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Abstract

We consider distributed recursive estimation of consensus+innovations type in the presence of heavy-
tailed sensing and communication noises. We allow that the sensing and communication noises are
mutually correlated while independent identically distributed (i.i.d.) in time, and that they may both
have infinite moments of order higher than one (hence having infinite variances). Such heavy-tailed,
infinite-variance noises are highly relevant in practice and are shown to occur, e.g., in dense internet
of things (IoT) deployments. We develop a consensus+innovations distributed estimator that employs
a general nonlinearity in both consensus and innovations steps to combat the noise. We establish the
estimator’s almost sure convergence, asymptotic normality, and mean squared error (MSE) convergence.
Moreover, we establish and explicitly quantify for the estimator a sublinear MSE convergence rate.
We then quantify through analytical examples the effects of the nonlinearity choices and the noises
correlation on the system performance. Finally, numerical examples corroborate our findings and verify
that the proposed method works in the simultaneous heavy-tail communication-sensing noise setting,
while existing methods fail under the same noise conditions.

1 Introduction

We consider a distributed estimation problem where a network of agents cooperates to estimate an unknown
static vector parameter θ∗ ∈ RM . Specifically, we are interested in consensus+innovations distributed esti-
mation, e.g., [18, 16, 17]. With consensus+innovations, each agent iteratively updates its unknown parame-
ter’s estimate by 1) exchanging its estimate with immediate neighbors in the network; and 2) assimilating a
newly acquired observation (measurement).

Consensus+innovations distributed estimators have been extensively studied, e.g., [18, 16, 17]; see also
[20, 22, 23, 27, 30, 24, 37] for related diffusion-type and other methods. Typically, such distributed estimators
exhibit strong convergence guarantees under various imperfection models (noises) in 1) sensing (observations)
and/or 2) inter-agent communications. For example, reference [18] establishes almost sure (a.s.) convergence
and asymptotic normality of the estimators developed therein. The authors of [18] allow for an observation
noise with finite variance and a network model that accounts for random link failures and dithered quan-
tization (effectively an additive noise with finite variance). Reference [16] considers consensus+innovations
distributed estimation in the presence of random link failures without quantization or additive noise, and it
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develops estimators that are asymptotically efficient, i.e., that achieve the minimal possible asymptotic vari-
ance. The authors of [17] propose adaptive asymptotically efficient estimators, wherein the innovation gains
are adaptively learned during the algorithm progress. Consensus+innovations distributed detection and re-
lated distributed detection methods have also been considered, e.g., [25, 3, 2, 14]. The above distributed
estimation and distributed detection-related works typically assume that the noises have finite moments of
a certain order greater than two, and hence they have finite variance.

It is highly relevant to investigate distributed estimators in the presence of heavy-tailed communication
and sensing noises, as they arise in many application scenarios. For example, edge devices in Internet
of Things (IoT) systems or sensor networks can be subject to noise distributions that may not have finite
moments of order higher than one, e.g., [6, 31, 12, 36, 11, 7], like, e.g., symmetric α-stable noise distributions.
This effect may occur due to interference, e.g., when wireless sensor network is relatively densely deployed.
In this case, the signals of neighboring nodes interfere with each other and corrupt the signal to be received.
References [10, 35] analyze the probability distribution of the interference and demonstrate that it has heavy-
tails. More precisely, [10, 35] show that the interference power has an alpha-stable distribution in a network
with infinite radius and no guard zone when the interferers are placed according to a Poisson point process,
where alpha depends on the path loss coefficient between the interferers and the receiver (see [10, 35] for
details). Empirical evidence for the emergence of heavy-tail interference noise in certain IoT systems has
been provided in [6].

Moreover, observation and communication noises may be mutually correlated due to the common inter-
ference processes in the environment that the sensing and communication devices are exposed to.

Several recent works [19, 21, 34, 33, 5, 1, 4, 26] consider distributed estimation methods in the presence
of impulsive observations noise,1 but still assuming a finite noise variance and no communication noise. For
example, reference [19] introduces a method based on Wilcoxon-norm; [21] utilizes a Huber-loss function;
and [34] adopts a mean error minimization approach. Robust distributed estimation methods based on
adaptive subgradient projections are considered in [33, 5]. To cope with the impulsive observation noise,
several references employ a certain nonlinearity in the innovation step. Reference [1] develops a method that
adaptively learns an optimized nonlinearity at the innovation step for each agent in the network. Reference [4]
employs a saturation nonlinearity in the innovation step to cope with measurement attacks. Further results on
distributed estimation under impulsive observations noise can be found in a recent survey [26]. Very recently,
we have developed a consensus+innovations distributed estimator [15] that provably works under a heavy-
tailed communications noise and a light-tailed observations noise. Specifically, under the assumed setting,
[15] establishes almost sure convergence and asymptotic normality of the method therein. However, [15] is
not concerned with mean squared error (MSE) rate analysis of the method. While asymptotic normality is a
useful result that provides the algorithm’s rate of convergence (in the weak convergence sense) asymptotically,
it does not capture the (MSE) algorithm behavior in non-asymptotic regimes.

In summary, we identify for the current literature the following major gaps with respect to design and
analysis of distributed estimation methods under heavy-tailed noises. 1) All existing works assume a finite
observations noise variance. That is, even when impulsive observation noise is assumed, existing works still
require the variance of the noise to be finite. This assumption can be restrictive and is violated for several
commonly used heavy-tail noise models like α-stable distributions [11]. 2) No existing work simultaneously
handles heavy-tailed (infinite-variance) sensing and heavy-tailed (infinite-variance) observation noises. 3)
MSE convergence rate analysis has not been developed for distributed estimation in the presence of either
infinite-variance sensing and/or infinite-variance communication noises. 4) Existing works on distributed
estimation in the presence of infinite-variance (either sensing and/or communication noises) assume mutually
independent sensing and communication noises.

Contributions. In this paper, we close the gaps identified above by developing a nonlinear consen-
sus+innovations distributed estimator that provably works under the simultaneous presence of correlated
heavy-tailed (infinite variance) observation and communication noises. We allow for a very general model of

1As explained in, e.g., [1], an impulsive noise may be described as one whose realizations contain sparse, random samples of
amplitude much higher than nominally accounted for. Impulsive noise may have a finite or infinite variance. Existing works on
distributed estimation in impulsive noises assume a finite noise variance.
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the sensing and communication noises, only assuming that they exhibit symmetric zero-mean distributions
with finite first moments. Hence, the variances of both sensing and communication noises may be infinite.
Moreover, we allow that, for a fixed time instant t, the additive sensing and communication noises may be
mutually dependent, while they are both independent identically distributed (i.i.d.) in time. The proposed
estimator employs a generic nonlinearity both at the innovations and the consensus terms. The encom-
passed nonlinearities are very general and include a broad class of (possibly discontinuous) odd functions,
such as the component-wise sign and clipping functions. We establish for the proposed estimator almost
sure convergence, asymptotic normality, and we explicitly evaluate the corresponding asymptotic variance.
Furthermore, we establish for the proposed method, under a carefully designed step size sequence, a MSE
convergence rate O(1/tκ), and we quantify the rate κ ∈ (0, 1) in terms of the system parameters. In addition,
we quantify through analytical examples the effects of correlation between sensing and observation noises,
and we demonstrate how the derived asymptotic covariance results may be used as a guideline to optimize the
employed nonlinearities for a problem at hand. Finally, we compare the proposed method with existing works
in [1] and [15], both through analytical examples and by simulation. Most notably, we show that the existing
methods fail to converge under the simultaneous presence of heavy-tailed (infinite-variance) observation and
communication noises, while the proposed method provably works in the heavy-tailed setting.

Paper organization. Section 2 provides a description of the distributed estimation model that is
considered and also gives all basic assumptions. In Section 3, we present the proposed nonlinear consen-
sus+innovations estimator. Section 4 establishes almost sure convergence, asymptotic normality and the
MSE rate of the proposed distributed estimator. Section 5 presents analytical and numerical examples. The
conclusion is given in Section 6. Some auxiliary supporting arguments are provided in Appendix.

Notation. We denote by R the set of real numbers and by Rm the m-dimensional Euclidean real
coordinate space. We use normal lower-case letters for scalars, lower case boldface letters for vectors, and
upper case boldface letters for matrices. Further, to represent a vector a ∈ Rm through its component, we
write a = [a1,a2, ...,am]⊤ and we denote by: ai or [ai], as appropriate, the i-th element of vector a; Aij or
[Aij ], as appropriate, the entry in the i-th row and j-th column of a matrix A; A⊤ the transpose of a matrix
A; ⊗ the Kronecker product of matrices. Further, we use either a⊤b or ⟨a, b⟩ for the inner products of
vectors a and b. Next, we let I, 0, and 1 be, respectively, the identity matrix, the zero vector, and the column
vector with unit entries; Diag(a) the diagonal matrix whose diagonal entries are the elements of vector a; J
the N ×N matrix J := (1/N)11⊤. When appropriate, we indicate the matrix or vector dimension through
a subscript. Next, A ≻ 0 (A ⪰ 0) means that the symmetric matrix A is positive definite (respectively,
positive semi-definite). We further denote by: ∥ · ∥ = ∥ · ∥2 the Euclidean (respectively, spectral) norm of
its vector (respectively, matrix) argument; λi(·) the i-th smallest eigenvalue; g′(v) the derivative evaluated
at v of a function g : R → R; ∇h(w) and ∇2h(w) the gradient and Hessian, respectively, evaluated at w of
a function h : Rm → R, m > 1; P(A) and E[u] the probability of an event A and expectation of a random
variable u, respectively; and by sign(a) the sign function, i.e., sign(a) = 1, for a > 0, sign(a) = −1, for a < 0,
and sign(0) = 0. Finally, for two positive sequences ηn and χn, we have: ηn = O(χn) if lim supn→∞

ηn

χn
< ∞.

2 Problem model and basic assumptions

We consider a network of N agents (sensors), through which the parameter of interest θ∗ ∈ RM is to be
estimated. At each time t = 0, 1, ..., each agent i = 1, 2, ..., N observes parameter θ∗ following the linear
regression model:

zti = h⊤
i θ

∗ + nt
i. (1)

Here, zti ∈ R is the observation, hi ∈ RM is the deterministic, non-zero regression vector known only by
agent i and nt

i ∈ R is the observation noise. The underlying topology is modeled via a graph G = (V,E),
where V = {1, ..., N} is the set of agents and E is the set of links, i.e., {i, j} ∈ E if there exists a link between
agents i and j. We also define the set of all arcs Ed in the following way: if {i, j} ∈ E then (i, j) ∈ Ed

and (j, i) ∈ Ed. We denote by Ωi = {j ∈ V : {i, j} ∈ E} set of neighbors of agent i (excluding i) and
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by D = Diag({di}) the degree matrix, where di = |Ωi| is the number of neighbors of agent i. The graph
Laplacian matrix L is defined by L = D−A, where A is the adjacency matrix, which is a zero-one symmetric
matrix with zero diagonal, such that, for i ̸= j, Aij = 1 if and only if {i, j} ∈ E. Let us denote by (Ω,F ,P)
the underlying probability space.
We make the following assumptions.

Assumption 1. Network model and Observability:

1. Graph G = (V,E) is undirected, simple (no self or multiple links) and static;

2. The matrix
∑N

i=1 hih
⊤
i is invertible;

The condition 2 in Assumption 1 ensures that (1) is observable, i.e., a centralized estimator (e.g., least
squares) that collects all zti , i = 1, 2, ..., N, for all t, and has knowledge of all vectors hi, i = 1, 2, ..., N, is
consistent.

Assumption 2. Observation noise:

1. For each agent i = 1, ..., N , the observation noise sequence {nt
i} in (1), is independent identically

distributed (i.i.d.);

2. At each agent i = 1, ..., N at each time t = 0, 1, ..., noise nt
i has the same probability density function po.

3. Random variables nt
i and ns

j are mutually independent whenever the tuple (i, t) is different from (j, s);

4. The pdf po is symmetric, i.e. po(u) = po(−u), for every u ∈ R, and po(u) > 0 for |u| ≤ co, for some
constant co > 0;

5. There holds that with
∫
|u|po(u)du < ∞.

If there is an arc between agents i and j, i.e., (i, j) ∈ Ed, we denote by ξtij communication noise that is
injected when agent j communicates to agent i at time instant t (see ahead algorithm (3)).

Assumption 3. Communication noise:

1. Additive communication noise {ξtij}, ξ
t
ij ∈ RM is i.i.d. in time t, and independent across different

arcs (i, j) ∈ Ed.

2. Each random variable [ξtij ]ℓ, for each t = 0, 1..., for each arc (i, j), for each entry ℓ = 1, ...,M , has the
same probability density function pc.

3. The pdf pc is symmetric, i.e. po(u) = pc(−u), for every u ∈ R and pc(u) > 0 for |u| ≤ cc, for some
constant cc > 0;

4. There holds that
∫
|u|pc(u)du < ∞.

Remark 1. Notice here that from the symmetry of the probability density functions po and pc, it follows
that both of the distributions are zero mean. Moreover, notice that we do not assume that observation and
communication noises are mutually independent for a fixed t. However, they are both i.i.d. in time.

Remark 2. Condition 2 in Assumptions 2 and 3 can be relaxed in the sense that it can be assumed that nt

has joint probability density function po and ξtij has the joint probability density function pc,ij . (see Appendix
C). The reason why there is condition 4 in the Assumption 2 and condition 3 in the Assumption 3 will
become clear later.

For future reference, a compact vector form of (1) is:

zt = H (1N ⊗ θ∗) + nt, (2)

where, zt = [zt1, z
t
2, ..., z

t
N ]⊤ ∈ RN is the observation vector, H ∈ RN×(MN) is the regression matrix whose

i-th row vector equals [0, ...,0,h⊤
i ,0, ..,0] ∈ RMN , where the i-th block of size M equals h⊤

i , and the other
M -size blocks are the zero vectors; and nt = [nt

1, n
t
2, ..., n

t
N ]⊤ ∈ RN is the noise vector at time t.
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3 Proposed algorithm

In order to estimate the unknown parameter θ∗ ∈ RM , in the presence of heavy-tailed observation noise and
heavy-tailed communication noise, each agent uses a nonlinear consensus+innovations strategy. Therein, the
impact of the two heavy-tailed noises is mitigated by nonlinearities that have been added to both consensus
and innovation steps.
In more detail, each agent i at each time t = 0, 1, ..., generates a sequence of estimates {xt

i}t≥0 of unknown
parameter θ∗ by the following algorithm:

xt+1
i = xt

i − αt

 b

a

∑
j∈Ωi

Ψc

(
xt
i − xt

j + ξ
t
ij

)
− hiΨo

(
zti − h⊤

i x
t
i

) . (3)

Here, αt is a step-size, and a, b > 0 are constants. We consider a family of decaying step-size choices
αt = a/(t+1)δ, δ ∈ (0.5, 1]. As shown later, the step-size (values of a and δ) should be designed appropriately
in order for good properties (e.g., a.s. convergence, MSE rate guarantees) of the algorithm to hold. Functions
Ψo : R → R and Ψc : RM → RM are non-linear functions and function Ψc operates component-wise by
abusing notation, i.e., for y ∈ RM , we set that Ψc(y) = [Ψc(y1),Ψc(y2), ...,Ψc(yM )]. Also, functions Ψc

and Ψo satisfy Assumption 4. We compare the proposed method (3) with the LU scheme in [18] and the
scheme in [15]. Compared with these schemes, (3) introduces a nonlinearity in the innovation step as well.
LU is obtained from (3) by setting both of the nonlinearities Ψo and Ψo to identity functions and δ = 1, the
method in [15] is recovered from (3) by setting Ψo to the identity function and δ = 1.

Assumption 4. Nonlinearity Ψ:
The non-linear function Ψ : R → R satisfies the following properties:

1. Function Ψ is odd, i.e., Ψ(a) = −Ψ(−a), for any a ∈ R;

2. Ψ(a) > 0, for any a > 0.

3. Function Ψ is a monotonically nondecreasing function;

4. Ψ is continuous, except possibly on a point set with Lebesque measure of zero. Moreover, Ψ is piecewise
differentiable;

5. |Ψ(a)| ≤ c1, for some constant c1 > 0.

6. Ψ is either discontinuous at zero, or Ψ(u) is strictly increasing for u ∈ (−c2, c2), for some c2 > 0.

As it will become clear ahead, the role of Ψc and Ψo is to lower the impact of the heavy-tailed noise that
occurs in the regression model and in the communication between agents. As it is presented in [15], there are
many nonlinear functions which satisfy Assumption 4. Now, we add more assumptions on the observation
and communication noises through the following assumption.
At each time t = 0, 1, ..., a compact vector form of algorithm (3) is

xt+1 = xt − αt

(
b

a
LΨc(x)−H⊤Ψo

(
zt −Hxt

))
. (4)

Here, xt = [xt
1,x

t
2, ...,x

t
N ]⊤ ∈ RMN , map LΨc(x) : RMN → RMN is defined by

LΨc(x) =


...∑

j∈Ωi

Ψc(xi − xj + ξij)

...

 ,

where, the blocks
∑

j∈Ωi

Ψc(xi − xj + ξij) ∈ RM are stacked one on top of another for i = 1, ..., N.
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4 Theoretical results

In subsection 4.1 we express algorithm (4) in more general way, that will be used in the following subsections.
Subsection 4.2 presents the statement and the proof of almost sure convergence of algorithm (3). In sub-
section 4.3 we state and prove asymptotic normality and calculate the corresponding asymptotic variance.
Subection 4.4 presents and proves results on MSE rates.

4.1 Setting up analysis

In this subsection we rewrite algorithm (3) in the form suitable for stating the main results. To do that,
firstly we define function φ : R → R by

φ(a) =

∫
Ψ(a+ w)p(w)dw, (5)

where Ψ : R → R is a nonlinear function that satisfies Assumption 4, and p is a probability density function
that satisfies Assumptions 2 or 3.

Remark 3. The mapping φ has all key properties of function Ψ (see Lemma 6 in Appendix B, see also [29]).
Moreover, it has a strictly positive derivative at zero, i.e., φ′(0) > 0, which is necessary to prove our results.
The facts that the nonlinearity Ψ is discontinuous at zero or that it has a positive derivative at zero, together
with condition 4 from Assumptions 2 and condition 3 from 3, are crucial to ensure that φ has a positive
derivative at zero (see Appendix B, see also [15, 29]). Notice that the requirement that the pdf p is positive
in the vicinity of the zero is not restrictive, since it holds true for a broad classes of non-zero noise pdfs.

Next, we define functionsφo : RN → RN , φc : RM → RM asφo(y1,y2, ...,yN ) = [φo(y1), φo(y2), ..., φo(yN )],
φc(ŷ1, ŷ2, ..., ŷM ) = [φc(ŷ1), φc(ŷ2), ..., φc(ŷM )], where y ∈ RN , ŷ ∈ RM and functions φo and φc are trans-
formations defined by (5) that correspond to Ψo and Ψc, respectively. For the a.s. convergence and asymp-
totic normality results, we will follow the stochastic approximation framework from [28, 18] (see Theorem
4 in Appendix A). That is, we represent algorithm (3) in the form suitable for stochastic approximation
analysis. We start by substituting regression model (2) into algorithm (4), we get

xt+1 = xt − αt

(
b

a
LΨc

(x)−H⊤Ψo

(
H (1N ⊗ θ∗) + nt −Hxt

))
. (6)

Define ζt ∈ RN and ηt ∈ RMN by

ζt = Ψo(H (1N ⊗ θ∗) + nt −Hxt)−φo

(
H
(
(1N ⊗ θ∗)− xt

))
, ηt =


...∑

j∈Ωi

ηt
ij

...

 , (7)

where ηt
ij = Ψc(x

t
i − xt

j + ξ
t
ij)− φc(x

t
i − xt

j). Now, since φ is defined by (5), it can be shown that E[ζt] =
E[ηt] = 0, where the expectation is taken with respect to F (see Appendix B). Furthermore, we define
function Lφc

: RMN → RMN as Lφc
(·) = LΨc

(·) − ηt, i.e., its i-th block of size M is
∑

j∈Ωi

φc(xi − xj). for

i = 1, 2, ..., N. Finally, substituting (7) into (6), we rewrite algorithm (4) by

xt+1 = xt − αt

(
b

a
Lφc

(xt)−H⊤φo

(
H
(
(1N ⊗ θ∗)− xt

))
−H⊤ζt +

b

a
ηt

)
. (8)

Now, we are ready to establish following results.
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4.2 Almost sure convergence

We have the following Theorem.

Theorem 1 (Almost sure convergence). Let Assumptions 1-4 hold and αt = a/(t+ 1)δ, δ ∈ (0.5, 1]. Then,
for each agent i = 1, ..., N , the sequence of iterates {xt

i} generated by algorithm (3) converges almost surely
to the true vector parameter θ∗.

Theorem 1 establishes almost sure convergence of the proposed algorithm (3), whether observation or com-
munication noises have finite or infinite moments of order greater then one. On the other hand, if we set at
least one of the functions Ψo,Ψc to be identity functions (and thus recover either the LU scheme from [18]
or the method from [15]), the resulting method fails to converge (See Appendix D). In other words, the
methods in [18] and [15] fail to converge under the simultaneous presence of heavy-tailed observation and
communication noises.

Proof. (Proof of Theorem 1)
The proof consists of verifying conditions B1–B5 of Theorem 4 (See Appendix A). First, we define quantities
r(x) and γ(t+ 1,x, ω) by:

r(x) = − b

a
Lφc

(x)−H⊤φo (H (x− (1N ⊗ θ∗))) , (9)

γ(t+ 1,x, ω) = − b

a
ηt +H⊤ζt. (10)

Here, ω denotes a canonical element of the underlying probability space (Ω,F ,P).
Condition B1 holds because r(·) is BMN measurable and γ(t + 1, ·, ·) is BMN ⊗ F measurable for each t,
where BMN is the Borel sigma algebra on RMN . Consider the filtration Ft, t = 1, 2, ..., where Ft is the σ-
algebra generated by {ns}t−1

s=0 and {ξsij}t−1
s=0. We have that the family of random vectors γ(t+ 1,x, ω) is Ft

measurable, zero-mean and independent of Ft−1. Hence, condition B2 holds.
We now show that condition B3 also holds. We use the following Lyapunov function V : RMN → R,

V (x) = ||x− 1N ⊗ θ∗||2, (11)

which is clearly twice continuously differentiable and has uniformly bounded second order partial derivatives.
The gradient of V equals ∇V (x) = 2 (x− 1N ⊗ θ∗). We must show that

sup
x∈Sϵ

⟨r(x),∇V (x)⟩ < 0, (12)

where Sϵ = {x ∈ RMN : ∥x− 1N ⊗ θ∗∥ ∈ (ϵ, 1/ϵ)}. For any x ∈ RMN , we have:

⟨r(x),∇V (x)⟩ = 2 (x− 1N ⊗ θ∗)⊤
(
− b

a
Lφc

(x)−H⊤φo

(
H
(
xt − (1N ⊗ θ∗)

)))
= −2b

a
(x− 1N ⊗ θ∗)⊤ Lφc

(x)︸ ︷︷ ︸
T1(x)

− (H (x− (1N ⊗ θ∗)))⊤φo (H (x− (1N ⊗ θ∗)))︸ ︷︷ ︸
T2(x)

. (13)

The terms T1(x) and T2(x) can be written respectively as

T1(x) =
∑

{i,j}∈E, i<j

(xi − xj)
⊤
φc (xi − xj) =

∑
{i,j}∈E, i<j

g⊤φc (g) ,

T2(x) =

N∑
i=1

ĝi φo(ĝi),

7



where ĝ = H⊤φo (H (xt − (1N ⊗ θ∗))), g = xi − xj and g⊤φc (g) =
∑M

ℓ=1 gℓφc (gℓ). Using the fact that
both of the functions φc and φo are odd functions, for which we have that φ(a) > 0 if a > 0, we have
that ⟨r(x),∇V (x)⟩ ≥ 0 for all x ∈ RMN (see Appendix B). Moreover, recalling the fact that function φc

is continuous at zero, and equal to zero only at zero, we have that T1(x) is equal to zero if and only if
x − 1N ⊗ θ∗ = 1N ⊗ m, for m ∈ RM (see Lemma 6 in Appendix B). We only consider the case when
m ̸= 0, since from m = 0 we have that x = 1N ⊗ θ∗, which is not in the set Sϵ. However, for that choice of
x− 1N ⊗ θ∗ we have that

T2(1N ⊗ θ∗ + 1N ⊗m) = (H1N ⊗m)
⊤
φo (H1N ⊗m)

=

N∑
i=1

(
h⊤
i m

)
φo

(
h⊤
i m

)
> 0,

since h⊤
i m and φo

(
h⊤
i m

)
have the same sign. Hence, for all ϵ > 0 we have that sup

x∈Sϵ

⟨r(x),∇V (x)⟩ < 0.

Thus, condition B3 also holds.
Now we inspect condition B4. From equation (9) we have that

∥r(x)∥2 ≤
∥∥∥∥ baLφc

(x− 1N ⊗ θ∗)
∥∥∥∥2 + ∥∥H⊤φo (H (x− (1N ⊗ θ∗)))

∥∥2 ≤ c1(1 + V (x)), (14)

for some positive constant c1 (see Appendix B). Moreover, we have that

∥γ(t+ 1,x, ω)∥2 ≤
∥∥∥∥ baηt

∥∥∥∥2 + ∥∥H⊤ζt
∥∥2 (15)

which leads to

E
[∥∥γ(t+ 1,xt, ω)

∥∥2] ≤ c2(1 + V (x)), (16)

for some positive constant c2. Finally, we have that

∥r(x)∥2 + E
[∥∥γ(t+ 1,xt, ω)

∥∥2] ≤ c3(1 + V (x)),

for some positive constant c3. Setting that ϵ → 0+ in (12), for all x ∈ RMN , we have that ⟨r(x),∇V (x)⟩ ≤ 0.
Thus,

∥r(x)∥2 + E
[∥∥γ(t+ 1,xt, ω)

∥∥2] ≤ c3(1 + V (x))− k⟨r(x),∇V (x)⟩

for every k > 0. Therefore, condition B4 also holds. Condition B5 holds by the definition of the algorithm (3).
Thus, almost sure convergence is proved.

4.3 Asymptotic normality

We now consider asymptotic normality of the proposed estimator (3). We have the following theorem.

Theorem 2 (Asymptotic normality). Let Assumptions 1-4 hold. Consider algorithm (3) with step-size αt =
a/(t+ 1)δ, t = 0, 1, ..., a > 0, with δ = 1. Then, the normalized sequence of iterates {

√
t+ 1(xt − 1N ⊗ θ∗)}

converges in distribution to a zero-mean multivariate normal random vector, i.e., the following holds:
√
t+ 1(xt − 1N ⊗ θ∗) ⇒ N (0,S),

where the asymptotic covariance matrix S equals:

S = a2
∞∫
0

eΣvS0e
Σ⊤vdv. (17)
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Here, S0 = b2

a2σ
2
c Diag ({di IM}) − b

aKc,oH − b
aH

⊤K⊤
c,o + σ2

oH
⊤H; σ2

o =
∫
|Ψo(w)|2 dΦo(w) is the ef-

fective observation noise variance after passing through the nonlinearity Ψo; σ2
c =

∫
|Ψc(w)|2dΦc(w) is

the effective communication noise variance after passing through the nonlinearity Ψc; Kc,o ∈ RMN×N is
the effective cross-covariance matrix between the observation and the communication noise after passing
through the appropriate nonlinearity, i.e., the (k, s) element of the matrix Kc,o is given by [(Kc,o)]ks =∑
j∈Ωi

∫ ∫
Ψc(wijℓ)Ψo(wk)p

c,o
k,ijℓ(wijℓ, wk)dwijℓdwk. Here, ℓ satisfies the following: s = M(i− 1)+ ℓ; and pc,ok,ijℓ

is the joint probability density function for the k-th observation noise nk and the ℓ-th element of the commu-
nication noise [(ξij)]ℓ. We also recall the observation matrix H in (2); functions φc, φo appropriate versions

of function φ in (5); and Σ = 1
2I− a( baφ

′
c(0)L⊗ IM + φ′

o(0)H
⊤H); here, a is taken large enough such that

matrix Σ is stable.

Remark 4. Notice that, for the assumed setting, σ2
c and σ2

o are finite. Also, Kc,o is finite, i.e., ∥Kc,o∥ < ∞,
since we have that

|
∫ ∫

Ψc(w1)Ψo(w2)dΦ
c,o| ≤

∫ ∫
|Ψc(w1)Ψo(w2)|dΦc,o <

1

2
σ2
c +

1

2
σ2
o .

Remark 5. If we assume that observation and communication noise are mutually independent, the only
difference from the previous theoretical results occurs in the A(t,x), i.e., in the S0. Under this setting,
matrix S0 is now equal to

S0 =
b2

a2
σ2
c Diag ({di IM}) + σ2

oH
⊤H,

which is expected, since the effective cross-covariance matrix Kc,o is now equal to zero.

Theorem 2 establishes asymptotic normality of the proposed method. This is achieved with heavy-tailed
observation and communication noise an the nonlinearities Ψo and Ψc with uniformly bounded outputs.
Moreover, the theorem explicitly evaluates the corresponding asymptotic variance. When the two noises are
mutually independent, Ψo is identity, and observation noise variance is finite, we recover the result in [15],
Theorem 3.5, as a special case. That is, a notable difference with respect to [15] is the ability to handle
here mutually correlated observation and communication noises. The effect of correlation is complex in
general, however, as shown in Section 5 later, generally a stronger positive noises correlation leads to a
lower asymptotic variance. Intuitively, at an extreme, a full positive correlation practically means that only
one effective noise exists in the system, and hence it can be suppressed more easily. Further, note that
Theorem 2 establishes a local asymptotic rate O(1/t) of xt to zero, in the weak convergence sense, when

αt = a/(t+ 1). We show later (see Theorem 3) that a global MSE rate O(1/tδ̂) with a lower (worse) degree

δ̂ can be established when step-size αt = a/(t+ 1)δ, δ ∈ (0.5, 1), is used.
We next discuss asymptotic efficiency2 of the proposed estimator. We first briefly review the relevant

existing work to better position our results. First, consider the best linear centralized estimator xt
cent of

θ⋆, that has access to measurements from all sensors (nodes) n = 1, 2, ..., N at all times t = 0, 1, .... In
the general case, additionally assuming that observation noise has finite variance, the best linear centralized
estimator xt

cent is asymptotically normal and has the lowest asymptotic covariance matrix Scent among all
estimators of θ⋆ when the only knowledge of observation noise is variance and no other information of noise
distribution is known. Moreover, its asymptotic covariance matrix Scent attains the Cramér-Rao lower bound
if the observation noise is Gaussian (see for example [17]). On the other hand, when the probability density
function is known, the centralized estimator in [29] can be tuned to the pdf of the observation noise so
that it achieves the Cramér-Rao bound. In the distributed setting, when there is no communication noise,
the authors of [17] develop an estimator which is asymptotically normal and has the optimal asymptotic
covariance matrix Scent (optimal in the sense that the asymptotic covariance matrix is the same as for

2An estimator yt of an unknown parameter θ⋆, for which we have that
√
t+ 1(yt − θ∗) ⇒ N (0,Σ), is said to be asymp-

totically efficient if S = I−1(θ⋆), where I(θ⋆) is the Fisher information matrix. The Fisher information matrix represents the
best achievable asymptotic covariance by any estimator, as determined by the well-known Cramer-Rao bound (see [28]).
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the best linear centralized estimator xt
cent). We now discuss the asymptotic covariance matrix S of the

proposed estimator (3). This quantity depends on the system parameters, including network topology and
communication noise. Therefore, in the general case, the proposed estimator (3) is not asymptotically
efficient, i.e., S ̸= I−1(θ⋆), where I(θ⋆) is the Fisher information matrix. However, with respect to the
proposed distributed recursive estimator, we make the following observations. 1) First, the estimator is
order-optimal in the weak convergence sense; that is, its (weak convergence sense) rate of error decay is the
same as that of the asymptotically efficient estimator. 2) The corresponding “convergence constant,” i.e.,
the asymptotic covariance, is different from that of the centralized Cramér-Rao-optimal estimator, and it is
hence not optimal. We note that the paper provides major contributions with respect to state of the art, as it
gives the first distributed estimator that ensures almost sure convergence in the presence of infinite variance
correlated sensing and communication noises; moreover, its weak convergence sense rate of convergence is
order-optimal. It remains an interesting future work direction to explore whether an optimal asymptotic
covariance can be achieved in this setting via distributed estimators. In view of the results [29] for the
centralized setting, it is likely that this cannot be achieved unless the nonlinearities are tuned to the noise
pdfs that in turn have to be known.

Proof. (Proof of Theorem 2)
We prove Theorem 2 in the same manner as Theorem 1 is proved, i.e., by verifying assumptions C1-C5 of
Theorem 4 in (see Appendix A). Function r(·) defined by (9) can be written as

r(x) = − b

a
φ′
c(0)L⊗ IM (x− 1N ⊗ θ∗)− φ′

o(0)H
⊤H (x− 1N ⊗ θ∗) + δ(x),

Here, mapping δ : RMN → RMN is given by:

δ(x) = − b

a
Lδc

(x)−H⊤δo (H (x− 1N ⊗ θ∗)) . (18)

Next, mapping Lδc
(x) : RMN → RMN is vector of size MN such that the i-th M -size block equals∑

j∈Ωi

δc(xi − xj), i = 1, 2, ..., N, mappings δc : RM → RM , δo : RN → RN are component-wise maps

of δc and δo are first order residuals that corresponds to φc and φo respectively, i.e., δc(y1,y1, ...,yM ) =
[δc(y1), δc(y2), ..., δc(yM )]⊤ and δo(ŷ1, ŷ1, ..., ŷN ) = [δo(ŷ1), δo(ŷ2), ..., δo(ŷM )]⊤ for y ∈ RN , ŷ ∈ RM (see
Appendix B).
Thus, r(x) admits representation in (36) of Theorem 4 in Appendix A for B = − b

aφ
′
c(0)L⊗ IM −φ′

o(0)H
⊤H

and mapping δ(·) defined by (18). Therefore, condition C1 holds. Since we use that αt = a
t+1 , condition

C2 trivially holds. Furthermore, Σ = aB+ 1
2I is stable if a is large enough, because matrix −B is positive

definite (See [18]). Thus, condition C3 also holds.
For A(t,x) = E

[
γ(t+ 1,x, ω)γ⊤(t+ 1,x, ω)

]
it is easy to show that

lim
t→∞,x→θ∗

A(t,x) =
b2

a2
σ2
c Diag ({di IM})− b

a
Kc,oH− b

a
H⊤K⊤

c,o + σ2
oH

⊤H.

Therefore, condition C4 also holds. To show that condition C5 holds, it is suffice to show that the family
of random variables {∥γφ(t + 1,x, ω)∥2}t=0,1,..., ∥x−θ⋆∥<ϵ is uniformly integrable. To do that, follow the
arguments as in e.g., [18] and [15].

4.4 Mean squared error convergence

In this subsection, we state and prove a result on the mean squared error (MSE) convergence rate when
both nonlinearities Ψo and Ψc satisfy part 5’ of Assumption 4, i.e., |Ψo| ≤ co, |Ψc| ≤ cc, for some positive
constants co and cc. Moreover, we set the step size to αt = a

(t+1)δ
, for δ ∈ ( 12 , 1). We have the following

theorem.
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Theorem 3 (MSE convergence). Let Assumptions 1-4 hold. Then, for the sequence of iterates {xt} generated
by algorithm (4), provided that the step-size sequence {αt} is given by αt = a/(t + 1)δ, a > 0, δ ∈ (0.5, 1),

there exists δ̂ ∈ (0, 1) such that E[∥x− 1N ⊗ θ∗∥2] = O(1/tδ̂).

Theorem 3 establishes a MSE convergence rate of the proposed estimator (4) under the simultaneous
presence of heavy-tailed (possibly infinite variance) observation and communication noises, when both the
observation and communication nonlinearities have uniformly bounded outputs. This is in contrast with
recent studies on distributed estimation in heavy-tailed noises like [15] that only establishes a.s. and asymp-
totic normality results. We refer to the proof of Theorem 3 for the exact value of the convergence rate
power δ̂.

Setting up the proof. We now prove Theorem 3 through a sequence of intermediate results (Lemmas).
Recall quantities r(·), γ(·, ·, ·) and V (·) from (9), (10) and (11) respectively. The proof will be based on
establishing a sufficient decay on quantity E[V (xt)]. First, notice that algorithm (8) can be written as

xt+1 = xt + αt

(
r(xt) + γ(t+ 1,xt, ω)

)
.

Moreover, we have that

V (xt+1) = V (xt) + 2αt

(
xt − 1N ⊗ θ∗

)⊤ (
r(xt) + γ(t+ 1,xt, ω)

)
+ α2

t ∥r(xt) + γ(t+ 1,xt, ω)∥2

= V (xt) + 2αt

(
xt − 1N ⊗ θ∗

)⊤ (
r(xt) + γ(t+ 1,xt, ω)

)
+ α2

t c
′,

for positive constant c′ = ∥r(xt) + γ(t + 1,xt, ω)∥2 < ∞. Therefore, taking a conditional expectation with
respect to Ft, we have:

E[V (xt+1)|Ft] = V (xt) + 2αt

(
xt − 1N ⊗ θ∗

)⊤
r(xt) + α2

t c
′. (19)

Also, from equation (13), it follows that(
xt − 1N ⊗ θ∗

)⊤
r(xt) = − b

a
T1(x

t)− T2(x
t). (20)

We next need to show that the quantity in (20) is “sufficiently negative”, relative to quantity V (xt). This is
achieved through a sequence of lemmas. First, we upper bound quantities ∥xt∥ and ∥xt − 1N ⊗ θ∗∥.

Lemma 1. Let Assumptions 1-4 hold. Then, for the sequence of iterates {xt} generated by algorithm (4),
provided that the step-size sequence {αt} is given by αt = a/(t + 1)δ, a > 0, δ ∈ (0.5, 1), we have that, for
any outcome ω:

∥xt∥ ≤ gt = ∥x0∥+
(
b
√
MNdcc + a ∥H∥

√
Nco

) t1−δ

1− δ
, (21)

∥xt − 1N ⊗ θ∗∥ ≤ g′t = ∥x0 − 1N ⊗ θ∗∥+
(
b
√
MNdcc + a ∥H∥

√
Nco

) t1−δ

1− δ
. (22)

Consequently, ∥H (xt − 1N ⊗ θ∗) ∥ ≤ ∥H∥ g′t.

Proof. Using the boundness of the nonlinearities, we have that ∥LΨc
(x)∥2 ≤

√
MNdcc and ∥H⊤Ψo (H (1N ⊗ θ∗ − xt) + nt) ∥ ≤

∥H∥
√
Nco, where d = max

i
di. Therefore, recalling the algorithm (6), for all t > 0 we have that

∥xt∥ ≤ ∥xt−1∥+ αt−1

(
b

a

√
MNdcc + ∥H∥

√
Nco

)
︸ ︷︷ ︸

c

≤ ∥xt−2∥+ αt−2 c+ αt−1 c

≤ ∥x0∥+ c

t−1∑
j=0

a

(1 + j)δ
≤ ∥x0∥+ c

t−1∫
0

a

(1 + s)δ
ds ≤ ∥x0∥+ c a

t1−δ

1− δ
.
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Analogously, for all t > 0, we have that ∥xt − 1N ⊗ θ∗∥ ≤ g′t, and as a consequence ∥H (xt − 1N ⊗ θ∗) ∥ ≤
∥H∥ g′t.

Next, we have the following Lemma that bounds quantities T1(x) and T2(x).

Lemma 2. Let Assumptions 1-4 hold. Then, for the sequence of iterates {xt} generated by algorithm (4),
provided that the step-size sequence {αt} is given by αt = a/(t + 1)δ, a > 0, δ ∈ (0.5, 1), we have that there
exist positive constants Gc and G0 such that, for any outcome ω:

T1(x
t) ≥ φ′

c(0)Gc

4gt

(
xt − 1N ⊗ θ∗

)⊤
L⊗ I

(
xt − 1N ⊗ θ∗

)
,

T2(x
t) ≥ φ′

o(0)Go

2∥H∥g′t

(
xt − 1N ⊗ θ∗

)⊤
H⊤H

(
xt − 1N ⊗ θ∗

)
,

To prove Lemma 2, we make use of the following Lemma from [13] (see Lemma 5.5 in [13]).

Lemma 3. Consider function φ in (5), there exists a positive constant G such that |φ(a)| ≤ φ′(0)G|a|
2 g , for

all |a| < g.

Proof. (Proof of Theorem 2) Using Lemma 3 for function φc we get that there exists a positive constant Gc

such that

T1(x
t) =

∑
{i,j}∈E, i<j

(
xt
i − xt

j

)⊤
φc

(
xt
i − xt

j

)
=

∑
{i,j}∈E, i<j

M∑
ℓ=1

(
(xt

i)ℓ − (xt
j)ℓ
)⊤
φc

(
(xt

i)ℓ − (xt
j)ℓ
)

≥ φ′
c(0)Gc

4gt

∑
{i,j}∈E, i<j

∥xt
i − xt

j∥2 =
φ′
c(0)Gc

4gt
(xt)⊤(L⊗ I)xt (23)

=
φ′
c(0)Gc

4gt

(
xt − 1N ⊗ θ∗

)⊤
L⊗ I

(
xt − 1N ⊗ θ∗

)
,

since, from Lemma 1 we have ∥xt∥ ≤ gt. Analogously, from Lemma 3 we have that for the function φo there
exists a positive constant Go such that

T2(x) =

N∑
i=1

(H (x− 1N ⊗ θ∗))i φo ((H (x− 1N ⊗ θ∗))i)

≥ φ′
o(0)Go

2∥H∥g′t
(x− 1N ⊗ θ∗)⊤ H⊤H (x− 1N ⊗ θ∗) , (24)

since, from Lemma 1 we have ∥H (xt − 1N ⊗ θ∗) ∥ ≤ ∥H∥ g′t.

We next have the following theorem that analyzes positive definiteness of the matrix
φ′

c(0)Gc

4gt
L ⊗ I +

φ′
o(0)Go

2∥H∥g′
t
H⊤H.

Lemma 4. Let Assumptions 1-4 hold. The following is true for any x ∈ RMN :

(x− 1N ⊗ θ∗)⊤
(
φ′
c(0)Gc

4gt
L⊗ I+

φ′
o(0)Go

2∥H∥g′t
H⊤H

)
(x− 1N ⊗ θ∗)

≥ min

{
φ′
o(0)Go

2∥H∥g′t

(
λH

N
− 2SH√

N
k

)
,
b φ′

c(0)Gc

4agt

λ2(L)

1 + 1
k2

}
∥x− 1N ⊗ θ∗∥2,
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where gt and g′t are defined in Lemma 1, Gc and Go in Lemma 2, SH =
N∑
i=1

∥hi∥2, λH = λ1

(
N∑
i=1

hih
⊤
i

)
> 0

is the smallest eigenvalue of regular matrix
N∑
i=1

hih
⊤
i (see Assumption 1) and recalling that λ2(L) > 0 is the

smallest positive eigenvalue of Laplacian matrix L.

Proof. Let us consider matrix L⊗I+H⊤H and follow argument as in Appendix A of [32]. For any x ∈ RMN ,
we have that there exist vectors u ∈ span{1 ⊗ m|m ∈ RM} and v ∈ span{1 ⊗ m|m ∈ RM}⊥ such that
x = u+ v. Firstly, we have that

(u− 1N ⊗ θ∗)⊤ H⊤H (u− 1N ⊗ θ∗) =
N∑
i=1

(û− θ⋆)⊤hih
⊤
i (û− θ⋆)

= (û− θ⋆)⊤
(

N∑
i=1

hih
⊤
i

)
(û− θ⋆)

≥ λH∥û− θ⋆∥2,

where û ∈ RM such that u = 1⊗û.Notice here that ∥u−1N⊗θ∗∥ =
√
N∥û−θ⋆∥. Secondly, (x− u)

⊤
H⊤H (x− u) ≥

0, since H⊤H is positive semi-definite matrix. Thirdly, following also holds

(u− 1N ⊗ θ∗)⊤ H⊤H (x− u) =

N∑
i=1

(û− θ⋆)⊤hih
⊤
i (xi − û)

≥ −
N∑
i=1

∥û− θ⋆∥∥hi∥2∥xi − û∥

≥ −∥û− θ⋆∥∥v∥SH.

Analogously, we have that (x− u)
⊤
H⊤H (u− 1N ⊗ θ∗) ≥ −∥û− θ⋆∥∥v∥SH. Therefore,

(x− 1N ⊗ θ∗)⊤ H⊤H (x− 1N ⊗ θ∗) ≥ λH∥û− θ⋆∥2 − 2SH∥û− θ⋆∥∥v∥.

We also have that u− 1⊗ θ⋆ ∈ null(L⊗ I) and v ∈ Range(L⊗ I) and, hence, we have that

(x− 1N ⊗ θ∗)⊤ L⊗ I (x− 1N ⊗ θ∗) = (u− 1N ⊗ θ∗ + v)
⊤
L⊗ I (u− 1N ⊗ θ∗ + v)

= v⊤L⊗ I v ≥ λ2(L⊗ I)∥v∥2 = λ2(L)∥v∥2.

Let k > 0 be arbitrarily chosen. If ∥v∥ ≤ k∥u− 1N ⊗ θ∗∥, then we have that

(x− 1N ⊗ θ∗)⊤
(
L⊗ I+H⊤H

)
(x− 1N ⊗ θ∗)

≥ λH∥û− θ⋆∥2 − 2SH∥û− θ⋆∥∥v∥+ λ2(L)∥v∥2

≥
(
λH

N
− 2SH√

N
k

)
∥u− 1N ⊗ θ∗∥2 + λ2(L)∥v∥2

≥ min{λH

N
− 2SH√

N
k, λ2(L)}∥x− 1N ⊗ θ∗∥2,

where in the last inequality we used the fact that ∥x − 1N ⊗ θ∗∥2 = ∥u − 1N ⊗ θ∗∥2 + ∥v∥2. If ∥v∥ ≥
k∥u− 1N ⊗ θ∗∥, then
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(x− 1N ⊗ θ∗)⊤
(
L⊗ I+H⊤H

)
(x− 1N ⊗ θ∗) ≥ 0 + λ2(L)∥v∥2

≥ λ2(L)

1 + 1
k2

∥v∥2 + λ2(L)

1 + 1
k2

∥u− 1N ⊗ θ∗∥2

≥ λ2(L)

1 + 1
k2

∥x− 1N ⊗ θ∗∥2.

Therefore, regardless of vector v, we have that

(x− 1N ⊗ θ∗)⊤
(
L⊗ I+H⊤H

)
(x− 1N ⊗ θ∗)

≥ min

{
λH

N
− 2SH√

N
k,

λ2(L)

1 + 1
k2

}
∥x− 1N ⊗ θ∗∥2.

Following the same idea, we get that

(x− 1N ⊗ θ∗)⊤
(
φ′
c(0)Gc

4gt
L⊗ I+

φ′
o(0)Go

2∥H∥g′t
H⊤H

)
(x− 1N ⊗ θ∗)

≥ min

{
φ′
o(0)Go

2∥H∥g′t

(
λH

N
− 2SH√

N
k

)
,
b φ′

c(0)Gc

4agt

λ2(L)

1 + 1
k2

}
∥x− 1N ⊗ θ∗∥2. (25)

Finally, to prove Theorem 3, we make use of the following Lemma from [13] (see Theorem 5.2 in [13]).

Lemma 5. Let zt be a nonnegative (deterministic) sequence satisfying

zt+1 ≤ (1− rt1)z
t + rt2,

for all t ≥ t′, for some t′ > 0, with some zt
′ ≥ 0. Here, {rt1} and {rt2} are deterministic sequences with

a1

t+1 ≤ rt1 ≤ 1 and rt2 ≤ a2

(t+1)δ
, with a1, a2 > 0, and δ > 0. Then, the following holds: (1) zt = O( 1

tδ−1 )

provided that a1 > δ − 1; (2) if a1 ≤ δ − 1, them zt = O( 1
ts ), for any s < a1.

We are finally ready to finalize the proof of Theorem 3.

Proof. (Proof of Theorem 3) From equations (25) and (20) we get that

(x−1N ⊗ θ∗)⊤r(xt)

≤ −min

{
φ′
o(0)Go

2∥H∥g′t

(
λH

N
− 2SH√

N
k

)
,
b φ′

c(0)Gc

4agt

λ2(L)

1 + 1
k2

}
∥x− 1N ⊗ θ∗∥2.

Therefore, taking the expectation in (19), we have that

E[V (xt+1)] ≤
(
1− a1

t+ 1

)
E[V (xt)] +

a2
(1 + t)2δ

,

where

a1 = min

 φ′
o(0)Goa(1− δ)

(
λH − 2SH

√
Nk
)

∥H∥N
(
∥x0 − 1N ⊗ θ∗∥+ b

√
MNdcc + a ∥H∥

√
Nco

) ,
b φ′

c(0)Gc(1− δ)λ2(L)k
2

2(k2 + 1)
(
∥x0∥+ b

√
MNdcc + a ∥H∥

√
Nco

)

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and a2 = a2c′. Therefore, using the Lemma 5, δ̂ is any positive number such that

δ̂ < min

2δ − 1,
φ′
o(0)Goa(1− δ)

(
λH − 2SH

√
Nk
)

∥H∥N
(
∥x0 − 1N ⊗ θ∗∥+ b

√
MNdcc + a ∥H∥

√
Nco

) ,
b φ′

c(0)Gc(1− δ)λ2(L)k
2

2(k2 + 1)
(
∥x0∥+ b

√
MNdcc + a ∥H∥

√
Nco

)
 .

Therefore, using Lemma 5 we obtain MSE convergence with rate O(1/tδ̂).

Remark 6. Even though, we see that the convergence factor δ̂ depends on the system parameters, i.e., on
the network and sensing model and also on the innovation and consensus nonlinearities, it is easy to see that
δ̂ ∈ (0, 1) regardless of the system parameters. Recall that Theorem 2 shows that the proposed estimator (3)
obtains rate 1/t in the weak convergence sense, while Theorem 3 shows that (3) obtains a slower convergence
rate, but in the sense of the mean squared convergence. Note that this is not a contradiction, and Theorem 3
adds information with respect to Theorem 2. Namely, it is well known that mean squared convergence implies

convergence in distribution; therefore, with the same assumptions as in Theorem 3, the convergence rate 1/tδ̂

is also attainable for convergence in distribution. In contrast, from Theorem 2, we can not conclude that the
rate of the mean squared convergence is also 1/t.

Remark 7. In fact, we next show that, in the presence of the heavy-tailed observation noise considered here,
the MSE convergence rate cannot be as fast as 1/t, for any estimator (even not for centralized ones). In

this sense, the fact that quantity δ̂ is strictly smaller than one is not a consequence of loose bounds, but it is
rather due to the intrinsic difficulty of the estimation problem. To be specific, we consider here the special
case where each agent i observes a scalar parameter θ⋆ ∈ R according to

zi(t) = θ⋆ + nt
i, (26)

where nt
i satisfies Assumption 2. In this case, the proposed estimator (3) can be viewed as a mean estimator

of the probability density function po(u−θ⋆). Let us denote by P the class of all probability density functions
po(u − θ⋆) such that po is the pdf of the observation noise that satisfies Assumption 2, for any θ⋆ ∈ R.
Extending the results from [8] (see Appendix G), we prove that, for any θ⋆ ∈ R, and for any mean estimator

θ̂t, the following holds:

sup
t

sup
p∈P

tNE[|θ̂t − θ⋆|2] = +∞. (27)

On the other hand, Theorem 3 shows that, with the proposed distributed estimator (3), the following holds:

sup
t

sup
p∈P

(tN)δ̂E[|θ̂t − θ⋆|2] < +∞,

for some δ̂ ∈ ( 12 , 1)
3

Remark 8. Theorems 1, 2 and 3 continue to hold even if the linear transformation vectors hi in (1) are no
longer static (see Appendix H). That is, we can allow that each agent i at each time t = 0, 1, ..., makes the
observation by:

zti = (ht
i)

⊤θ⋆ + nt
i. (28)

Here, for each agent i, for each time step t, the linear transformation vector ht
i is a random variable that

satisfies the following assumptions.

3Notice that in the centralized case, the observations are collected in batches of fixed size N . That is, after t time steps,
there are Nt observations. Henceforth, we include quantity N in (27) for a precise statement. Note that, since N is constant
and the supremum is taken with respect to t, the inclusion of N is not necessary.
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1. For each agent i and each time step t = 0, 1, ...,, the linear transformation vector is given by ht
i = hi+h̃t

i,

where the vector hi ∈ RM is deterministic, and vector h̃t
i ∈ RM is a random vector;

2. The sequence of vectors {[h̃t
1, h̃

t
2, ..., h̃

t
N ]} is i.i.d., with finite second moment, and it is independent of

the sequences nt and ξtij for {i, j} ∈ E;

3. At each agent i = 1, ..., N at each time t = 0, 1, ...,, each entry ℓ = 1, 2, ...M [h̃t
i]ℓ has the same

probability density function ph;

4. The pdf ph is symmetric, i.e. ph(u) = ph(−u), for every u ∈ R and ph(u) > 0 for |u| ≤ ch, for some
constant ch > 0;

5. The matrix
∑N

i=1 hi

(
hi

)⊤
is invertible.

5 Analytical and numerical examples

In this section we provide analytical and numerical examples that illustrate results from Section 4.
Example 1: We consider the network where each agent i observes a scalar parameter θ⋆ ∈ R following the
linear regression model:

zi(t) = hθ⋆ + nt
i, (29)

where h ̸= 0 and ni(t) is zero mean and i.i.d. in time and across agents. For simplicity, we assume that the
underlying graph of the network is regular, with degree d. We assume that there is no communication noise
between agents, i.e., ξij ≡ 0 for (i, j) ∈ Ed. We additionally assume that the nonlinearity on the consensus
part Ψc in (3) is the identity function and the nonlinearity on the innovation part is Ψo(w) = B tanh(w/B),
for B > 0. Therefore, algorithm (3) is now given by:

xt+1
i = xt

i − αt

 b

a

∑
j∈Ωi

(
xt
i − xt

j

)
− hΨo

(
zti − hxt

i

) , (30)

for each agent i and each time t. From Theorem 2, we have that the asymptotic covariance matrix is given
by (17) and matrix S0 is now given by S0 = σ2

oh
2I and σ2

o =
∫
|Ψo(w)|2dΦo(w) is the effective observation

noise. Following the same procedure as in [18, 15], for Σ = 1
2I − aφ′

o(0)h
2I, we have that the average

per-agent asymptotic variance, denoted by σ2
B = 1

N Tr(S), is equal to σ2
B =

a2σ2
oh

2

2ah2φ′
o(0)−1 , for a > 1

2h2φ′
o(0)

(see Appendix F). Therefore, we need to change the constant a when changing B, i.e., we define a = a(B) =
1

2h2φ′
o(0)(B)+ϵ4, for some constant ϵ > 0, we rewrite σ2

B as follows (see Appendix F), σ2
B =

(1+2h2φ′
o(0)ϵ)

2σ2
o(B)

8h4φ′
o(0)

3ϵ .

For the nonlinearity Ψo that is considered here, we have that σ2
o =

+∞∫
−∞

B2 tanh2
(
w
B

)
f(w)dw, and φ′

o(0) =

+∞∫
−∞

Ψ′(w)f(w)dw =
+∞∫
−∞

1
cosh2(w

B )
f(w)dw. Notice that both functions σ2

o and φ′
o(0) are increasing with respect

to B (see Appendix F). Since we have that |B2 tanh2(wB )f(w)| ≤ |w2f(w)| and | 1
cosh2(w

B )
f(w)| ≤ |f(w)| for

all w ∈ R and all B > 0, using the Lebesgue’s dominated convergence theorem, we have that lim
B→0+

σ2
o =

0, lim
B→+∞

σ2
o = σ2

η, lim
B→0+

φ′
o(0) = 0, lim

B→+∞
φ′
o(0) = 1, where σ2

η is the variance of the observation noise η.

Therefore, we have that σ2
0 = lim

B→0+
σ2
B = +∞ (see Appendix F), and σ2

∞ = lim
B→+∞

σ2
B =

(1+2h2ϵ)2σ2
η

8h4ϵ . Suppose

now that the variance of the observation noise η is infinite, i.e. σ2
η = +∞. This means that σ2

∞ = +∞.

4ϵ is added since we need to have that a > 1
2h2φ′

o(0)
.
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For the continuous function σ2
B , defined for all B ∈ (0,+∞), we have that lim

B→0+
σ2
B = lim

B→+∞
σ2
B = +∞.

Therefore, there exists an optimal B⋆ such that σ2
B⋆ = inf

B∈(0,∞)
σ2
B . Note that the case B → ∞ corresponds

to a LU scheme from [18], while the case B → 0 corresponds to each agent working in isolation. Therefore,
we show analytically on the simple class of nonlinearities Ψo (hyperbolic tangent), that cooperation through
a nonlinear mapping Ψo strictly improves performance with respect to both using linear and non-cooperative
schemes.

To numerically illustrate the above results, we now consider a sensor (agents) network with N = 8 agents,
setting that the underlying topology is given by a regular graph with degree d = 3. The true parameter is
θ∗ = 1, the observation parameter is h = 1, and the observation noise for each agent’s measurements has
the following pdf

f(w) =
β − 1

2 (1 + |w|)β
, (31)

with β = 2.05, which has an infinite variance. Recall that we assumed that there is no communication noise
between agents. We set the consensus parameter as b = 1 and the innovation parameter as a = a(0.3) =

1
2h2φ′

o(0)(0.3)
+0.1. Figure 1a shows the average per-agent asymptotic variance σ2

B versus B. As it can be seen,

optimal B⋆ approximately equals B⋆ = 0.65. Using Monte Carlo simulations, we compare numerically an
estimated per-sensor MSE across iterations, for the optimal B⋆ and for some sub-optimal choices of B. We
can see that the algorithm performs better for the optimal value B⋆ than for the other considered suboptimal
choices of B (see Figure 1b), hence confirming the theory.

(a) (b)

Figure 1: (a) Average per-agent asymptotic variance σ2
B versus B (b) Monte Carlo-estimated per-sensor

MSE error on logarithmic scale for the different choices of B

Example 2: In this example we provide analysis in the terms of the average per node variance with
respect to the level of the mutual dependence of observation and communication noise. Once more, we
consider the network where each agent i observes a scalar parameter θ⋆ ∈ R following the linear regression
model (29) and we assume that the underlying graph of the network is regular, with degree d. As it is
said, we now allow observation and communication noise to be mutually dependent. For simplicity, we
consider the case when that dependence between communication noise ξtij and observation noise ni is given

by ξij = ρnt
i +
√

1− ρ2 n̂t
i, at each time t = 0, 1, .. and for all tuples {i, j} ∈ E, where, ρ ∈ (−1, 1), sequence

{n̂t
i} is independently identically distributed in time t and across all agents i. Moreover, nt

i are n̂s
j mutually

independent whenever (i, t) ̸= (j, s). Here, it is easy to see that we have strong positive correlation if ρ → 1,
strong negative correlation if ρ → −1 and we do not have any correlation if ρ = 0. Moreover, we set that
Ψo(w) = Ψc(w) = signw, and hence, algorithm (3) is given by
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xt+1
i = xt

i − αt

 b

a

∑
j∈Ωi

Ψc

(
xt
i − xt

j + ρnt
i +
√

1− ρ2 n̂t
i

)
− hΨo

(
h(θ⋆ − xt

i) + ni

) . (32)

Analogously to the previous example, we have that the average per-agent asymptotic variance σ2
ρ is given

by

σ2
ρ =

b2σ2
cd

2 + a2h2σ2
o − 2abhdσoc

N (2ah2φ′
o(0)− 1)

(33)

+
b2σ2

cd
2 + a2h2σ2

o − 2abhdσoc

N

N∑
i=2

1

2bφ′
c(0)λi + 2ah2φ′

o(0)− 1
, (34)

since S0 =
(

b2

a2σ
2
cd

2 + σ2
oh

2 − 2 b
ahdσoc

)
I and Σ = 1

2I − a
(
b
aφ

′
c(0)L+ φ′

o(0)h
2I
)
. Here, regardless of ρ we

have that σ2
o = σ2

c = 1 and φ′
o(0) = 2pn(0) (see [15]). On the other hand, σoc which is effective cross-

covariance between the observation and the communication noise after passing through the appropriate
nonlinearity and φ′

c(0) are functions with respect to ρ. We have that

σoc =

∞∫
−∞

∞∫
−∞

Ψc(ρx+
√
1− ρ2y)Ψo(x)pn̂(y)pn(x)dxdy (35)

=

+∞∫
0

∞∫
−ρx√
1−ρ2

pn̂(y)pn(y)dydx−
+∞∫
0

−ρx√
1−ρ2∫

−∞

pn̂(y)pn(y)dydx (36)

−
0∫

−∞

∞∫
−ρx√
1−ρ2

pn̂(y)pn(y)dydx+

0∫
−∞

−ρx√
1−ρ2∫

−∞

pn̂(y)pn(y)dydx, (37)

and we see that σoc → 0 as ρ → 0, σoc → 1 as ρ → 1 and σoc → −1 as ρ → −1. Moreover, we have that

φ′
c(0) = 2

∞∫
−∞

pn̂(−ρx)pn(
√
1− ρ2x)dx, and again, it is easy to see that, φ′

c(0) → 2pn(0) as ρ → ±1 and

φ′
c(0) → 2pn̂(0) as ρ → 0. To demonstrate the above results, again we consider a sensor (agents) network

with N = 8 agents, setting that the underlying topology is given by a regular graph with degree d = 3. The
true parameter is θ∗ = 1, the observation parameter, the innovation parameter and consensus parameter are
h = a = b = 1. We set that for all i, ni and n̂i have the pdf as in (31) with β = 2.05. Figure 2a shows σ2

ρ with
respect to ρ. As it can be seen, the lowest σ2

ρ is attained at ρ = 1, also σ2
ρ has two local maxima at ρ ≈ −0.88

and at ρ ≈ 0.31. Figure 2b shows the comparison of Monte Carlo simulation for 1
N ∥xt−1⊗θ∥2 t for different

choices of ρ. Moreover, Figure 2b justifies the results presented in 2a, in the sense that 1
N ∥xt − 1⊗ θ∥2 t is

minimal for ρ = 1 and maximal for ρ = −0.88. Finally, we note that, while the two local maxima obtained
here are specific for the simplistic correlation and sensing model assumed here for analytical tractability, we
observe numerically for more general models that the general trend of this example is preserved, in the sense
that higher (more positive) correlations lead to a better performance.

5.1 Numerical simulations

In this subsection, we demonstrate the performance of proposed consensus+innovations estimator in a larger
sensor network. We consider a sensor network with N = 40 agents where the underlying topology is an
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(a) (b)

Figure 2: (a) Average per-agent asymptotic variance σ2
B versus B (b) Monte Carlo-estimation of 1

N ∥xt −
1N ⊗ θ⋆∥2 t for different choices of ρ

instance of a random geometric graph; we used randomly generated true parameter θ⋆ ∈ R10, whose entries
are drawn mutually independently form the uniform distribution on [−10, 10]; we used randomly generated
observation vectors hi ∈ R10, for which the condition 2 of Assumption 1 is verified to be true. We set
the consensus parameter as b = 1 and and step-size parameter as δ = 1. First, we compare the proposed
consensus+innovations estimator with the method from [1] and its hypothetical variant in the case when
there is no communication noise, but in the presence of heavy-tailed observation noise with pdf as in (31) for
β = 2.05. Here, we used the same algorithm settings and the same nonlinearities for the proposed algorithm
as in Example 1, with a slight change, i.e., we set that B = 10 and a = 0.2 For method from [1] and
its hypothetical variant (see Appendix E), we set that Bi = 2, ϕi,1(x) = x and ϕi,2(x) = tanh(x) for all

agents i. Furthermore, we set that weighting coefficients are chosen according to aij =
Ãij∑

ℓ∈Ni

Ãℓi
, where

Ã = A + I. Moreover, for the smoothing recursions, zero initial conditions are assumed, νi is set to 0.9
for every agent i and ϵ = 10−2. We can see all methods manage to (slowly) decrease MSE over iterations,
with the proposed method exhibiting the best performance among the three methods considered. Figure 3b
shows Monte Carlo simulation of the MSE for the proposed algorithm, algorithm from [1] and the algorithm
in [15], when communication between agents is also contaminated with heavy-tailed communication noise.
Here, for the proposed algorithm we set that both nonlinearities are Ψo(w) = Ψc(w) = B tanh(w/B), for
B = 10 and a = 1. Further, we use the same algorithm setting for the method in [1] as in the previous
simulation example, and we use the same nonlinearity on the consensus part and the same B for algorithm
from [15] as in the proposed algorithm. We can see that both [15] and [1] here fail to converge, while the
proposed method still effectively reduces MSE.

We next present the scenario where the observation and communication noises are mutually dependent.
To do this, we set that the i-th element of the observation noise n is given by ni = vi exp (

h
2v

2
i ), where v

has standard normal distribution and h is a heavy-tail parameter (see [9]). Moreover, the ℓ-th element of
the communication noise ξij is given by [ξij ]ℓ = [wij ]ℓ exp (

h
2 [wij ]

2
ℓ), where wij is the linear transformation

of v, i.e., wij = Wijv and Wij ∈ RM×N is a randomly generated matrix independent of the observation
noise. Figure 4a presents Monte Carlo estimates of per-agent MSE across iterations. Figure 4b shows Monte
Carlo simulation of quantity 1

N ∥xt − 1N ⊗ θ⋆∥2
√
t. For this numerical setting, from the Figure 4b, we can

deduce that E[∥xt − 1N ⊗ θ⋆∥2] decreases at least as fast as O( 1√
t
), hence confirming our MSE rate theory.

6 Conclusion

We have studied distributed consensus+innovations estimation under the simultaneous presence of heavy-
tailed (infinite variance) correlated sensing and communication noises. This setting is in contrast with
existing work that either always assumes a finite-variance sensing noise. We developed a nonlinear estimator
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(a) (b)

Figure 3: (a) Monte Carlo-estimated per-sensor MSE error on logarithmic scale for proposed algorithm for
B = 10, method from [1] and its hypothetical variant (b) Monte Carlo-estimated per-sensor MSE error on
logarithmic scale for proposed algorithm, algorithm form [1] and algorithm from [15]

(a) (b)

Figure 4: (a) Monte Carlo-estimated per-sensor MSE error on logarithmic scale for proposed algorithm when
link failures can occur for B = 1 and h = 10 (b) Monte Carlo-estimation of 1

N ∥xt−1N ⊗θ⋆∥2
√
t for B = 10

and h = 2.
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and established its almost sure convergence and asymptotic normality. Furthermore, we showed that the
estimator achieves a sublinear MSE convergence rate O(1/tκ), and we explicitly charaterized the rate κi ∈
(0, 1) in terms of system parameters. Analytical examples illustrate the role of the nonlinearities incorporated
in the method and the effects of noises correlation. Finally, numerical simulations corroborate our findings
and demonstrate that the proposed distributed estimator converges under the simultaneous presence of
heavy-tailed (infinite variance) correlated sensing and communication noises, while, for the same setting,
existing distributed estimators fail to converge.
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Appendix

A. Some results on Stochastic approximation

We make use of the following standard stochastic approximation result, see [28], see also [18].

Theorem 4. Let {xt ∈ Rl}t≥0 be a random sequence:

xt+1 = xt + αt[r(x
t) + γ(t+ 1,xt, ω)], (38)

where, r(·) : Rl → Rl is Borel measurable and {γ(t,x, ω)}t≥0,x∈Rl is a family of random vectors in Rl, defined
on a probability space (Ω,F ,P), and ω ∈ Ω is a canonical element. Let the following sets of assumptions
hold:

B1: The function γ(t, ·, ·) : Rl × Ω → R is Bl ⊗F measurable for every t; Bl is the Borel algebra of Rl.

B2: There exists a filtration {Ft}t≥0 of F , such that, for each t, the family of random vectors {γ(t,x, ω)}x∈Rl

is Ft measurable, zero-mean and independent of Ft−1.

(If Assumtions B1, B2 hold, {x(t)}t≥0, is Markov.)

B3: There exists a twice continuously differentiable V (x) with bounded second order partial derivatives and
a point x∗ ∈ Rl satisfying

V (x∗) = 0, V (x) > 0,x ̸= x∗, lim
||x||→∞

V (x) = ∞,

sup
ϵ<||x−x∗||< 1

ϵ

⟨r(x),∇V (x)⟩ < 0,∀ϵ > 0.

B4: There exists constants k1, k2 > 0, such that,

||r(x)||2 + E[||γ(t+ 1,x, ω)||2] ≤ k1(1 + V (x))− k2⟨r(x),∇V (x)⟩

B5: The weight sequence {α(t)}t≥0 satisfies

αt > 0,
∑
t≥0

αt = ∞,
∑
t≥0

α2
t < ∞.

C1: The function r(x) admits the representation

r(x) = B(x− x∗) + δ(x), (39)

where

lim
x→x∗

||δ(x)||
||x− x∗||

= 0. (40)

(Note, in particular, if δ(x) ≡ 0 then (40) is satisfied.)

C2: The weight sequence {αt}t≥0 is of form

αt =
a

t+ 1
,∀t ≥ 0, (41)

where a > 0 is a constant (note that C2 implies B5).

C3: Let I be the l×l identity matrix and a,B as in (41) and (39), respectively. Then, the matrix Σ = aB+ 1
2I

is stable.
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C4: The entries of the matrices, ∀t ≥ 0, x ∈ Rl,

A(t,x) = E[γ(t,x, ω)γ⊤(t,x, ω)],

are finite, and the following limit exists:

lim
t→∞,x→x∗

A(t,x) = S0.

C5: There exists ϵ > 0, such that

lim
R→∞

sup
||x−x∗||<ϵ

sup
t≥0

∫
||γ(t+1,x,ω)||>R

||γ(t+ 1,x, ω)||2dP = 0

Let Assumptions B1–B5 hold for {x(t)}t≥0 in (38). Them, starting from an arbitrary initial state, the
Markov process, {xt}t≥0, converges a.s. to x∗. In other words,

P[ lim
t→∞

xt = x∗] = 1.

The normalized process, {
√
t(xt − x∗)}t≥0, is asymptotically normal if, besides Assumptions B1–B5, As-

sumptions C1–C5 are also satisfied. In particular, as t → ∞
√
t(xt − x∗) ⇒ N (0,S), (42)

where ⇒ denotes convergence in distribution (weak convergence). Also, asymptotic variance, S, in (42) is

S = a2
∞∫
0

eΣvS0e
Σ⊤vdv

B. Additional results on nonlinearity φ

We present some properties of the function φ defined in (5). As it is stated in [15], we can intuitively see
function φ as a convolution-like transformation of nonlinearity Ψ : R → R, where the convolution is taken
with respect to the probability density function p of random value w. If w is generated by the underlying
probability space (Ω,F ,P), we have that expectation of

v = Ψ(a+ w)− φ(a) (43)

is equal to zero, i.e., E[v] = 0. Here, the expectation is taken with respect to F . Hence, for all t = 0, 1, ...,
we have that expectation of both of the sequences ζt, ηt defined in (7) is equal to zero, due to the fact that
communication noise ξt and observation noise nt, t = 0, 1, ..., are generated by underlying probability space.
We have following Lemma (see [29], see also [15]).

Lemma 6 ([29]). Consider function φ in (5), where function Ψ : R → R, satisfies Assumption 4. Then, the
following holds:

1. φ is odd;

2. If |Ψ(ν)| ≤ c1, for any ν ∈ R, then |φ(a)| ≤ c′1, for any a ∈ R, for some c′1 > 0;

3. φ(a) is monotonically nondecreasing;

4. φ(a) > 0, for any a > 0.

5. φ is continuous at zero;
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6. φ is differentiable at zero, with a strictly positive derivative at zero, equal to:

φ′(0) =

s∑
i=1

(Ψ(νi + 0)−Ψ(νi − 0)) p(νi) +

s∑
i=0

∫ νi+1

νi

Ψ′(ν)p(ν)dν, (44)

where νi, i = 1, ..., s are points of discontinuity of Ψ such that ν0 = −∞ and νs+1 = +∞, and we recall
that p(u) is the pdf of random variable w.

From Lemma 6, we have that φ(a) = 0 if and only if a = 0. Moreover, there exists a function δ : R → R,
which is continuous in the vicinity of zero, such that

φ(a) = φ(0) + φ′(0)a+ δ(a) = φ′(0)a+ δ(a), (45)

and lim
a→0

δ(a)
a = 0.

We now prove boundedness of the function r(·) in equation (14). If condition 2 of Lemma 6 is satisfied for
both functions φc and φo, then the right hand side of (14) would be lesser or equal to some positive constant

c, which would led to ∥r(x)∥2 ≤ c1(1 + V (x)). Suppose now that condition 3 of Lemma 6 is satisfied for the
function φc, then there exists some positive constant c1 such that∥∥∥∥ baLφc

(x− 1N ⊗ θ∗)
∥∥∥∥2 =

(
b

a

)2 N∑
i=1

∥∥∥∥∥∥
∑
j∈Ωi

φc(xi − xj)

∥∥∥∥∥∥
2

≤
(
b

a

)2 N∑
i=1

∑
j∈Ωi

∥φc(xi − xj)∥2

≤
(
b

a

)2 N∑
i=1

∑
j∈Ωi

(
c
(
1 + ∥xi − xj∥2

))

≤
(
b

a

)2 N∑
i=1

∑
j∈Ωi

(
c
(
1 + ∥xi − θ⋆∥2 + ∥xj − θ⋆∥2

))
≤ c1(1 + V (x)),

since we have that ∥xi − θ⋆∥2 ≤ ||x− 1N ⊗ θ∗||2 = V (x) for all i = 1, 2, ..., N. If we assume that condition
3 of Lemma 6 is satisfied for the function φo, we will get that∥∥H⊤φo (H (x− (1N ⊗ θ∗)))

∥∥2 ≤ ∥H∥2 ∥φo (H (x− (1N ⊗ θ∗)))∥2

≤ ∥H∥2 c
(
1 + ∥H (x− (1N ⊗ θ∗))∥2

)
≤ ∥H∥2 c

(
1 + ∥H∥2 ∥x− 1N ⊗ θ∗∥2

)
.

Therefore,
∥∥H⊤φo (H (x− (1N ⊗ θ∗) ≤))

∥∥2 ≤ c1(1+V (x)), for some positive constant c1. Hence, inequality
in (14) is proven.

Next we prove boundedness of E
[
∥γ(t+ 1,xt, ω)∥2

]
in (16). If the function Ψ in (5) satisfies condition 5’ of

Assumption 4, whether w in (5) has finite or infinite variance, v in (43) is bounded, i.e.,

|v|2 ≤ |Ψ(a+ w)|2 + |φ(a)|2 ≤ c,

for some positive constant c. If the function Ψ in (5) satisfies condition 5 of Assumption 4 and w has finite
variance, we get that variance of v in (43) is bounded with c (1 + |a|2) for some positive constant c, i.e.,

E[|v|2] ≤ E[|Ψ(a+ w)|2 + |φ(a)|2] ≤ E[c1(1 + |a+ w|2) + c′1(1 + |a|2)]
≤ c1(1 + |a|2 + E[|w|2]) + c′1(1 + |a|2) ≤ c (1 + |a|2),
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where c1 and c2 are some positive constants. Thus, whether condition 5 or 5’ is satisfied for the function Ψ
in (5), variance of v in (43) is bounded with c (1 + |a|2) for some positive constant c. Hence, we have that
for ζt, ηt defined in (7)

E[ζt] ≤ c′(1 + V (x))

E[ηt] ≤ c′′(1 + V (x)),

for all t = 0, 1, ..., where c′ and c′′ are some positive constants.

C. Mutually dependent observation noise and mutually dependent communica-
tion noise

In this subsection we relax assumptions on observation and communication noises and show that Theorems 1
and 2 continue to hold. We let Assumptions 1–6 still hold except those which overlap with the following
generalizations:

• The observation noise nt has the joint probability density function po such that:∫
a∈RN

∥a∥po(a)da < ∞,

∫
a∈RN

a po(a)da,

and po(a) = po(−a), for all a ∈ RN .

• A (possibly) different nonlinear function Ψo,i : R → R is assigned to each agent i. Each function Ψo,i

obeys Assumption 4.

• The communication noise ξtij has the joint probability density function pc,ij such that:∫
a∈RM

∥a∥pc,ij(a)da < ∞,

∫
a∈RM

a pc,ij(a)da = 0,

and pc,ij(a) = pc,ij(−a), for all a ∈ RM .

• A different nonlinear function Ψc,ij,ℓ : R → R is assigned to each arc (i, j) ∈ Ed and to each element
ℓ = 1, ...,M of the communication noise [ξtij ]ℓ. Each function Ψc,ij,ℓ obeys Assumption 4.

This means that observation noises of agents i and j can be mutually dependent. Moreover, the com-
munication noises ξtij may have mutually dependent elements [ξtij ]ℓ, for ℓ = 1, ...,M . Further, here, for
simplicity, we assume that observation and communication noises are mutually independent.
Let us define functions φo,i : R → R for i = 1, 2, ..., N and φij,ℓ : R → R for (i, j) ∈ E and ℓ = 1, 2, ...,M in
the same manner as in (5), i.e.,

φo,i(a) =

∫
Ψo,i(a+ w)po,i(w)dw, (46)

φc,ij,ℓ(a) =

∫
Ψc,ij,ℓ(a+ w)pc,ij,ℓ(w)dw. (47)

Here, po,i and pc,ij,ℓ are the marginal probability density functions of random variables nt
i and [ξtij ]ℓ, respec-

tively. Following same steps as in the proofs of Theorems 1 and 2, almost sure convergence and asymptotic
normality can be shown. In the following, we emphasize only differences. First of all, algorithm (8) gets
replaced by
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xt+1 = xt − αt

(
b

a
L̂φc

(xt)−H⊤φo

(
H
(
(1N ⊗ θ∗)− xt

))
−H⊤ζt +

b

a
ηt

)
.

Now, the map L̂φc
: RMN → RMN is

L̂φc
(x) =


...∑

j∈Ωi

φc,ij(xi − xj)

...

 ,

for any x ∈ RMN , where for all (i, j) ∈ E, function φc,ij : RM → RM is given with φc,ij(y1,y2, ...,yM ) =

[φc,ij,1(y1), φc,ij,2(y2), ..., φc,ij,M (yM )]⊤, for y ∈ RM , functions φc,ij,ℓ(a) for (i, j) ∈ E and ℓ = 1, 2, ...,M
are given by (47). Moreover, for y ∈ RN , the map φo : RN → RN is now given with φo(y1,y2, ...,yN ) =
[φo,1(y1), φo,2(y2), ..., φo,N (yN )]⊤. Using the same notation, sequences ζt ∈ RN and ηt ∈ RMN are appro-
priate versions of the sequences defined in (7). If we define quantities r̂(x) and γ̂(t+ 1,x, ω) as follows

r̂(x) = − b

a
L̂φc

(x)−H⊤φo (H (x− (1N ⊗ θ∗))) , (48)

γ̂(t+ 1,x, ω) = − b

a
ηt +H⊤ζt, (49)

it is easy to see that all conditions B1–B5 and C1–C5 from Theorem 4 still hold (see [15]). The only difference
occurs in the asymptotic covariance matrix S, i.e., in S0, which is now given by

S0 =
b2

a2
Kη +H⊤KζH,

where Kη ∈ RN×N and Kζ ∈ RMN×MN are the effective covariance matrices of communication and obser-
vation noises after passing through the appropriate nonlinearities (analogously defined as cross-covariance
matrix Kc,o in Theorem 2).

D. Heavy-tailed noise and identity function

In this subsection, we show that the algorithm (3) does not converge in the presence of heavy-tailed ob-
servation and communication noise if at least one of the nonlinearities Ψo and Ψc is the identity function.
This means that in the presence of heavy-tailed observation and communication noises, the algorithms
from [15, 18] do not converge, in fact, they exhibit an infinite variance solution sequence.

Theorem 5 (Infinite variance). For the sequence of iterates {xt}, t = 1, 2, ..., generated by (3), we have that
E[∥xt − 1N ⊗ θ⋆∥2] = ∞, t = 1, 2, ..., if at least one of the following statements is true.

1. Function Ψo is the identity function, i.e., Ψo(a) = a and the observation noise has infinite variance,
i.e.,

∫
a2dΦo = +∞.

2. Function Ψc is the identity function, i.e., Ψc(a) = a and the communication noise has infinite variance,
i.e.,

∫
a2dΦc = +∞.

Proof. For simplicity, we assume that if statement 1 holds there is no communication noise, i.e. ξij ≡ 0 for
all (i, j) ∈ Ed , and vice versa, if statement 2 holds we assume that there is no observation noise, i.e., n ≡ 0.
If statement 1 holds, in the absence of communication noise, the algorithm (4) can be written as

xt+1 = xt − αt

(
b

a
LΨc(x)−H⊤ (zt −Hxt

))
= xt − αt

(
b

a
LΨc

(x)−H⊤ (H(1⊗ θ⋆) + nt −Hxt
))

.
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If we define et = xt − 1N ⊗ θ⋆, t = 1, 2, ..., we have that et+1 = Ft(et) + αtH
⊤nt, where function Ft :

RMN → RMN is given by Ft(y) = (I+ αtH
⊤H)y − αt

b
aLΨc(y), for y ∈ RMN . Therefore, we have that

∥et+1∥2 = ∥Ft(et)∥2 + 2αt(F
t(et))⊤H⊤nt + α2

t ∥H⊤nt∥2

≥ 2αt(HFt(et))⊤nt + α2
t ∥H⊤nt∥2,

and using the fact that et and nt are independent, we have that

E[∥et+1∥2] ≥ α2
tE[∥H⊤nt∥2] = ∞,

which completes the proof of statement 1. Proof of statement 2 follows directly from Appendix B in [15].

E. Hypothetical variant of algorithm from [1]

Firstly, we give an overview of algorithm that is proposed in [1], for more information see [1]. They considered
a network of N agents where each agent i = 1, 2, ..., N at each time t ≥ 0 collects a linear transformation of
unknown vector parameter w0 ∈ RM corrupted by noise as follows

di(t) = ui,tw
0 + vi(t),

where ui,t ∈ RM is a row regression vector and vi(t) ∈ R is wide-sense stationary zero-mean impulsive
noise process with variance σ2

v,i. They introduced an agent-dependent and time-varying error nonlinearity,
hi,t(ei(t)), into the adaptation step and proposed following algorithm

ψi,t = wi,t−1 + µiu
⊤
i,thi,t(ei(t)),

wi,t =
∑
ℓ∈Ni

aℓiψℓ,t,
(50)

where µi is a step size parameter, Ni is the set of agents connected to agent i including himself and aℓi are
weighting coefficients. For the error nonlinearity hi,t(ei(t)), they set to be a linear combination of Bi ≥ 1
preselected sign-preserving basis functions, i.e., hi,t(ei(t)) = α

⊤
i,tφi,t(ei(t)). As it is said in [1], if agent i were

to run the sand-alone counterpart of the adaptive filter in (50), then the optimal nonlinearity that minimizes

i-th agent MSE is given by hopt
i,t (x) = −p′

e(x)
pe(x)

in terms of the pdf of the error signal.

Even though the pdf is not available in practice, for the purpose of comparing algorithms in the specific
numerical example when we know pdf, we introduce hypothetical variant of algorithm, by finding optimal
αopt

i,t , for each agent i at each time t, i.e., αopt
i,t = argmin

αi,t

E[hopt
i,t (ei(t))− hi,t(ei(t))]

2

F. Derivations and numerical illustrations for Example 1

Derivation for the average per-agent asymptotic variance σ2
B = 1

N Tr(S) follows

σ2
B =

1

N
Tr(a2

+∞∫
0

eΣvS0e
Σvdv) =

1

N
a2σ2

oh
2

+∞∫
0

Tr(e2Σvdv)

=
1

N
a2σ2

oh
2

+∞∫
0

Ne(1−2ah2φ′
o(0))vdv =

a2σ2
oh

2

2ah2φ′
o(0)− 1

.
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Integral in the last equality converge for a > 1
2h2φ′

o(0)
.

If a = a(B) = 1
2h2φ′

o(0)(B) + ϵ, for some constant ϵ > 0, we have that

σ2
B =

(
1

2h2φ′
o(0)

+ ϵ
)2

σ2
oh

2

2
(

1
2h2φ′

o(0)
+ ϵ
)
h2φ′

o(0)− 1
=

(
1+2h2φ′

o(0)ϵ
2h2φ′

o(0)

)2
σ2
oh

2

2
(

1
2h2φ′

o(0)
+ ϵ
)
h2φ′

o(0)− 1

=

(
1+2h2φ′

o(0)ϵ
2h2φ′

o(0)

)2
σ2
oh

2

1 + 2h2φ′
o(0)ϵ− 1

=

(
1 + 2h2φ′

o(0)ϵ
)2

σ2
o

8h4φ′
o(0)

3ϵ
.

Next, we validate that lim
B→0+

σ2
B = +∞. It is suffice to show that lim

B→0+

σ2
o

φ′
o(0)

3 = +∞, since σ2
B =

σ2
o

8h4φ′
o(0)

3ϵ +

4h2ϵσ2
o

8h4φ′
o(0)

2ϵ +
4h4ϵ2σ2

o

8h4φ′
o(0)ϵ

.

lim
B→0+

σ2
o

φ′
o(0)

3
= lim

B→0+

B2
+∞∫
−∞

tanh2(wB )f(w)dw(
+∞∫
−∞

1
cosh2(w

B )
f(w)dw

)3 = [
w

B
= t, dw = dt]

= lim
B→0+

B2
+∞∫
−∞

tanh2(wB )f(w)dw

B3

(
+∞∫
−∞

1
cosh2(w)

f(Bw)dw

)3

= lim
B→0+

+∞∫
−∞

tanh2(wB )f(w)dw

B

(
+∞∫
−∞

1
cosh2(w)

f(Bw)dw

)3 = +∞,

since lim
B→0+

+∞∫
−∞

tanh2(wB )f(w)dw = 1 and lim
B→0+

=
+∞∫
−∞

1
cosh2(w)

f(Bw)dw < +∞.

We now prove that both of the functions σ2
o and φ′

o(0) are increasing function with respect to B. Suppose
that B1 < B2, then we have that

B2
1 tanh

2(
w

B1
) < B2

2 tanh
2(

w

B2
),

1

cosh2( w
B1

)
<

1

cosh2( w
B2

)
,

for all w ∈ R. Moreover, since f(w) ≥ 0 for all w ∈ R, we have that

B2
1 tanh

2(
w

B1
)f(w) < B2

2 tanh
2(

w

B2
)f(w),

1

cosh2( w
B1

)
f(w) <

1

cosh2( w
B2

)
f(w),
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for all w ∈ R. Therefore, we have that

σ2
o(B1) =

+∞∫
−∞

B2
1 tanh

2(
w

B1
)f(w)dw <

+∞∫
−∞

B2
2 tanh

2(
w

B2
)f(w)dw = σ2

o(B2),

φ′
o(0)(B1) =

+∞∫
−∞

1

cosh2( w
B1

)
f(w)dw <

+∞∫
−∞

1

cosh2( w
B2

)
f(w)dw = φ′

o(0)(B2).

We now compare, in the presence of heavy-tailed observation noise with pdf as in (31) for β = 2.05, the
proposed algorithm (30) for the optimal choice of B⋆ with the method from [1] and its hypothetical variant
(see Appendix E). For those methods we set that Bi = 2, ϕi,1(x) = x and ϕi,2(x) = tanh(x) for all agents.

Furthermore, we set that weighting coefficients are chosen according to aij =
Ãij∑

ℓ∈Ni

Ãℓi
, where Ã = A + I.

Moreover, for the smoothing recursions, zero initial conditions are assumed, νi is set to 0.9 for every agent i
and ϵ = 10−2.

Figure 5a shows Monte Carlo estimation of MSE for step size αt =
0.5
t+1 and the Figure 5b shows Monte

Carlo estimation of MSE for step size αt =
1

t+1 . As it can be seen, the hypothetical variant of the method
from [1] outperforms the proposed one in both of the scenarios. However, that is because with the hypo-
thetical variant of [1] we optimize the choice of the nonlinearity for each agent at each time, whereas the
proposed algorithm (30) is optimized only by average per-agent asymptotic variance. Moreover, we see that
the method from [1] is not as robust as the proposed algorithm (30) with respect to the choice of the step
size αt (constant a).

(a) (b)

Figure 5: (a) Monte Carlo-estimated per-sensor MSE error on logarithmic scale for the algorithm (30) for
optimal B⋆ and for algorithm and its hypothetical variant from [1] for a = 0.5 (b) Monte Carlo-estimated
per-sensor MSE error on logarithmic scale for the algorithm (30) for optimal B⋆ and for algorithm and its
hypothetical variant from [1] for a = 1

G. Proof of the assertion in Remark 7

Here, we modify Theorem 3.1 from [8] and make it applicable to probability density functions that satisfy
Assumption 2. We will show that

sup
p∈PM

1+ϵ

P

|θ̂t − θ⋆| >

(
8

1
ϵM

2
ϵ ln 2δ

t(ln 2δ − 1)

) ϵ
1+ϵ

 ≥ δ, (51)
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for any θ⋆ ∈ R, δ ∈ (0, 1
2 ), where PM

1+ϵ ⊆ P denotes the subclass of all pdfs from P such that 1 + ϵ-central
moment equals M for ϵ ∈ (0, 1). Therefore, using Markov inequality, we get

sup
p∈PM

1+ϵ

tE[|θ̂t − θ⋆|2] ≥ c1t
1−ϵ
1+ϵ ,

for c1 = δ

(
8

1
ϵ M

2
ϵ ln 2δ

ln 2δ−1

) 2ϵ
1+ϵ

. Using that PM
1+ϵ ⊆ P and taking the supremum with respect to t we get (27).

To show that (51) holds, we follow the same idea as in [8]. Let us consider the class P+,− = {p+, p−} of
probability density function p+ and p− such that p+ and p− are probability density functions of uniform

random variables on [p
2−p
2 , p2+p

2 ] and on [−p2−p
2 , p−p2

2 ], respectively, for p ∈ (0, 1). It is easy to see that means

of probability density functions p+ and p− are θ+ = p2

2 and θ− = −p2

2 , respectively. Moreover, 1 + ϵ-th
central moment of both pdfs is equal to

M =
pϵ+1

2ϵ+1(ϵ+ 2)
. (52)

Let (Xj , Yj), j = 1, 2, .., t be i.i.d. pairs random variables such that p+ is pdf of X1, and Y1 = X1 if

X1 ∈ I = [p
2−p
2 , p−p2

2 ] and Y1 = −X1 if X1 /∈ I. Notice that probability density function of Y1 is p−. Since
we have that P{X1 ∈ I} = 1− p, for Xt = (X1, X2, ..., Xt) and Y t = (Y1, Y2, ..., Yt), we have that

P{Xt = Y t} = (1− p)t.

Using that 1−p ≥ e
−p
1−p , we have that P{Xt = Y t} = (1−p)t ≥ 2δ, if p ≤ ln 2δ

ln 2δ−t . Setting that p := ln 2δ
t(ln 2δ−1) ,

we have that p ∈ (0, 1) for all t = 1, 2, ... and δ ∈ (0, 1
2 ). Let θ̂t = θ̂t(·) be any estimator, then we have that

max

(
P
{
|θ̂t(Xt)− θ+| >

p2

2

}
,P
{
|θ̂t(Y t)− θ−| >

p2

2

})
≥ 1

2
P
{
|θ̂t(Xt)− θ+| >

p2

2
or |θ̂t(Y t)− θ−| >

p2

2

}
≥ 1

2
P{θ̂t(Xt) = θ̂t(Y

t)}

≥ 1

2
P{Xt = Y t} ≥ δ.

Finally, using (52) we get that

(
p2

2

) ϵ+1
2

2
√
2

≥
(

p2

2

) ϵ+1
2

2
ϵ+1
2 (ϵ+1)

= M ≥ Mp
ϵ
2 , which gives us that p2

2 ≥
(
8

1
ϵM

2
ϵ p
) ϵ

ϵ+1

and therefore we have that

max

P
{
|θ̂t(Xt)− θ+| >

(
8

1
ϵM

2
ϵ ln 2δ

t(ln 2δ − 1)

) ϵ
1+ϵ }

,

P
{
|θ̂t(Y t)− θ−| >

(
8

1
ϵM

2
ϵ ln 2δ

t(ln 2δ − 1)

) ϵ
1+ϵ } ≥ δ.

Since we have that P+,− ⊆ PM
1+ϵ, it follows that (51) also holds.

H. Proof of extensions in Remark 8

For compact notation, we set that H and H̃t are the N× (MN) matrices whose i-th row vectors are equal to

[0, ...,0, (hi)
⊤,0, ...,0] and [0, ...,0, (h̃t

i)
⊤,0, ...,0], respectively. Hence, for Ht = H

t
+ H̃t, we have that (28)
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can be written, in compact form, as

zt = Ht (1N ⊗ θ∗) + nt = H (1N ⊗ θ∗) + H̃t (1N ⊗ θ∗) + nt. (53)

Under this setting, we modify algorithm (3) such that, at each time t = 0, 1, ..., ,, each agent i updates its
estimate xt

i according to

xt+1
i = xt

i − αt

 b

a

∑
j∈Ωi

Ψc

(
xt
i − xt

j + ξ
t
ij

)
− hiΨo

(
zti − h

⊤
i x

t
i

) . (54)

Assuming that all Assumptions 1-4 still hold (except those which overlap and are hence replaced with
assumptions in Remark 8), we show that the results in subsections 4.2, 4.3 and 4.4 continue to hold for
algorithm (54). Following the same idea as in Section 4, we write algorithm (54), in compact form, by:

xt+1 = xt − αt

(
b

a
LΨc

(x)−H
⊤
Ψo

(
zt −Hxt

))
. (55)

Substituting (53) into (55), we get that

xt+1 = xt − αt

(
b

a
LΨc

(x)−H
⊤
Ψo

(
H (1N ⊗ θ∗) + H̃t (1N ⊗ θ∗) + nt −Hxt

))
= xt − αt

(
b

a
LΨc(x)−H

⊤
Ψo

(
H
(
1N ⊗ θ∗ − xt

)
+ H̃t (1N ⊗ θ∗) + nt

))
.

Recalling ηt ∈ RMN from (7) and defining ζt ∈ RN by

ζt = Ψo

(
H
(
1N ⊗ θ∗ − xt

)
+ H̃t (1N ⊗ θ∗) + nt

)
−φo

(
H
(
(1N ⊗ θ∗)− xt

))
algorithm (55) can be written by

xt+1 = xt − αt

(
b

a
Lφc

(xt)−H
⊤
φo

(
H
(
(1N ⊗ θ∗)− xt

))
−H

⊤
ζt +

b

a
ηt

)
, (56)

Since random variable H̃t (1N ⊗ θ∗)+nt satisfies Lemma 6, the rest of the proofs are same as in the Section 4.
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