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STATICALLY CONDENSED ITERATED PENALTY METHOD FOR

HIGH ORDER FINITE ELEMENT DISCRETIZATIONS OF

INCOMPRESSIBLE FLOW ∗

MARK AINSWORTH† AND CHARLES PARKER ‡

Abstract. We introduce and analyze a Statically Condensed Iterated Penalty (SCIP) method
for solving incompressible flow problems discretized with pth-order Scott-Vogelius elements. While
the standard iterated penalty method is often the preferred algorithm for computing the discrete
solution, it requires inverting a linear system with O(pd) unknowns at each iteration. The SCIP
method reduces the size of this system to O(pd−1) unknowns while maintaining the geometric rate
of convergence of the iterated penalty method. The application of SCIP to Kovasznay flow and
Moffatt eddies shows good agreement with the theory.
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1. Introduction. The search for stable mixed finite element pairs for the Stokes
equations has a long and rich history and recently, attention has been focused on finite
elements that satisfy exact sequence properties; see e.g. the review paper [11] and
references therein. Finite element spaces based on exact sequences are attractive in
that they lead to schemes that exhibit “pressure robustness” and result in approxi-
mations to the velocity that are pointwise divergence free. These schemes are often
inf-sup stable with respect to the mesh size and, in some cases, can be shown to be
[2] uniformly stable with respect to the polynomial degree. Stability is crucial for
avoiding nonphysical artifacts in the numerical solution, obtaining optimal a priori
estimates, and constructing effective preconditioners.

A more classical approach to devising mixed finite element schemes, particularly in
the context of higher order methods, consists of using a combination of the form XD×
divXD where the space XD consists of continuous piecewise polynomial vector fields.
Such schemes also form part of an exact sequence, but were not originally derived in
this way [20, 21, 23]. While it is known [21, 23] that these elements are inf-sup stable
with respect to the mesh size provided that the space XD consists of fourth order
polynomials or higher, the same analysis [21, 23] suggested that the inf-sup constant
may decay algebraically as the polynomial order is increased. However, practical
experience suggests that the scheme is uniformly inf-sup stable in the polynomial
degree; one by-product of the current work is a formal proof of the uniform inf-sup
stability of the Scott-Vogelius elements in both the mesh size and the polynomial degree
under certain necessary (but mild) assumptions on the mesh. Despite providing the
first proof of uniform stability, the main objective of the current work is quite different:
we exhibit an algorithm that enables one to efficiently implement the Scott-Vogelius
elements, particularly in the case of higher order elements.

One difficulty in applying the Scott-Vogelius elements is the difficulty of finding
a basis for the discrete pressure space divXD. In addition, as mentioned in section 2,
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the pressure space possesses non-trivial constraints at certain element vertices, which
further exacerbates the problem. For these reasons, the method is often implemented
using the Iterated Penalty (IP) method [6, 7, 8, 15]. The IP approach circumvents the
need to construct an explicit basis for the pressure space at the expense of proceeding
iteratively which involves repeatedly having to solving finite element type problems
involving only the velocity space XD. This kind of approach is attractive in the
context of lower order methods but, as remarked in section 3, the standard Iterated
Penalty approach becomes increasingly less attractive for higher order elements owing
to need to update the interior degrees of freedom on every iteration.

It is worth noting that the interior degrees of freedom number O(pd) while the
remaining degrees of freedom associated with element boundaries number O(pd−1).
As such, the interior degrees of freedom account for the bulk of the degrees of freedom
and having to update them at every iterate dominates the overall cost. To remedy
this issue, we propose a Statically Condensed Iterated Penalty (SCIP) method which
requires only the degrees of freedom on the element boundaries to be updated at each
iteration; the result being that the cost per iteration of SCIP is drastically reduced
compared with the standard iterated penalty method.

Roughly speaking, the main idea behind the SCIP method consists of decompos-
ing the discrete solution into contributions from a pair of subspaces associated with
element boundaries and from local pairs of subspaces associated with element inte-
riors. Each of these contributions can be obtained by solving a Stokes-like equation
posed over their respective subspace. The boundary contribution is first solved us-
ing the standard iterated penalty method, while the interior contributions, for which
bases may be readily constructed, are then solved via direct methods. The net effect
is that the SCIP method only requires a single solve for the interior degrees of freedom
rather than having to update at every iteration using the IP method.

In section 4, we provide theoretical bounds for the convergence of SCIP, and detail
its implementation. In section 5, we present two numerical examples demonstrating
SCIP’s performance. Section 6 introduces discrete extension operators that are then
used to prove the convergence results of the SCIP method in section 7. Finally,
Appendix A contains the various properties of the Scott-Vogelius elements in 2D,
including inf-sup stability, optimal approximation, and exact sequence properties.

2. Mathematical Preliminaries. Let Ω ⊂ Rd, d ∈ {2, 3} be a polygonal do-
main whose boundary Γ is partitioned into disjoint subsets ΓD and ΓN with |ΓD| > 0.
We consider the Stokes equations in Ω:

− div ε(u) + grad q = f in Ω,(2.1a)

divu = 0 in Ω,(2.1b)

u = 0 on ΓD,(2.1c)

−ε(u) · n̂+ qn̂ = g on ΓN ,(2.1d)

where u and q are the unknown fluid velocity and pressure, ε(·) is the strain rate
tensor, and f ∈ L2(Ω) and g ∈ L2(ΓN ) are given data.

Let H1
D(Ω) := {v ∈ H1(Ω) : v|ΓD

= 0} and L2
D(Ω) = L2(Ω) if |ΓD| 6= |Γ|

and L2
D(Ω) = L2

0(Ω) otherwise. The variational form of (2.1) is then: Find (u, q) ∈
H1

D(Ω)× L2
D(Ω) such that

a(u,v)− (q, div v) = L(v) ∀v ∈ H1
D(Ω),(2.2a)

−(r, divu) = 0 ∀r ∈ L2
D(Ω),(2.2b)
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where

a(u,v) := (ε(u), ε(v)) and L(v) := (v,f) + (v, g)ΓN
∀u,v ∈ H1(Ω)(2.3)

and (·, ·)ω denotes the L2(ω) or L2(ω) inner product. More generally, | · |s,ω and
‖ · ‖s,ω denote the Hs(ω) or Hs(ω) semi-norm and norm, respectively. We omit the
subscript ω when ω = Ω. As a matter of fact, the ensuing discussion will be valid for
the more general setting in which the bilinear form a(·, ·) satisfies the conditions:

• Boundedness: There exists M > 0 such that

|a(u,v)| ≤M‖u‖1‖v‖1 ∀u,v ∈ H1
D(Ω).(2.4)

• Ellipticity: There exists α > 0 such that

a(u,u) ≥ α‖u‖21 ∀u ∈ H1
D(Ω).(2.5)

In particular, these conditions ensure the well-posedness of (2.2) by standard Babuška-
Brezzi theory (see e.g. [10, Lemma 3.19]). Relevant examples of bilinear forms a(·, ·)
satisfying (2.4) and (2.5) include

• Oseen flow:

a(u,v) = 2ν(ε(u), ε(v)) + ((w · ∇)u,v),(2.6)

where ν is the kinematic viscosity and w is divergence free with w · n̂ ≥ 0 on
ΓN (see e.g. [10, §1] for a precise description of the required regularity of w).

• Singular perturbations to Oseen flow: a(u,v) = (u,v) + δ{2ν(ε(u), ε(v)) +
((w · ∇)u,v)}, where ν and w are as above.

The Oseen equations arise in numerical methods for the steady Navier-Stokes equa-
tions, while the singular perturbation problems arise in time discretizations of un-
steady Stokes and Navier-Stokes flow (see e.g. [10]) in which δ ∼ ∆t, where ∆t is the
timestep.

2.1. Scott-Vogelius Discretization. Let X ⊂ H1(Ω) be the set of continuous,
piecewise polynomials of degree p ∈ N on a triangulation T of Ω:

X := {v ∈ C0(Ω̄) : v|K ∈ Pp(K) ∀K ∈ T },

where Pp(K) denotes the space of polynomials of degree at most p. In particular, we
assume that the triangulation T is a partitioning of the domain Ω into simplices such
that the nonempty intersection of any two distinct elements from T is a single common
sub-simplex of both elements with mesh size h := maxK∈T hK and hK := diam(K).
We also assume that element boundaries are located at the intersections of Γ̄D and
Γ̄N . The space XD := X ∩ H1

D(Ω) then consists of functions in X vanishing on
the Dirichlet boundary ΓD, and we discretize (2.2) using the space XD := [XD]d as
follows: Find (uX , qX) ∈ XD × divXD such that

a(uX ,v)− (qX , div v) = L(v) ∀v ∈ XD,(2.7a)

−(r, divuX) = 0 ∀r ∈ divXD.(2.7b)

The pair XD × divXD corresponds to the Scott-Vogelius elements [20, 21, 23]
which possess properties that make them an attractive option for mixed high order
discretization. Firstly, the velocity space consists of standard continuous finite ele-
ments, which are already implemented in most, if not all, high order finite element
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software packages. Secondly, choosing r = divuX in (2.7b) shows that the resulting
discrete velocity uX is pointwise divergence free, which means that (2.1b) is satisfied
exactly. Moreover, a discrete inf-sup condition holds:

βX := inf
06=q∈divXD

sup
v∈XD

(div v, q)

‖v‖1‖q‖
,(2.8)

where, in general, βX > 0 depends on h and p, but is strictly positive. This is most
easily seen by the following argument. The divergence operator div : XD → divXD

is continuous and surjective and XD is finite dimensional. Thus, the operator div
admits a bounded right-inverse R : divXD → XD with divRq = q for all q ∈ divXD.
Choosing v = Rq in the supremum in (2.8) gives

βX ≥ inf
06=q∈divXD

(divRq, q)

‖Rq‖1‖q‖
= inf

06=q∈divXD

‖q‖
‖Rq‖1

≥ ‖R‖−1 > 0,

where ‖R‖ denotes the usual operator norm.

3. Standard Iterated Penalty Method. A classical implementation of the
finite element method (2.7) would proceed in two steps: (i) selecting a suitable basis
for the spaces XD and divXD and (ii) solving the resulting saddle point system. The
standard nature of the velocity space XD means that a basis may be constructed via
the usual techniques. We use the Bernstein basis (see e.g. [13]) for the scalar space
XD (other choices are perfectly acceptable). In the case d = 3, the basis consists of
(i) piecewise linear vertex functions, (ii) edge functions, (iii) face functions. and (iv)
interior functions, while in the case d = 2, the face functions play the role of interior
degrees of freedom. In particular, there are d+ 1 vertex functions,

(

d+1
2

)

(p− 1) edge

functions,
(

d+1
3

)

(p− 1)(p− 2)/2 face functions, and (p− 1)(p− 2)(p− 3)/6 functions
associated with a given element K ∈ T . A basis for XD is obtained using functions
of the form {φj êk}dk=1, where {êk}dk=1 is the standard basis for Rd and {φj} denotes
the basis for XD.

In contrast, constructing a basis for the pressure space divXD is far more com-
plicated due, in part, to the large null space of the divergence operator. However,
complications also arise from the fact [5, 20, 21, 23] that the dimension of the space
divXD is affected by the element topology. For instance, in the case d = 2 difficulties
arise at singular vertices [21, 22]. An element vertex is singular if all element edges
meeting at the vertex lie on exactly two straight lines. Thus, in the case of an interior
vertex, a singular vertex can only arise when four elements abut the vertex. Together,
these features mean that constructing a basis for the pressure space is a much more
challenging task compared with constructing a basis for XD.

The iterated penalty method [6, 7, 8, 15] offers an attractive alternative to the
classical implementation of (2.7) by virtue of the fact that one can circumvent the
need to construct an explicit basis for divXD altogether. The iterated penalty method
proceeds as follows for a chosen sufficiently large parameter λ > 0 (see Theorem 3.1
below): For n = 0, 1, . . . , find un

X ∈ XD such that

aλ(u
n
X ,v) = L(v) + (divwn

X , div v) ∀v ∈ XD,(3.1a)

wn+1
X = wn

X − λun
X ,(3.1b)

where w0
X := 0 and

aλ(u,v) := a(u,v) + λ(divu, div v) ∀u,v ∈ H1(Ω).(3.2)
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Note that un
X is well-defined by (3.1a) thanks to the Lax-Milgram lemma since a(·, ·),

and hence aλ(·, ·), is elliptic on XD ⊂ H1
D(Ω). The steps (3.1a)-(3.1b) are iterated

until a suitable stopping criterion (see Theorem 3.1 below for one such criterion) is
met, at which point the pressure approximation is taken to be qX ≃ qnX := divwn

X .
The following result concerns the convergence of (3.1).

Theorem 3.1. Let (uX , qX) ∈ XD × divXD denote the solution to (2.7) and
(un

X ,w
n
X), n ∈ N be given by (3.1). Then, the following error estimate holds:

max







‖uX − un
X‖1,

(

M(M + α)

αβ2
X

+

√
dλ

βX

)−1

‖qX − divwn
X‖







≤ M + α

αβX
‖ divun

X‖,

where M > 0 (2.4), α > 0 (2.5), and βX > 0 (2.8). Moreover,

‖ divun
X‖ ≤

√
d

[

M(M + α)2

α2β2
Xλ

]n

‖uX − u0‖1.

Theorem 3.1 is proved in subsection 7.1 and shows that, for λ sufficiently large, the
standard iterated penalty method (3.1) converges at a geometric rate and that the
quantity ‖ divun

X‖ may be used as the basis for a stopping criterion.

3.1. Implementation Cost. The main cost of using the standard iterated pen-
alty method lies in (3.1a) which entails solving a square system with O(|T |pd) un-
knowns at every iteration. The bulk of the degrees of freedom are associated with
the interior basis functions which, as remarked earlier, number O(pd) per element.
In contrast, the number of degrees of freedom associated with element boundaries is
O(|T |pd−1). The question arises: Can system (3.1a) be reduced to a system of size
O(|T |pd−1) unknowns by an (ideally) one-time elimination, or static condensation, of
the interior degrees of freedom?

In order to explore this question, it is convenient to express static condensation
in variational form. Given an element K ∈ T , let

XI(K) := {v ∈ XD : suppv ⊆ K} and XI :=
⊕

K∈T

XI(K).(3.3)

The orthogonal complement of XI in XD with respect to the aλ(·, ·) form and its
“adjoint” are given by

XB := {v ∈ XD : aλ,K(v,w) = 0 ∀w ∈ XI(K), ∀K ∈ T }(3.4)

X
†
B := {v ∈ XD : aλ,K(w,v) = 0 ∀w ∈ XI(K), ∀K ∈ T },(3.5)

where aλ,K(·, ·) is the restriction of aλ(·, ·) to the element K. Static condensation
then amounts to seeking the solution to (3.1a) in the form

un
X = uB +

∑

K∈T

uK ,(3.6)

in which the contributions are given by

uK ∈ XI(K) : aλ,K(uK ,v) = (f ,v)K + (divwn
X , div v)K ∀v ∈ XI(K),(3.7)

uB ∈ XB : aλ(uB,v) = L(v) + (divwn
X , div v) ∀v ∈ X

†
B.(3.8)
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The systems (3.7) consist of O(pd) interior unknowns on each element that are de-
coupled and can be solved in parallel using direct methods compared with the global
system of O(|T |pd) unknowns corresponding to (3.1a). Meanwhile (3.8) is equiva-
lent to a global linear system of O(|T |pd−1) unknowns. Algorithm 3.1 summarizes
the standard iterated penalty method in which the solution to (3.1a) is sought in
the form (3.6). Unfortunately, the computational cost of Algorithm 3.1 per iteration
remains O(|T |p2d) operations owing to the need to solve (3.7) at every iteration.

Algorithm 3.1 Standard Iterated Penalty Method for (2.7)

Require: w0
X := 0, λ > 0

1: for n = 0, 1, . . . , do
2: Find uB ∈ XB such that

aλ(uB,v) = L(v) + (divwn
X , div v) ∀v ∈ X

†
B.

3: For each K ∈ T , find uK ∈ XI(K) such that

aλ,K(uK ,v) = (f ,v)K + (divwn
X , div v)K ∀v ∈ XI(K).

4: un
X := uB +

∑

K∈T uK

5: if stopping criteria is met then
6: break

7: end if

8: wn+1
X := wn

X − λun
X

9: end for

10: return un
X , qnX := divwn

X

4. Reducing the Cost of the Standard Iterated Penalty Method. The
foregoing discussion showed that, even with element-wise static condensation, the
cost of the standard iterated penalty method remains at O(|T |p2d) operations per
iteration. The main reason why the static condensation failed to reduce the cost per
iteration was that lines 4 and 8 in Algorithm 3.1 required the values of the interior
degrees of freedom at every iteration in order to compute the RHS needed in line 2 for
the boundary degrees of freedom. In essence, while static condensation decouples the
LHS of the system appearing in (3.7) and (3.8), the problem remains coupled owing
to the form of the source terms on the RHS.

In this section, we show that a judicious modification of the choice the space XB

(and X
†
B) results in a full decoupling of the interior and boundary degrees of freedom.

This means that one need only solve for the interior degrees of freedom once, as
opposed to having to solve for the interiors at every iteration as in Algorithm 3.1. The
main idea rests on using properties of the spaces of divergence free interior functions

NI(K) := {v ∈ XI(K) : div v ≡ 0}, K ∈ T , and NI :=
⊕

K∈T

NI(K),(4.1)

which will play a key role in analyzing the interior spaces and constructing the ap-
propriate modification to XB.
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4.1. The Interior Spaces. We start by examining the Stokes system associated
with the interior degrees of freedom on an element K ∈ T : Find (uK , qK) ∈ XI(K)×
divXI(K) such that

aK(uK ,v)− (qK , div v)K = L1(v) ∀v ∈ XI(K),(4.2a)

−(r, divuK)K = L2(r) ∀r ∈ divXI(K),(4.2b)

where L1(·) and L2(·) are suitable linear functionals. Problem (4.2) may be written
in terms of matrices as follows. Any u ∈ XD and qK ∈ divXI(K), K ∈ T , may be
expressed as

u = ~uTB~ΦB + ~uTI ~ΦI and qK = ~qTK
~ψι,K ,

where ~ΦI is a basis for the interior velocity functions, ~ΦB a basis for the vertex and
edge functions, while ~ψι,K is a basis for divXI(K). For K ∈ T , let EK be the matrix
corresponding to the form aK(·, ·), partitioned as follows:

aK(u,v) =

[

~vB,K

~vI,K

]T

EK

[

~uB,K

~uI,K

]

=

[

~vB,K

~vI,K

]T [
EBB EBI

EIB EII

] [

~uB,K

~uI,K

]

∀u,v ∈ XD,

where ~uB,K and ~uI,K are the boundary and interior degrees of freedom of u associated
to element K. In a similar vein, GK is the matrix corresponding to −(·, div ·)K :

−(qK , divu)K = ~qTKGK

[

~uB,K

~uI,K

]

= ~qTK
[

GιB GιI

]

[

~uB,K

~uI,K

]

,

for all qK ∈ divXI(K) and u ∈ XD. In particular, the LHS of (4.2) corresponds to
a square matrix

[

EII GT
ιI

GιI 0

]

.(4.3)

The first result concerns existence and uniqueness of solutions to (4.2):

Lemma 4.1. The interior Stokes system (4.2) is uniquely solvable.

Proof. As shown above, (4.2) is equivalent to a square linear system involving the
matrix (4.3), and therefore it suffices to show uniqueness. Suppose that (uK , qK) ∈
XI(K)× divXI(K) satisfy (4.2) with L1 = L2 = 0. Thanks to (4.2b), uK ∈ NI(K).
Choosing v = uK in (4.2a) then gives a(uK ,uK) = 0. Since a(·, ·) is elliptic on
NI(K) by (2.5), uK ≡ 0. By the definition of divXI(K), there exists w ∈ XI(K)
such that divw = qK , and so (4.2a) gives 0 = (qK , divw) = (qK , qK). Thus, qK ≡ 0,
which completes the proof.

4.2. The Boundary Space. Previously, in (3.4) and (3.5), the boundary space
XB was chosen to be the orthogonal complement with respect to the form aλ(·, ·)
defined in (3.2). However, the presence of the term (div ·, div ·) in the data in lines
2-3 of Algorithm 3.1 was ultimately responsible for the need to recompute the static
condensation at each iteration. In order to avoid this dependency on the data, we
construct new spaces X̃B and X̃

†
B that explicitly decouple the dependency in the data

arising from the (div ·, div ·) term. In particular, if the space X̃B has the property
that

v ∈ X̃B =⇒ (div v, q) = 0 ∀q ∈ divXI ,(4.4)
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then the dependency on the data will be removed. Of course, we still want the space
X̃B to correspond to degrees of freedom associated with the element boundaries.
Therefore, we augment (4.4) with additional conditions

v ∈ X̃B =⇒ aλ(v, z) = 0 ∀z ∈ NI ,(4.5)

where NI is given by (4.1). Below, we show that conditions (4.4) and (4.5) are
independent. Consequently, we arrive at the following choice of the boundary space:

X̃B := {v ∈ XD : a(v, z) = 0 ∀z ∈ NI and (div v, r) = 0 ∀r ∈ divXI},(4.6)

where we used the definition of NI (4.1) to rewrite (4.5) in terms of a(·, ·) by dropping

the (div ·, div ·) term in aλ(·, ·). Similarly, we define X̃
†
B to be the corresponding

“adjoint” space:

X̃
†
B := {v† ∈ XD : a(z,v†) = 0 ∀z ∈ NI and (div v†, r) = 0 ∀r ∈ divXI}.

The equivalences NI = ⊕K∈T NI(K) and XI = ⊕K∈T XI(K) mean that the condi-
tions appearing in (4.6) decouple into independent local conditions for each K ∈ T :

aK(v, z) = 0 ∀z ∈ NI(K) and (div v, r)K = 0 ∀r ∈ divXI(K).(4.7)

Moreover, conditions (4.7) are linearly independent of one another. This can most
easily be seen from the matrix form of (4.7) which reads

~zTI,KEII~vI,K = −~zTI,KEIB~vB,K ∀z ∈ NI(K)

~rTKGιI~vI,K = −~rTKGιB~vB,K ∀r ∈ divXI(K).

Note that for any z ∈ NI(K) and s ∈ divXI(K), ~zTI,KGT
ιI~sK = 0 by definition, and

so we equivalently have

[

~zI,K
~rK

]T [
EII GT

ιI

GιI 0

] [

~vI,K
∗

]

= −
[

~zI,K
~rK

]T [
EIB

GιB

]

~vB,K(4.8)

for all (z, r) ∈ NI(K) × divXI(K). Here, ∗ denotes an unimportant (but appropri-
ately sized) vector. By Lemma 4.1, the matrix (4.3) appearing on the LHS above is
invertible, which means that the conditions in (4.7) are indeed linearly independent.
Moreover, we have the following inclusion:

{v ∈ XD : ~vI,K = SK~vB,K ∀K ∈ T } ⊆ X̃B,(4.9)

where

SK := −
[

I 0
]

[

EII GT
ιI

GιI 0

]−1 [
EIB

GιB

]

.(4.10)

As we later show (in Lemma 4.2), the reverse inclusion also holds, meaning that (4.9)
holds as an equality.

A similar characterization is obtained for X̃†
B by first expressing conditions (4.8)

as









~0
~0
~zI,K
~rK









T 







∗ ∗ EBI GT
ιB

∗ ∗ ∗ 0

EIB ∗ EII GT
ιI

GιB 0 GιI 0

















~vB,K

~0
~vI,K
∗









= 0(4.11)
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for all (z, r) ∈ NI(K) × divXI(K), where we again use ∗ to denote unimportant
(but again appropriately sized) vectors or matrices. Using similar arguments, we may

show that the conditions for the adjoint space X̃†
B are the transpose of the conditions

in (4.11), which leads to the following relation:

{v ∈ XD : ~vI,K = TK~vB,K ∀K ∈ T } ⊆ X̃
†
B,

where

TK := −
[

I 0
]

[

ET
II GT

ιI

GιI 0

]−1 [
ET

BI

GιB

]

.(4.12)

Note that TK is well-defined since the matrix appearing in (4.12) is the transpose of
the (invertible) matrix (4.3). In summary, we have

Lemma 4.2. X̃B = {v ∈ XD : ~vI,K = SK~vB,K ∀K ∈ T } and X̃
†
B = {v ∈ XD :

~vI,K = TK~vB,K ∀K ∈ T }.
Proof. Let v ∈ X̃B and define w ∈ XD by the rule w := ~ΦT

B~vB + ~ΦT
I ~wI , where

~wI,K := SK~vB,K for all K ∈ T . By (4.9), w ∈ X̃B. The function XD ∋ e :=

v − w = ~ΦT
I (~vI − ~wI) then satisfies e ∈ X̃B by linearity and e ∈ XI since the

boundary degrees of freedom of e are identically zero. By the second condition in
the definition of X̃B (4.6), ‖ div e‖2 = 0 and so e ∈ NI . The first condition in the
definition of X̃B gives a(e, e) = 0, and so e ≡ 0 thanks to (2.5). Consequently,
v = w and X̃B = {v ∈ XD : ~vI,K = SK~vB,K ∀K ∈ T }. Similar arguments show

that X̃†
B = {v ∈ XD : ~vI,K = TK~vB,K ∀K ∈ T }.

Lemma 4.2 confirms the expectation that the spaces X̃B and X̃
†
B are associated with

element boundaries: i.e. the interior degrees of freedom of a function in X̃B or X̃†
B

are uniquely determined by its boundary degrees of freedom, which, in turn, means
that XD = XI ⊕ X̃B = XI ⊕ X̃

†
B.

We record this result, along with some useful properties of the spaces X̃B and
div X̃B which we shall need shortly:

Theorem 4.3. There holds

XD = XI ⊕ X̃B and divXD = divXI ⊕ div X̃B.(4.13)

Moreover, the pair X̃B × div X̃B satisfies an inf-sup condition:

αβX
M + α

‖r̃‖ ≤ sup
0 6=ṽ∈X̃B

(div ṽ, r̃)

‖ṽ‖1
∀r̃ ∈ div X̃B,(4.14)

where M > 0 (2.4), α > 0 (2.5), and βX > 0 (2.8). Equations (4.13) and (4.14) also

hold with X̃B replaced by X̃
†
B.

Proof. As mentioned above, the decomposition XD = XI ⊕ X̃B = XI ⊕ X̃
†
B

follows from Lemma 4.2. Consequently, divXD = divXI ⊕ div X̃B.
Let r̃ ∈ div X̃B be given. By (2.8), there exists w ∈ XD such that divw = r̃

and ‖w‖1 ≤ β−1
X ‖r̃‖. Thanks to (2.4) and (2.5), there exists zI ∈ NI such that

a(z,n) = a(w,n) for all n ∈ NI satisfying ‖z‖1 ≤ Mα−1‖w‖1 by the Lax-Milgram
Lemma. The function ṽ := w − z then satisfies div ṽ = r̃, ṽ ∈ X̃B, and ‖v‖1 ≤
(M +α)/(αβX)‖r̃‖. Given q̃ ∈ div X̃†

B, a function v† ∈ X̃
†
B satisfying div v† = q̃ and

‖v†‖1 ≤ (M + α)/(αβX)‖q̃‖ may be constructed analogously.
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4.3. The Statically Condensed Iterated Penalty Method. Similarly to
(3.7) and (3.8), the decomposition (4.13) decouples the solution to (2.7) into its bound-
ary and interior components. However, this time there is a crucial difference in that
the interior components {uK} defined in (4.16) do not appear in the data for the
system (4.15) determining the boundary component ũ:

Lemma 4.4. The solution to (2.7) may be written in the form

uX := ũ+
∑

K∈T

uK and qX := q̃ +
∑

K∈T

qK ,

where:
1. (ũ, q̃) ∈ X̃B × div X̃B satisfy

a(ũ,v)− (q̃, div v) = L(v) ∀v ∈ X̃
†
B,(4.15a)

−(r, div ũ) = 0 ∀r ∈ div X̃†
B.(4.15b)

2. For each K ∈ T , (uK , qK) ∈ XI(K)× divXI(K) satisfy

aK(uK ,v)− (qK , div v)K = (f ,v)K − aK(ũ,v) ∀v ∈ XI(K),(4.16a)

−(r, divuK)K = 0 ∀r ∈ divXI(K).(4.16b)

Moreover, the systems (4.15) and (4.16) are uniquely solvable.

Lemma 4.4, whose proof is given in subsection 6.1, shows the finite element solution
(uX , qX) to (2.7) may be computed by first solving a global Stokes system posed on
the boundary spaces X̃B × div X̃B (4.15) and then solving decoupled local Stokes
systems posed on local interior spaces XI(K)×divXI(K) (4.16). Crucially, the data
in (4.15) which determines the boundary unknowns ũ is independent of the interior
problem (4.16). In other words, the system (4.15) which determines the boundary
degrees of freedom can now be solved independently of (4.16). By way of contrast,
this was not the case previously when static condensation was based on XB.

The systems (4.15) and (4.16) now take the form of Stokes problems posed over
the spaces X̃B × div X̃B and XI(K)× divXI(K). In particular, the construction of
a basis for div X̃B inherits all of the difficulties already mentioned when discussing
divXD, which led us to consider using the standard iterated penalty method in the
first place. However, by the same token, we may solve the global system (4.15) using
the standard iterated penalty method with the crucial difference that there is no need
to perform static condensation during the iteration. Instead, the interior degrees of
freedom are computed once after the boundary component ũ is in hand by solving
(4.16).

The problem of solving the interior problems (4.16) posed over the spacesXI(K)×
divXI(K) remains. One could, of course, solve the problem using the iterated penalty
method, but this would lead to having to iterate over problems of size O(pd), which
is precisely what we are seeking to avoid. Fortunately, as shown in [23, Lemma 2.5]
in the case d = 2, the local interior pressure space can be characterized explicitly as
follows:

divXI(K) = {r ∈ Pp−1(K) ∩ L2
0(K) : r(a) = 0 for all vertices a of K}.(4.17)

Similarly, in the case d = 3, one has [17, Theorem 4.2]:

divXI(K) = {q ∈ Pp−1(K) ∩ L2
0(K) : q vanishes along element edges}.
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These characterizations mean that a basis for divXI(K) may be constructed via
standard methods; see e.g. subsection 5.1 for a basis using Bernstein polynomials in
the case d = 2. Consequently, one can assemble and invert the local systems (4.16)
directly proceeding element-by-element.

The overall scheme, dubbed the Statically Condensed Iterated Penalty (SCIP)
method, is summarized in Algorithm 4.1. Crucially, the solve for the interior degrees
of freedom now happens outside the for loop in Algorithm 4.1, which means that
each iteration of the standard iterated penalty method applied to (4.15) only entails
inverting a linear system of O(|T |pd−1) unknowns, compared to inverting a system
with O(|T |pd) unknowns for the standard iterated penalty method applied to (2.7).
Moreover, inf-sup condition for X̃B × div X̃B (4.14) gives the following analogue of
Theorem 3.1:

Theorem 4.5. Let (ũ, q̃) ∈ X̃B ×div X̃B be the solution to (4.15) and (ũn, w̃n),
n ∈ N be given by Algorithm 4.1. Then, there holds

(4.18) max







‖ũ− ũn‖1,
(

M(M + α)3

α3β2
X

+

√
dλ(M + α)

αβX

)−1

‖q̃ − div w̃n‖







≤ (M + α)2

α2βX
‖ div ũn‖,

where M > 0 (2.4), α > 0 (2.5), and βX > 0 (2.8). Moreover,

‖ div ũn‖ ≤
√
d

[

M(M + α)4

α4β2
Xλ

]n

‖ũ− ũ0‖1.(4.19)

The presence of the adjoint spaces X̃†
B and div X̃†

B in (4.15) means that Theorem 4.5
is not an immediate consequence of results for the standard iterated penalty method
e.g. [6, Theorem 13.1.19 & Theorem 13.2.2], and a short proof is therefore given in
section 7. In order to obtain a geometric rate of convergence, the parameter λ must
be chosen so that λ ≥M(M +α)2(αβX)−2 for the standard iterated penalty method
Algorithm 3.1, whereas λmust be chosen slightly larger with λ ≥M(M+α)4(α2βX)−2

for Algorithm 4.1.

4.4. Matrix Form of SCIP. In order to facilitate the implementation of the
SCIP method, we now derive the matrix form of Algorithm 4.1.

Stiffness Matrices and Load Vectors. We first consider the bilinear forms and
load vectors in line 2 of Algorithm 4.1. Let EK and GK be defined and partitioned
as in subsection 4.2, and let CK correspond to the form (div ·, div ·)K , partitioned
analogously, where we use the superscript “(K)” to explicitly indicate the dependence
of matrix and vector sub-blocks on the element K:

(divu, div v)K =

[

~vB,K

~vI,K

]T
[

C
(K)
BB C

(K)
BI

C
(K)
IB C

(K)
II

]

[

~uB,K

~uI,K

]

∀u,v ∈ XD.

Likewise, let ~LK denote the element load vector satisfying corresponding to the data
f and g:

(f ,v)K + (g,v)ΓN∩∂K = LK(v) =

[

~vB,K

~vI,K

]T

~LK =

[

~vB,K

~vI,K

]T
[

~L
(K)
B

~L
(K)
I

]

∀v ∈ XD.
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Algorithm 4.1 Statically Condensed Iterated Penalty Method (SCIP) for (2.7)

Require: w̃0 := 0, λ > 0
1: for n = 0, 1, . . . , do
2: Find ũn ∈ X̃B such that

aλ(ũ
n,v) = L(v) + (div w̃n, div v) ∀v ∈ X̃

†
B.(4.20)

3: if stopping criteria is met then
4: break

5: end if

6: w̃n+1 := w̃n − λũn

7: end for

8: For each K ∈ T , find (uK , qK) ∈ XI(K)× divXI(K) such that

aK(uK ,v)− (qK , div v)K = (f ,v)K − aK(ũn,v) ∀v ∈ XI(K),

−(r, divuK)K = 0 ∀r ∈ divXI(K).

9: return un
X := ũn +

∑

K∈T uK , qnX := div w̃n +
∑

K∈T qK

With the element matrices and load vectors in hand, we define

ẼK := E
(K)
BB +E

(K)
BI SK + T T

KE
(K)
IB + T T

KE
(K)
II SK ,

C̃K := C
(K)
BB +C

(K)
BI SK + T T

KC
(K)
IB + T T

KC
(K)
II SK ,

ÃK := ẼK + λC̃K ,

~̃LK := ~L
(K)
B + T T

K
~L
(K)
I ,

where SK and TK are defined in (4.10) and (4.12) Thanks to Lemma 6.2, we have

the following relations for all ũ ∈ X̃B and ṽ ∈ X̃
†
B:

aλ,K(ũ, ṽ) = ~vTB,KÃK~uB,K , LK(ṽ) = ~vTB,K
~̃LK , (div ũ, div ṽ)K = ~vTB,KC̃K~uB,K .

The local matrices ÃK and C̃K and the load vector L̃K are sub-assembled in the

usual way to obtain the global matrices Ã and C̃ and the global load vector ~̃L. Given
w̃n ∈ X̃B, line 2 of Algorithm 4.1 corresponds to line 2 of Algorithm 4.2. We again
emphasize that line 2 of Algorithm 4.2 consists of inverting a system of O(|T |pd−1)
unknowns at each iteration, while lines 2-3 of the standard iterated penalty method
consists of inverting a system of O(|T |pd) unknowns at each iteration.

Local Stokes Systems. For each K ∈ T , the element-wise system in line 8 of
Algorithm 4.1 corresponds to line 8 of Algorithm 4.2. The associated systems can be
solved in parallel using a direct solver. In particular, observe that the interior degrees
of freedom are not updated during each iteration.

Solution Representation. The final step in line 9 of Algorithm 4.1 entails
expressing the solution un

X and qnX with respect to some bases. For simplicity, we give
the degrees of freedom on each element K ∈ T . For the velocity un

X , it is convenient
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to use the original basis for XD restricted to K. By Lemma 4.2, we have

un
X |K = ~ΦT

B,K~u
n
B,K + ~ΦT

I,K

(

~uK + SK~u
n
B,K

)

,

w̃n|K = ~ΦT
B,K ~wn

B,K + ~ΦT
I,KSK ~w

n
B,K .

For the pressure q, we take {ψB,K} ⊂ Pp−1(K) to be any linearly independent set
of dimPp−1(K) − dimdivXI(K) functions such that {ψι,K} ∪ {ψB,K} is a basis for
Pp−1(K). Then, there exists a matrix HK such that

div v|K =

[

ψB,K

ψι,K

]T

HK~vK ∀v ∈ XD,

and so line 9 of Algorithm 4.2 corresponds to line 9 of Algorithm 4.1.

Algorithm 4.2 Matrix Form of the SCIP Method

Require: ~w0
B = ~0, λ > 0

1: for n = 0, 1, . . . , do

2: Solve Ã~unB = ~̃L+ C̃ ~wn
B

3: if stopping criteria is met then
4: break

5: end if

6: ~wn+1
B := ~wn

B − λ~unB
7: end for

8: For each K ∈ T , solve

[

E
(K)
II (G

(K)
ιI )T

G
(K)
ιI 0

]

[

~uK
~qK

]

=

[

~L
(K)
I −E

(K)
IB ~unB,K

~0

]

.

9: return

[

~unB,K

~uK + SK~u
n
B,K

]

and HK

[

~wn
B,K

SK ~w
n
B,K

]

+

[

~0
~qK

]

, K ∈ T .

4.5. Generalization to Other Finite Elements. The foregoing discussion
readily extends to any conforming finite element space XD such that XI defined by
(3.3) is nonempty. In particular, all of the results of the current section, section 6,
and section 7 are valid with identical proofs, where the inf-sup constant βX (2.8) now
corresponds to the pair XD × divXD, which may depend on h and p. Of course,
implementing the SCIP method requires an explicit characterization of the space
divXI(K), which may not be known or available in all cases.

5. Numerical Examples. We now present two numerical examples highlight-
ing the convergence properties of the SCIP algorithm applied to the 2D Scott-Vogelius
elements with p ≥ 4. As shown in Theorem A.1, these elements are uniformly inf-sup
stable in the mesh size h and the polynomial degree p and possess optimal approxi-
mation properties on a wide class of meshes. Consequently, estimate (4.18) ensures
that the convergence of the SCIP method (in exact arithmetic) will not degrade as
the mesh is refined or as the polynomial degree is increased. In particular, this choice
of element allows us to examine the performance of SCIP independently of problems
arising from element stability.

5.1. Implementation Details. We first detail how the Bernstein basis may be
used to construct a basis for divXI(K), summarizing the construction in [4, §6.1.1].
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Let K ∈ T and let {Bk
α}α∈Ik denote the Bernstein polynomials on K:

Bk
α =

k!

α1!α2!α3!
λα1

1 λα2

2 λα3

3 ,

where Ik := {α ∈ Z3
+ : |α| = k} and {λi}3i=1 are the barycentric coordinates on K.

The set {Bk
α}α∈Ik

0

, where Ik
0 := {α ∈ I : αi < k, 1 ≤ i ≤ 3} then consists of all

degree k polynomials that vanish at the vertices of K. Fix any γ ∈ Ip−1
0 ; then, the

set {Bp−1
α −Bp−1

γ : α ∈ Ip−1
0 \ {γ}} is a basis for divXI(K) thanks to (4.17) since all

Bernstein polynomials have the same average value. As we are using the Bernstein
basis for XD as well, we can then use the algorithms in [1] to compute the element

matrices EK , GK , and CK in O(p4) operations and the element load vector ~LK in
O(p3) operations.

For consistency across different flow problems, we invert the sparse matrix Ã in
line 2 of Algorithm 4.2 using the SparseLU solver in Eigen [9], while all local element
matrices are inverted using Eigen’s FullPivLU solver.

5.2. Kovasznay Flow. We first consider Oseen flow (2.6) on the rectangular
domain Ω = (−0.5, 2)× (−0.5, 1.5) with viscosity ν = 10−1, f = 0, and

w(x, y) =

[

1− eκx cos(2πy)
κ
2π e

κx sin(2πy)

]

,

where κ = 1
2ν −

√

1
4ν2 + 4π2. We additionally impose u = w on Γ. The exact solution

to this problem, originally derived by Kovasznay [12] in the context of Navier-Stokes
flow, is

u(x, y) = w(x, y) and q(x, y) = −1

2
e2κx − q̄, (x, y) ∈ Ω,(5.1)

where q̄ is the average value of − 1
2e

2κx on Ω.
We begin by examining the performance of SCIP using the 4x4 criss-cross mesh

in Figure 2b. For p ∈ {4, 7, 10, 13}, λ ∈ {102, 103, 104}, and 0 ≤ n ≤ 8, we terminate
SCIP after n steps and display the relative velocity error ‖u−un

X‖1/‖u‖1 and relative
pressure error ‖q − qnX‖/‖q‖ in Figure 1. The relative errors are in agreement with
Theorem 4.5. The errors decrease until the error in the SCIP method is smaller than
the discretization error, at which point the errors level off. Additionally, the pressure
errors generally require one to two more iterations of SCIP to level off compared to
the velocity errors.

Figure 2a shows the behavior of the velocity and pressure errors versus the poly-
nomial degree on a log-linear scale so that a straight line corresponds to the expected
exponential convergence in p since the exact solution (5.1) is analytic [19]. Observe
that, while we indeed see exponential convergence for p ∈ {1, . . . , 10}, for higher values
of p there is a loss in accuracy which we attribute to the conditioning of the Bernstein
basis.

The divergence of the SCIP approximation ‖ divun
X‖ is another important quan-

tity that, according to Theorem 4.5, converges exponentially fast as the number of
iterations increases. The values of ‖ divun

X‖ for the same values of n and p in Fig-
ure 1 are displayed in Figure 3, where in agreement with (4.19), ‖ divun

X‖, and hence
‖ div ũn‖, decays exponentially fast in n, and the rate of decay is greater for larger
values of λ. We observe some degradation of the results when p > 10, which we again
attribute to roundoff issues with the Bernstein basis. The approximation obtained
after 8 iterations of SCIP with p = 10 and λ = 103 is displayed in Figure 2b.
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Fig. 1: Relative velocity error (solid lines) and pressure error (dashed lines) of the
solution (un

X , p
n
X) given by the SCIP method with (a) p = 4, (b) p = 7, (c) p = 10,

and (d) p = 13 applied to the Kovasznay flow problem with ν = 10−1.

5.3. Moffatt Eddies. We now consider an example of Stokes flow due to Moffatt
[14], which is a common benchmark for high order methods as it contains features on
many scales. Let Ω be the wedge with a fixed mesh as shown in Figure 4a with the
following boundary conditions:

u(x, 0) =

[

1− x2

0

]

, −1 ≤ x ≤ 1, and u = 0 on Γ \ (−1, 1)× {0}.

The velocity contains an infinite cascade of eddies, each of which is about 400 times
weaker than the previous one, while the pressure has an infinite cascade of singu-
larities, starting at (±1, 0). The combination of these two features makes this a
challenging test problem.

The numerical solution obtained after 8 iterations of the SCIP method with p = 10
and λ = 103 on the computational mesh in Figure 4a satisfies ‖ divun

X‖ = 6.8e-11
and is shown in Figure 5. Observe that the method nicely captures the profile of
the pressure, as well as the three eddies. In Figure 6, we zoom in on the numerical
solution and observe that an additional two eddies are resolved, with |un

X | being on
the order of 10−11. Thus, the method is able to resolve all eddies up to the order of
‖ divun

X‖ and capture the pressure profile without the need to use a priori knowledge
of the solution.
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Fig. 2: SCIP approximation to the Kovasznay flow problem with ν = 10−1. (a)
Smallest relative velocity error (solid lines) and pressure error (dashed lines) of the
solution (un

X , p
n
X) over 8 iterations and (b) 4x4 criss-cross mesh (dashed lines) and

velocity streamlines (solid lines) with |un
X | background color for the p = 10 and

λ = 103 approximation after 8 iterations.

6. Stokes Extension Operators. Given a function u ∈ X := X×X and K ∈
T , Lemma 4.1 shows that there exists a unique (uS,K , qS,K) ∈ Pp(K) × divXI(K)
satisfying

aK(uS,K ,v)− (qS,K , div v)K = 0 ∀v ∈ XI(K),(6.1a)

−(r, divuS,K)K = 0 ∀r ∈ divXI(K),(6.1b)

(uS,K − u)|∂K = 0.(6.1c)

We define the discrete Stokes extension operators S : X → X and Q : X → divXI

by the rules Su|K := uS,K and Qu|K = qS,K for all K ∈ T . Similarly, there exist

u
†
S,K ∈ Pp(K) and q†S,K ∈ divXI(K) satisfying

aK(v,u†
S,K)− (q†S,K , div v)K = 0 ∀v ∈ XI(K),(6.2)

along with (6.1b), and (6.1c). We define the “adjoint” Stokes extension operators S†

and Q† in terms of u†
S,K and q†S,K analogously.

The next result gives a precise statement of the sense in which the above operators
are “adjoints.” Let s(·, ·; ·, ·) denote the Stokes bilinear form

s(u, q;v, r) := a(u,v)− (q, div v)− (r, divu) ∀u,v ∈ X, ∀q, r ∈ divX.

Additionally, let ΠI : L2(Ω) → divXI denote the usual L2(Ω) projection operator
onto divXI :

(ΠIq, r) = (q, r) ∀q ∈ L2(Ω), ∀r ∈ divXI ,

and Π⊥
I := I −ΠI . Then, we have the following result:
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Fig. 3: Values of ‖ divun
X‖ with(a) p = 4, (b) p = 7, (c) p = 10, and (d) p = 13 from

the SCIP method applied to the Kovasznay flow problem with ν = 10−1.

Lemma 6.1. For all u,v ∈ X and q, r ∈ divX, there holds

s(Su,Qu+Π⊥
I q;v, r) = s(u, q; S†v,Q†v +Π⊥

I r)(6.3)

and

div Su = div S†u = Π⊥
I divu.(6.4)

Proof. Let u ∈ X be given. Then, uI := u−Su satisfies uI ∈ XI by (6.1c), and
so div Su = divu+ divuI . Applying Π⊥

I gives

div Su = Π⊥
I div Su = Π⊥

I divu+Π⊥
I divuI = Π⊥

I divu,

where we used (6.1b) and that ΠI divuI = divuI . Similar arguments show that
div S†u = Π⊥

I divu, and (6.4) follows.
Now let u,v ∈ X and q, r ∈ divX be given. Thanks to (6.4), there holds

(Π⊥
I q, div v) + (r, div Su) = (q,Π⊥

I div v) + (r,Π⊥
I divu)

= (q, div S†v) + (Π⊥
I r, divu),

and so

s(Su,Qu + Π⊥
I q;v, r) = a(Su,v) − (Qu, div v) − (q, div S†v) − (Π⊥

I r, divu).
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Fig. 4: (a) Computational mesh consisting of 22 elements and (b) zoom for the Moffatt
problem.

(a) (b)

Fig. 5: SCIP approximation of the Moffatt problem with p = 10 and λ = 103: (a)
velocity streamlines with |u| background color and (b) pressure.

Since v − S†v ∈ XI by (6.1c), we have

a(Su,v)− (Qu, div v) = a(Su, S†v)− (Qu, div S†v) = a(Su, S†v),

where we used (6.1a) and (6.1b). Applying similar arguments to u− Su gives

a(Su, S†v) = a(u, S†v) + (Q†v, div(Su − u)) = a(u, S†v)− (Q†v, divu),

where we used (6.2) and (6.1b). Equation (6.3) now follows on collecting results.

The next result characterizes X̃B as an invariant subspace of XD under the operator
S and likewise for X̃†

B and S†:

Lemma 6.2. The following identities holds:

X̃B = {v ∈ XD : Sv = v} = {Sv : v ∈ XD},(6.5)

X̃
†
B = {v ∈ XD : S†v = v} = {S†v : v ∈ XD}.(6.6)
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Fig. 6: Zoom on bottom eddies of the SCIP approximation of the Moffatt problem
with p = 10 and λ = 103: (a) velocity streamlines with |u| background color and (b)
pressure.

Moreover,

div X̃B = div X̃†
B.(6.7)

Proof. Let u ∈ XD and K ∈ T . Using the notation of section 4, u|K may be

expressed as u|K = ~ΦT
B,K~uB,K + ~ΦT

I,K~uI,K . By (6.1), Su|K = ~ΦT
B,K~uB,K + ~ΦT

I,K~u
#
I,K ,

where
[

EII GT
ιI

GιI 0

] [

~u#I,K
∗

]

= −
[

EIB

GιB

]

~uB,K .

Thus, {v ∈ XD : Sv = v} = {Sv : v ∈ XD} = {v ∈ XD : ~vI,K = SK~vB,K ∀K ∈ T },
and so (6.5) follows from Lemma 4.2. Similar arguments give (6.6). Equation (6.7) is
now a consequence of (6.4).

Lemma 6.3. For all u,v ∈ X, there holds

a(Su, Sv) = a(Su, S†v) = a(S†u, S†v).(6.8)

Proof. Let u,v ∈ X. By (6.1c) and (6.4), Su − S†u, Sv − S†v ∈ NI , and so

a(Su, Sv) = a(Su, S†v) + a(Su, Sv − S†v) = a(Su, S†v)

a(Su, S†v) = a(S†u, S†v) + a(Su − S†u,v) = a(S†u, S†v)

by (6.1a) with v = Sv − S†v and (6.2) with v = Su− S†u.

Lemma 6.4. Let ÑB := {z ∈ X̃B : div z ≡ 0} and Ñ
†
B := {z ∈ X̃

†
B : div z ≡ 0}.

The variational problem

z ∈ ÑB : a(z,w) = F (w) ∀w ∈ Ñ
†
B(6.9)

is uniquely solvable for all linear functionals F on Ñ
†
B.

Proof. Since (6.9) is equivalent to a square linear system, it suffices to show
uniqueness. Suppose that z ∈ ÑB satisfies (6.9) with F ≡ 0. Choosing w = S†z and
applying (6.8) gives a(z, z) = a(z, S†z) = 0. By ellipticity (2.5), z ≡ 0.
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6.1. Proof of Lemma 4.4. Since (4.15) is equivalent to a square linear system,
it again suffices to show uniqueness. Let (ũ, q̃) satisfy (4.15) with zero data on the
RHS. Equations (4.15b) and (6.7) means that div ũ ≡ 0 and so ũ ∈ ÑB. Choosing

v ∈ Ñ
†
B in (4.15a) shows that ũ satisfies (6.9) with F ≡ 0. By Lemma 6.4, ũ ≡ 0.

Thanks to (6.7), there exists v ∈ X̃
†
B such that div v = q̃. Substituting this

choice into (4.15a) gives ‖q̃‖2 = (q̃, div v) = 0, and so q̃ ≡ 0. Thus, (4.15) is uniquely
solvable. Moreover, for each K ∈ T , there exists (uK , qK) ∈ XI(K) × divXI(K)
satisfying (4.16) by Lemma 4.1.

By (4.16), the functions uI :=
∑

K∈T uK and qI :=
∑

K∈T qK satisfy

a(uI ,v)− (qI , div v) = L(v)− a(ũ,v) ∀v ∈ XI ,(6.10a)

−(r, divuI) = 0 ∀r ∈ divXI .(6.10b)

Let uX := ũ + uI and qX := q̃ + qI . Equation (4.15b) means that div ũ ≡ 0, while
relation (6.10b) means that divuI ≡ 0. As a result, divuX ≡ 0 and so (2.7b) is
satisfied.

We now show that (2.7a) holds. For v ∈ XI , there holds

a(uX ,v)− (qX , div v) = a(ũ,v) + a(uI ,v)− (qI , div v) = L(v),

where we used (6.10a) and that (q̃, div v) = 0 by (4.6). For v ∈ X̃
†
B, there holds

a(uX ,v)− (qX , div v) = a(ũ,v)− (q̃, div v) + a(uI ,v) = L(v) + a(uI ,v),

where we used (4.15a) and that (qI , div v) = 0 by (4.6). Since v ∈ X̃
†
B and divuI ≡ 0,

a(uI ,v) = 0 by definition. Equation (2.7a) now follows from linearity thanks to the

decomposition (4.13) with X̃
†
B.

7. Convergence of SCIP and the Iterated Penalty Method. We begin
with an estimate for functions in X̃B that are orthogonal to divergence free functions:

Lemma 7.1. Let Ñ⊥
B := {v ∈ X̃B : a(v, z) = 0 ∀z ∈ Ñ

†
B}. Then,

‖u‖1 ≤
(M + α)2

α2βX
‖ divu‖ ∀u ∈ Ñ⊥

B ,(7.1)

where M > 0 (2.4), α > 0 (2.5), and βX > 0 (2.8).

Proof. Let u ∈ Ñ⊥
B . By the proof of Theorem 4.3, there exists v ∈ X̃B such that

div v = divu and ‖v‖1 ≤ (M + α)(αβX )−1‖ divu‖. Since (6.9) is uniquely solvable

by Lemma 6.4, there exists z ∈ ÑB such that a(z,n) = a(v,n) for all n ∈ Ñ
†
B. By

ellipticity (2.5) and (6.8), we have

α‖z‖21 ≤ a(z, z) = a(z, S†z) = a(v, S†z) = a(v, z) ≤M‖v‖1‖z‖1,

since Sz = z by Lemma 6.2. Thus, ‖z‖1 ≤Mα−1‖v‖1.
Let w := v − z. By construction, divw = divu and w ∈ Ñ⊥

B . Moreover, w
satisfies (7.1) thanks to the triangle inequality. To complete the proof, we now show
that u = w. Since div(u−w) = 0, there exists e := u −w ∈ Ñ⊥

B . Thanks to (6.8),
0 = a(e, S†e) = a(e, e) ≥ α‖e‖21. Consequently, e ≡ 0 and so u = w.

With Lemma 7.1 in hand, the proof of Theorem 4.5 is a generalization of the
convergence proof for the standard iterated penalty method (see e.g. [6, p.356-359]).
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Proof of Theorem 4.5. Let en := ũ− ũn and rn := q̃ − q̃n, n ∈ N0. Subtracting
(4.20) from (4.15a) gives, for n ∈ N0,

aλ(e
n,v) = (rn, div v) ∀v ∈ X

†
B(7.2)

and rn+1 = rn + λdiv ũn = rn − λdiv en since div ũ = 0. Using these relations, we
obtain

aλ(e
n+1,v) = (rn, div v)− λ(div en, div v) = aλ(e

n,v)− λ(div en, div v) = a(en,v)

for all v ∈ X̃
†
B. Choosing v = S†en+1 and using (6.4) and (6.8) then gives

a(en+1, en+1) + λ‖ div en+1‖2 = a(en, S†en+1) = a(en, en+1) ≤M‖en‖1‖en+1‖1,
(7.3)

where we used (6.8) and that Sen+1 = en+1. Moreover, (7.2) shows that en+1 ∈ Ñ⊥
B

for all n ∈ N0. Applying Lemma 7.1 and (2.5) to the LHS of (7.3) gives

(α + λΥ̃−2)‖en+1‖1 ≤M‖en‖1 =⇒ ‖en‖1 ≤ (MΥ̃2λ−1)n‖e0‖1,(7.4)

where Υ̃ := (M + α)2/(α2βX), the constant appearing in (7.1). Equation (4.19) now
follows from (7.4) on noting that div ũn = − div en.

Now, we use Lemma 7.1 to obtain

‖en‖ ≤ Υ̃‖ div en‖ = Υ̃‖ div ũn‖.(7.5)

Applying the inf-sup condition (4.14) for X̃†
B×div X̃†

B and using (6.7) and (7.2) gives

β̃X‖rn‖ ≤ sup
0 6=v∈X̃

†

B

(rn, div v)

‖v‖1
= sup

0 6=v∈X̃
†

B

aλ(e
n,v)

|v|1
≤M‖en‖1 +

√
dλ‖ div en‖,

where β̃X := αβX(M + α)−1. Thanks to (7.5), ‖rn‖ ≤ (MΥ̃ +
√
dλ)β̃−1

X ‖ div ũn‖.
Equation (4.18) now follows on collecting results.

7.1. Convergence of the Standard IP Method. The following result, which
is an immediate consequence of [6, eq. (13.1.16)], is the analogue of Lemma 7.1:

Lemma 7.2. For all u ∈ {v ∈ XD : a(v,w) = 0 ∀w ∈ XD : divw = 0}, there
holds

‖u‖1 ≤
M + α

αβX
‖ divu‖,

where M > 0 (2.4), α > 0 (2.5), and βX > 0 (2.8).

With Lemma 7.2 in hand, the proof of Theorem 3.1 is analogous to the proof of
Theorem 4.5: the spaces X̃B and X̃

†
B are replaced by XD; the choice v = S†en+1 is

replaced by v = en+1; the use of Lemma 7.1 and Υ̃ are replaced by Lemma 7.2 and
Υ := (M +α)/(αβX); and the inf-sup constant β̃X is replaced by βX defined in (2.8).

Appendix A. Properties of the 2D Scott-Vogelius Elements.

Finally, in this section, we turn to the the fundamental stability and approxima-
tion properties of the 2D Scott-Vogelius elements, as well as discrete exact sequence
properties. One of the key conditions for optimal approximation properties is that the
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Fig. 7: Notation for mesh around (a) an internal vertex a ∈ VI and (b) a boundary
vertex a ∈ VD, each abutting m = |Ta| elements.

mesh is corner-split at Dirichlet vertices. Roughly speaking, a mesh is corner-split if
every element has at most one edge lying on ΓD. In order to give a precise definition,
we let V denote the set of element vertices, VI the set of interior vertices, and VC

the set of element vertices coinciding with the corners of the physical domain Ω. For
a ∈ VI ∪ VD, we label the elements as in Figure 7 and define

ξ(a) :=

|Ta|−ηa

∑

i=1

| sin(θi + θi+1)|, where ηa =

{

1 a ∈ VD,

0 a ∈ VI .
(A.1)

A mesh is corner-split at Dirichlet vertices if {a ∈ VC ∩ VD : ξ(a) = 0} = ∅.
The following result states that the 2D Scott-Vogelius elements are uniformly

inf-sup stable in h and p and possess optimal approximation properties under mild
assumptions on the mesh:

Theorem A.1. Suppose that p ≥ 4 and that the family of meshes {T } is corner-
split at Dirichlet vertices and satisfies [5, eq. (5.14)]. Then, the Scott-Vogelius ele-
ments are uniformly inf-sup stable in h and p; i.e., there exists β > 0 independent of
h and p such that

β‖q‖ ≤ sup
0 6=v∈XD

(div v, q)

‖v‖1
∀q ∈ divXD.(A.2)

Moreover, for u ∈ Hs(Ω) ∩H1
D(Ω) and q ∈ Hs−1(Ω) ∩ L2

D(Ω), s > 1, there holds

inf
v∈XD

‖u− v‖1 ≤ Chmin(p,s−1)p−(s−1)‖u‖s,(A.3)

inf
r∈divXD

‖q − r‖ ≤ Chmin(p,s−1)p−(s−1)‖q‖s−1,(A.4)

where C is independent of u, q, h, and p.

The conditions needed in Theorem A.1 are quite standard, apart from the requirement
that the mesh be corner-split at Dirichlet vertices. We refer to [5, p. 35] for a de-
tailed characterization of the remaining mesh conditions in Theorem A.1 and assume
they hold for the remainder of this paper. Although some progress on barycenter-
refined meshes [24] and uniform tetrahedral grids [25] have been made for the 3D
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Scott-Vogelius elements, their stability, approximation, and exact sequence proper-
ties remain open.

The proof of Theorem A.1 is given in Appendix A.1. The inf-sup condition (2.8)
with β replaced by Cp−K for p and K > 0 sufficiently large, was shown in [23]
– the restriction on the polynomial degree was subsequently relaxed to p ≥ 4 in
[21]. Here, we show that the elements are uniformly stable in both h and p. Even
though (optimal) approximation properties of the space XD expressed in (A.3) are a
consequence of standard approximation theory for hp-finite elements [19], the result
(A.4) on the optimal approximability of the space divXD is also new, although the
result was known for the pure traction problem (|ΓD| = 0) on a fixed mesh [22, Lemma
3.3]. Only one other conforming finite element discretization on (again corner-split)
triangular meshes is known to be uniformly inf-sup stable in h and p and possess
optimal approximation properties [2, 3].

A.1. Exact Sequence Properties. Let {ΓD,j}Jj=1 denote the connected com-
ponents of ΓD and define

H2
D(Ω) := {ψ ∈ H2(Ω) : ψ|ΓD,1

= 0, ψ|ΓD,j
is constant, 2 ≤ j ≤ J , ∂nψ|ΓD

= 0}.

It is not difficult to see that curlH2
D(Ω) ⊂ H1

D(Ω) and divH1
D(Ω) ⊆ L2

D(Ω), where
curlφ = (∂yφ,−∂xφ)T . In fact, the following sequence is exact [18, Lemma 4.6.1] in
the sense that the kernel of each operator appearing in (A.5) equals the range of the
previous operator in the sequence:

0
⊂−−−−−→ H2

D(Ω)
curl−−−−−→ H1

D(Ω)
div−−−−→ L2

D(Ω)
0−−−−→ 0.(A.5)

For instance, if u ∈ H1
D(Ω) is the velocity in (2.1) so that divu ≡ 0, then there exists

a potential φ ∈ H2
D(Ω) such that u = curl φ.

We will show that the Scott-Vogelius finite element spaces XD and divXD also
form part of an exact sequence. To this end, define a discrete potential space by

ΣD = Σ ∩H2
D(Ω), where Σ := {ψ ∈ C1(Ω̄) : ψ|K ∈ Pp+1(K) ∀K ∈ T }.

As shown in [5, 21, 23], the space divXD satisfies a constraint at certain element
vertices, which may be summarized as follows. Let VD denote the set of element
vertices lying on the interior of ΓD and VDN denote the vertices coinciding with the
intersection of Γ̄D and Γ̄N . Additionally, given a ∈ V , let Ta denote the set of elements
sharing a as a vertex, labeled as in Figure 7. Then, we have the following result:

Lemma A.2. Let ξ(·) be defined as in (A.1) and define

Q :=

{

q ∈ L2(Ω) : q|K ∈ Pp−1(K) ∀K ∈ T ,

|Ta|
∑

i=1

(−1)iq|Ki
(a) = 0 ∀a ∈ VI : ξ(a) = 0

}

and

QD :=

{

q ∈ Q ∩ L2
D(Ω) :

|Ta|
∑

i=1

(−1)iq|Ki
(a) = 0 ∀a ∈ VD : ξ(a) = 0

}

,



24 M. AINSWORTH AND C. PARKER

where the elements in Ta, a ∈ V, are labeled as in Figure 7. Then, the sequence

0
⊂−−−−−→ ΣD

curl−−−−−→ XD
div−−−−→ QD

0−−−−→ 0(A.6)

is exact.

Proof. In the case |ΓD| = |Γ|, (A.6) follows from the proof of Proposition 3.2 in
[21], so we assume that |ΓD| < |Γ|. The inclusion curlΣD ⊂ XD follows by definition,
while divXD = QD by [5, Theorem 4.1]. We may argue as in [16] and the proof of
[18, Lemma 4.6.2] to show that

dimΣD = dimΣ− 7|VD| − 5|VDN | − (2p− 7)|ED|+ |{a ∈ VD : ξ(a) = 0}|+ J − 1,

where ED is the set of element edges lying on ΓD. Counting the constraints on the
space XD and QD gives

dimXD = dimX − 2 {|VD|+ |VDN |+ (p− 1)|ED|}
dimQD = dimQ− |{a ∈ VD : ξ(a) = 0}|.

By [5, Lemma 6.1], dimΣ + dimQ− dimX = 1, and so

dimΣD + dimQD − dimXD = J − 5|VD| − 3|VDN |+ 5|ED|.
Moreover,

|ED| =
J
∑

j=1

|ED ∩ ΓD,j| =
J
∑

j=1

{

|(VD ∪ VDN ) ∩ Γ̄D,j | − 1
}

= |VD|+ |VDN | − J,

where we used Euler’s identity on each connected component ΓD,j : |ED ∩ ΓD,j| =
|(VD ∪ VDN ) ∩ Γ̄D,j | − 1. Additionally, the endpoints of each connected component
ΓD,j consist of two unique vertices in VDN , and so |VDN | = 2J . Collecting results,
we have dimΣD + dimQD − dimXD = 0. The exactness of (A.6) now follows using
standard arguments (see e.g. [21, Proposition 3.1] or [5, Lemma 6.1]).

A.2. Stability and Approximation. With an explicit characterization QD =
divXD thanks to (A.6) in hand, we now prove Theorem A.1.

Proof of Theorem A.1. Equation (A.2) is an immediate consequence of [5, The-
orem 5.1]. Let Q̃D := {r ∈ L2

D(Ω) : r|K ∈ Pp−1(K) ∀K ∈ T r is continuous at
noncorner vertices}.

By [3, Theorem 2.1], there holds

inf
r∈Q̃D

‖q − r‖ ≤ Chmin(p,s−1)p−(s−1)‖q‖s−1,(A.7)

where C is independent of h and p in the case L2
D(Ω) = L2

0(Ω). Exactly the same
construction in [3, Lemmas 4.2 & 4.3] shows that (A.7) also holds in the case L2

D(Ω) =
L2(Ω). Since the mesh is corner-split at Dirichlet vertices, the set {a ∈ VI ∪ VD :
ξ(a) = 0} consists of element vertices abutting an even number of elements; i.e. |Ta|
is even (see e.g. section 4.3 of [5]). As a result, for r ∈ Q̃D, the condition

|Ta|
∑

i=1

(−1)ir|Ki
(a) = 0 ∀a ∈ VI ∪ VD : ξ(a) = 0

is automatically satisfied since q is continuous at noncorner vertices. Consequently,
Q̃D ⊂ QD = divXD, and so (A.4) follows from (A.7). Equation (A.3) is a consequence
of standard approximation theory for hp-finite elements; see e.g. [19].
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