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Abstract. In this work, we show that solvers of elliptic boundary value problems in d dimen-
sions can be approximated to accuracy ϵ from only O

(
log(N) logd(N/ϵ)

)
matrix-vector products with

carefully chosen vectors (right-hand sides). The solver is only accessed as a black box, and the under-
lying operator may be unknown and of an arbitrarily high order. Our algorithm (1) has complexity
O

(
N log2(N) log2d(N/ϵ)

)
and represents the solution operator as a sparse Cholesky factorization

with O
(
N log(N) logd(N/ϵ)

)
nonzero entries, (2) allows for embarrassingly parallel evaluation of the

solution operator and the computation of its log-determinant, (3) allows for O
(
log(N) logd(N/ϵ)

)
complexity computation of individual entries of the matrix representation of the solver that, in turn,
enables its recompression to an O

(
N logd(N/ϵ)

)
complexity representation. As a byproduct, our

compression scheme produces a homogenized solution operator with near-optimal approximation ac-
curacy. By polynomial approximation, we can also approximate the continuous Green’s function (in
operator and Hilbert-Schmidt norm) to accuracy ϵ from O

(
log1+d

(
ϵ−1

))
solutions of the PDE. We

include rigorous proofs of these results. To the best of our knowledge, our algorithm achieves the
best known trade-off between accuracy ϵ and the number of required matrix-vector products.

Key words. Cholesky factorization, elliptic PDE, numerical homogenization, sparsity, principal
component analysis, learning solution operators
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1. Introduction.

1.1. Fast solvers are not enough. Linear elliptic partial differential equations
(PDEs) Lu = b are ubiquitous in engineering, physics, and machine learning. After
discretization, the solution of these equations amounts to solving a linear system of
N equations Au = b. In this work, we assume that we have access to the PDE
through a black box ω(b) := L−1b or ω(b) := A−1b that solves the PDE for arbitrary
right-hand sides b or b. In practice, ω could be implemented by a legacy solver or
physical experiments. While N invocations of ω are enough to fully reconstruct A−1

and therefore A, this is prohibitively expensive since invoking ω for a single right-
hand side has a computational cost of at least N (to write down the result) and may
require a physical experiment or extensive computation (like the solution of a PDE).

1.1.1. Our contribution. For Ω ⊂ Rd a Lipschitz bounded domain, 0 < s ∈ N,
and L : Hs

0(Ω) −→ H−s(Ω), let L be linear, invertible, continuous, local, positive,
and self-adjoint. In this setting, we show how to obtain an ϵ-accurate sparse Cholesky
factorization of A−1 using only O

(
log(N) logd(N/ϵ)

)
invocations of ω. By choos-

ing N ≈ poly(ϵ−1), we recover the solution operator of L (in operator and Hilbert-
Schmidt norm) to accuracy ϵ from solutions for O

(
log1+d

(
ϵ−1
) )

right-hand sides.
Our algorithm has a straightforward extension that recovers the LU factorization of
a non-self-adjoint operator from matrix-vector and matrix-transpose-vector products.
We conjecture that theoretical results extend to LU factorizations of elliptic opera-
tors where only the leading order term is self-adjoint and positive. Our results have
implications for the following theoretical and practical questions.
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1.1.2. Operator learning. A growing body of work is concerned with learning
solution operators of partial differential equations from data consisting of input-output
pairs (b, ω(b)). The proposed work achieves an exponential improvement in the
sample complexity of provably accurate learning of linear elliptic solution operators.
Furthermore, our complexity vs accuracy error analysis is performed in the strict
worst-case setting rather than the more lenient average-case setting (which benefits
from concentration of measure effects).

1.1.3. Parallelization. A legacy solver ω may not easily parallelize across large
numbers of workers. The matrix-vector product application of the sparse Cholesky
factorization obtained by our approach is embarrassingly parallel.

1.1.4. Reduced order modeling. Computing a rank-k approximation of A−1

using the power method requires more than k applications of ω. In contrast, we are

able to compute rank-k approximations at a cost of O
(
logd+1(k)

)
applications of ω.

1.1.5. Applying submatrices of L−1. Many of the right-hand sides to which
we apply the legacy solver may be sparse, or we may only be interested in some
components of the solution u. For instance, we may be interested in efficiently indi-
vidual entries of A−1 to compute the resistance metric associated with A. Computing
only the diagonal entries of A−1 requires N applications of ω, likely resulting in a
computational cost of at least N2. In contrast, our representation of A−1 allows com-
puting individual entries of A−1 at complexity O

(
log(N) logd(N/ϵ)

)
. Thus, it can be

compressed to a sparse factorization of A with O
(
N logd(N/ϵ)

)
nonzero entries [27].

1.1.6. Gaussian process priors. Elliptic PDEs can be employed to define
Gaussian smoothness priors1 with covariance matrix A−1. To draw samples from
this Gaussian process, we need to apply a square root of A−1 to an i.i.d. Gaussian
vector, and for tuning hyperparameters, we need the log-determinant of A−1. The
Cholesky factorization of A−1 that we compute allows performing these operations.

1.2. Related work. Multiple approaches address some of the above desiderata.
The following review covers the most closely related examples from the vast literature
on numerical methods for elliptic partial differential equations. The proposed method
learns solution operators from data instead of solving a PDE. We thus do not review
fast solvers for elliptic problems, referring to [28, Section 1.2].

Selected inversion and homogenization. The work of [19, 20] on selected
inversion aims to perform the tasks described in subsection 1.1.5 for inverses of ar-
bitrary sparse matrices. Similarly, numerical homogenization and related fields (see
[1] for a survey) are concerned with computing reduced models for inverses of partial
differential operators, thus addressing the task described in section subsection 1.1.4.
In contrast to our proposed approach, these methods require explicit knowledge of
the partial differential operator or access to its matrix representation.

Learning operators with Neural Networks and operator-valued kernels.
The problem of learning the solution operators of a partial differential equation from
data (in the form of pairs of right-hand sides and solutions) provided by an existing
solver has received considerable attention. Some works, such as [9, 10, 11, 17, 15, 16]

1We emphasize that our method is fully capable of dealing with PDEs with rough coefficients
that have Green’s functions of only finite orders of smoothness.
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use deep neural networks with architectures inspired by conventional fast solvers. Oth-
ers are motivated by universal approximation theorems for operators [21], or employ
random feature approximations of operator-valued kernels [24]. These methods can
also be seen as regression methods with (possibly data-dependent) operator-valued
kernels [25]. They can be applied to arbitrary nonlinear operators, but their conver-
gence (or lack thereof) is poorly understood in the nonlinear setting.

Learning linear operators. More closely related to the present work are meth-
ods providing theoretical guarantees for learning structured linear operators. [7] ap-
proximates operators between infinite-dimensional Hilbert spaces from noisy measure-
ments using a Bayesian approach and characterizes convergence (with randomized
right-hand-sides), in terms of the spectral decay of the target operator (assuming the
operator to be self-adjoint and diagonal in a basis shared with the Gaussian prior
and noise covariance). [29] seeks to learn the Green’s function of an elliptic PDE
by empirical risk minimization over a reproducing kernel Hilbert space, characteriz-
ing convergence in terms of spectral decay. The randomized algorithm of [4] comes
with rigorous bounds on the number of input-output measurements required to learn
solution operators of linear elliptic PDEs. The convergence rates of these meth-
ods are limited by the spectral decay of the operator, and the number of required
matrix-vector products scales polynomially with the target accuracy. Alternatively,
[18, 23, 2, 14] target operators with hierarchical off-diagonal low-rank structure, al-
lowing them to overcome the limitations of global low-rank structure. Finally, [12]
compresses expectations of solution operators of stochastic PDEs from samples of the
entire operator, and [22] combines pairwise evaluations with matrix-vector products
to construct hierarchical matrix approximations of elliptic solution operators.

1.3. Our method in a nutshell. Our method uses three ingredients to get away
with a logarithmic (in bothN and ϵ) number of matrix-vector products. 1: [28] proves
that Cholesky factors of solution operators of elliptic PDEs are sparse with known
sparsity pattern, up to exponentially small entries (Figure 1). 2: Sparse matrices
and Cholesky factorizations with leading columns having disjoint nonzero sets can be
obtained from a single matrix-vector product with a cleverly chosen vector (top of
Figure 3). 3: After identifying the leading columns, we can subtract them from a
Cholesky factorization to recover the later columns efficiently (bottom of Figure 3).

The Cholesky factors are only approximately sparse. The main theoretical contri-
bution of this work is a rigorous bound on the error propagation during the procedure
outlined above, leading to the accuracy-vs-complexity results advertised in the ab-
stract. This exponential accuracy is vastly better than what can be hoped for when
using global low-rank approximations such as [7, 4, 29]. The principles underlying
[18] are closely related to 2, 3 above. However, [18] does not provide rigorous bounds
on the error propagation, and thus, their theoretical results do not cover elliptic so-
lution operator in the wild. Even ignoring this aspect, the improvements of sparse
Cholesky factors over hierarchical matrices in approximating elliptic solution oper-
ators [28, Sections 1.3 and 7.1] result in asymptotically lower computational cost
and fewer required matrix-vector products. Experiments in section 4 show that our
method requires fewer matrix-vector products than reported by [18].

2. Our method.

2.1. Summary. We now explain how to apply our method to inverses of an
elliptic partial differential operator L or its discretization A, accessible through input-
output maps b 7→ L−1b or b 7→ A−1b. Our method consists of four steps.



4 F. SCHÄFER AND H. OWHADI

Fig. 1. Left: Four examples basis functions of a Haar-type multiresolution basis, on four dif-
ferent levels. Center: Heatmap of Cholesky factors of Θ expressed in the multiresolution basis with
diagonal scaled to one. Magnitudes of entries shown in white are smaller than 10−10. The colors
of the entries in each block column match that of the example basis function on that level. Right:
Columns of Cholesky factors for basis functions on the left, interpreted as spatial functions. The
near-sparsity of the Cholesky factors is shown in [28]. Intuitively, it arises since Gaussian elimina-
tion of the earlier degrees (which are coarse-scale wavelets) removes the long-range interactions.

Fig. 2. We illustrate an example right-hand side (left) and the resulting matrix-vector product
(right) after subtracting coarse-scale contributions. In the center, we illustrate part of the sparsity
pattern (truncating entries smaller than 10−3) of the corresponding columns of the Cholesky factor.

(I) We construct a Haar-type multiresolution basis {wi}i∈I (resp. {wi}i∈I) in-
dexed by a set I of size |I| = N , such that the Cholesky factor of Θ ∈ RI×I

defined as Θij :=
∫
wiL−1wj (resp. w⊤

i A
−1wj) is approximately sparse.

(II) We choose a tuning parameter ρ > 0 and color the multiresolution basis
functions such that two bases share the same color only if they are of the
same scale hk and their supports are separated by a distance of at least
2ρhk−1. We denote as C the resulting partition of the multiresolution basis
in different colors c ∈ C. Therefore, each c ∈ C is a subset of I consisting of
those elements of I that are assigned to this color. The larger we choose ρ,
the more accurate (and expensive) our approximation is.

(III) We construct a measurement matrix2 M ∈ RI×C with columns M:,c given
by sums of standard basis vectors {ei}i∈c of a given color c.3 We then con-
struct the observation matrix O ∈ RI×C containing the solutions of the PDE
for right-hand sides given by columns of M, defining O:,c := ΘM:,c. This
matrix-vector products amounts to a single call of ω. Since the {Θei}i∈c have
nearly disjoint supports after removing contributions from coarser scales (see

2Here and in the following, RI and RI×J denote vectors and matrices indexed by sets I and J .
3The standard basis vector ei has a 1 as its i-th entry, with all other entries being 0.
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Fig. 3. Top Left: Columns (shown in orange, red, and blue) with disjoint and known sparsity
patterns can be recovered by a single matrix-vector product with a carefully chosen vector.
Top Right: Cholesky factorizations with disjoint leading-column sparsity patterns can be recovered
in the same way. Unit diagonal entries simplify the presentation but are not necessary for recovery.
Bottom: If denser columns of the Cholesky factorization prevent recovery of sparser ones, we iden-
tify dense columns first and subtract their contribution to efficiently recover the sparser columns.

Figure 2), this strategy allows gathering information contained in multiple
solutions (corresponding to the number of elements of c) from just one appli-
cation of ω (one matrix-vector product).

(IV) We use Algorithm 2.1 to construct a sparse approximate Cholesky factoriza-
tion of Θ, the operator L−1 (resp. A−1) represented in the basis given by
{wi}i∈I (resp. {wi}i∈I).

2.2. (I): Multiresolution basis. We begin by constructing a multiresolution
basis using a Haar-type orthogonalization scheme, as illustrated in Figures 4 and 5.
A detailed description of this construction can be found in [26, Sec. 5.3, 5.10].

We assume that the computational domain Ω is represented by a quasi-uniform
mesh with mesh-width hmin. Our method can be applied to a wide range of discretiza-
tions, including finite difference, finite elements, and finite volumes, as long as they
are local. By this, we mean that the region of influence of each degree of freedom,
such as the support of the associated basis function, has diameter ⪅ hmin.

Nested partition. Assuming that the domain Ω ∈ Rd has diameter one, we
choose 1/2 ≈ h ∈ (0, 1) and q ∈ N+ such that hq ≈ hmin. For 1 ≤ k ≤ q, we partition

Ω into subsets τ
(k)
i (indexed by i ∈ J (k)) of diameter ≤ hk, and that are nested, in the

sense that each τ
(k)
i is the union of elements τ

(k+1)
j of the finer partition. We write

τ (k) := {τ (k)i | i ∈ J (k)}. We further let τ (0) := {Ω} be the trivial partition. As far as

possible, we choose the τ
(k)
i to be convex with small aspect ratios (the aspect ratio of

τ
(k)
i is defined as the ratio between the radius of the smallest ball containing that set
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Fig. 4. Elements of τ (1), τ (2), and τ (3) and idealized basis functions w on the first (left),
second (center), and third (right) level of the hierarchy.

Fig. 5. Elements of τ (1), τ (2), and τ (3) and basis functions w on the first (left), second
(center), and third (right) level of the hierarchy, on a piecewise affine finite element discretization.

and the radius of the largest ball contained in that set).

Basis functions (continuum). We begin with an idealized description of the
multiresolution basis functions at the continuum level, under the assumption that we
have access to the continuous solution map b 7→ L−1b. For t ∈ τ (k) an element of any
of the q partitions, we denote as vt the function that is 1 on t and zero everywhere
else. We denote as V (k) the linear span of the functions in {vt}t∈τ(k) (i.e., V

(k) is the

space of functions that are zero outside of Ω and (piecewise) constant in each τ
(k)
i ).

For each 1 ≤ k ≤ q we denote as W (k) the L2-orthogonal complement of V (k−1) in
V (k), treating V (0) as {0} (i.e., W (k) is the space of functions that are zero outside of

Ω, (piecewise) constant in each τ
(k)
i , and of average zero in each τ

(k−1)
j ). We choose

an L2-orthonormal basis (wi)i∈I(k) for each W (k) that is local in the sense that the
support of every wi is contained in (the closure) of an element of τ (k−1). Abusing
notation we write I := ∪1≤k≤qI

(k) and we consider the basis set {wi}i∈I as forming

the columns of an infinitely long matrix denoted byW (k). An example of the resulting
multiresolution basis is shown in Figure 4.

Basis functions (discrete). We now describe how to adapt the above construc-
tion to working with the solver of a discretized elliptic PDE A. On a first reading,
this somewhat technical section can be skipped. Let N be the number of rows and
columns of A. For each 1 ≤ k ≤ q, t ∈ τ (k), i ∈ I(k), we need to construct discrete
counterparts vt,wi ∈ RN that mimic the behavior of vt, wi. We outline a general ap-
proach, the specifics of which depend on the discretization. To illustrate this approach
we assume that A is obtained by discretizing the continuous operator L with a finite
element method with elements ψi indexed by 1 ≤ i ≤ N , i.e. Ai,j =

∫
Ω
ψiL−1ψj . We

assume each ψi to be supported in a subset of Ω of size O(hq). We emphasize that the
proposed approach does not require the precise knowledge of A or the finite elements
ψi used for its discretization, it only requires a rough identification of the location of
the support of those elements.

For each 1 ≤ k ≤ q, we construct a nested partition τ (k) of the N discrete degrees



CHOLESKY RECOVERY OF ELLIPTIC SOLVERS 7

of freedom that mirrors the partition τ (k) of the domain. We begin by assigning to
each t ∈ τ (q) the discrete counterpart t(t) := {i}, where i is chosen such that the
support of ψi is as close as possible to t, while ensuring that each i is assigned to a
unique t ∈ τ (q). Working our way from finer to coarser levels, we then define a discrete
counterpart t(t) for each t ∈ τ (k) and 1 ≤ k < q. For each 1 ≤ k < q, and t ∈ τ (k−1)

the union over elements of N ⊂ τ (k), we define t(t) := ∪s∈N t(s). In other words, the
discrete counterparts t mimic the inclusion relationships among the associated t. For
1 ≤ k ≤ q, the τ (k) := {t(t)|t ∈ τ (k)} then define the partitions of {1, . . . N}. For each
1 ≤ k ≤ q and t ∈ τ (k), we approximate vt using degrees of freedom in the associated
t ∈ τ (k). The resulting vector of coefficients is denoted as vt ∈ RN and the linear
space spanned by the (vt)t∈τ(k) as V(k).

By constructing them from fine to coarse scales, we can ensure the V(1) ⊂ · · · ⊂
V(q) are nested. For 1 ≤ k ≤ q, we then construct the (wi)i∈I(k) as an orthonor-
mal basis of the orthogonal complement of V(k−1) in V(k) (where orthogonality
and orthonormality are defined with respect to the Euclidean inner product), set-
ting V(0) := {0}. As in the case of the wi, we choose the wi to be local in the sense
that for i ∈ I(k), the support of wi is restricted to a single t ∈ τ (k−1). Abusing no-
tations we write I := ∪1≤k≤qI

(k) and denote as W ∈ RN×I the orthonormal matrix
that has the (wi)i∈I as its columns, ordered from coarse to fine. Figure 5 illustrates
this construction in the case of piecewise linear finite elements on a triangular mesh.

Remark 2.1. If the order 2s of L is larger than d, we can instead use a multires-
olution subsampling scheme such as [28, Example 5.1].

2.3. (II): Coloring the basis functions. We now color the basis functions,
meaning that we create a partition C of I such that any i, j ∈ I assigned to the same
color c ∈ C must be on the same level of the multiresolution basis and correspond to
sufficiently distant basis functions. To make this precise, we denote for i ∈ I(k) as
t(wi) the element of τ (k−1) that contains the support wi. Similarly, we define as t(wi)
the element of the partition τ (k−1) that is associated to the t ∈ τ (k−1) that contains
the support of wi. We choose a tuning parameter ρ > 0 and color the set I such that

i ∈ I(k) and j ∈ I(l) of same color ⇒ k = l and

{
dist(t(wi), t(wj)) ≥ 2ρhk−1

dist(t(wi), t(wj)) ≥ 2ρhk−1,

where dist(·, ·) is the ordinary Euclidean distance between subsets of Ω ⊂ Rd. We can
construct such a coloring by successively adding admissible elements of I to a given
color until we run out of elements to add, adding new colors until all of I is colored.
We reorder the columns of W, such that those of the same color appear consecutively.

2.4. (III): Taking measurements. So far, we have not used L, A, or their
inverses. We use the coloring C to decide, which solutions ω(b) := L−1b, ω(b) := A−1b
to compute. We write ei for the unit vector in the i-th direction, and denote as Θ the
matrix with entriesΘij =

〈
wi,L−1wj

〉
L2 (in the continuous case) orΘij = w⊤

i A
−1wj

(in the discrete case). We now define M ∈ RN×C and O ∈ RI×C column-wise as

M:,c := mc :=
∑
i∈c

ei and O:,c := oc := Θmc.

Each matrix-vector product with Θ requires a single call to the black box ω. The
matrix O contains all numerical information about A or L that we will use.
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scatter7−−−−−→

Fig. 6. O:,c−LL⊤M:,c is first obtained as a dense vector (left). It is scattered into four sparse
vectors containing the nonzeros corresponding to the wi closest to each of the {wι}ι∈c (right).

2.5. (IV): Computing the Cholesky factorization. Recall that the elements
of I were ordered from coarse to fine, with the elements of each color appearing
consecutively. For i, j ∈ I, we write i ⪯ j if i appears before j in this ordering. We
now construct an approximate Cholesky factorization of Θ. For a color c ∈ C we
define the operation scatterc(u) that takes in a vector u ∈ RI and splits it into a
sparse matrix in RI×c (replacing w with w in the discrete case),

(scatterc (u))ij :=

{
ui, if j ⪯ i and j = argminι∈c dist (t(wi), t(wι))

0, else.
.

Here, we use an arbitrary method to break ties, ensuring that the argmin has a
unique solution. We write {µj}j∈c for the columns of the (sparse) matrix returned by
scatterc. The method scatterc thus assigns the i-th entry of u to the column µj

for which wj is closest to wi. This is illustrated in Figure 6. We write diag(B) for the
diagonal of a (possibly non-square) matrix B and hcat(·, ·) for the function that takes
two (sparse) matrices with equal number of rows and horizontally concatenates them.
With these definitions, the Cholesky factorization is computed by Algorithm 2.1.

Algorithm 2.1 Cholesky recovery

1: L← 0× I empty matrix
2: for c ∈ C do
3: Lnew ← scatterc

(
O:,c − LL⊤M:,c

)
4: Lnew ← Lnew (diag (Lnew))

−1/2

5: L← hcat (L,Lnew)
6: end for
7: return L

Remark 2.2. Cholesky recovery can easily be extended to an LU recovery that
applies to nonsymmetric and indefinite PDEs, given access to matrix-transpose-vector
products. We conjecture that our approximation results are robust to perturbations
of the PDE by possibly nonsymmetric or indefinite lower-order terms with bounded
coefficients. Examples are advection-diffusion equations with bounded Peclét number
and Helmholtz equations with bounded frequency.
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3. Theoretical results.

3.1. Setting for rigorous results. In a slightly more idealized setting, we can
prove the accuracy of the factorization L rigorously. We assume that Ω ⊂ Rd is a
Lipschitz-bounded domain and L : Hs

0(Ω) −→ H−s(Ω) is linear, bounded, invertible,
self-adjoint, and local in the sense that

∫
Ω
uLv dx = 0 whenever u, v ∈ Hs

0(Ω) have

disjoint support. We further assume that the {τ (k)}1≤k≤q form nested partitions of Ω
into convex and uniformly Lipschitz sets such that for h, δ ∈ (0, 1), each element of τ (k)

is contained in a ball of radius hk and contains a ball of radius δhk. We then consider
the idealized continuous multiresolution basis {wi}i∈I of subsection 2.2 and assume
that we have access to matrix-vector multiplication with the resulting Θ. This setting
corresponds to [28, Example 2]. Using the results therein, we prove rigorous results
on the accuracy-vs-complexity tradeoff of our methods. The requirement for the
elements of the

{
τ (k)

}
1≤k≤q

to be convex arises only from the use Poincaré inequalities

and Bramble-Hilbert lemmas for convex domains in [28]. Similar results could be
obtained by using results for star-shaped domains or by assuming that the elements
of
{
τ (k)

}
1≤k≤q

are obtained by intersecting Ω with a convex set.

3.2. Results for the simplicial case. We begin by presenting a theoretical
result for Algorithm 2.1, which we will refer to as simplicial Cholesky recovery. In
this setting, the accuracy-vs-complexity tradeoff of our method is characterized by
the following theorem.

Theorem 3.1. By choosing ρ ⪆ log(N/ϵ), we obtain a measurement matrix M
with O

(
log(N) logd(N/ϵ)

)
columns such that the L produced by Algorithm 2.1 applied

to a suitable ϵ-perturbation of Θ satisfies LL⊤ = Θ. By this, we mean that there
exists a matrix E ∈ RN×N with ∥E∥ ≤ ϵ, such that the application of Algorithm 2.1
to Θ+E returns the Cholesky factor of Θ. It requires O

(
log(N) logd(N/ϵ)

)
matrix-

vector products with Θ, as well as computational cost O
(
N log2(N) log2d(N/ϵ)

)
and

the result L has O
(
N log(N) logd(N/ϵ)

)
nonzero entries. The hidden constants in

⪆,O above depend on d, Ω, ∥L∥, ∥L−1∥, δ, and h, but not on q, N , or ϵ.

Proof. The proof can be found in Appendix A.2.

According to Theorem 3.1 there exists an exponentially small perturbation of
the input, such that applying Algorithm 2.1 to the perturbed input yields the exact
solution. If we could prove that small perturbations of the input result in small pertur-
bations of the output, this result would imply an accuracy estimate for Algorithm 2.1.
Despite encouraging numerical results, we are not able to rigorously establish this re-
sult, just as in the case of incomplete Cholesky factorization [28]. However, just as
in [28], we can prove an end-to-end guarantee for a small variation of Algorithm 2.1
operating on supernodes instead of individual rows and columns of L.

3.3. Supernodal Cholesky recovery. The difficulty in proving accuracy re-
sults for Algorithm 2.1 arises from the possible amplification of the truncation errors.
There will be on the order of log(N)ρd colors, and the truncation error is of order
exp (−γρ) for a constant γ. In principle, the error could be amplified by a con-
stant factor C > 1 after peeling off each color, leading to a total error bound of
the order of exp

(
log(C) log(N)ρd − γρ

)
. Since this bound is increasing in ρ, it is

of no use in proving the accuracy of Algorithm 2.1, even though we do not observe
such catastrophic error amplification in practice. In [28], this problem is addressed
by aggregating nearby basis functions with similar sparsity patterns into supernodes
with identical sparsity patterns. The Cholesky factorization, and thus Algorithm 2.1,
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can then be performed on a block matrix defined with respect to this partition into
supernodes. Without significantly changing the sparsity pattern, we can choose su-
pernodes of size ≈ ρd. If we color the supernodes just as we did in the simplicial
case, we find that we only need O(log(N)) colors, resulting in a total error bound of
exp (log(C) log(N)− γρ) for some C > 1, allowing us to rigorously prove the accuracy
of our supernodal algorithm. Supernodes also allow us to reformulate our algorithms
in terms of a smaller number of level three BLAS operations. In the closely related
work of [5], as well as sparse linear algebra more broadly [6, Section 9], supernodes
are used to improve performance.

3.3.1. Supernodal aggregation. A supernode is a set of indices that represents
a group of basis functions, and thus of rows and columns of the matrices Θ and L. For
our purposes, supernodes indexed by sets {Ĩ(k)}1≤k≤q can be constructed as follows.

1. For each 1 ≤ k ≤ q select locations4 {yĩ}ĩ∈Ĩ(k) ⊂ Ω such that

min
ĩ,j̃∈Ĩ(k)

dist
(
yĩ, yj̃

)
≥ ρhk

min
ĩ∈Ĩ(k)

dist (yĩ, ∂Ω) ≥ ρh
k

max
x∈Ω

min

(
dist (x, ∂Ω) , min

ĩ∈Ĩ(k)
dist (yĩ, x)

)
≤ ρhk.

2. Assign index i ∈ I(k) to the supernode ĩ (writing i ∈ ĩ) if ĩ is the element of
Ĩ(k) for which yĩ is closest to the centroid of t(wi), breaking ties arbitrarily.

3.3.2. Supernodal graph coloring. Instead of coloring individual nodes in
subsection 2.3, we now color entire supernodes such that for any supernodes ĩ and j̃
on scale k with the same color, we have

i ∈ ĩ, j ∈ j̃ ⇒ dist (t (wi) , t (wj)) ≥ 2ρhk−1.

In practice, as in subsection 2.3, we try to choose the coloring, such as to reduce the
number of colors needed, by packing supernodes of the same color as tightly as we
can. Crucially, the number of supernodal colors needed can be upper bounded by
O(log(N)), with no dependence on ρ. As before, we denote as C̃(k) the supernodal
colors on level k and write C̃ := ∪1≤k≤qC̃(k). We use ⪯ to denote the ordering of the
supernodes from coarse to fine, with each color appearing consecutively.

3.3.3. Supernodal measurements. In subsection 2.3, each color resulted in a
single column of the measurement matrix M. Here, we associate to each supernodal
color c̃ ∈ C̃ on level k a supernodal measurement consisting of mc̃ := maxĩ∈c̃ #ĩ
columns. To define this measurement, we introduce an arbitrary ordering of the
elements of each supernode and let the function η : I −→ N return the position of a
basis function within this supernode. So, if i is the first element of supernode ĩ, we
have η(i) = 1, and if j is the third element of supernode j̃, we have η(j) = 3. Denoting
the l-th unit vector as el, the supernodal measurement of c̃ ∈ C̃ is then given by

(3.1) M:,c̃ =
∑
ĩ∈c̃

∑
i∈ĩ

eie
⊤
η(i) ⊂ RN×mc̃ .

In other words, we obtain each column of M:,c̃ as in subsection 2.4 after picking one
basis function from each supernode in c̃, picking each basis function only once.

4For instance, this can be done by successively selecting points x that violate the third condition.
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3.3.4. Computing the supernodal Cholesky factorization. The supern-
odal measurements M:,c̃ for each color c̃ ∈ C̃, allow us to use a blocked version of the
algorithm that performs key operations using dense level-three BLAS. To this end,
we consider the matrices O, and L as Ĩ× Ĩ block-matrices, the (̃i, j̃)-th entry of which

is a matrix in Rĩ,j̃ . The matrix M is treated as a Ĩ × C̃ matrix, with the (̃i, c̃) entry

a matrix in Rĩ×mc̃ defined by (3.1). We define a block-version of scatter taking in a

block-vector u ∈ RĨ×mc̃ and splits it into a sparse matrix in RĨ×c̃ defined by:

(scatterc̃ (u))ĩj̃ :=

{
uĩ,1:#j̃ , if j̃ ≺ ĩ and j̃ = argminι̃∈c̃ dist (yĩ, yι̃))

0, else
,

where we use an arbitrary method to break ties, ensuring that the argmin has a
unique solution. Letting diag (L) extract the block-diagonal part of L and denoting
as diag(L)−1/2 the inverse-Cholesky factorization of the block-diagonal part, the re-
sulting Algorithm 3.1 is almost identical to Algorithm 2.1, just acting on supernodal
blocks instead of individual entries.

Algorithm 3.1 Supernodal Cholesky recovery

1: L← 0× Ĩ empty matrix
2: for c̃ ∈ C̃ do
3: Lnew ← scatterc̃

(
O:,c̃ − LL⊤M:,c̃

)
4: diag(Lnew)← diag(Lnew)+diag(Lnew)⊤

2

5: Lnew ← Lnew diag (Lnew)
−1/2

6: L← hcat (L,Lnew)
7: end for
8: return Ldiag (L)

−1/2

3.3.5. Results for the supernodal case. When using the supernodal mul-
ticolor ordering, the total number of colors is upper bounded by O (log(N)), which
allows us to rigorously control error propagation throughout the Cholesky recovery.

Theorem 3.2. By choosing ρ ⪆ log(N/ϵ), we obtain a measurement matrix M
with O

(
log(N) logd(N/ϵ)

)
columns such that the L produced by Algorithm 3.1 satisfies∥∥LL⊤ −Θ

∥∥ ≤ ϵ. This requires O
(
log(N) logd(N/ϵ)

)
matrix-vector products with Θ

and additional computational cost O
(
N log2(N) log2d(N/ϵ)

)
. The resulting L has

O
(
N log(N) logd(N/ϵ)

)
nonzero entries. The hidden constants in ⪆,O above depend

on d, Ω, ∥L∥, ∥L−1∥, δ, and h, but not on q, N , or ϵ.

Proof. The proof can be found in Appendix A.3.

By adopting the supernodal version of the algorithm, we provide a rigorous end-to-
end guarantee on the approximation accuracy of our method and its relationship to
the computational cost and the number of matrix-vector products with Θ required.

Remark 3.3. Analog to [28], one can slightly adapt the (simplicial) sparsity pat-
tern, which in our case is given by the simplicial scatter operation, to obtain the
same end-to-end guarantees for Algorithm 2.1 applied in the supernodal ordering.

3.4. Low-rank approximation. In the above, we have considered the improve-
ment of the approximation accuracy as we increase the tuning parameter ρ and thus
the size of the sparsity pattern of L. Instead, we could choose ρ = ∞ and limit the
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number of columns of L, obtaining a low-rank approximation of Θ. Following [28],
this approach results in a near-optimal low-rank approximation, matching the 2-norm
approximation of the eigendecomposition up to a constant factor.

Theorem 3.4. In the setting of Theorems 3.1 and 3.2, let L be the exact Cholesky
factor of Θ (which is obtained from setting ρ =∞ and using Algorithms 2.1 and 3.1).
Denoting by ∥·∥ the matrix-2-norm, we have∥∥∥Θ− L:,1:k (L:,1:k)

⊤
∥∥∥ ≤ C ∥Θ∥ k−2s/d

with the constant C depending only on ∥L∥, ∥L−1∥, d, h, δ, and s. This is, up to a
constant, the optimal rate decay of any low-rank approximation.

Proof. The proof can be found in Appendix A.4.

Asymptotically speaking, the accuracy-vs-cost (both in terms of computation
and matrix-vector products with Θ) of the sparse approximation obtained by setting
ρ < ∞ clearly outperforms that of the low-rank approximation obtained by setting
k < N . In practice, it can be beneficial to utilize both approximations by restricting
Algorithms 2.1 and 3.1 to only some of the colors. This can improve the accuracy for a
given computational budget and provides an approximation of the leading eigenspace.

3.5. Approximation of the continuous Green’s function. Our theoretical
results on the approximation of the discretized Green’s function can be extended
to approximations of the continuous Green’s function G ∈ L2 (Ω× Ω), by piecewise
constant or piecewise affine interpolation.

3.5.1. Approximation in operator norm. From the approximate factoriza-
ton Θ ≈ LL⊤ computed using Algorithm 3.1 with a given ρ, we define the associated
approximate continuous Green’s function as

Ḡρ (x, y) =
∑

i∈∪k≤qI(k)

∑
j∈∪k≤qI(k)

(
LL⊤)

ij
wi(x)wj(y).

We denote Ḡ∞ simply as Ḡ and observe that it is equal to

Ḡ(x, y) =
∑

i∈∪k≤qI(k)

∑
j∈∪k≤qI(k)

⟨wi, Gwj⟩L2 wi(x)wj(y).

Like the Green’s function G, the projected Green’s function Ḡ defines a map from
L2 (Ω) to itself by b 7→

∫
Ω
Ḡ(·, y)b(y)dy. We denote the L2 operator norm as ∥·∥L2→L2 .

Theorem 3.5. In the setting of Theorem 3.2, for ρ ⪆ log(N) and q chosen such
that hq ≈ N−1/d, we have for a constant C depending only on d,Ω,L, h, δ, p,

∥Ḡρ −G∥L2→L2 ≤ CN−1/d.

Thus, N ≈ ϵ−d yields an ϵ approximation of Θ in ∥·∥L2→L2 norm from C
(
logd+1(ϵ)

)
matrix-vector products with Θ, and thus applications of the solution operator G.

3.6. Approximation in Hilbert-Schmidt norm. We can also obtain esti-
mates on the Green’s function in L2 (Ω× Ω) or, equivalently, estimates of the associ-
ated operator in the Hilbert-Schmidt norm. This is, in general, not possible with a
piecewise constant Green’s function, but requires projecting the approximate Green’s
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function on a space of piecewise polynomials. For a nested partition τ with q̂ levels

and a positive integer p, we define the doubly projected Green’s function ˆ̄G as

ˆ̄Gρ,q̂(x, y) =
∑

î∈∪k≤q̂ Î(k)

∑
ĵ∈∪k≤q̂ Î(k)

〈
ŵî, Ḡρŵĵ

〉
L2
ŵî(x)ŵĵ(y),

where the {ŵi}i∈∪k≤q̂ Î(k) are a local orthogonal multiresolution basis of functions that

are polynomials of order p − 1 on elements of τ (q̂) in the same way in which the
{wi}i∈∪k≤qI(k) form a local orthogonal basis of functions that are constant on each

element of τ (q). We again write ˆ̄G∞,q̂ = ˆ̄Kq̂ and will furthermore drop the explicit
dependence on q̂, where it is unambiguous. For the important case of s = 1, d ∈
{2, 3}, we also need higher-order regularity. For instance, in the case of second-order
divergence form elliptic PDE operators L with C1-coefficients and C2 boundary, it
can be shown that they form bounded invertible maps not just from H−1 to H1

0 but
also from L2 to H2 ∩H1

0 .

Theorem 3.6. In the setting of Theorem 3.2, assume that the nested partition
can be convexly refined infinitely to

{
τ (k)

}
1≤k<∞ for a given regularity parameter δ.

Assume also that for s ≤ r ≤ 2s, L is a bounded invertible map from Hr−2s (Ω) to
(Hs

0 ∩Hr) (Ω). Choose q such that hq ≈ N−1/d.
Then, for C depending only on d,Ω,L, h, δ, p and ρ > C log(N), min(p, r) > d/2, and
q̂ such that ⌈q/min(p, r)⌉ ≥ q̂ ≥ ⌊q/min(p, r)⌋, we have

∥ ˆ̄Gρ,q̂ −G∥L2⊗L2 ≤ CN−(1− d
2min(p,r) ).

By choosing N according to ϵ ≈ N−(1− d
2min(p,r) ), we thus obtain an ϵ approximation

of G in ∥ · ∥L2⊗L2 norm from C
(
logd+1(ϵ)

)
applications of the solution operator G.

As a byproduct of our proof, we also obtain the following corollary.

Corollary 3.7 (Corollary A.8 of the appendix). In the setting of Theorem 3.6,
we can reconstruct the Green’s function G to accuracy ϵ from solutions of the PDE

for Cϵ
2

2min(p,r)/d−1 that are piecewise polynomials (of order p) right-hand sides. This
is possible without using sparsity, using only a global L2-projection.

Remark 3.8. By Corollary 3.7, the approximation rates of [4] can be improved by
identifying (Gwi)1≤i≤m one by one, for (wi)1≤i≤m a basis of local polynomials.

4. Numerical Experiments.

4.1. Setup. We now present numerical evidence for the practical utility of our
method, focusing on the tradeoff between the number of matrix-vector products and
the accuracy of the resulting approximation. We construct the multiresolution basis
as in subsection 2.2, using the collocation points of the finite difference and finite
element discretizations to compute distances between basis functions. We construct
the graph-coloring by successively selecting the basis function that is furthest from
the basis functions that were already colored in a given color, using a fast nearest-
neighbor lookup and a binary heap to achieve near-linear complexity. We follow the
implementation of Algorithm 2.1 with the only difference that we use the original
basis {ei}i∈Î given by the finite difference points to represent the column space of L,
instead of the multiresolution basis given by the {wi}i∈I . The code for reproducing the
experiments can be found under https://github.com/f-t-s/sparse recovery of elliptic
solution operators from matrix-vector products.

https://github.com/f-t-s/sparse_recovery_of_elliptic_solution_operators_from_matrix-vector_products
https://github.com/f-t-s/sparse_recovery_of_elliptic_solution_operators_from_matrix-vector_products
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Fig. 7. We plot the number of matrix-vector products (left) and resulting relative error in
operator-2-norm (right) of our method for a constant coefficient Laplacian with a random potential
and periodic boundary conditions, as discussed in subsection 4.2. The top row shows results in
[0, 1)2, and the bottom row in [0, 1)3.
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Fig. 8. We plot the approximation rates of our method in the setting of rough high-contrast
coefficients discussed in subsection 4.2, showing that its accuracy decreases only slightly compared
to Figure 7. The #matvecs per ρ are the same as in Figure 7.
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Fig. 9. We apply our method to solution operators of the fractional Laplace equation described
in subsection 4.4. The first row shows the case s = 0.5, and the second row the case s = 1.5. The
first column shows the case d = 2 and the second column the case d = 3.

4.2. Laplacian with random potential. Following [18], we consider a Laplace
operator over [0, 1)2 with periodic boundary conditions, discretized over a regular
grid of N = n2 points.5 Again following [18], we add to the i-th diagonal entry
of the matrix representation of −∆ a zeroth order term 1 + Wi, where the Wi ∼
UNIF([0, 1]) are independent. The zeroth-order term removes the null space of the
differential operator and, by its roughness, prevents higher-order regularity of the
PDE. This allows showcasing the fact that our method, just as those of [18], does
not rely on higher-order smoothness of solutions of the PDE. In Figure 7, we have
plotted the number of matrix-vector-products and the resulting relative error of our
approximation as a function of ρ. For the same relative accuracy of about 10−7, our
method requires about half as many matrix-vector products compared to the results
reported in [18]. To demonstrate that our method is not restricted to two-dimensional
problems, we provide results for the same setting, but with N = n3 points in [0, 1)3.

4.3. Laplacian with rough coefficients. To show that our methods can work
under minimal regularity assumptions, we also provide results with rough coefficients.
In the setting of subsection 4.2, we obtain each conductivity coefficient as Zi + 10−4,
where the Zi ∼ UNIF([0, 1]) are independent. The resulting problem has a contrast
ratio of about 104. As shown in Figure 8 the approximation rates obtained by our

5Note that the N of [18] is equivalent to the n in the present work.
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Fig. 10. Left: The (volumetric) finite element model used in subsection 4.5 at its coarsest
resolution, Dirichlet boundary conditions (BC) marked in yellow, and Neumann BC in blue. Right:
The three different levels of refinement. Model and discretization provided by [3].
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Fig. 11. We plot the number of matrix-vector products (left) and resulting relative error in
operator-2-norm (right) of our method for the finite-element discretization shown in Figure 10, as
discussed in subsection 4.5.

method are hardly affected, showing its robustness beyond the scope of our rigorous
results (which are not robust to high contrast coefficients).

4.4. Fractional Laplace operators. The exponential decay of Cholesky fac-
tors that forms the basis of our method was observed to hold even in for Matérn
kernels corresponding to fractional-order PDEs [28]. Motivated by this observation,
we now attempt to recover the solution operators of fractional Laplacian equations.
We use the spectral definition of the fractional Laplacian together with the fast Fourier
transform efficiently evaluate the solution operator. In Figure 9, we show the results of
our method applied to the solution operators of the equation u 7→ (−∆)su+u = f for
s ∈ {0.5, 1.5}. Even though fractional Laplace operators are nonlocal, discretizations
of their inverses have near-local Cholesky factors.

4.5. Finite element discretization. To show that our method can handle
finite element discretizations, mixed boundary conditions, and complex geometries, we
apply our method to a Laplace operator discretized on the finite element model shown
in Figure 10, with Dirichlet and Neumann boundary conditions. We consider three
levels of refinement with N = {9925, 66111, 478953} degrees of freedom. Figure 10
shows the exponential decay of the approximation error as a function of ρ.
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Appendix A. Proofs of theoretical results.

A.1. Prior results. Our proofs of Theorems 3.1, 3.2, and 3.4 rely on results from
[28]. The first result bounds extremal eigenvalues of Θ and its Schur complements.

Theorem A.1 (Spectral localization [28, Theorem 5.16]). In the setting of The-
orems 3.1, 3.2, and 3.4 there exists a constant C, depending only on ∥L∥, ∥L−1∥, d,
s, and δ such that writing Ī(k) := ∪1≤l≤kI

(l), we have for each 1 ≤ k < l ≤ q that

1

C
h2ks ≤ λmin

(
ΘĪ(l),Ī(k)

)
,

1

C
h2qs ≤ λmin (Θ)

Ch2ks ≥ λmax

(
ΘI(l),I(l) −ΘI(l),Ī(k)

(
ΘĪ(k),Ī(k)

)−1
ΘĪ(k),I(l)

)
,

Where λmin and λmax denote the smallest respectively largest value of their (symmetric
and positive-definite) arguments.

The second result describes the exponential decay of the Cholesky factors of Θ
that enables the exponential accuracy of our approximation.

Theorem A.2 (Exponential decay [28, Theorem 5.23]). In the setting of The-
orems 3.1, 3.2, and 3.4 there exist constants C, α, and γ, depending only on ∥L∥,
∥L−1∥, d, s, h, and δ, such that the entries of the exact lower triangular Cholesky
factor L of Θ satisfy

|Lij | ≤ CNα exp
(
−h−(min(k,l))γ dist (t(wi), t(wj))

)
A.2. Proof of Theorem 3.1. We denote as Sρ ⊂ I×I the sparsity pattern of L

as produced by Algorithm 2.1. For i ≻ j, the entry Lij is part of the sparsity pattern
if and only if t(wi) is closest to t(wj) out of all other basis functions of the same color.

https://doi.org/10.1137/20M1336254
https://doi.org/10.1137/20M1336254
https://doi.org/10.1137/20M1336254
https://doi.org/10.1137/19M129526X
https://doi.org/10.1137/19M129526X
https://doi.org/10.1137/19M129526X
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For i, ι ∈ c ⊂ C(k), i ̸= ι sharing the same color, we have dist (t(wi), t(wι)) ≥ ρ2hk−1.
Together with the triangle inequality, this implies that for i ∈ I(k) and j ∈ I(l),

(A.1) j ⪯ i, (i, j) /∈ Sρ ⇒ dist (t(wi), t(wj)) ≥ ρhl−1 − hk−1 ≥ (ρ− 1)hl−1.

For S ⊂ I × I, the truncation operator A 7→ truncS(A) takes in a matrix A ∈ I × I
and returns a matrix truncS(A) that is equal to A on S and equal to zero, everywhere
else. We can then write

Θ = truncSρ
(L)

(
truncSρ

(L)
)⊤︸ ︷︷ ︸

Θ̄:=

+Θ− Θ̄︸ ︷︷ ︸
−E:=

.

By completing the square and using Theorem A.2, Theorem A.1, and (A.1), we obtain

∥E∥ =
∥∥∥(L− truncSρ (L)

)
L⊤ + L

(
L− truncSρ (L)

)⊤
+

(
L− truncSρ (L)

) (
L− truncSρ (L)

)⊤∥∥∥
≤ C̄N ᾱ exp (−ργ̄) ,

where C̄, ᾱ, and γ̄ have the same dependences as the original C, α, and γ. It is
left to show that applying Algorithm 2.1 Θ̄ correctly recovers the exact Cholesky
truncSρ

(L) of Θ̄. This can be proved by induction over the for-loop of Algorithm 2.1.
Assume that for a given color c ∈ C, the columns corresponding to indices of all prior
colors were reconstructed correctly. Denote as k the index of the last column that has
been reconstructed already and denote as c≻ the color following c. By assumption,
the argument of scatter can then be reformulated as

O:,c − LL⊤M:,c =Θ̄M:,c −
(
Θ̄:,1:k

(
Θ̄1:k,1:k

)−1
Θ̄1:k,:

)
M:,c

=
(
Θ̄− Θ̄:,1:k

(
Θ̄1:k,1:k

)−1
Θ̄1:k,:

)
︸ ︷︷ ︸

Sk:=

M:,c.

It is well known that the (k + 1)-st column of the Schur complement Sk is equal to
the k+1-st column of the Cholesky factor, up to a diagonal scaling. Furthermore, we
observe that eliminating the (k+1)-st row and column does not impact any rows and
columns of Sk that are part of the same color c+ since, in general, an entry (i, j) can
not be in the sparsity set Sρ if i and j are not in the same color. In particular, the
nonzeros on columns in c+ are located on the sparsity set Sρ and thus multiplication
with M:,c+ followed by scatter recovers these columns of Sk exactly. After diagonal
normalization, we thus exactly recover the columns of L in color c+. The result then
follows by induction over the colors in C.

A.3. Proof of Theorem 3.2. We now use the limited number of supernodal
colors to rigorously bound the error propagation in Algorithm 3.1, closely following
the proof of [28, Theorem 5.27]. In the following, we assume that all supernodes in a
given color c̃ have the same size and thus sums of the form

∑
ĩ∈c̃ Θĩj̃ are well-defined.

Our proof can easily be extended beyond this case by truncating or zero-padding
supernodal entries accordingly, at the cost of additional notational complexity.

Analogously to the proof of Theorem 3.1, we denote as S̃ρ ⊂ Ĩ× Ĩ the supernodal
sparsity pattern of the Cholesky factor computed by Algorithm 3.1, and let truncS̃ρ

denote the operation of truncating a given supernodal block-matrix to this sparsity
pattern. As before, we then denote Θ̄ = Θ + E as a perturbation of the Cholesky
factorization that has exactly sparse Cholesky factors according to the pattern S̃.
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We will show that there exist constants C̄, ᾱ > 0 depending only on ∥L∥, ∥L−1∥,
d, s, h, and δ such that for ϵ < C̄−1N−ᾱ and ∥E∥ ≤ ϵ, Algorithm 3.1 applied to Θ
terminates without encountering a non- positive-definite diagonal block and such that
the resulting Cholesky factor L satisfies ∥LL⊤ − Θ̄∥ϵCN ᾱ.

We prove this by controlling how successive columns of the Cholesky factor L
computed by Algorithm 3.1 diverge from those of the factors L̄ of the perturbed
matrix Θ̄ during the factorization. We introduce the following notation. For c̃ ∈ C̃,
we denote additive updates given by the c̃-th column of the Cholesky factors as

Āc̃ := L̄:,c̃L̄
⊤
:,c̃ and Ac̃ := L:,c̃L

⊤
:,c̃.

We also introduce notation for the (approximate) Schur complements

Sc̃ := Θ−
∑
c̃−⪯c̃

Ac̃− , S̄c̃ := Θ̄−
∑
c̃−⪯c̃

Āc̃− .

While S̄c̃ coincides with the exact Schur complement of Θ̄ after eliminating the colors
up to c̃ and thus coincides with

∑
c̃+≻c̃ Āc̃+ , Sc̃ only approximates the Schur comple-

ment of Θ, and is thus only approximately equal to
∑

c̃+≻c̃ Ac̃+ . The key result that
allows us to prove Theorem 3.2 is the following lemma that bounds the rate at which
Sc̃ and S̄c̃ diverge as we iterate through the supernodal colors c̃ ∈ C̃. It will be used
recursively to provide upper bounds ϵ(k) for the error on each scale k, in terms of the{
ϵ(l)
}
0≤l<k

on coarser scales.

Lemma A.3. There exists a constant g depending only on d, such that for ρ ≥ 1,
the following holds.

For a given color c̃ ∈ C̃(p) let
{
ϵ(k)
}
0≤k≤q

be such that for each 1 ≤ k ≤ q and

c̃− ∈ C̃(k) with c̃− ⪯ c̃, we have

(A.2)

max
c̃−⪯ξ̃,χ̃∈C̃

max
ĩ∈ξ̃,j̃∈χ

∥∥∥Ac̃−

ĩj̃
− Āc̃−

ĩj̃

∥∥∥
Fro
≤ ϵ(k) and

(A.3)

max
ĩ,j̃∈Ĩ

∥∥∥Θĩj̃ − Θ̄ĩj̃

∥∥∥
Fro
≤ ϵ(0).

Denoting as ∥ · ∥ the operator norm and as c̃+ the direct successor of c̃, we define

ϵ := g2

(
p∑

k=0

hd(p−k)ϵ(k)

)
, λmin := λmin

(
Θ̄c̃+c̃+

)
, and λmax := max

c̃+⪯ξ̃∈C̃

∥∥∥S̄c̃
c̃+ξ̃

∥∥∥ .
Assume that ϵ ≤ λmin

2 . We then have

max
c̃⪯ξ̃,χ̃∈C̃

max
ĩ∈ξ̃,j̃∈χ

∥∥∥Sc̃+ĩj̃ − S̄c̃
+

ĩj̃

∥∥∥
Fro
≤
(
1 +

3

2

λmax

λmin
+

9

2

λ2max

λ2min

)
ϵ.

To prove Lemma A.3 we will use the following geometric lemma

Lemma A.4. There exists a constant g depending only on d, such that
1. The number of colors on each scale of the hierarchy is bounded by g
2. For 1 ≤ k ≤ l ≤ q and c̃(k) ∈ C̃(k) and c̃(l) ∈ C̃(l), g bounds the sizes of the

ac̃
(k),c̃(l)

ĩ
:=
{
j̃ ∈ c̃(l) such that Ac̃(k)

ĩj̃
or Āc̃(k)

ĩj̃
̸= 0
}

as #ac̃
(k),c̃(l)

(̃
i
)
≤ gh(k−l), as well as #c̃(l) ≤ gh−(l−1).
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Proof of Lemma A.4. To obtain the first result that this number can be bounded
in terms of only d, we first note that by construction, the aggregation centers {yĩ}ĩ∈Ĩ(k)

of supernodes on a given scale k have a pairwise distance of at least 2ρhk−1. At the
same time, for each i ∈ ĩ we have dist (t(wi), yĩ) ≤ 2ρhk−1, since otherwise there

would have to exist a j̃ ∈ Ĩ(k) with dist
(
t(wi, yj̃)

)
≤ dist (t(wi, yĩ)) and thus i would

be aggregated into j̃ instead of ĩ. Since furthermore each {t(wi)}i∈Ĩ(k) is contained in

a ball of radius hk−1, each {t(wi)}i∈ĩ is contained in a ball of radius 3ρhk−1 centered

in yĩ. In particular, for any two supernodes ĩ, j̃ ∈ Ĩ(k) that are not allowed to have the

same color have to satisfy dist
(
yĩ, yj̃

)
≤ (3+3+1)ρhk−1. Let now G = (V,E) be the

undirected graph with vertices V = Ĩ(k) and edges given by pairs
{
ĩ, j̃
}
of supernodes

that satisfy dist
(
yĩ, yj̃

)
≤ (3 + 3 + 1)ρhk−1. By the above, any graph coloring of

this graph yields an admissible supernodal coloring. Furthermore, the number of
colors needed to color a graph G with degree ∆(G) using a greedy algorithm is upper
bounded [13] by ∆(G)+1. For every

{
ĩ, j̃
}
∈ E, a ball of radius ρhk−1 centered in yj̃

must be contained in a ball of radius (3 + 3 + 1 + 1)ρhk−1. Since the {yĩ}ĩ∈Ĩ(k) have

a pairwise distance of at least ρhk−1, these balls are disjoint. Therefore, the maximal
number of edges incident on a given node is given by the ratio of the volumes of a
ball of radius 8ρhk−1 and one of radius ρhk−1, and thus the degree is bounded as
∆(G) ≤ 8d. The number of colors is therefore bounded by 8d + 1.

The second result can be shown (for a possibly larger g) using a very similar

ball-packing argument as above, where we note that the range of interaction of S(c̃(k))

is upper bounded as ⪅ ρhk−1, while the distance between elements of c̃(l) is lower
bounded by ⪆ ρhl−1 and thus the estimation of the above quantity amounts to count-
ing the disjoint balls of radius ⪆ ρhl−1 that can be fit into a ball of radius ⪅ ρhk−1.

Equipped with Lemma A.4, we can now proceed to prove Lemma A.3.

Proof of Lemma A.3. The c̃+-th column of the Cholesky factors can in turn be
expressed as

L̄ĩj̃ = S̄c̃
ĩj̃

(
S̄c̃
j̃j̃

)−1/2

, Lĩj̃ =

(∑
ι̃∈c̃+

Sc̃
ĩι̃

)
sym

(∑
ι̃∈c̃+

Sc̃
j̃ι̃

)−1/2

L̄j̃j̃ =
(
S̄c̃
j̃j̃

)1/2
, Lĩj̃ = sym

(∑
ι̃∈c̃+

Sc̃
j̃ι̃

)1/2

with sym(A) = (A + A⊤)/2 denoting the symmetrization operation. For (̃i, j̃) /∈ S̃,
both factors are equal to zero and for ĩ = j̃, they are given by

We can therefore write

Āc̃+

ĩj̃
= S̄c̃

ĩη̃

(
S̄c̃η̃η̃
)-1 S̄c̃

η̃j̃
, Ac̃+

ĩj̃
=

(∑
ι̃∈c̃+

Sc̃
ĩι̃

)
sym

(∑
ι̃∈c̃+

Sc̃η̃ι̃

)-1(∑
ι̃∈c̃+

Sc̃
ι̃j̃

)

Āc̃+

j̃j̃
=
(
S̄c̃
j̃j̃

)
, Ac̃+

j̃j̃
= sym

(∑
ι̃∈c̃+

Sc̃
j̃ι̃

)
,

whenever scatter assigns ĩ and j̃ to the same column, η̃ = η̃(̃i) = η̃(j̃). Otherwise,
the off-diagonal terms above are zero.
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Writing again η̃(̃i) for the index of c̃ that ĩ is scattered into, we observe that

S̄c̃
ĩη̃(̃i)

=
∑
ι̃∈c̃+

Sc̃
ĩι̃
, S̄c̃

η̃(j̃)j̃
=
∑
ι̃∈c̃+

Sc̃
ι̃j̃
,

since the Schur complement S̄c̃ is equal to
∑

c̃+≻c̃ L̄:,c̃

(
L̄:,c̃

)⊤
. Defining

Xĩj̃ :=



∑
ι̃∈c̃+

Sc̃
ι̃j̃
− S̄c̃

ι̃j̃
for ĩ ̸= j̃ and ĩ = η̃

(
j̃
)
,∑

ι̃∈c̃+
Sc̃
ĩι̃
− S̄c̃

ĩι̃
for ĩ ̸= j̃ and j̃ = η̃

(̃
i
)
,

sym

( ∑
ι̃∈c̃+

Sc̃
ι̃j̃
− S̄c̃

ι̃j̃

)
for ĩ = j̃ ∈ c̃+,

0 else,

and using the classical matrix identity (A+B) = A−1− (A+B)
−1
BA−1, we obtain

Sc̃
+

ĩj̃
=

(∑
ι̃∈c̃+

Sc̃
ĩι̃

)
sym

(∑
ι̃∈c̃+

Sc̃η̃ι̃

)−1(∑
ι̃∈c̃+

Sc̃
ι̃̃i

)
=
(
S̄c̃
ĩη̃
+Xĩη̃

) (
S̄c̃η̃η̃ +Xη̃η̃

)−1
(
S̄c̃
η̃j̃

+Xη̃j̃

)
=S̄c̃

ĩη̃

(
S̄c̃η̃η̃
)−1 S̄c̃

η̃j̃
+ S̄c̃

ĩη̃

(
S̄c̃η̃η̃
)−1

Xη̃j̃ +Xĩη̃

(
S̄c̃η̃η̃
)−1 S̄c̃

η̃j̃
+Xĩη̃

(
S̄c̃η̃η̃
)−1

Xη̃j̃

+
(
S̄c̃
ĩη̃
+Xĩη̃

) (
S̄c̃η̃η̃ +Xη̃η̃

)−1
Xη̃η̃

(
S̄c̃η̃η̃
)−1

(
S̄c̃
η̃j̃

+Xη̃j̃

)
.

In other words, we have

Sc̃
+

ĩj̃
− S̄c̃

+

ĩj̃
=S̄c̃

ĩη̃

(
S̄c̃η̃η̃
)−1

Xη̃j̃ +Xĩη̃

(
S̄c̃η̃η̃
)−1 S̄c̃

η̃j̃
+Xĩη̃

(
S̄c̃η̃η̃
)−1

Xη̃j̃

+
(
S̄c̃
ĩη̃
+Xĩη̃

) (
S̄c̃η̃η̃ +Xη̃η̃

)−1
Xη̃η̃

(
S̄c̃η̃η̃
)−1

(
S̄c̃
η̃j̃

+Xη̃j̃

)
.

(A.4)

Similarly, for the diagonal entries, we have

(A.5) Sc̃
+

j̃j̃
= sym

(∑
ι̃∈c̃+

Sc̃η̃ι̃

)
= S̄c̃

j̃j̃
+Xj̃j̃

and thus

Sc̃
+

j̃j̃
− S̄c̃

+

j̃j̃
= Xj̃j̃ .

In order to conclude the proof of the lemma, we need to show and exploit that X is
small. For c̃ ∈ C̃(p) we can write∑

ι̃∈c̃+

Sc̃
ι̃j̃
− S̄c̃

ι̃j̃
=

(∑
ι̃∈c̃+

Θ̄ι̃j̃ −Θι̃j̃

)
+

p∑
k=1

∑
c̃−⪯c̃

c̃−∈C̃(k)

(∑
ι̃∈c̃+

Ac̃
ι̃j̃
− Āc̃

ι̃j̃

)

=

(∑
ι̃∈c̃+

Θ̄ι̃j̃ −Θι̃j̃

)
+

p∑
k=1

∑
c̃−⪯c̃

c̃−∈C̃(k)

 ∑
ι̃∈ac̃−,c̃+

ĩ

Ac̃
ι̃j̃
− Āc̃

ι̃j̃

 .
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Using (A.2) and (A.3) as well as Lemma A.4 and the triangle inequality, we obtain∥∥∥∥∥∑
ι̃∈c̃+

Sc̃
ι̃j̃
− S̄c̃

ι̃j̃

∥∥∥∥∥
Fro

≤ gh−pϵ0 + g2
p∑

k=1

hk−pϵ(k) ≤ g2
p∑

k=0

hk−pϵ(k).

Since sym(·) is an orthogonal projection with respect to the Frobenius inner product,
this implies that for all ĩ, j̃ we have Xĩj̃ ≤ ϵ. Plugging this estimate into (A.4) and
(A.5), the triangle inequality and submultiplicativity ∥AB∥Fro ≤ ∥A∥∥B∥Fro imply∥∥∥Sc̃+ĩj̃ − S̄c̃

+

ĩj̃

∥∥∥
Fro
≤ 2

λmax

λmin
ϵ+

ϵ

λmin
ϵ+

9

2

λ2max

λ2min

ϵ ≤
(
1 +

3

2

λmax

λmin
+

9

2

λ2max

λ2min

)
ϵ.

We now use Lemma A.3 construct a sequence of upper bounds ϵ(p) on successive
scales and use it to upper bound a weighted sum ϵ(⪯p) of all errors up to this scale.

Lemma A.5. Assume that for 0 ≤ k ≤ p the ϵ(k) satisfy (A.2) and (A.3) for
any c̃ ∈ ∪1≤k≤pC̃(k). Let λmin and λmax be such that for each c̃ ∈ C̃(p) ∪ C̃(p+1) and

c̃ ⪯ c̃+ ∈ C̃(p+1) they satisfy

λmin ≤ λmin

(
Θ̄c̃+c̃+

)
, and λmax ≥ max

c̃+⪯ξ̃∈C̃

∥∥∥S̄c̃
c̃+ξ̃

∥∥∥ .
Define for g as in Lemma A.4,

ϵ(⪯p) := g2

(
p∑

k=0

hd(p−k)ϵ(k)

)
, φ :=

(
1 +

3

2

λmax

λmin
+

9

2

λ2max

λ2min

)
.

Then, if

ϵ(p+1) :=
1−

(
φg2

)g
1− φg2

φg2ϵ(⪯p) ≤ λmin

2
,

it also satisfies

max
c̃⪯ξ̃,χ̃∈C̃

max
ĩ∈ξ̃,j̃∈χ

∥∥∥Sc̃+ĩj̃ − S̄c̃
+

ĩj̃

∥∥∥
Fro
≤
(
1 +

3

2

λmax

λmin
+

9

2

λ2max

λ2min

)
ϵ(p+1)

for any c̃+ ∈ C̃(p+1).

Proof. For c̃ ∈ C̃(p+1), let ϵ(p+1),⪯c̃ satisfy, for each c̃− ≺ c̃, c̃− ∈ C̃(p+1),

max
c̃−⪯ξ̃,χ̃∈C̃

max
ĩ∈ξ̃,j̃∈χ

∥∥∥Ac̃−

ĩj̃
− Āc̃−

ĩj̃

∥∥∥
Fro
≤ ϵ(p+1),⪯c̃.

Lemma A.3 then implies that for c̃+ the direct successor of c̃ and

ϵ(p+1),⪯c̃+ := φg2
(
ϵ(⪯p) + ϵ(p+1),⪯c̃

)
,

ϵ(p+1),⪯c̃+ satisfies, for each c̃− ⪯ c̃+, c̃− ∈ C̃(p+1),

max
c̃−⪯ξ̃,χ̃∈C̃

max
ĩ∈ξ̃,j̃∈χ

∥∥∥Ac̃−

ĩj̃
− Āc̃−

ĩj̃

∥∥∥
Fro
≤ ϵ(p+1),⪯c̃.
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Thus, proving the lemma amounts to upper bounding the ⌈g⌉-th entry of the recursion
xk+1 = ϕg2

(
ϵ(⪯p) + xk

)
, with initial entry x0 = 0. By induction, one can show that

xk =
∑k

l=1

(
ϕg2
)l
ϵ(⪯p) =

1−(ϕg2)
k

1−ϕg2 ϕg2ϵ(⪯p). The result follows by setting k = g.

With Lemmas A.3 and A.5 in place, we can now proceed to prove Theorem 3.2.

Proof of Theorem 3.2. We use ⪆,⪅ to denote inequality up to constants that are
subsumed in the O notation in the theorem. By Theorem A.1, for ρ ⪆ log(N) there
exists a constant κ depending only on ∥L∥, ∥L−1∥, d, s, δ, and h such that for any c̃ ∈ C̃
and λmin, λmax as defined in Lemmas A.3 and A.5 we have λmax/λmin ≤ κ. Defining,
analogue to Lemma A.5, φ :=

(
1 + 3κ/2 + 9/2κ2

)
. Then, Lemma A.5 implies that

for any 1 ≤ p ≤ q for which {ϵ(k)}0≤k≤p satisfy (A.2) and (A.3) and ϵ(⪯p) as defined

in Lemma A.5, ϵ(p+1) :=
1−(φg2)

g

1−φg2 φg2ϵ(⪯p) ≤ λmin

2 satisfies (A.2) and (A.3), as well.

The resulting ϵ(⪯p+1) is then related to ϵ⪯p by

ϵ(⪯p+1) = h−1ϵ(⪯p) + φg4
1− (φg2)g

1− φg2
ϵ(⪯p) =

(
h−1 + φg4

1− (φg2)g

1− φg2

)
ϵ(⪯p).

By choosing ρ ⪆ log(N) we can make ϵ(0) small enough to ensure that

ϵ := ϵ(⪯q) =

(
h−1 + φg4

1− (φg2)g

1− φg2

)
ϵ(0) ≤

λmin

(
Θ̄
)

2

and thus
∥∥L̄L̄⊤ − LL⊤

∥∥ ≤ poly(N)ϵ(0). The accuracy result then follows from Theo-

rem 3.1 that proves the exponential decay of ϵ(0) in ρ. The computational complexity
result follows each row of L having only O

(
log(N)ρd

)
nonzero entries.

A.4. Proof of Theorem 3.4. We conclude this section with a proof of Theo-
rem 3.4. The low-rank approximation rate was already established by [28]. We extend
this result by explicitly proving the optimality of the low-rank approximation.

Proof of Theorem 3.4. Theorem A.1 directly implies that for 1 ≤ p ≤ q,∥∥∥Θ− L:,Īp

(
L:,Īp

)⊤∥∥∥ ≤ C∥Θ∥h2ps
for a constant C depending only on ∥L∥, ∥L−1∥, d, h, δ, and s. By possibly changing
this constant, we also have C−1h−pd ≤ #Ī(p) ≤ Ch−pd, which implies the approxima-
tion rate claimed in Theorem 3.4. We note that Theorem A.1 implies that Θ has, for
each 1 ≤ p ≤ q, a submatrix of size at least C−1h−pd with minimal eigenvalue lower
bounded by C−1hpd. Thus, a rank C−1h−pd approximation can be at best of accuracy
C−1hpd, establishing optimality of the approximation rate given in Theorem 3.4.

A.5. Proof of Theorem 3.5. We begin by analyzing the case ρ = ∞, in the
more general case where the v and w are obtained, not from piecewise constant func-
tions, but from piecewise polynomials.

Lemma A.6. In the setting of Theorems 3.1 and 3.2, modify the construction of
the V (k) and W (k) as follows. Instead of the v ∈ V (k) being the piecewise constant
functions on τ (k), define them to be the piecewise polynomials of order p − 1. As
before, the wi are chosen to be a local orthonormal basis of the orthogonal complement
of V (k−1) in V (k). For an s ≤ r ≤ 2s, we assume furthermore that L is a bounded
and invertible map, from Hr ∩Hs

0 (Ω) to Hr−2s (Ω) We then have, for a constant C
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depending only on d,Ω,L, p, for any g̃ in the L2-orthogonal complement of V (k),

∥Gg̃∥L2 ≤ Chmin(p,r)k ∥g̃∥L2 .

Proof. For any g̃ in the orthogonal complement of V q, we have

∥Gg̃∥L2 = sup
v∈L2(Ω)

⟨v,Gg̃⟩L2

∥v∥L2

≤ sup
v∈Hr−2s(Ω)

⟨v,Gg̃⟩L2

∥v∥Hr−2s

= sup
v∈Hr−2s(Ω)

⟨Gv, g̃⟩L2

∥LGv∥Hr−2s

= sup
v∈Hr∩Hs

0

⟨v, g̃⟩L2

∥Lv∥Hr−2s

⪅ sup
v∈Hr(Ω)

⟨v, g̃⟩L2

∥v∥Hr

= sup
v∈Hr(Ω)

∑
t∈τ(k) ⟨v − pt, g̃⟩L2(t)

∥v∥Hr

≤ sup
v∈Hr(Ω)

∑
t∈τ(k) ⟨v − pt, g̃⟩L2(t)

∥v∥Hr

= sup
v∈Hr(Ω)

〈∑
t∈τ(k)(v

∣∣
t − pt), g̃

〉
L2

∥v∥Hr

≤ sup
v∈Hr(Ω)

∥∥∑
t∈τ(k)(v

∣∣
t − pt)

∥∥
L2 ∥g̃∥L2(t)

∥v∥Hr

.

Here, v|t denotes the restriction of v to t and each pt is an arbitrary polynomial of
order (min(p, r)− 1), continued with zero outside t. For appropriately chosen pt, the
Bramble-Hilbert lemma [8] implies that∥∥∥∥∥∥

∑
t∈τ(k)

(v|t − pt)

∥∥∥∥∥∥
2

L2

=
∑

t∈τ(k)

∥∥v|t − pt∥∥2L2(t)

≤Ch2kmin(p,r)
∑

t∈τ(k)

∥∥v|t∥∥2Hmin(p,r)(t)
≤ Ch2kmin(p,r)

∥∥v∥∥2
Hr .

Thus, we have ∥Gg̃∥L2 ≤ Chmin(p,r)k ∥g̃∥L2 . With the estimates above, we have〈
f,
(
G− Ḡ∞

)
g
〉
L2 ≤ Chmin(p,r)k∥f∥L2∥g∥L2 = Chpk∥f∥L2∥g∥L2 =

Corollary A.7. In the setting of Lemma A.6, define the projected Green’s func-
tion Ḡ as

Ḡ(x, y) =
∑

i∈∪k≤qI(k)

∑
j∈∪k≤qI(k)

⟨wi, Gwj⟩L2 wi(x)wj(y).

We then have, for a constant C depending only on d,Ω,L, δ, p,

∥Ḡ−G∥L2→L2 ≤ Chmin(p,r)q.

Here ∥ · ∥L2→L2 denotes the operator norm with respect L2 (Ω) and we interpret the
true and approximate Green’s function as operators on L2 (Ω), by convolution.

Proof. Writing f = f̄ + f̃ and g = ḡ + g̃ for f̄ , ḡ ∈ L2 (Ω) piecewise constant on
elements of τ (q), we have〈

f,
(
G− Ḡ∞

)
g
〉
L2 =

〈
f̄ + f̃ ,

(
G− Ḡ∞

)
(ḡ + g̃)

〉
L2

=
〈
f̄ ,
(
G− Ḡ∞

)
g̃
〉
L2 +

〈
f̃ ,
(
G− Ḡ∞

)
ḡ
〉
L2

+
〈
f̃ ,
(
G− Ḡ∞

)
g̃
〉
L2

=
〈
f̄ , Gg̃

〉
L2 +

〈
f̃ , Gḡ

〉
L2

+
〈
f̃ , Gg̃

〉
L2
≤ 2

(∥∥f∥∥
L2

∥∥Gg̃∥∥
L2 +

∥∥g∥∥
L2

∥∥Gf̃∥∥
L2

)
≤Chmin(p,r)q

∥∥f∥∥
L2

∥∥g∥∥
L2 .
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We can now conclude the proof of Theorem 3.5.

Proof of Theorem 3.5. We use the triangle inequality together with Corollary A.7
to write∥∥G− Ḡρ

∥∥
L2→L2 ≤

∥∥G− Ḡ∥∥
L2→L2 +

∥∥Ḡ− Ḡρ

∥∥
L2→L2 ≤ Chq +

∥∥Ḡ− Ḡρ

∥∥
L2→L2 .

By Theorem 3.2,
∥∥Ḡ− Ḡρ

∥∥
L2→L2 can be upper bounded as∥∥∥∥∥∥

∑
i∈∪k≤qI(k)

∑
j∈∪k≤qI(k)

(
Θ− LL⊤)

ij
wi(x)wj(y)

∥∥∥∥∥∥
L2→L2

=
∥∥Θ− LL⊤∥∥ ≤ hq,

by choosing ρ ⪆ log(Nh−q) ≈ log(N). By observing that the number N of basis
functions scales as N ≈ h−qd, we obtain the desired result.

A.6. Proof of Theorem 3.6. We begin by studying the rate of convergence in
Hilbert-Schmidt-norm obtained from piecewise polynomial approximation.

Corollary A.8. Consider the setting of Lemma A.6 with infinitely fine nested
partitions

(
τ (k)

)
1≤k<∞ of Ω. For 1 ≤ q, define the projected Green’s function Ḡ as

Ḡ(x, y) =
∑

i∈∪k≤qI(k)

∑
j∈∪k≤qI(k)

⟨wi, Gwj⟩L2 wi(x)wj(y)

We then have, for a constant C depending only on d,Ω,L, h, δ, p,

∥Ḡ−G∥L2⊗L2 ≤ Ch(2min(p,r)−d)q ≈ C
(
# ∪1≤k≤q I

(k)
)− (2min(p,r)/d−1)

2

.

In particular, an ϵ-accurate L2(Ω× Ω) approximation of the Green’s function can be

obtained using Cϵ
2

2min(p,r)/d−1 matrix-vector products.

Proof. Note that when interpreting Ḡ−G as operators mapping L2 to itself, the
norm ∥ · ∥L2(Ω×Ω) is equal to their Hilbert-Schmidt norm. It can thus be computed as

(A.6) ∥Ḡ−G∥2L2(Ω×Ω) =
∑
i

∥∥(Ḡ−G)wi

∥∥2
L2 ≤ C

∑
k>q

#I(k)h2min(p,r)k.

By a ball packing argument, we have #I(k) ≈≤ Ch−kd, resulting in

∥Ḡ−G∥2L2(Ω×Ω) ≤ C
∑
k>q

h(2min(p,r)−d)k

=
C

1− h(2min(p,r)−d)
h(2min(p,r)−d)q ≤ Ch(2min(p,r)−d)q.

From q ≈ − logh(#I
(q))/d, we obtain ∥Ḡ−G∥2L2⊗L2 ≤ C

(
#τ (q)

)−(2min(p,r)/d−1)
.

For p = 1 and d ≥ 2, we have 2min(p, r)/d − 1 ≤ 0. Thus, Corollary A.8 does not
apply to the case of basis functions obtained from averages over elements of τ . Green’s
function approximations with bounds in L2 need an additional approximation step.

Lemma A.9. In the setting of Corollary A.8 denote as Ḡ, the Green’s function
obtained from setting p = 1 for a given q. For a 1 < q̂ < q and an arbitrary p,
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denote as {ŵi}i∈Î a local multiscale orthogonal basis of the space of functions that are

polynomials of order p−1 on each element of τ q̂, denoting as Ŵ their span. Denote as
Î(k) the indices corresponding the basis function on the k-th scale and denote as Ŵ (k)

the span of these basis functions. Let ˆ̄G be the L2 projection of Ḡ onto Ŵ , whereby

convolution with ˆ̄G amounts to convolution with Ḡ, pre– and postprocessed with L2

projection onto Ŵ . We then have, for a constant C depending only on d,Ω,L, h, δ, p

∥Ĝ−G∥L2⊗L2 ≤ Ch(2min(p,r)−d)q ≈ C
(
#τ (q)

)−(1− d
2min(p,r) )

.

Proof. Define the Green’s function Ĝ projected onto the Ŵ as

Ĝ(x, y) =
∑
î∈Î

∑
ĵ∈Î

〈
ŵî, Gŵĵ

〉
L2
ŵî(x)ŵĵ(y).

Using the triangle inequality and Corollary A.8, we obtain

∥ ˆ̄G−G∥L2⊗L2 ≤ ∥ ˆ̄G− Ĝ∥L2⊗L2 + ∥Ĝ−G∥L2⊗L2 ≤ ∥ ˆ̄G− Ĝ∥L2⊗L2 +Ch(min(p,r)− d
2 )q̂

In order to bound ∥ ˆ̄G− Ĝ∥L2⊗L2 , we first observe that for any ŵi, ŵj we have

∥∥∥( ˆ̄G− Ĝ
)
ŵi

∥∥∥
L2
≤

{
0 if i ∈ Î(k) for a k > q̂,∥∥(Ḡ−G) ŵi

∥∥
L2 else.

The first case follows, since the projection of ŵi onto Ŵ
(q̂) is zero. In the second case,

this projection onto Ŵ (q̂) is the identity. Meanwhile, the orthogonal projection of(
Ḡ−G

)
ŵi onto Ŵ

(q̂) only decreases the L2-norm of the result, proving the estimate

for the second case. Corollary A.7 implies
∥∥( ˆ̄G− Ĝ)ŵi

∥∥
L2 ≤ Chmin(p,r)q and thus∥∥∥( ˆ̄G− Ĝ

)∥∥∥
L2⊗L2

≤ C
√ ∑

1≤k≤q̂

#
(
Î(k)

)
h2q ≤ Chq−q̂d/2

setting ⌈q/min(p, r)⌉ ≥ q̂ ≥ ⌊q/min(p, r)⌋, we thus obtain

∥ ˆ̄G−G∥L2⊗L2 ≤ Ch(min(p,r)−d/2)q̂ = Ch(1−
d

2min(p,r) )q ≤ C
(
#τ (q)

)−(1− d
2min(p,r) )

.

Here, the last line follows by the same argument as in the proof of Corollary A.8.

Proof of Theorem 3.6. Using the triangle inequality and Lemma A.9, we compute∥∥∥ ˆ̄Gρ,q̂ −G
∥∥∥
L2⊗L2

≤
∥∥∥ ˆ̄Gρ,q̂ − ˆ̄Gq̂

∥∥∥
L2⊗L2

+
∥∥∥ ˆ̄Gq̂ −G

∥∥∥
L2⊗L2

≤
∥∥∥ ˆ̄Gρ,q̂ − ˆ̄Gq̂

∥∥∥
L2⊗L2

+ CN−(1−d/(2min(p,r))).

We now compute∥∥∥ ˆ̄Gρ,q̂ − ˆ̄Gq̂

∥∥∥
L2⊗L2

≤
√∑

i∈Î

∥∥∥( ˆ̄Gρ,q̂ − ˆ̄Gq̂

)
ŵi

∥∥∥
L2
≤ N

1
2min(p,r) ∥Θ− LL⊤∥,

Where we have used the fact that #Î ≤ CN1/min(p,r). This term can be upper
bounded by CN−(1−d/(2min(p,r))) by choosing ρ ⪆ log(N), proving the desired result.
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