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Abstract

Error bounds are a requisite for trusting or distrusting solutions in an informed way. Until recently,

provable error bounds in the absence of constraint qualifications were unattainable for many classes of

cones that do not admit projections with known succinct expressions. We build such error bounds for the

generalized power cones, using the recently developed framework of one-step facial residual functions.

We also show that our error bounds are tight in the sense of that framework. Besides their utility for un-

derstanding solution reliability, the error bounds we discover have additional applications to the algebraic

structure of the underlying cone, which we describe. In particular we use the error bounds to compute the

dimension of the automorphism group for the generalized power cones, and to identify a set of generalized

power cones that are self-dual, irreducible, nonhomogeneous, and perfect.

Keywords: error bounds, facial residual functions, Hölderian error bounds, amenable cones, generalized power cones,

self-dual cones, irreducible cones, nonhomogeneous cones, perfect cones

1 Introduction

In a Euclidean space E , consider the conic feasibility problem:

find x ∈ (L+ a) ∩K, (Feas)

where L is a subspace, a ∈ E , and K is a closed convex cone. We desire an upper bound on the distance

from an arbitrary x to the feasible region (L + a) ∩ K. The upper bound we seek should depend on the

two distances between x and K, and between x and L + a respectively. Such a guarantee is a kind of er-

ror bound; error bounds are a fundamental topic in the optimization literature [13, 18, 26, 33, 46] and widely

used in convergence analysis of algorithms. Typically, (Feas) is almost never solved exactly, instead algo-

rithms and solvers often return an approximate solution. Then, error bounds can be used to evaluate the

trustworthiness of approximate solutions because they tell us how close they are to the true set of feasible

solutions.

In this paper, we consider the case when K = P α

m,n is the generalized power cone

P α

m,n =

{
x = (x, x̃) ∈ IRm+n

∣∣∣∣ ‖x‖ ≤
n

∏
i=1

x̃
αi
i , x ∈ IRm, x̃ ∈ IRn

+

}
,
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where m ≥ 1, n ≥ 2, α = (α1, . . . , αn) ∈ (0, 1)n with ∑
n
i=1 αi = 1, and ‖x‖ denotes the Euclidean norm

of x. In the specific case when m ≥ 1, n = 2, and α = (1/2, 1/2), P α

m,n is isomorphic to a second-order

cone, whose worst-case error bound is known to be Hölderian with exponent 1/2, thanks to the work of

Luo and Sturm [25]. The remaining cases, while not as well-known as the second-order cone case, admit

more direct modeling of certain problems and have found applications in geometric programs, generalized

location problems, and portfolio optimization [5, 28]. More broadly, the inclusion of the power cone1 (and

the exponential cone) makes all the convex instances from the MINLPLib2 benchmark library conic repre-

sentable [24, 27]. This broad utility has motivated the development of self-concordant barriers [5, 36, 43],

and the ongoing development of specialized interior point methods [30,37]. Optimization with the general-

ized power cones is implemented in commercial and open source solvers like MOSEK, Alfonso, DDS and

Hypatia [6, 15, 28, 34].

One of this paper’s main contributions—Theorem 3.10—is a complete error bound analysis for the gen-

eralized power cone problem (Feas). The generalized power cone cases pose two significant obstructions to

error bound analysis that are not present in the second-order cone case. Firstly, known forms for projections

onto generalized power cones do not admit simple representations [12]; secondly, their facial structure is

more complicated. The first obstruction we obviate via the framework of one-step facial residual functions

(1-FRFs), which was established in [19, 20]. The second challenge, facial complexity, we tackle directly. In

particular, we build 1-FRFs for all faces of P α

m,n. All these 1-FRFs are tight in the natural sense of [20].

Consequently, all of the error bounds in Theorem 3.10 are tight in this sense.

While error bounds are typically used in convergence analysis and to evaluate the quality of approximate

solutions, our approach via 1-FRFs admits a surprising additional application to the algebraic structure of

the underlying cone. In order to explain our next results, we recall a few concepts. The automorphism group

of a cone K is the set of the bijective linear operators A satisfying AK = K. A cone is said to be homogeneous

if its automorphism group acts transitively on its relative interior. We say that a cone is irreducible if it is not

the direct sum of two nontrivial cones whose spans only intersect at the origin.

Because automorphisms of cones must preserve optimal FRFs (up to positively rescaled shifts), we can

use our results to establish the automorphism group for P α

m,n in Theorem 4.1 and compute its dimension in

Theorem 4.2.

This is useful because the automorphism group of a closed convex cone K has important implications

for complementarity problems over K; see [9]. In particular, denoting the dual cone of K by K∗, a comple-

mentarity condition of the form “x ∈ K, y ∈ K∗, 〈x, y〉 = 0” can be split into a square system of equations

if and only if the dimension of the automorphism group of K is at least dimK, see [32, Theorem 1]. In this

case, K is said to be a perfect cone.

Many of the concrete examples of irreducible perfect cones in the literature correspond to homogeneous

cones. In this paper we will show that the generalized power cone is irreducible, perfect (when m ≥ 3) and,

except when it reduces to the second order-cone case, always non-homogeneous. This gives an interesting

example of an irreducible cone with good complementarity properties that is not a homogeneous cone. To

summarize, our main contributions are as follows.

1. We completely determine the tightest possible error bounds for the generalized power cone, see Theo-

rem 3.10.

2. Using our error bounds, we completely determine the automorphism group of P α

m,n and discuss some

theoretical questions related to homogeneity and perfectness (in the sense of [9, 10]), see Section 4.

Although we do not discuss the details, we mention in passing that determining the error bound associated

to conic linear systems makes it possible to compute the KL-exponent of certain functions, as done, for

example, in [20, Section 5.1] using results from [45]. See more on the connection between error bounds, KL

exponents and convergence rates in [3].

1This refers to P α

1,2.
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This paper is organized as follows. In Section 2, we recall notation and preliminaries. In Section 3,

we furnish the eponymous error bounds. In Section 4, we provide the further application to the algebraic

structure of the generalized power cones.

2 Notation and preliminaries

We will use plain letters to represent real scalars, bold lowercase letters to denote vectors, bold uppercase

letters to stand for matrices,2 and curly capital letters for (sub)spaces and sets. Let E be a finite dimensional

Euclidean space, IR+ and IR− be the set of nonnegative and nonpositive real numbers, respectively. The

inner product of E is denoted by 〈·, ·〉 and the induced norm by ‖ · ‖. With that, for x ∈ E and a closed

convex set C ⊆ E , we denote the projection of x onto C by PC(x) so that PC(x) = arg miny∈C ‖x − y‖ and

the distance between x and C by dist(x, C) = infy∈C ‖x − y‖ = ‖x − PC(x)‖. For any x ∈ E and η ≥ 0, we

denote the ball centered at x with radius η by B(x; η) := {y ∈ E | ‖y − x‖ ≤ η}; we write B(η) for the ball

centered at 0 with radius η for simplicity. A diagonal matrix with diagonal vector being x is denoted by

Diag(x). Meanwhile, we use C⊥ to denote the orthogonal complement of C and In to represent the n × n

identity matrix.

We now recall the definition of Lipschitzian and Hölderian error bounds. Let C1, C2 ⊆ E be closed convex

sets with C1 ∩C2 6= ∅. We say that C1, C2 satisfy a uniform Hölderian error bound with exponent γ ∈ (0, 1] if for

every bounded set B ⊆ E , there exists a constant κB such that dist(x, C1 ∩C2)≤κB max {dist(x, C1), dist(x, C2)}γ

for all x ∈ B. If γ = 1, then the error bound is said to be Lipschitzian.

Let K ⊆ E be a closed convex cone and K∗ be its dual cone. We will use intK, riK, ∂K, spanK, dimK to

denote the interior, relative interior, boundary, linear span and dimension of K, respectively. If K ∩ −K =

{0}, we say that K is pointed.

A face of K is a closed convex cone F satisfying F ⊆ K and the property that if x, y ∈ K and x + y ∈ F ,

then x, y ∈ F .3 We write F EK if F is a face of K and F �⊳ K if F is a proper face of K, i.e., F 6= K. A face

F is said to be nontrivial if F is proper and F 6= K ∩−K. If F = K ∩ {z}⊥ for some z ∈ K∗, F is called an

exposed face of K.

The facial structure of the closed convex cone K is important for deducing error bounds for (Feas); see the

seminal work of Sturm [38]. Recently, a new framework based on the facial reduction algorithm [4,35,44] and

one-step facial residual functions (1-FRFs) [19, Definition 3.4] was proposed for establishing error bounds for

(Feas) without requiring any constraint qualifications; see [19,20,22]. Next, we present a very brief overview

of the framework, for more detailed explanations and the underlying intuition behind the techniques see

[19, 20]. First, we recall the definition of one-step facial residual functions.

Definition 2.1 (One-step facial residual function [19, Definition 3.4]). Let K be a closed convex cone and

z ∈ K∗. Suppose that ψK,z : IR+ × IR+ → IR+ satisfies:

(i) ψK,z is nonnegative, nondecreasing in each argument and for every t ∈ IR+, ψK,z(0, t) = 0.

(ii) The following implication holds for any x ∈ spanK and ǫ ≥ 0:

dist(x,K) ≤ ǫ, 〈x, z〉 ≤ ǫ =⇒ dist(x,K ∩ {z}⊥) ≤ ψK,z(ǫ, ‖x‖).

Then, ψK,z is said to be a one-step facial residual function (1-FRF) for K and z.

The basic idea of the aforementioned framework is as follows. Suppose that in each step of the facial

reduction algorithm we can find a suitable one-step facial residual function for the “current” face and “next”

exposing vector until we reach a face F such that F and L + a satisfy the partial polyhedral Slater’s (PPS)

2With an abuse of notation, we use 0 to denote a zero vector / matrix, whose dimension should be clear from the context.
3By convention, we discard the empty face.
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condition [22, Definition 3].4 Then, we can construct an error bound for K and L+ a by composing these

residual functions in a specific manner. In this regard, if (Feas) is feasible, we define the distance to the PPS

condition of (Feas), denoted by dPPS(K,L+ a), as the length minus one of the shortest chain of faces (among

those chains constructed as in [22, Proposition 5]) such that the PPS condition holds for the final face in the

chain and L+ a.

We end this section with the following lemma, which is useful in the analysis of one-dimensional faces.

It will be used repeatedly in our subsequent discussions.

Lemma 2.2 ( [20, Lemma 2.5]). Let K be a pointed closed convex cone and let z ∈ ∂K∗ \ {0} be such that F :=

{z}⊥ ∩ K is a one-dimensional proper face of K. Let f ∈ K \ {0} be such that F = {t f | t ≥ 0}. Let η > 0 and

v ∈ ∂K ∩ B(η) \ F , w = P{z}⊥(v) and u = PF (w) with u 6= w. Then it holds that 〈 f , z〉 = 0 and we have

‖v − w‖ =
| 〈z, v〉 |
‖z‖ , ‖u − w‖ =





∥∥∥v − 〈z,v〉
‖z‖2 z − 〈 f ,v〉

‖ f‖2 f
∥∥∥ if 〈 f , v〉 ≥ 0,∥∥∥v − 〈z,v〉

‖z‖2 z
∥∥∥ otherwise .

Moreover, when 〈 f , v〉 ≥ 0 (or, equivalently, 〈 f , w〉 ≥ 0), we have u = PspanF (w). On the other hand, if 〈 f , v〉 < 0,

we have u = 0.

3 Error bounds for the generalized power cone

We consider the generalized power cone and its dual. Let m ≥ 1, n ≥ 2 and α = (α1, . . . , αn) ∈ (0, 1)n with

∑
n
i=1 αi = 1, the generalized power cone P α

m,n and its dual (P α

m,n)
∗ are given respectively by

P α

m,n =

{
x = (x, x̃) ∈ IRm+n

∣∣∣∣ ‖x‖ ≤
n

∏
i=1

x̃
αi
i , x ∈ IRm, x̃ ∈ IRn

+

}
,

(P α

m,n)
∗ =

{
z = (z, z̃) ∈ IRm+n

∣∣∣∣ ‖z‖ ≤
n

∏
i=1

(
z̃i

αi

)αi

, z ∈ IRm, z̃ ∈ IRn
+

}
.

(3.1)

Here, given a vector x ∈ IRm+n, we let x ∈ IRm be the vector corresponding to its first m entries and x̃ ∈ IRn

be the vector corresponding to its last n entries.

In this section, we will prove the main result of our paper: a complete analysis of the error bounds of

P α

m,n. This will require an analysis of the facial structure of P α

m,n which we will do shortly after the following

lemmas.

Lemma 3.1. Let n ≥ 2 and α = (α1, . . . , αn) ∈ (0, 1)n with ∑
n
i=1 αi = 1. Let ζ ∈ int IRn

− satisfy ∏
n
i=1(−ζi/αi)

αi =

1. Define ζ̃ := −α ◦ ζ−1, where ◦ is the Hadamard product and the inverse is taken componentwise. Then there exist

C > 0 and ǫ > 0 so that

−1 − 〈ζ, ω〉 ≥ C‖ω − ζ̃‖2 whenever ω ∈ int IRn
+, ‖ω − ζ̃‖ ≤ ǫ and

n

∏
i=1

ω
αi
i = 1. (3.2)

Moreover, for any ω ∈ int IRn
+ satisfying ∏

n
i=1 ω

αi
i = 1, it holds that 〈ζ, ω〉 ≤ −1; furthermore, we have 〈ζ, ω〉 =

−1 if and only if ω = ζ̃.

Proof. For each i, we see from the Taylor series of ln(·) at ζ̃i > 0 that

ln(ωi) = ln(ζ̃i) + ζ̃−1
i (ωi − ζ̃i)− ζ̃−2

i (ωi − ζ̃i)
2 + O(|ωi − ζ̃i|3) as ωi → ζ̃i, ωi > 0.

4We note that this implies a Lipschitzian error bound holds for F and L+ a, see [2, Corollary 3] and the discussion preceding [19,

Proposition 2.3].
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Thus, there exist ǫi > 0 and ci > 0 so that

ln(ζ̃i) ≥ ln(ωi)− ζ̃−1
i (ωi − ζ̃i) + ci(ωi − ζ̃i)

2 whenever |ωi − ζ̃i| ≤ ǫi and ωi > 0.

Let ǫ := min
1≤i≤n

ǫi > 0. Multiplying both sides of the above inequality by αi and summing the resulting

inequalities from i = 1 to n, we see that whenever ω ∈ int IRn
+ satisfies ‖ω − ζ̃‖ ≤ ǫ and ∏

n
i=1 ω

αi
i = 1, we

have

0
(a)
=

n

∑
i=1

αi ln(ζ̃i) ≥
n

∑
i=1

αi ln(ωi)−
n

∑
i=1

αi ζ̃
−1
i (ωi − ζ̃i) +

n

∑
i=1

αici(ωi − ζ̃i)
2

(b)
= −

n

∑
i=1

αiζ̃
−1
i (ωi − ζ̃i) +

n

∑
i=1

αici(ωi − ζ̃i)
2 (c)
= −

n

∑
i=1

αiζ̃
−1
i ωi+1+

n

∑
i=1

αici(ωi − ζ̃i)
2

=
n

∑
i=1

ζiωi + 1 +
n

∑
i=1

αici(ωi − ζ̃i)
2,

where (a) and (b) hold because ∏
n
i=1 ζ̃

αi
i = ∏

n
i=1 ω

αi
i = 1, (c) uses the fact that ∑

n
i=1 αi = 1, and the last

equality follows from the definition of ζ̃. Rearranging the above inequality, we conclude that (3.2) holds

with C = min
1≤i≤n

αici > 0.

Next, let ω ∈ int IRn
+ satisfy ∏

n
i=1 ω

αi
i = 1. Then (−1, ω) ∈ P α

1,n. Recall from the assumption that

(1,−ζ) ∈ (P α

1,n)
∗. From these we deduce 〈ζ, ω〉 ≤ −1. If 〈ζ, ω〉 = −1, then

n

∑
i=1

αi

(−ζi

αi

)
ωi =

n

∑
i=1

(−ζi)ωi = 1 =
n

∏
i=1

ω
αi
i =

n

∏
i=1

(−ζi

αi

)αi n

∏
i=1

ω
αi
i .

Taking ln on both sides of the above equality, we see that

ln

[
n

∑
i=1

αi

(−ζi

αi

)
ωi

]
=

n

∑
i=1

αi ln

[(−ζi

αi

)
ωi

]
.

Since ln is strictly concave and αi ∈ (0, 1) for all i, we conclude that there exists c > 0 so that ωi · (−ζi/αi) = c

for all i. This, together with the facts that ∏
n
i=1 ω

αi
i = ∏

n
i=1(−ζi/αi)

αi = 1 and ∑
n
i=1 αi = 1, gives c = 1. It

thus follows that ω = ζ̃. Conversely, it is routine to check that if ω = ζ̃, then ∏
n
i=1 ω

αi
i = 1 and 〈ζ, ω〉 =

−1.

The next lemma is obtained by applying [20, Lemma 4.1] with p = q = 2.

Lemma 3.2. Let ζ ∈ IRn (n ≥ 1) satisfy ‖ζ‖ = 1. Define ζ := −ζ. Then there exist C > 0 and ǫ > 0 so that

1 + 〈ζ, w〉 ≥ C ∑
i∈I

|wi − ζ i|2 +
1

2 ∑
i/∈I

|wi|2 whenever ‖w − ζ‖ ≤ ǫ and ‖w‖ = 1, (3.3)

where I = {i | ζ i 6= 0}. Furthermore, for any w satisfying ‖w‖ ≤ 1, it holds that 〈ζ, w〉 ≥ −1, with the equality

holding if and only if w = ζ.

3.1 The facial structure of P α

m,n

In this subsection, we discuss the faces of P α

m,n. We first characterize the proper nontrivial exposed faces of

P α

m,n in the following proposition.

Proposition 3.3 (Proper nontrivial exposed faces of P α

m,n). Let z = (z, z̃) ∈ ∂(P α

m,n)
∗\{0}.

5



(i) If z 6= 0, then z exposes the following one-dimensional face:

Fr := {z}⊥ ∩ P α

m,n = {t f ∈ IRm+n | t ≥ 0} with f = (−z/‖z‖2, α ◦ z̃−1), (3.4)

where the inverse is taken componentwise.

(ii) If z = 0, then z exposes the following face of dimension n − |I|:

Fz := {z}⊥ ∩ P α

m,n = {x = (x, x̃) ∈ IRm+n
+ | x = 0, x̃i = 0 ∀i ∈ I}, (3.5)

where I := {i | z̃i > 0} 6= ∅ and |I| denotes the cardinality of I .

Proof. (i): Notice that x = (x, x̃) ∈ {z}⊥ ∩ P α

m,n\{0} if and only if x ∈ ∂P α

m,n, x 6= 0 and

〈z, x〉+ 〈z̃, x̃〉 = 0. (3.6)

The above relation yields

n

∑
i=1

z̃i x̃i = −〈z, x〉 ≤ ‖z‖‖x‖ ≤
n

∏
i=1

(
x̃i z̃i

αi

)αi

, (3.7)

where the last inequality follows from the definition of P α

m,n in (3.1).

Note that x̃i cannot be all zero, for otherwise x will also be zero since x ∈ ∂P α

m,n, which contradicts x 6= 0.

In addition, we must have z̃i > 0 for all i because z 6= 0 and z ∈ ∂(P α

m,n)
∗\{0}. Using these observations,

we have ∑
n
i=1 z̃i x̃i > 0. Combining this with (3.7), we deduce that x̃iz̃i > 0 for all i. Now we can take ln on

both sides of (3.7) to obtain

ln

[
n

∑
i=1

αi

(
x̃i z̃i

αi

)]
≤ α1 ln

(
x̃1z̃1

α1

)
+ · · ·+ αn ln

(
x̃n z̃n

αn

)
. (3.8)

Using this together with the fact that ln(·) is strictly concave, we deduce that (3.8) holds as an equality.

Hence, there exists a constant c > 0 so that

x̃i = cαiz̃
−1
i ∀i = 1, 2, . . . , n. (3.9)

Plugging (3.9) into (3.6), we obtain

〈z, x〉 = −〈z̃, x̃〉 = −c
n

∑
i=1

αi = −c. (3.10)

Moreover, using (3.9) and the last relation in (3.7), we see that

‖z‖‖x‖ ≤
n

∏
i=1

(
x̃i z̃i

αi

)αi

= c.

The two displayed lines above show that ‖z‖‖x‖ = −〈z, x〉, which together with z 6= 0 implies that there

exists κ > 0 so that

x = −κz. (3.11)

Plugging (3.11) into (3.10), we obtain that κ = c/‖z‖2. Using this together with (3.9) and (3.11), we can now

conclude that

Fr := {z}⊥ ∩ P α

m,n = {t f ∈ IRm+n | t ≥ 0} with f = (−z/‖z‖2, α ◦ z̃−1),

where the inverse is taken componentwise.

6



(ii): In this case, z = 0. Then I := {i | z̃i > 0} is nonempty because z 6= 0. Hence, x = (x, x̃) ∈
{z}⊥ ∩ P α

m,n\{0} if and only if x ∈ ∂P α

m,n\{0} and satisfies

∑
i∈I

z̃i x̃i = 0.

This means that x̃i = 0 whenever i ∈ I and hence x = 0. Thus,

Fz := {z}⊥ ∩ P α

m,n = {x = (x, x̃) ∈ IRm+n
+ | x = 0, x̃i = 0 ∀i ∈ I}.

Having characterized the proper exposed faces of P α

m,n, we will show that P α

m,n is projectionally exposed [4,

39], which means that for every face F of P α

m,n there is a linear operator P satisfying P(P α

m,n) = F and P2 =

P. In particular, P, which depends on F , is a projection that is not necessarily orthogonal. Projectionally

exposed cones are both facially exposed [39, Corollary 4.4] and amenable [22, Proposition 9], see also [23].

Proposition 3.4 (Generalized power cones are projectionally exposed). P α

m,n is projectionally exposed, in par-

ticular, all its faces are exposed.

Proof. Sung and Tam proved in [39, Corollary 4.5] that a sufficient condition for a cone to be projectionally

exposed is that all its exposed faces are projectionally exposed. With this in mind, let F be an exposed face

of P α

m,n. If F = {0} or F = P α

m,n, then the zero map and the identity map are, respectively, projections

mapping P α

m,n to F . Otherwise, F is a nonzero proper face of P α

m,n and is of the form {z}⊥ ∩P α

m,n, for some

z = (z, z̃) ∈ ∂(P α

m,n)
∗\{0}. By the analysis in cases (i), (ii), we only need to consider two cases.

First, suppose that F is a one-dimensional face as in (3.4) and let u ∈ (P α

m,n)
∗ be such that 〈 f , u〉 = 1.

At least one such u exists, since otherwise we would have f ∈ ((P α

m,n)
∗)⊥ = {0}. Then, P = f u⊤ satisfies

P2 = P and P(P α

m,n) = F as required.

Next, suppose that F is as in (3.5). Then, we let P be the linear map that maps (x, x̃) to (0, ỹ) where

ỹi = 0 if i ∈ I and ỹi = x̃i if i 6∈ I . With that, P is a projection mapping P α

m,n to F .

3.2 Deducing error bounds and one-step facial residual functions for P α

m,n

We start with the faces Fr that correspond to a z ∈ ∂(P α

m,n)
∗\{0} with z 6= 0. We have the following result.

Theorem 3.5. Let z = (z, z̃) ∈ ∂(P α

m,n)
∗\{0} with z 6= 0 and let Fr := {z}⊥ ∩ P α

m,n. Let η > 0 and define

γz,η := inf
v

{
‖v − w‖ 1

2

‖u − w‖

∣∣∣∣
v ∈ ∂P α

m,n ∩ B(η)\Fr, w = P{z}⊥(v),
u = PFr(w), u 6= w

}
. (3.12)

Then it holds that γz,η ∈ (0, ∞] and that

dist(q,Fr) ≤ max{2
√

η, 2γ−1
z,η} · dist(q,P α

m,n)
1
2 whenever q ∈ {z}⊥ ∩ B(η).

Proof. Suppose for a contradiction that γz,η = 0. Then, in view of [19, Lemma 3.12], there exist v̂ ∈ Fr and a

sequence {vk} ⊂ ∂P α

m,n ∩ B(η)\Fr such that

lim
k→∞

vk = lim
k→∞

wk = v̂ and lim
k→∞

‖wk − vk‖ 1
2

‖wk − uk‖ = 0, (3.13)

where wk = P{z}⊥(v
k), uk = PFr(w

k) and uk 6= wk.

Define, for notational simplicity, z0 := ‖z‖ and vk
0 := ‖vk‖. Then, since {vk} ⊂ ∂P α

m,n and z ∈ ∂(P α

m,n)
∗

with z 6= 0, we have
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z0 = ‖z‖ =
n

∏
i=1

(
z̃i

αi

)αi

> 0 and vk
0 = ‖vk‖ =

n

∏
i=1

(ṽk
i )

αi ∀k. (3.14)

If it holds that vk
0 = 0 infinitely often, by passing to a further subsequence, we may assume that vk

0 = 0

for all k. Then we have in view of Lemma 2.2 that

‖vk − wk‖= 1

‖z‖ |〈z̃, ṽk〉| (a)= 1

‖z‖
n

∑
i=1

z̃iṽ
k
i ≥

mini z̃i

‖z‖ ‖ṽk‖1≥
mini z̃i

‖z‖ ‖ṽk‖ (b)
=

mini z̃i

‖z‖ ‖vk‖,

where (a) holds because ṽk
i ≥ 0 and z̃i > 0 for all i (see (3.14)), and (b) holds since ‖vk‖ = 0. Since

‖wk − uk‖ = dist(wk,Fr) ≤ ‖wk‖ ≤ ‖vk‖ as a consequence of the properties of projections, we conclude

from this and the above display that ‖vk − wk‖ ≥ mini z̃i
‖z‖ ‖wk − uk‖, contradicting (3.13).

Thus, by considering a further subsequence if necessary, from now on, we assume

vk
0 = ‖vk‖ =

n

∏
i=1

(ṽk
i )

αi > 0 ∀k. (3.15)

Using Lemma 2.2, we see that

‖vk − wk‖ =
1

‖z‖ |〈z, vk〉| = 1

‖z‖

∣∣∣∣∣
m

∑
i=1

ziv
k
i +

n

∑
i=1

z̃iṽ
k
i

∣∣∣∣∣

=
1

‖z‖

∣∣∣∣∣z0vk
0 +

m

∑
i=1

ziv
k
i −

n

∑
i=1

(−z̃i)ṽ
k
i − z0vk

0

∣∣∣∣∣

=
z0vk

0

‖z‖
∣∣∣1 + 〈z−1

0 z, (vk
0)

−1vk〉 − 〈z−1
0 (−z̃), (vk

0)
−1ṽk〉 − 1

∣∣∣

=
z0

‖z‖
(

1 + 〈z−1
0 z, (vk

0)
−1vk〉 − 〈z−1

0 (−z̃), (vk
0)

−1ṽk〉 − 1
)

vk
0,

(3.16)

where the last equality holds as ‖z−1
0 z‖ = 1, ‖(vk

0)
−1vk‖ = 1 and 〈z−1

0 z̃, (vk
0)

−1ṽk〉 ≥ 1, thanks to (3.14),

(3.15) and Lemma 3.1 applied with ζ = −z−1
0 z̃.

Let f be defined as in (3.4). We consider two cases:

(I) 〈 f , vk〉 ≥ 0 for all sufficiently large k.

(II) 〈 f , vk〉 < 0 infinitely often.

(I): By passing to a further subsequence, we may assume that 〈 f , vk〉 ≥ 0 for all k. In this case, if we

define

Q = Im+n −
zz⊤

‖z‖2
− f f⊤

‖ f‖2
,

where f is as in (3.4), then we see from Lemma 2.2 and (3.14) that

‖uk − wk‖ = ‖Qvk‖ = vk
0

∥∥∥∥Q

[
(vk

0)
−1vk

(vk
0)

−1ṽk

]∥∥∥∥

(a)
= vk

0

∥∥∥∥∥Q

[
(vk

0)
−1vk

(vk
0)

−1ṽk

]
−Q

[ −z−1
0 z

α ◦ (z0z̃−1)

]

︸ ︷︷ ︸
z0 f

∥∥∥∥∥

≤ vk
0

[
‖(vk

0)
−1vk + z−1

0 z‖+ ‖(vk
0)

−1ṽk − α ◦ (z0z̃−1)‖
]

,

(3.17)

where (a) holds because Q f = 0 (an identity which is clear from the definitions).

Next, in view of (3.14), we can apply Lemma 3.2 to obtain C1 > 0 and ǫ1 > 0 so that (3.3) holds with

ζ = −z−1
0 z, i.e.,

1 + 〈z−1
0 z, ω〉 ≥ C1‖ω + z−1

0 z‖2
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whenever ‖ω + z−1
0 z‖ ≤ ǫ1 and ‖ω‖ = 1. On the other hand, in view of the positivity of 1+ 〈z−1

0 z, ω〉 when

‖ω‖ = 1 and ω 6= −z−1
0 z (see Lemma 3.2), we know that

C2 := inf
‖ω‖=1

{1 + 〈z−1
0 z, ω〉 | ‖ω + z−1

0 z‖ ≥ ǫ1} > 0.

This together with the fact ‖z−1
0 z‖ = 1 (see (3.14)) implies that

1 + 〈z−1
0 z, ω〉 ≥ C2 ≥ 0.25C2‖ω + z−1

0 z‖2,

whenever ‖ω + z−1
0 z‖ ≥ ǫ1 and ‖ω‖ = 1. We thus have (with C3 :=min{C1, C2/4})

1 + 〈z−1
0 z, ω〉 ≥ C3‖ω + z−1

0 z‖2 whenever ‖ω‖ = 1. (3.18)

In addition, noting (3.14) again, we can apply Lemma 3.1 with ζ = −z−1
0 z̃ ∈ int IRn

− to obtain C4 > 0 and

ǫ > 0 so that (3.2) holds with ζ̃ = α ◦ (z0z̃−1), i.e.,

−1 + 〈z−1
0 z̃, ω〉 ≥ C4‖ω − α ◦ (z0z̃−1)‖2 (3.19)

whenever ‖ω − α ◦ (z0z̃−1)‖ ≤ ǫ, ω ∈ int IRn
+ and ∏

n
i=1 ω

αi
i = 1.

Furthermore, consider h : IRn → IR ∪ {∞} defined by

h(ω) =





〈z−1
0 z̃, ω〉 − 1

‖ω − α ◦ (z0z̃−1)‖ if ‖ω − α ◦ (z0z̃−1)‖ ≥ ǫ, ω ∈ Υ,

∞ otherwise,

(3.20)

where Υ = {ω ∈ IRn
+ | ∏

n
i=1 ω

αi
i = 1}. Then we have

lim inf
‖ω‖→∞

h(ω) = lim inf
‖ω‖→∞,ω∈Υ

〈z−1
0 z̃, ω〉 − 1

‖ω − α ◦ (z0z̃−1)‖

≥ lim inf
‖ω‖→∞,ω∈IRn

+

〈z−1
0 z̃, ω〉 − 1

‖ω − α ◦ (z0z̃−1)‖
(a)
≥ inf

‖λ‖=1,λ∈IRn
+

〈z−1
0 z̃, λ〉

(b)
≥ min

1≤i≤n
z−1

0 z̃i > 0.

Here (a) may be verified by multiplying both numerator and denominator of the left side by 1/‖ω‖; (b)

holds because z−1
0 z̃i > 0 for all i (see (3.14)). Since h in (3.20) is also lower semicontinuous on any compact

set and is always positive,5 it must then hold that C5 := inf h > 0. In particular, this means that

−1 + 〈z−1
0 z̃, ω〉 ≥ C5‖ω − α ◦ (z0z̃−1)‖ (3.21)

whenever ‖ω − α ◦ (z0z̃−1)‖ ≥ ǫ, ω ∈ int IRn
+ and ∏

n
i=1 ω

αi
i = 1.

By passing to suitable subsequences, we will end up with one of the following two cases:

Case 1: ‖(vk
0)

−1ṽk − α ◦ (z0z̃−1)‖ ≤ ǫ for all k. Then we have from (3.18) (with ω = (vk
0)

−1vk) and (3.19) (with

ω = (vk
0)

−1ṽk) that for these k

1 + 〈z−1
0 z, (vk

0)
−1vk〉 − 〈z−1

0 (−z̃), (vk
0)

−1ṽk〉 − 1

≥ min{C3, C4}(‖(vk
0)

−1vk + z−1
0 z‖2 + ‖(vk

0)
−1ṽk − α ◦ (z0z̃−1)‖2).

Combining this with (3.16) and (3.17), we see further that

‖vk − wk‖

≥ z0

‖z‖ min{C3, C4}(‖(vk
0)

−1vk + z−1
0 z‖2 + ‖(vk

0)
−1ṽk − α ◦ (z0z̃−1)‖2)vk

0

≥ z0

2‖z‖ min{C3, C4}(‖(vk
0)

−1vk + z−1
0 z‖+ ‖(vk

0)
−1ṽk − α ◦ (z0z̃−1)‖)2vk

0

≥ z0 min{C3, C4}
2‖z‖vk

0

‖uk − wk‖2 ≥ z0 min{C3, C4}
2‖z‖η

‖uk − wk‖2,

5The positivity can be seen by applying Lemma 3.1 with ζ = −z−1
0 z̃.
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where the last inequality holds because vk ∈ B(η). The above display contradicts (3.13) and hence

Case 1 cannot happen.

Case 2: ‖(vk
0)

−1ṽk − α ◦ (z0z̃−1)‖ ≥ ǫ for all k. Then we have from (3.18) and (3.21) that for these k

1 + 〈z−1
0 z, (vk

0)
−1vk〉 − 〈z−1

0 (−z̃), (vk
0)

−1ṽk〉 − 1

≥ min{C3, C5}(‖(vk
0)

−1vk + z−1
0 z‖2 + ‖(vk

0)
−1ṽk − α ◦ (z0z̃−1)‖).

Using this together with (3.16), we deduce that for all large k,

‖vk − wk‖≥ z0 min{C3, C5}
‖z‖ (‖(vk

0)
−1vk + z−1

0 z‖2 + ‖(vk
0)

−1ṽk − α ◦ (z0z̃−1)‖)vk
0.

This implies that

‖(vk
0)

−1vk + z−1
0 z‖ ≤ M1

√
(vk

0)
−1‖vk − wk‖,

‖(vk
0)

−1ṽk − α ◦ (z0z̃−1)‖ ≤ M1(v
k
0)

−1‖vk − wk‖,
(3.22)

where M1 := max

{(
z0
‖z‖ min{C3, C5}

)−1
,
(

z0
‖z‖ min{C3, C5}

)−1/2
}

. Using (3.22) together with (3.17),

we obtain that

‖uk − wk‖ ≤ M1vk
0

[√
(vk

0)
−1‖vk − wk‖+ (vk

0)
−1‖vk − wk‖

]

(a)
≤ M1

√
η
√
‖vk − wk‖+ M1‖vk − wk‖

(b)
≤ 3M1

√
η
√
‖vk − wk‖,

(3.23)

where (a) holds since vk ∈ B(η) wherefore vk
0 ≤ η, and (b) holds because ‖wk‖ ≤ ‖vk‖ ≤ η (because

the projection onto K is nonexpansive and 0 ∈ K), wherefore

‖wk − vk‖ =
√
‖wk − vk‖

√
‖wk − vk‖ ≤ 2

√
η
√
‖wk − vk‖.

Altogether, (3.23) contradicts (3.13) and hence Case 2 cannot happen.

Summarizing the above discussions, we see that Case (I) cannot happen.

(II): By passing to a further subsequence, we may assume that 〈 f , vk〉 < 0 for all k. This together with

the definition of f gives

vk
0

z0
[〈−z−1

0 z, (vk
0)

−1vk〉+ 〈α ◦ (z0z̃−1), (vk
0)

−1ṽk〉] < 0.

Since
vk

0
z0

> 0, we deduce that 〈−z−1
0 z, (vk

0)
−1vk〉+ 〈α ◦ (z0z̃−1), (vk

0)
−1ṽk〉 < 0 for all k. Then it must hold

that

lim
k→∞

‖(vk
0)

−1vk + z−1
0 z‖+ ‖(vk

0)
−1ṽk − α ◦ (z0z̃−1)‖ 6= 0;

otherwise, we have (vk
0)

−1vk → −z−1
0 z and (vk

0)
−1ṽk → α ◦ (z0z̃−1), which further gives 〈−z−1

0 z, (vk
0)

−1vk〉+
〈α ◦ (z0z̃−1), (vk

0)
−1ṽk〉 → ‖z−1

0 z‖2 + ‖α ◦ (z0z̃−1)‖2 = ‖z0 f‖2
> 0, a contradiction.

Consequently, there exists ǫ > 0 such that for all sufficiently large k,

‖(vk
0)

−1vk + z−1
0 z‖+ ‖(vk

0)
−1ṽk − α ◦ (z0z̃−1)‖ ≥ ǫ. (3.24)
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Consider the function G : IRm+n → IR ∪ {∞} defined by

G(ξ, ω) :=





|〈z−1
0 z, ξ〉+ 〈z−1

0 z̃, ω〉|√
1 + ‖ω‖2

if (ξ, ω) ∈ Ξ, ‖ξ‖ = 1, and ω ∈ Υ,

∞ otherwise,

where Υ = {ω ∈ IRn
+ | ∏

n
i=1 ω

αi
i = 1} and Ξ = {(ξ, ω) | ‖ξ + z−1

0 z‖ + ‖ω − α ◦ (z0z̃−1)‖ ≥ ǫ}. Since

〈z−1
0 z, ξ〉+ 〈z−1

0 z̃, ω〉 = 1+ 〈z−1
0 z, ξ〉− 〈z−1

0 (−z̃), ω〉− 1, we see from (3.14), (3.24), Lemma 3.2 and Lemma 3.1

that G is never zero. Moreover, it is clearly lower semicontinuous on any compact set, and

lim inf
‖(ξ,ω)‖→∞

G(ξ, ω)= lim inf
‖ω‖→∞,ω∈Υ

|〈z−1
0 z̃, ω〉|√

1 + ‖ω‖2

(a)
≥ inf
‖λ‖=1,λ∈IRn

+

|〈z−1
0 z̃, λ〉|

(b)
≥min

i
|z−1

0 z̃i| > 0,

where (a) may be verified by multiplying numerator and denominator by 1/‖ω‖ and (b) holds since z−1
0 z̃i >

0 for all i. Thus, C6 := inf G > 0 and we have for all large k,

‖vk − wk‖
‖uk − wk‖

(a)
=

‖vk − wk‖
‖wk‖

(b)
≥ ‖vk − wk‖

‖vk‖
(c)
=

z0

‖z‖
|〈z−1

0 z, (vk
0)

−1vk〉+ 〈z−1
0 z̃, (vk

0)
−1ṽk〉|vk

0√
(vk

0)
2 + ‖ṽk‖2

=
z0

‖z‖
|〈z−1

0 z, (vk
0)

−1vk〉+ 〈z−1
0 z̃, (vk

0)
−1ṽk〉|√

1 + ‖(vk
0)

−1ṽk‖2

(d)
≥ C6z0

‖z‖ ,

where (a) follows from Lemma 2.2, which states that uk = 0 in Case (II), (b) holds because the projection

onto the cone is nonexpansive and 0 is in the cone, (c) follows from (3.16) and (d) follows from (3.24), (3.15)

and the definitions of G and C6. The above display contradicts (3.13). Thus, Case (II) also cannot happen.

Summarizing the above, we conclude that (3.13) cannot happen. Thus, in view of [19, Lemma 3.12], we

must indeed have γz,η ∈ (0, ∞] and that the desired error bound follows from [19, Theorem 3.10].

Remark 3.6 (Optimality of the error bound in Theorem 3.5).Let z ∈∂(P α

m,n)
∗\{0} with z 6= 0 and let Fr :=

{z}⊥ ∩P α

m,n. Then necessarily z̃i > 0 for all i. Moreover, we also know from the definition that αi > 0 for all

i. Now, consider the continuous function q : (0, α1) → {z}⊥ defined by ǫ 7→ qǫ := (q̄ǫ, q̃ǫ) where

q̄ǫ = −z/‖z‖2, (q̃ǫ)1 = (α1 − ǫ)z̃−1
1 , (q̃ǫ)2 = (α2 + ǫ)z̃−1

2 , and (q̃ǫ)i = αiz̃
−1
i , ∀i ≥ 3.

Notice that qǫ only differs from the f in (3.4) in two entries. One can check that 〈z, qǫ〉 = 0 and qǫ → f ∈
Fr\{0} as ǫ ↓ 0. Moreover, we have

n

∏
i=1

(q̃ǫ)
αi
i = (α1 − ǫ)α1(α2 + ǫ)α2 z̃

−α1
1 z̃−α2

2

n

∏
i=3

(
αi

z̃i

)αi

=

(
1 − ǫ

α1

)α1
(

1 +
ǫ

α2

)α2 n

∏
i=1

(
αi

z̃i

)αi (a)
=

(
1 − ǫ

α1

)α1
(

1 +
ǫ

α2

)α2

‖z‖−1

=

(
1 − ǫ

α1

)α1
(

1 +
ǫ

α2

)α2

‖q̄ǫ‖,

where (a) holds because z ∈ ∂(P α

m,n)
∗\{0} with z 6= 0. In view of this, if we define a continuous function

p : (0, α1) → P α

m,n by ǫ 7→ pǫ := ( p̄ǫ, p̃ǫ) where

p̄ǫ := −
(

1 − ǫ

α1

)α1
(

1 +
ǫ

α2

)α2 z

‖z‖2
and p̃ǫ := q̃ǫ;
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then it is clear that pǫ ∈ P α

m,n, and we can compute that

dist(qǫ,P α

m,n) ≤ ‖qǫ − pǫ‖ =
1

‖z‖

∣∣∣∣
(

1 − ǫ

α1

)α1
(

1 +
ǫ

α2

)α2

− 1

∣∣∣∣

=
1

‖z‖
∣∣∣(1 − ǫ +O(ǫ2))(1+ ǫ +O(ǫ2))− 1

∣∣∣ = O(ǫ2).

(3.25)

Next, we estimate dist(qǫ,Fr). Notice that 〈qǫ, f 〉 > 0 for all sufficiently small ǫ because qǫ → f . Hence,

using the definition of Fr and Lemma 2.2, we see that

dist(qǫ,Fr)
2 =

∥∥∥∥qǫ −
〈qǫ, f 〉
‖ f‖2

f

∥∥∥∥
2

= ‖qǫ‖2 − (〈qǫ, f 〉)2

‖ f‖2
.

A direct computation then shows that

‖qǫ‖2 =
1

‖z‖2
+ (α1 − ǫ)2z̃−2

1 + (α2 + ǫ)2z̃−2
2 +

n

∑
i=3

α2
i z̃−2

i

=
1

‖z‖2
+

n

∑
i=1

α2
i z̃−2

i + 2ǫ(α2z̃−2
2 − α1z̃−2

1 ) + ǫ2(z̃−2
1 + z̃−2

2 )

= ‖ f‖2 + 2ǫ(α2z̃−2
2 − α1z̃−2

1 ) + ǫ2(z̃−2
1 + z̃−2

2 ),

where the last equality follows from the definition of f in (3.4). Furthermore,

(〈qǫ, f 〉)2 =
(

1
‖z‖2 + α1(α1 − ǫ)z̃−2

1 + α2(α2 + ǫ)z̃−2
2 + ∑

n
i=3 α2

i z̃−2
i

)2

=
[
‖ f‖2 + ǫ(α2z̃−2

2 − α1z̃−2
1 )
]2

= ‖ f‖4 + 2ǫ‖ f‖2(α2z̃−2
2 − α1z̃−2

1 ) + ǫ2(α2z̃−2
2 − α1z̃−2

1 )2.

Combining the above three identities, we deduce further that

dist(qǫ,Fr)
2 = ǫ2

(
z̃−2

1 + z̃−2
2 − (α2z̃−2

2 − α1z̃−2
1 )2

‖ f‖2

)

≥ ǫ2

(
z̃−2

1 + z̃−2
2 − (α2z̃−2

2 − α1z̃−2
1 )2

α2
2z̃−2

2 + α2
1z̃−2

1

)
, (3.26)

where the inequality follows from the definition of f . Now, notice that in (3.26), the scalar term is strictly

greater than zero, because

(α2z̃−2
2 − α1z̃−2

1 )2
< (α2z̃−2

2 + α1z̃−2
1 )2 ≤ (z̃−2

1 + z̃−2
2 )(α2

2z̃−2
2 + α2

1z̃−2
1 ),

where the strict inequality holds because αiz̃
−2
i > 0 for i = 1, 2, and the last inequality follows from the

Cauchy-Schwarz inequality. This together with (3.26) shows that dist(qǫ,Fr) = Ω(ǫ). Combining this with

(3.25), we obtain lim supǫ↓0
dist(qǫ,Pα

m,n)
1
2

dist(qǫ,Fr)
< ∞. Thus | · | 1

2 satisfies the asymptotic optimality criterion (cf. [20,

Definition 3.1]) for P α

m,n and z, which implies that the error bound is optimal in the sense of [20, Theorem

3.2(b)].

We now look at the faces that are exposed by z ∈ ∂(P α

m,n)
∗\{0} with z = 0.

Theorem 3.7. Let z ∈ ∂(P α

m,n)
∗\{0} with z = 0 and let Fz := {z}⊥ ∩ P α

m,n. Let I := {i | z̃i > 0},6 η > 0 and

define β := ∑i∈I αi and

γz,η := inf
v

{
‖v − w‖β

‖u − w‖

∣∣∣∣
v ∈ ∂P α

m,n ∩ B(η)\Fz, w = P{z}⊥(v),
u = PFz

(w), u 6= w

}
. (3.27)

6Since z = 0 and z ∈ ∂(P α

m,n)
∗\{0}, we must have ∅ 6= I ( {1, 2, . . . , n}.
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Then it holds that γz,η ∈ (0, ∞] and that

dist(q,Fz) ≤ max{2η1−β, 2γ−1
z,η} · dist(q,P α

m,n)
β whenever q ∈ {z}⊥ ∩ B(η).

Proof. In view of [19, Theorem 3.10], we need only show that γz,η > 0. To that end, let v ∈ ∂P α

m,n ∩B(η)\Fz,

w = P{z}⊥(v), u = PFz
(w), and u 6= w. Then a direct computation shows that

‖w − v‖ =
1

‖z‖ |〈z, v〉| (a)= 1

‖z‖ ∑
i∈I

z̃iṽi

(b)
≥ mini∈I z̃i

‖z‖ ∑
i∈I

ṽi

(c)
≥ mini∈I z̃i

‖z‖ ‖ṽI‖, (3.28)

where (a), (b) and (c) hold because ṽi ≥ 0 and z̃i > 0 for all i ∈ I , with ‖ṽI‖ :=
√

∑i∈I ṽ2
i (note that I 6= ∅,

thanks to z = 0 and z 6= 0). Next, notice that w = v − 〈z,v〉
‖z‖2 z. Using this and the definitions of z and I , we

deduce that

w = v, w̃i = ṽi −
z̃i

‖z‖2

(
∑
j∈I

z̃jṽj

)
∀i ∈ I and w̃i = ṽi ≥ 0 ∀i /∈ I . (3.29)

In view of this and the definition of Fz in (3.5), we see that ũi = w̃i whenever i /∈ I , and hence

‖w − u‖ =
√
‖w‖2 + ∑

i∈I
w̃2

i ≤
√
‖v‖2 + n(1 +

√
n)2‖ṽI‖2, (3.30)

where the inequality follows from (3.29) and the fact that for each i ∈ I ,

|w̃i| =
∣∣∣∣ṽi −

z̃i

‖z‖2

(
∑
j∈I

z̃jṽj

)∣∣∣∣ ≤
(

1 +
|z̃i|
‖z‖2 ∑

j∈I
|z̃j|
)
‖ṽI‖

≤
(

1 +

√
n|z̃i|
‖z‖

)
‖ṽI‖ ≤ (1 +

√
n)‖ṽI‖.

Next, note that we have

‖v‖ =
n

∏
i=1

(ṽi)
αi = ∏

i/∈I
ṽ

αi
i · ∏

i∈I
ṽ

αi
i ≤ ∏

i/∈I
ηαi · ∏

i∈I
‖ṽI‖αi = η1−β‖ṽI‖β, (3.31)

where the inequality holds because v ∈ B(η). Combining (3.28), (3.30) and (3.31), we deduce

‖w − u‖ ≤
√
‖v‖2 + n(1 +

√
n)2‖ṽI‖2 ≤ ‖v‖+ (n +

√
n)‖ṽI‖

≤ η1−β‖ṽI‖β + (n +
√

n)‖ṽI‖ = (η1−β + (n +
√

n)‖ṽI‖1−β)‖ṽI‖β

(a)
≤ η1−β(n + 1 +

√
n)‖ṽI‖β

(b)
≤ η1−β(n + 1 +

√
n)‖z‖β

(
mini∈I z̃i

)β
‖w − v‖β.

Here (a) holds since v ∈ B(η) and β ∈ (0, 1); (b) is true because of (3.28). Thus, γz,η ≥ (mini∈I z̃i)
β

η1−β(n+1+
√

n)‖z‖β > 0,

and the desired error bound follows from [19, Theorem 3.10].

Remark 3.8 (Optimality of the error bound in Theorem 3.7).Let z ∈∂(P α

m,n)
∗\{0} with z = 0 and let Fz :=

{z}⊥ ∩ P α

m,n. Let I := {i | z̃i > 0} 6= ∅ and define

β := ∑
i∈I

αi ∈ (0, 1).

Fix any u ∈ IRm with ‖u‖ = 1 and define the continuous function q : (0, 1) → {z}⊥ by ǫ 7→ qǫ := (q̄ǫ, q̃ǫ)

where

q̄ǫ = ǫβu, (q̃ǫ)i = 0 ∀i ∈ I , and (q̃ǫ)i = 1, ∀i /∈ I .
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It is clear that for all ǫ, 〈z, qǫ〉 = 0 and dist(qǫ,Fz) → 0 as ǫ ↓ 0 . Now, define the function p : (0, 1) → P α

m,n

by ǫ 7→ pǫ := ( p̄ǫ, p̃ǫ) where

p̄ǫ = ǫβu, ( p̃ǫ)i = ǫ ∀i ∈ I , and ( p̃ǫ)i = 1, ∀i /∈ I .

Clearly pǫ lies in P α

m,n, and we have that dist(qǫ,P α

m,n) ≤ ‖qǫ − pǫ‖ ≤ |I| · ǫ. On the other hand, we have in

view of (3.5) that dist(qǫ,Fz) = ǫβ
> 0. Hence, lim supǫ↓0

dist(qǫ,Pα
m,n)

β

dist(qǫ,Fz)
≤ |I|β < ∞. Thus | · |β satisfies the

asymptotic optimality criterion (cf. [20, Definition 3.1]) for P α

m,n and z, which implies that the error bound

is optimal in the sense of [20, Theorem 3.2(b)].

Using Theorems 3.5 and 3.7 together with [19, Lemma 3.9], we have the following result concerning

one-step facial residual functions.

Corollary 3.9. Consider P α

m,n and its dual cone (P α

m,n)
∗.

(i) Let z ∈ ∂(P α

m,n)
∗\{0} with z 6= 0 and let Fr := {z}⊥ ∩ P α

m,n. Let γz,t be defined as in (3.12). Then the

function ψPα
m,n,z : IR+ × IR+ → IR+ given by

ψPα
m,n,z(ǫ, t) :=max {ǫ, ǫ/‖z‖}+ max{2

√
t, 2γ−1

z,t }(ǫ + max {ǫ, ǫ/‖z‖}) 1
2 (3.32)

is a one-step facial residual function for P α

m,n and z.

(ii) Let z ∈ ∂(P α

m,n)
∗\{0} with z = 0 and let Fz := {z}⊥ ∩ P α

m,n. Let γz,t be defined as in (3.27), where

β := ∑i:z̃i>0 αi. Then the function ψPα
m,n,z : IR+ × IR+ → IR+ given by

ψPα
m,n,z(ǫ, t) :=max{ǫ, ǫ/‖z‖}+ max{2t1−β, 2γ−1

z,t }(ǫ + max {ǫ, ǫ/‖z‖})β (3.33)

is a one-step facial residual function for P α

m,n and z.

We now collect these results to show the tight error bounds for P α

m,n.

Theorem 3.10 (Error bounds for the generalized power cone and their optimality). Consider P α

m,n and its dual

cone (P α

m,n)
∗. Let L ⊆ IRm+n be a subspace and a ∈ IRm+n be given. Suppose that (L+ a) ∩ P α

m,n 6= ∅. Then the

following items hold.

(i) dPPS(P
α

m,n,L+ a) ≤ 1.

(ii) If dPPS(P
α

m,n,L+ a) = 0, then a Lipschitzian error bound holds.

(iii) If dPPS(P
α

m,n,L+ a) = 1, consider the chain of faces F ( P α

m,n with length being 2.

(a) If F = Fr, then a Hölderian error bound with exponent 1/2 holds.

(b) If F = Fz with z ∈ (P α

m,n)
∗ ∩L⊥ ∩ {a}⊥, then a Hölderian error bound with exponent β := ∑i:z̃i>0 αi

holds.

(c) If F = {0}, then a Lipschitzian error bound holds.

(iv) All these error bounds are the best in the sense stated in [20, Theorem 3.2(b)].

Proof. As is shown in Section 3.1, all the proper exposed faces of the generalized power cone are polyhedral.

Then the process of facial reduction needs at most one step to reach the PPS condition. Hence, dPPS(P
α

m,n,L+

a) ≤ 1. This shows item (i).

If dPPS(P
α

m,n,L+ a) = 0, i.e., (Feas) satisfies the PPS condition, then by [2, Corollary 3], a Lipschitzian

error bound holds. This shows item (ii).

Next, let dPPS(P
α

m,n,L+ a) = 1; i.e., we need one step to reach the PPS condition. In this case, the error

bound depends on the exposed face F that contains the feasible region. If F = Fr, then by Corollary 3.9(i),
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we conclude that a Hölderian error bound with exponent 1/2 holds. Remark 3.6 implies that g = | · | 1
2

satisfies the asymptotic optimality criterion for P α

m,n and z with z 6= 0. Hence, by [20, Theorem 3.2], the

obtained Hölderian error bound with exponent 1/2 is the best error bound.

If F = Fz with z ∈ (P α

m,n)
∗ ∩ L⊥ ∩ {a}⊥, then using Corollary 3.9(ii), we conclude that a Hölderian

error bound with exponent β := ∑i∈I αi holds, where I = {i | z̃i > 0}. The optimality of this error bound

comes from Remark 3.8 and [20, Theorem 3.2]. If F = {0}, which means the feasible region is {0}, then a

Lipschitzian error bound holds automatically and it is naturally tight, see [22, Proposition 27].

4 Application: Self-duality, homogeneity, irreducibility and perfectness

of P α

m,n

In this section, we consider the self-duality, homogeneity, irreducibility and perfectness of P α

m,n. We first briefly

explain the importance of those questions.

In what follows, we need the following concepts. We will denote by Aut (K) the group of automor-

phisms of K which are the linear bijections M : E → E such that MK = K. Then, the Lie algebra of

Aut (K) denoted by Lie Aut (K) corresponds to the linear maps L for which etL ∈ Aut (K) for all t ∈ IR or,

equivalently, is the tangent space at the identity element when Aut (K) is seen as a Lie group.

Recall that a cone K is called self-dual if there exists a positive definite matrix Q such that QK = K∗.

This is equivalent to the existence of some inner product under which K becomes self-dual, e.g., [14, Propo-

sition 1]. A cone is homogeneous if for every x, y ∈ riK, there is a matrix A ∈ Aut (K) such that Ax = y. A

homogeneous and self-dual cone is called symmetric [7].

If a closed convex cone K can be expressed as a direct sum of two nonempty and nontrivial sets K1,K2 ⊂
K, i.e., K = K1 + K2 with K1 6= {0},K2 6= {0} and span (K1) ∩ span (K2) = {0}, then K is said to

be reducible; it might not be immediately obvious, but this forces K1 and K2 to be convex cones, e.g., [21,

Lemma 3.2]. Otherwise, K is said to be irreducible or indecomposable, e.g., [1, 10, 21].

4.1 Some theoretical context

It is relatively recent that the power cone has been a subject of research in optimization. However, the power

cone was first considered in the 50’s by Max Koecher in the context of the so-called domains of positivity,

see [16]. More precisely, Koecher proposed a family of 3D cones in [16, Section 11,d)] which corresponds

to P α

1,2, with α ∈ (0, 1). After that, the power cone languished in relative obscurity inside the optimization

community, although it was discussed briefly in [42] and in [41] under the name of Koecher cone. As indicated

in the introduction, several works helped to revitalize the interest in power cones by showcasing modelling

applications, algorithms and software [5, 6, 15, 28, 34, 37].

When the power cone is bundled together in the class of “non-symmetric cones”, it might be interesting

to take a step back and understand two points: (a) how exactly the power cone fails to be symmetric and (b)

why one should care about this.

Starting from the latter, what is special about symmetric cones is that they are supported by a power-

ful theory of Jordan algebras [7]. Being a symmetric cone is a very favourable property which was heavily

exploited to develop efficient primal-dual interior point algorithms, e.g., [8]. However, being a symmetric

cone is also restrictive for it is known that, up to linear isomorphism, each symmetric cone is a direct prod-

uct of only five types of cones. The most remarkable examples of symmetric cones are the IRn
+, the real

symmetric positive semidefinite matrices Sn
+, the second-order cone and the direct products of those three.

As for item (a), examining (3.1), we immediately see that the dual of P α

m,n under the Euclidean inner

product is just DP α

m,n, where D is a diagonal matrix with positive entries, so P α

m,n is indeed self-dual in the

sense above. Thus the only gap between P α

m,n and the class of symmetric cones is the homogeneity.
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Given that being symmetric is very advantageous, one may reasonably wonder if the family of cones

P α

m,n parametrized by α and m and n are indeed non-homogeneous in general. To the best of our knowl-

edge, although it is well-known (e.g., see comments in [42, Section 4]) that P α

1,2 is non-homogeneous except

when α = (1/2, 1/2), there is no result on the generalized power cone regarding which combination of the

parameters m, n and α leads to homogeneity or not. We fill this gap with Theorem 4.2 and Corollary 4.4,

which tells us precisely which of the generalized power cones are homogeneous or not.

We also completely determine the automorphism group of P α

m,n. While this may seem an esoteric ques-

tion, the automorphism group of a cone K is intimately connected to complementarity questions over K.

For example, it is known that L belongs to the Lie algebra of Aut (K) if and only if the following implication

holds

x ∈ K, y ∈ K∗, 〈x, y〉 = 0 ⇒ 〈Lx, y〉 = 0,

see [9]. If a cone has “enough” automorphisms then a complementarity problem can be rewritten as a square

system using the matrices from the Lie algebra of Aut (K). In particular, when the dimension of Aut (K) is

at least dimK, then the cone is said to be perfect, see [9, Page 5] and [32, Theorem 1]. An example of this

phenomenon is how the conditions x, y ∈ IRn
+, 〈x, y〉 = 0 imply n equations xiyi = 0 which is useful in

several contexts.

The quantity dim AutK is called the Lyapunov rank of K [9, 10] and is additive with respect to direct

sums [9, Proposition 1]. Since any cone can be written as a direct sum of irreducible cones, it becomes

important to identify which irreducible cones are perfect.

It is interesting to note that many of the examples of irreducible perfect cones in the literature (e.g.,

[9, 10, 32]) seem to be homogeneous. In addition, every homogeneous cone is perfect, which follows by

known results about Lie groups, e.g., see [17, Theorem 21.20] or Section 2 in [31] which summarizes useful

results. The final observation we will make in this paper is that, surprisingly, for some choices of parameters,

P α

m,n is perfect but non-homogeneous, see Corollary 4.4. We note that in [40], Sznajder showed that there

are choices of parameters for which the so-called extended second order cone is irreducible and perfect. This

corresponds to a family of cones proposed by Németh and Zhang that contains the second order cones [29].

However, as far as we know, the homogeneity of those cones (or the lack thereof) was not discussed in

general.

4.2 Automorphisms of the generalized power cone

In this subsection, we will prove our main results regarding Aut (P α

m,n). The basic strategy is simple: if

A ∈ Aut (P α

m,n), then A must map a face F1 of P α

m,n to another face F2 of P α

m,n with the same properties

such as the dimension. More than that, the optimal exponents associated to FRFs of F1 and F2 must be

the same. These conditions impose enough restrictions on A that we are able to completely determine its

shape. Note that when n = 2 and α = (1/2, 1/2), P α

m,n is isomorphic to the second-order cone, whose

automorphism group is well-known. Below, we focus on the complementary cases.

Theorem 4.1 (Automorphisms of P α

m,n). For m ≥ 1, n > 2 and any α ∈ (0, 1)n such that ∑
n
i=1 αi = 1, or for

m ≥ 1, n = 2 and any α ∈ (0, 1)2 such that α1 6= α2 and α1 + α2 = 1, it holds that A ∈ Aut (P α

m,n) if and only if

A =

[
B 0

0 E

]
(4.1)

for some (invertible) generalized permutation matrix7 E ∈ IRn×n with positive nonzero entries and invertible matrix

B ∈ IRm×m satisfying ‖Bx‖ = ∏
n
k=1(Ek,lk

)αlk‖x‖ for all x ∈ IRm, where Ek,lk
is the nonzero element in the k-th row

of E and αlk
= αk.

7A generalized permutation matrix is a matrix where in each column and each row there is exactly one nonzero entry.
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Proof. Suppose that there exists a matrix

A :=

[
B C

D E

]
with B ∈ IRm×m, C ∈ IRm×n, D ∈ IRn×m, E ∈ IRn×n

such that AP α

m,n = P α

m,n.

First note that the entries of E must all be nonnegative, for if the (i, j)-th entry was negative, then we

could pick a vector q := (0, c) ∈ P α

m,n with cj = 1 and ck = 0 for k 6= j, wherefore Aq 6∈ P α

m,n, which is a

contradiction.

Additionally, such a matrix A must be invertible and if ψ is an FRF for a face F1 E P α

m,n, then A must

map F1 onto a face F2 EP α

m,n which has the same dimension and admits an FRF that is a positively rescaled

shift of ψ; see [22, Proposition 17].

Observe from Section 3.1 that the generalized power cone has two types of faces defined in (3.4) and (3.5)

(denoted by Fr and Fz respectively with an abuse of notation) with the corresponding (optimal) one-step

facial residual functions in (3.32) and (3.33), respectively. We also notice that the dimension of the faces of

the first type is 1, while the dimension of a face of the second type is n − |I|. These lead to the following

observations:

(I) Given an I with βI := ∑i∈I αi, if |I| < n − 1, i.e., the dimension of the corresponding face is larger

than 1, then A must map the face associated with I to a face associated with an Ī where |I| = |Ī | and

βĪ = βI .

(II) In the case when n = 2, since we assumed α1 6= α2 and thus α1 6= 1/2, A cannot map a one-

dimensional face of type Fz (whose FRF admits an optimal exponent of α1 or α2) to one of type Fr

(whose FRF admits an optimal exponent of 1/2).

Thus, a face of type Fz with |I| = 1 must be mapped to a face of the same type. From now on, for

each k ∈ {1, 2, . . . , n}, we let ik and lk be such that AF{k} = F{ik} and AF{lk} = F{k}, where F{k} denotes

the face of type Fz associated with I = {k}. We deduce immediately from the above discussions that

{1, 2, . . . , n} = {i1, i2, . . . , in} = {l1, l2, . . . , ln} and αk = αik
= αlk

.

Now, fix any k ∈ {1, 2, . . . , n}. Then for any x̃I := (c1, . . . , ck−1, 0, ck+1, . . . , cn) with ci > 0 for all i 6= k, it

must hold that A maps xI := (0, x̃I) to some xÎ := (0, x̃Î) with Î = {ik}, αk = αik
and (x̃Î )ik

= 0. Thus,

[
B C

D E

] [
0

x̃I

]
=

[
0

x̃Î

]
.

Therefore, we have Cx̃I = 0. This together with the arbitrariness of ci > 0 shows that all except possibly the

k-th column of C are 0. Since k is arbitrary, then we conclude that C = 0.

Next, notice that we also have Ex̃I = x̃Î . Since (x̃Î)ik
= 0, we see that Eik

x̃I = 0, where Eik
is the

ik-th row of E. Using again the arbitrariness of ci > 0 in the definition of x̃I , we conclude that all entries

of Eik
are 0 except possibly for the k-th entry, i.e., Eik

has only one possibly nonzero entry and that entry

is nonnegative. From the arbitrariness of k and the fact that {i1, i2, . . . , in} = {1, 2, . . . , n}, we immediately

obtain that every entry of the ik-th row E has all of its entries equal to zero except possibly for the k-th, which

is nonnegative.

Taking into account of the fact that A is invertible and C = 0, we know that none of the columns of E

can be identically zero, and so we altogether have that each of the rows and columns of E consists of one

strictly positive entry, with all other entries identically zero.8

We next claim that A must map faces of type Fr to a face of type Fr. Since A must permute faces

whose FRFs admit the same optimal exponent, we only need to consider the extreme case that there exists

a face of type Fz corresponding to an I := {1, 2, . . . , i − 1, i + 1, . . . , n} for some i (i.e., the dimension of

8Then, we have shown that Es,r 6= 0 if and only if (s, r) = (ik, k) for some k ∈ {1, 2, . . . , n} (or equivalently (s, r) = (k, lk) for some

k ∈ {1, 2, . . . , n}).
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the corresponding face is 1) with βI = 1/2, and argue that A cannot map Fr onto such Fz. Suppose for

contradiction that this happens; then there must exist x = (x, x̃) in some face of type Fr with x 6= 0 and

x̃i > 0 for all i such that [
B 0

D E

] [
x

x̃

]
=

[
0

ei

]
,

where ei ∈ IRn is the vector whose elements are all zero except for the i-th element being 1. However, this

cannot happen because Bx = 0 and the invertibility of B (a consequence of invertibility of A) implies x = 0,

leading to a contradiction. Hence, A must map faces of type Fr onto a face of type Fr.

Thus, for any x = (x, x̃) in one of the type Fr faces with x 6= 0, mini{x̃i} > 0 and ‖x‖ = ∏
n
i=1 x̃

αi
i , there

must be y = (y, ỹ) in one of the type Fr faces with y 6= 0, mini{ỹi} > 0 and ‖y‖ = ∏
n
i=1 ỹ

αi
i such that

[
B 0

D E

] [
x

x̃

]
=

[
y

ỹ

]
.

Recall that there is exactly one nonzero element in each row of E, and this element is positive. From the

definition of lk, this nonzero element is Ek,lk
; see footnote 8.

Fix any j and k ∈ {1, . . . , n}. Pick any (x, x̃) ∈ P α

m,n such that x = ej and ∏
n
i=1 x̃

αi
i = 1. For any t > 0, one

can check that (tαlk x, x̃1, · · · , tx̃lk
, · · · , x̃n) ∈ P α

m,n belongs to a face of type Fr. Thus, there exists (y, ỹ) such

that

t
αlk Bej = y and t

αlk Dk,j + tEk,lk
x̃lk

= ỹk > 0.

The second relation implies that Dk,j + t
1−αlk Ek,lk

x̃lk
> 0. Letting t ↓ 0, we conclude that Dk,j ≥ 0. As the

choices of j and k were arbitrary, we see that all entries of D are nonnegative. Considering x = −ej, a similar

argument shows that all entries of D are nonpositive. Hence, D = 0.

Now, for any x ∈ IRm, pick any (x, x̃) ∈ ∂P α

m,n. Then there exists (y, ỹ) ∈ ∂P α

m,n so that9

Bx = y and Ek,lk
x̃lk

= ỹk for k = 1, 2, . . . , n.

Thus,

‖Bx‖ = ‖y‖ =
n

∏
k=1

ỹ
αk
k =

n

∏
k=1

(Ek,lk
x̃lk

)αk
(a)
=

n

∏
k=1

(Ek,lk
x̃lk

)αlk

=
n

∏
k=1

E
αlk
k,lk

n

∏
i=1

x̃
αi
i =

n

∏
k=1

E
αlk
k,lk

‖x‖.

where (a) holds as αk = αlk
for all k. The above shows the necessity of the form in (4.1).

Conversely, if A is a matrix of the form (4.1), then A must be invertible since B and E are invertible. For

any x = (x, x̃) ∈ P α

m,n, we have Ax = (Bx, Ex̃). Hence,

‖Bx‖ =
n

∏
k=1

E
αlk
k,lk

‖x‖ ≤
n

∏
k=1

E
αlk
k,lk

n

∏
i=1

x̃
αi
i =

n

∏
k=1

(
Ek,lk

x̃lk

)αlk ,

where the last equality holds as {1, . . . , n} = {l1, . . . , ln}. This implies AP α

m,n ⊆ P α

m,n.

We claim

(i)
(

E−1
)

i,j
=





0, Ej,i = 0,
1

Ej,i
, Ej,i 6= 0.

(ii) ‖B−1x‖ =
n

∏
k=1

E
−αlk
k,lk

‖x‖ ∀x ∈ IRm. (4.2)

Granting these, we have that for any x = (x, x̃) ∈ P α

m,n, A−1x = (B−1x, E−1x̃) satisfies

9Such a y exists because A is invertible and AP α

m,n = P α

m,n, which implies AriP α

m,n = riP α

m,n and A∂P α

m,n = ∂P α

m,n.

18



n

∏
i=1

(E−1x̃)αi
i =

n

∏
i=1

( n

∑
j=1

(E−1)i,jx̃j

)αi (a)
=

n

∏
k=1

(
(E−1)lk,k x̃k

)αlk =
n

∏
k=1

(E−1
k,lk

x̃k)
αlk

=
n

∏
k=1

E
−αlk
k,lk

n

∏
i=1

x̃
αli
i

(b)
=

n

∏
k=1

E
−αlk
k,lk

n

∏
i=1

x̃
αi
i ≥

n

∏
k=1

E
−αlk
k,lk

‖x‖ (c)
= ‖B−1x‖,

where (a) is true thanks to the fact that in the sum there is only one nonzero term, which comes from identity

(i) and footnote 8; (b) holds because αk = αlk
for all k; (c) comes from identity (ii). Hence, A−1x ∈ P α

m,n. This

implies AP α

m,n ⊇ P α

m,n and consequently AP α

m,n = P α

m,n.

Now, it remains to show (4.2). Since E is a generalized permutation matrix with all nonzero elements

being positive, then we immediately have (i) from EE−1 = In. Recall that, by assumption, ‖Bx‖ =

∏
n
k=1 E

αlk
k,lk

‖x‖ for any x ∈ IRm and B is invertible. Using these, we can deduce (ii) in (4.2) as follows: for any

x ∈ IRm,

‖x‖ = ‖BB−1x‖ =
n

∏
k=1

E
αlk
k,lk

‖B−1x‖.

The next theorem is about the dimension of Aut (P α

m,n).

Theorem 4.2. Let m ≥ 1, n ≥ 2 and α ∈ (0, 1)n such that ∑
n
i=1 αi = 1, then we have the following statements about

dim Aut (P α

m,n).

(i) If m ≥ 1, n = 2 and α := (1/2, 1/2), then dim Aut (P α

m,n) = (m2 + 3m + 4)/2.

(ii) If m ≥ 1, n > 2 and ∑
n
i=1 αi = 1 or m ≥ 1, n = 2, α1 6= α2 and α1 + α2 = 1, then:

Lie Aut (P α

m,n) =

{[
G 0

0 Diag(h)

] ∣∣∣∣∣
G + G⊤ = 2α⊤hIm,

G ∈ IRm×m, h ∈ IRn

}
. (4.3)

Hence, dim Aut (P α

m,n) = dim Lie Aut (P α

m,n) = n + m(m − 1)/2.

Proof. (i) If m ≥ 1, n = 2 and α := (1/2, 1/2), then P α

m,n is isomorphic to a second-order cone; see, [28,

Section 3.1.2]. Hence, we know from [9, Page 12 (v)] that

dim Aut (P α

m,n) =
(m + 2)2 − m

2
=

m2 + 3m + 4

2
.

(ii) By [11, Corollary 3.45], dim Aut (P α

m,n) = dim Lie Aut (P α

m,n). This in addition to [11, Corollary 3.46]

show that it suffices to calculate the dimension of the tangent space at the identity of Aut (P α

m,n) to obtain

dim Aut (P α

m,n).

First, we compute Lie Aut (P α

m,n) and for that we consider an arbitrary continuously differentiable curve

F : (−1, 1)→Aut (P α

m,n) with F(0) = Im+n and F(t) ∈ Aut (P α

m,n) for any t ∈ (−1, 1). We further denote

F(t) =

[
Gt 0

0 Ht

]
and Ḟ(t) =

[
Ġt 0

0 Ḣt

]
,

where Gt ∈ IRm×m and Ht ∈ IRn×n are both invertible; G0 = Im, H0 = In; Ht is a generalized permutation

matrix with all nonzero elements being strictly positive (which we assume, by suitably shrinking the neigh-

borhood of definition of F and reparameterizing, to be only nonzero along the diagonal); Ḟ(0) lies in the

tangent space of Aut (P α

m,n) at I, that is,

Ḟ(0) =

[
Ġ0 0

0 Ḣ0

]
∈ Lie Aut (P α

m,n); (4.4)

Ġt and Ḣt refer to the componentwise derivative of G and H with respect to t, respectively.
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Since Ht and Ḣt are diagonal, we let ht and ḣt be the diagonal vectors of Ht and Ḣt, respectively, i.e.,

Ht = Diag(ht) and Ḣt = Diag(ḣt). We also let hk
t and ḣk

t denote the k-th element of the vectors ht and ḣt

respectively. Then, from Theorem 4.1,

‖Gtx‖2 =
n

∏
k=1

(hk
t )

2αk‖x‖2, ∀ x ∈ IRm, ∀ t ∈ (−1, 1). (4.5)

Differentiating10 both sides of (4.5) with respect to t, we can obtain

2x⊤G⊤
t Ġtx = x⊤x

n

∑
k=1

2αk

(
hk

t

)2αk−1
ḣk

t ∏
j 6=k

(
h

j
t

)2αj
= x⊤x

n

∑
k=1

2
αk

hk
t

ḣk
t

n

∏
j=1

(
h

j
t

)2αj

= 2

(
x⊤x

n

∏
j=1

(h
j
t)

2αj

) n

∑
k=1

αk

hk
t

ḣk
t
(a)
= 2x⊤G⊤

t Gtx
(

α ◦ (ht)
−1
)⊤

ḣt,

where the inverse is taken componentwise, and the rest of (a) comes from (4.5). Notice that
(
α ◦ (ht)−1

)⊤
ḣt

is a scalar, by rearranging terms, one has

x⊤
[

G⊤
t Ġt −

(
α ◦ (ht)

−1
)⊤

ḣtG
⊤
t Gt

]
x = 0, ∀ x ∈ IRm, ∀ t ∈ (−1, 1).

Letting t = 0 and recalling G0 = Im, H0 = In, we have

x⊤
(

Ġ0 − α⊤ḣ0 Im

)
x = 0, ∀ x ∈ IRm. (4.6)

Recall that 2x⊤Ġ0x = x⊤(Ġ0 + Ġ⊤
0 )x. We can thus rewrite (4.6) as

x⊤
(

Ġ0 + Ġ⊤
0 − 2α⊤ḣ0 Im

)
x = 0, ∀ x ∈ IRm.

Since the matrix in the parentheses is zero, the above display implies that

Ġ0 + Ġ⊤
0 = 2α⊤ḣ0 Im.

The above derivation and (4.4) show that any matrix in Lie Aut (P α

m,n) satisfies the above display.

Conversely, suppose that G and Diag(h) are such that G + G⊤ = 2α⊤hIm and U :=

[
G 0

0 Diag(h)

]
. We

need to show that the matrix exponential etU belongs to Aut (P α

m,n) for every t ∈ IR. To this end, recall that

eX+Y = eX eY if XY = YX, we have

etG = e2tα⊤hIm−tG⊤
= e2tα⊤hIm e−tG⊤

= e2tα⊤he−tG⊤
,

since 2tα⊤hIm and −tG⊤ commute. This shows that (etG)⊤etG = etG⊤
etG = e2tα⊤h Im, i.e., etG is an orthogo-

nal matrix multiplied by the scalar etα⊤h. Then

‖etGx‖ = etα⊤h‖x‖ = e∑
n
i=1 thiαi‖x‖ =

n

∏
i=1

(ethi)
αi‖x‖ ∀x ∈ IRm. (4.7)

Since

etU =

[
etG 0

0 eDiag(th)

]
=

[
etG 0

0 Diag(eth)

]
,

where eth corresponds to the vector such that its i-th component is ethi and hi is the i-th component of h, we

conclude from (4.7) and Theorem 4.1 that etU ∈ Aut (P α

m,n).

Finally, a direct computation shows that the dimension of the right-hand side of (4.3) is n + m(m − 1)/2,

which is just the claimed dimension.
10This calculation simply uses the chain rule to differentiate (hk

t )
2αk for a given k, and then applies the product rule for the product

over all k.
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4.3 Homogeneity, irreducibility and perfectness of generalized power cone

In this subsection, we will use Theorem 4.1 to prove the homogeneity, irreducibility and perfectness of P α

m,n.

Before moving on, we recall the following lemma.

Lemma 4.3. (i) If a closed convex pointed cone K is reducible, i.e., K is a direct sum of two nonempty, nontrivial

sets K1 and K2, then we have K1 �⊳ K, K2 �⊳ K and dim (K) = dim (K1) + dim (K2).

(ii) A proper cone K ⊆ IRp is perfect if and only if dim Lie Aut (K) ≥ p.

Proof. (i) The fact that K1 and K2 are faces is well-known, see [21, Lemma 3.2]. The conclusion on dimen-

sions follows directly from the definition of direct sum.

(ii) This fact comes from [32, Theorem 1] and the first display on [9, Page 4].

Using Lemma 4.3, Theorems 4.1 and 4.2, we have the following corollary.

Corollary 4.4. Let m ≥ 1, n ≥ 2 and α ∈ (0, 1)n such that ∑
n
i=1 αi = 1, then the following statements hold for the

generalized power cone P α

m,n.

(i) P α

m,n is irreducible.

(ii) If m ≥ 1, n = 2 and α := (1/2, 1/2), then P α

m,n is homogeneous and perfect.

(iii) If m ≥ 1, n > 2 and ∑
n
i=1 αi = 1 or m ≥ 1, n = 2, α1 6= α2 and α1 + α2 = 1, then P α

m,n is nonhomogeneous.

In addition, if 1 ≤ m ≤ 2, then P α

m,n is not perfect; if m ≥ 3, then P α

m,n is perfect.

Proof. (i) Recall that the two types of faces of P α

m,n are defined as in (3.4) and (3.5), with dimensions being

1 and n − |I|, respectively. Since I 6= ∅ and so |I| ≥ 1, for any possible pair of nontrivial faces F1 and F2

of P α

m,n, we have dim (F1) + dim (F2) < m + n = dim (P α

m,n). This together with Lemma 4.3(i) show that

P α

m,n is irreducible.

(ii) If m ≥ 1, n = 2 and α := (1/2, 1/2), P α

m,n is isomorphic to a second-order cone and so is homoge-

neous; see, for example, [28, Section 3.1.2]. The perfectness holds by Theorem 4.2(i) and Lemma 4.3(ii).

(iii) Take any m ≥ 1, n > 2 with any α ∈ (0, 1)n such that ∑
n
i=1 αi = 1 or m ≥ 1, n = 2 with any

α ∈ (0, 1)2 such that α1 6= α2, consider x = (0, x̃) ∈ riP α

m,n and y = (y, ỹ) ∈ riP α

m,n, where mini{x̃i} > 0,

mini{ỹ} > 0 and y 6= 0, ‖y‖ < ∏
n
i=1 ỹ

αi
i . Using (4.1), for all A such that AP α

m,n = P α

m,n, we have Ax 6= y

because B0 = 0 6= y for all possible B. Then by definition, P α

m,n with m ≥ 1, n = 2 and ∑
n
i=1 αi = 1 or m ≥ 1,

n = 2, α1 6= α2 and α1 + α2 = 1 is nonhomogeneous. By Theorem 4.2(ii), we have dim Lie Aut (P α

m,n) =

n + m(m−1)
2 ≥ m + n if and only if m ≥ 3. The conclusion concerning perfectness now follows from this and

Lemma 4.3(ii).
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[6] C. Coey, L. Kapelevich, and J. P. Vielma. Solving natural conic formulations with Hypatia.jl. INFORMS

Journal on Computing, 34:2686–2699, 2022.

[7] J. Faraut and A. Korányi. Analysis on Symmetric Cones. Oxford Mathematical Monographs. Clarendon

Press, Oxford, 1994.

[8] L. Faybusovich. Several Jordan-algebraic aspects of optimization. Optimization, 57(3):379–393, 2008.

[9] M. S. Gowda and J. Tao. On the bilinearity rank of a proper cone and Lyapunov-like transformations.

Mathematical Programming, 147(1):155–170, 2014.

[10] M. S. Gowda and D. Trott. On the irreducibility, Lyapunov rank, and automorphisms of special Bishop

Phelps cones. Journal of Mathematical Analysis and Applications, 419(1):172–184, 2014.

[11] B. C. Hall. Lie Groups, Lie Algebras, and Representations, volume 222 of Graduate Texts in Mathematics.

Springer, Cham, second edition, 2015.

[12] L. T. K. Hien. Differential properties of Euclidean projection onto power cone. Mathematical Methods of

Operations Research, 82(3):265–284, 2015.

[13] A. J. Hoffman. On approximate solutions of systems of linear inequalities. Journal of Research of the

National Bureau of Standards, 49(4):263–265, 1952.

[14] M. Ito and B. F. Lourenço. The automorphism group and the non-self-duality of p-cones. Journal of

Mathematical Analysis and Applications, 471(1):392 – 410, 2019.
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ping. Mathematics of Operations Research, 26(2):234–247, 2001.

23

https://www.minlplib.org/
https://docs.mosek.com/modeling-cookbook/index.html
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