, y = 0}. (13)

The calculated nodal lines of u and v are shown in Fig. 1 (b); the line plotted in
solid has the following properties; see [16, Prop. 2.1].

Proposition 3. If ν = 3/2 in (12), then along with {x = 0, y < 0}, there is only
one nodal line of v(x, y) in R2

−. It is smooth, symmetric about the y-axis and its
both ends are on the x-axis; the right one, say (x0, 0), lies between the origin and
the singularity point (π, 0).

Thus, the right half of the curvilinear nodal line together with a part of the y-axis
define the bottom B3/2 of a fluid domain; it is denoted W3/2 in Fig. 1 (b). Indeed,
v given by (12) satisfies condition (10) on this line. On the free surface F3/2 of this
domain, condition (4) holds for u in view of (13), and so u and v with ν = 3/2
satisfy the respective versions of the sloshing problem in W3/2.

Notice that we use a half of the domain bounded by the symmetric in x curvi-
linear nodal line (let us denote this domain by W̊3/2). The point is that although

the necessary conditions of Proposition 1 are satisfied for W̊3/2, the sloshing mode u
with ν = 3/2, nevertheless, is not fundamental in this domain. Indeed, the stream
function corresponding to ν1 cannot have two extrema on the free surface in view of
Proposition 2. At the same time, u and v restricted to W3/2 satisfy necessary condi-
tions of Propositions 1, 2, and so they are good candidates for being the fundamental
eigenfunctions corresponding to ν = 3/2.

Indeed, the domain W3/2 is nodal for v; see the graph of its trace in Fig. 1 (a).
Furthermore, the following assertion was proved in [16, Th. 2.6].
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(a)

v(x, 0)

u(x, 0)

x

x

(b)

y

F ′
3/2 F3/2

W ′
3/2 W3/2

B′
3/2

B′
3/2

B3/2

B3/2

Figure 1: Plotted for ν = 3/2: (a) the traces u(x, 0) (dashed line) and v(x, 0) (solid
line); (b) the nodal lines of u (dashed lines) and v (solid lines) given by (11) and
(12), respectively. High spots on F3/2 and F ′

3/2 are marked by the arrows connecting
them with the extrema of the velocity potential trace.

Theorem 1. In the fluid domain W3/2, the sloshing eigenfunction u given by (11)
with ν = 3/2 has a single nodal line, whose one endpoint is (xn, 0) and xn ∈ (0, x0)
(here x0 is the right endpoint of F3/2 defined in Proposition 3), is the only minimum
point of v(x, 0) on {x > 0}, whereas the second endpoint is on the y-axis.

Remark 1. The representation

u(x, 0) = 2π cos νx+

∫ ∞

0

[
e−(π−x)kν + e−(π+x)kν

] k dk

1 + k2
(14)

valid for x ∈ [0, π) (see [16, Form. (2.9)]) implies that ux(0, 0) = 0 and uxx(0, 0) < 0.
Hence u(x, 0) attains maximum at x = 0, and so the origin is a high spot, but located
on the boundary of the free surface F3/2.

The following assertion implies that there is an interior high spot on F3/2; it
corresponds to the right minimum of u(x, 0), which is close to the right endpoint of
the free surface F3/2; see Remark 2 below.
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Theorem 2. The sloshing eigenfunction u given by (11) with ν = 3/2 has an
interior high spot on F3/2.

Proof. The representation (see [16, Form. (2.7)])

v(x, y) = eνy
[
v(x, 0) + 2x

∫ 0

y

k2 − (π2 − x2)

[k2 + (π − x)2] [k2 + (π + x)2]
e−kν dk

]
(15)

implies that

vy(x0, 0) = ux(x0, 0) =
2x0 (π

2 − x20)

(π − x0)2 (π + x0)2
=

2x0
π2 − x20

> 0 .

Then ux(xh, 0) = 0 at some xh < x0 in view of Remark 1. Hence, an interior high
spot is located at (xh, 0) on the left of the endpoint (x0, 0). By symmetry, (−xh, 0)
is also an interior high spot located on the right of the endpoint (−x0, 0).

Remark 2. According to computations, xh ≈ 2.077836, whereas the endpoint of
the free surface F3/2 is at (x0, 0) with x0 ≈ 2.132704, that is, the distance from the
high spot to the endpoint is approximately 0.054868, which is less than 3% of the
distance from the origin to the endpoint of F3/2.

Remark 3. The same considerations are valid for the domain W ′
3/2 on the left of

the y-axis; see Fig. 1 (b). Therefore, W ′
3/2 also provides an example of domain with

an interior high spot.

Now we turn to a geometric property intrinsic to domains with interior high
spots. According to the following definition, it is evidently holds for W3/2; see
Fig. 1 (b).

Definition 1. A fluid domain W satisfies John’s condition if it is confined to the
strip bounded by the straight vertical lines through the endpoints of the free sur-
face F . Domains violating this condition are called bulbous.

Proposition 4. The domain W3/2 is bulbous.

Proof. To be specific, let us show that W3/2 is bulbous on the right-hand side. Let
us consider B3/2 as the graph of the implicit function x 7→ y defined by the equation
v(x, y) = 0 in a neighbourhood of (x0, 0)—the right endpoint of B3/2. Therefore,
to establish that W3/2 is bulbous it is sufficient to prove that

y′(x0) = −vx(x0, 0)/vy(x0, 0) < 0 .

After some algebra, it follows from (15) that

y′(x0) =
x20 − π2

2x0
vx(x0, 0) =

π2 − x20
2x0

uy(x0, 0) ,
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(a)

v(x, 0)

u(x, 0)

x

x

(b)

y

F5/2

B5/2

W5/2

B5/2

Figure 2: Plotted for ν = 5/2: (a) the traces u(x, 0) (dashed line) and v(x, 0) (solid
line); (b) the nodal lines of u (dashed lines) and v (solid lines) given by (11) and
(12), respectively. High spots on F5/2 are marked by the arrows connecting them
with the extrema of the velocity potential trace.

where the last equality is a consequence of the Cauchy–Riemann equations. In view
of condition (13) we have for ν = 3/2:

y′(x0) =
3(π2 − x20)

4x0
u(x0, 0) . (16)

Since there is only one nodal line of u in W3/2, and its right endpoint is (xn, 0), the
trace u(x, 0) is negative for x ∈ (xn, x0]. Then, (16) implies that y′(x0) < 0, which
completes the proof.

In conclusion of this section, it is worth mentioning an essential property of
the harmonic function v defining the domain W3/2. This function has a stagnation

point in R2
−, namely, the point, where the curvilinear part of B3/2 meets the negative

y-axis. Indeed, the derivatives along both these lines vanish because they are nodal
lines of v. In what follows, the same property—the presence of a stagnation point—
will be used in more complicated cases.
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Remark 4. It should be said, that the presence of stagnation points of v and, as
a consequence, of corner points on boundaries of all domains constructed in the
paper, is rather a matter of convenience for our considerations. For instance, it
is easy to observe that any line v = −c in Fig. 2 is located inside W3/2 provided
0 < c < −min{v(x, 0) : x ≥ 0}, and the domain bounded by this line, say W c

3/2, has

a smooth bottom. However, W c
3/2 can be used as a sloshing domain instead of W3/2;

moreover, the extrema of u are still located inside the free surface F c
3/2 when c is

sufficiently small.

3.2 The case ν = 5/2; multiple interior high spots

Rigorous considerations, analogous to those in Sect. 3.1, are applicable to the case
when u and v are given by (11) and (12), respectively, but with ν = 5/2. It occurs
that the domain similar to W3/2 (that is, adjacent to the y-axis), in which this u
is an eigenfunction corresponding to ν = 5/2, has no interior high spot. Indeed, it
satisfies John’s condition which guarantees [5] that high spots are on the boundary
of the free surface; see Fig. 2 (b), where this domain left blank. However, this u is
also an eigenfunction corresponding to ν = 5/2 in the domain denoted by W5/2 in
Fig. 2 (b). This follows from Proposition 2 because this domain is nodal for v; indeed,
the negative y-axis is a nodal line of v, as well as both lines marked B5/2—the two
curved parts forming the bottom of W5/2.

There are two interior high spots on the free surface F5/2; one of them corre-
sponds to the maximum of u(x, 0) attained at x ≈ 1.257429 between the endpoints
of the nodal line of u, which divides W5/2 into two nodal domains. It should be noted
that the left line B5/2 emanates from x ≈ 1.249757, which is slightly smaller. The
second high spot corresponds to the minimum of u(x, 0) attained at x ≈ 2.503159,
which is very close to the right endpoint of F5/2 at x ≈ 2.539769.

It is clear that the domain W5/2 is bulbous on both sides. It is obvious on the
left-hand side, whereas for the right-hand side the reasoning similar to the proof of
Proposition 4 is applicable. Of course, the domain obtained by reflection of W5/2 in
the y-axis also provides an example of domain with two interior high spots.

As in the case ν = 3/2, the function v defining the domain W5/2 has stagnation

points in R2
−. However, there are two of them, namely, the points, where both curves

B5/2 meet the negative y-axis.

4 Further examples of domains with multiple interior
high spots (numerical results)

In this section, we present other domains with multiple interior high spots, but they
are obtained numerically using the following procedure. For a specified value of ν
the bottom is defined by a nonzero level line of v, whose level is chosen so that this
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(a)
υ(x, 0) u(x, 0)

x

x

(b)

y

F7/2

W7/2

B7/2

B7/2

Figure 3: Plotted for ν = 7/2: (a) the traces u(x, 0) (dashed line) and v(x, 0) (solid
line); (b) the nodal lines of u (dashed lines), and the level lines v ≈ −0.023145 (solid
lines). Two interior high spots on F7/2 are marked by arrows connecting them with
the corresponding extrema of the velocity potential’s trace.

line has two branches crossing transversally at a stagnation point, thus forming the
bottom of the required domain.

This procedure is applicable for integer values of ν as well. However, the following
functions

u(x, y) =

∫ ∞

0

cos k(x− π)− cos k(x+ π)

k − ν
eky dk , (17)

v(x, y) =

∫ ∞

0

sin k(x− π)− sin k(x+ π)

ν − k
eky dk (18)

are used in this case instead of (11) and (12).

4.1 The case ν = 7/2

If v is given by (12) with ν = 7/2, then a stagnation point occurs at the level ap-
proximately equal to −0.023145; see Fig. 3 (b), where this point is at the intersection
of two solid lines marked B7/2. They enclose the domain W7/2, in which u given by
(11) with ν = 7/2 is an eigenfunction corresponding to ν = 7/2. Indeed, since v is
less than −0.023145 in this domain, it is the nodal one for the stream function equal
to the difference of v and this value.
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(a)
v(x, 0) u(x, 0)

x

x

(b)

y

F3

W3

B3 B3

Figure 4: Plotted for ν = 3: (a) the traces u(x, 0) (dashed line) and v(x, 0) (solid
line) given by (11) and (12), respectively; (b) the nodal lines of u (dashed lines),
and the level lines v ≈ −0.150899 (solid and dotted lines). Interior high spots on F3

are marked by arrows connecting them with extrema of the velocity potential trace.

There are two interior high spots on F7/2: near its left endpoint at x ≈ 1.795807,
and close to the right endpoint at x ≈ 2.685549, within approximately 0.026076 from
the endpoint. The character of these high spots is the same as those on F5/2. Like
W5/2, the domain W7/2 is bulbous on both sides. Of course, the domain obtained by
reflection of W7/2 in the y-axis also provides an example of domain with two interior
high spots.

4.2 The case ν = 3

If v is given by (18) with ν = 3, then a stagnation point occurs at the level approx-
imately equal to −0.150899; see Fig. 4 (b), where this point is at the intersection of
two solid lines marked B3. They enclose the domain W3, in which u given by (17)
with ν = 3 is an eigenfunction corresponding to ν = 3. Indeed, since v is less than
−0.150899 in this domain, it is the nodal one for the stream function equal to the
difference of v and this value.

There are two interior high spots on F3: near its left endpoint at x ≈ 1.5715649,
and close to the right endpoint at x ≈ 2.6095109, within approximately 0.029250
from the endpoint. Comparing the fluid domains W3 and W3/2 shown in Figs. 4 and
3, respectively, we see that they have the same structure of defining lines and the
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(a)

v(x, 0)

u(x, 0)

x

x

(b)

y

F2

W2

B2

B2

Figure 5: Plotted for ν = 2: (a) the traces u(x, 0) (dashed line) and v(x, 0) (solid
line); (b) the nodal lines of u (dashed lines) and the level line v ≈ −0.185125 (solid
line). Interior high spots on F2 are marked by arrows connecting them with extrema
of the velocity potential trace.

same number of high spots. Of course, the domain obtained by reflection of W3 in
the y-axis also provides an example of domain with two interior high spots.

4.3 The case ν = 2

Applying the same procedure for this value of ν, one obtains the fluid domain W2

with two interior high spots on F2, which distinguishes essentially from W3/2, W5/2,
W7/2 and W3; see Fig. 5 (b). Namely, the nodal line of the eigenfunction u (recall
that (17) defines it for ν = 2) connects F2 with the stagnation point of v on B2.

There are two interior high spots on F2, both located near its endpoints: on the
left at x ≈ 0.786780 and on the right at x ≈ 2.343392. The corresponding endpoints
of F2 are at x ≈ 0.774530 and at x ≈ 2.387143, respectively. Finally, we notice
that the domain W2 is bulbous on both sides like W5/2, W7/2 and W3. Of course,
the domain obtained by reflection of W2 in the y-axis also provides an example of
domain with two interior high spots.
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5 Concluding remarks

Two-dimensional sloshing is a common type of fluid oscillations in canals of uniform
cross-section and similar troughs with vertical end-walls. Investigating this motion
by means of a semi-inverse method, several examples of sloshing domains have been
constructed, all of which have the following common property: there is at least one
interior high spot, that is, a point on the free surface, where its extremal elevation
occurs for a fundamental eigenmode.

In the version of semi-inverse method applied here, the velocity potential satisfies
the free-surface boundary condition, involving the spectral parameter proportional
to the sloshing frequency squared, whereas a wetted contour is to be determined from
the no-flow condition. Using this condition, we restricted ourselves to considering
contours that are either adjacent to the y-axis or lying in the fourth quadrant. Along
with the latter contours, their symmetric images in the y-axis also provide sloshing
domains with interior high spots.

Let us recall some characteristic features of the constructed domains with interior
high spots:

• Many of these domains, but not all, have multiple interior high spots.
• All these domains are bulbous on the side, where an interior high spot is

located.
• Each found interior high spot is located close to an endpoint of the free surface.
• The bottom profile of every found domain has at least one corner point (do-

mains with smooth bottom profiles can also be constructed; see Remark 4).
• A single nodal line of the velocity potential connects F and B in each example.

It is clear that a sloshing domain W ⊂ R2
− defines a trough W × (0, ℓ) ⊂ R3

− for
any ℓ > 0. Moreover, if u(x, y) is a fundamental eigenmode of sloshing in W , then
this function plays the same role for W × (0, ℓ). Therefore, if W has an interior high
spot, then there is a straight line (parallel to trough’s generators) in the free surface
of W × (0, ℓ), each point of which is a high spot interior with respect to the trough’s
free surface.

In conclusion, we conjecture that the result obtained in [5] for domains satisfying
John’s condition and having smooth bottom (it bans interior high spots for such
domains) is still valid when the bottom is nonsmooth. The domain adjoining W5/2

on the left provides a basis for this conjecture as well as similar domains adjoining
W7/2 and W3.
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