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Abstract

In this paper we propose consensus-based optimization for saddle point problems (CBO-SP),
a novel multi-particle metaheuristic derivative-free optimization method capable of provably
finding global Nash equilibria. Following the idea of swarm intelligence, the method employs
two groups of interacting particles, one of which performs a minimization over one variable
while the other performs a maximization over the other variable. The two groups constantly
exchange information through a suitably weighted average. This paradigm permits for a
passage to the mean-field limit, which makes the method amenable to theoretical analysis and
it allows to obtain rigorous convergence guarantees under reasonable assumptions about the
initialization and the objective function, which most notably include nonconvex-nonconcave
objectives. We further provide numerical evidence for the success of the algorithm.
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1 Introduction

Optimization problems where the goal is to find the best possible objective value for the worst-case
scenario can be formulated as minimax optimization problems of the form

min
x∈X

max
y∈Y

E(x, y).

To be more specific, given a class of objective functions {E( · , y), y ∈ Y}, the aim is to determine
the argument x∗ ∈ X that leads to the smallest objective value even for the worst-case function
parametrized by y∗ ∈ Y . Such type of problems were originally formulated in two-player zero-sum
game theory [47] but now arise in many areas in mathematics, biology, the social sciences and
especially in economics [34]. Diverse applications may be found in engineering, operational
research, biology, ecology, finance, economics, energy industry, environmental sciences and so
on. In the last few years, minimax optimization has also experienced substantial attention from
the signal processing community, due to its connection to distributed processing [8], robust
transceiver design [26], and communication in the presence of jammers [16]. Moreover, in modern
machine learning, several problems are formulated as minimax optimization, such as the training of
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generative adversarial networks (GANs) [17], multi-agent reinforcement learning [38], fair machine
learning [29], and adversarial training [30]. For example, when training GANs, x models the
parameter of a generator, usually a neural network, whose aim is to generate synthetic data with
the same statistics as of a given training set, while y represents the parameters of a competing
discriminator, who has to distinguish generated data by the generator from data of the true
distribution. Relatedly, in adversarial machine learning, one aims at learning the parameters x of
a model in a robust manner by exposing it during training to possible adversarial attacks modeled
by y. Both examples can be interpreted as a game between two neural networks trained in an
adversarial manner until some kind of equilibrium is reached.

In a two-player zero-sum game, the joint payoff function E(x, y) encodes the gain of the
maximization player whose action is to choose y ∈ Y , as well as the loss of the minimization player
controlling the action x ∈ X . In simultaneous games, each player chooses its action without the
knowledge of the action chosen by the other player, so both players act simultaneously. Conversely,
in sequential games there is an intrinsic order according to which the players take their actions,
meaning that the ordering of the minimization and maximization matters, i.e., it plays a priorly a
role whether is minxmaxy or maxy minx. GANs and adversarial training, for instance, are in fact
sequential games in their standard formulations. In the classical case, where the payoff function E
is convex-concave (i.e., E( · , y) is convex for all y ∈ Y and E(x, · ) is concave for all x ∈ X ), the
intrinsic order of sequential games does not matter under an additional compactness assumption
on either X or Y by the well-known minimax theorems of von Neumann and Sion [45,46]. However,
nowadays, most modern applications in signal processing and machine learning entail the setting
of nonconvex-nonconcave minimax problems, where the minimization and maximization problems
are potentially nonconvex and nonconcave. This is significantly more complicated and available
tool sets and theories are very limited; see the review paper [42].

A well-known notion of optimality originating from game theory is the one of Nash equilibria
(also referred to as saddle points) [35], where neither of the players has anything to gain by
changing only his own strategy. This concept is formalized within the following definition.

Definition 1. A point (x∗, y∗) ∈ X ×Y is called Nash equilibrium or saddle point of a function E
if it holds

E(x∗, y) ≤ E(x∗, y∗) ≤ E(x, y∗) for all (x, y) ∈ X × Y

or, equivalently, if
min
x∈X

max
y∈Y

E(x, y) = E(x∗, y∗) = max
y∈Y

min
x∈X

E(x, y).

To keep the notation concise we write E∗ for E(x∗, y∗) in what follows.

In the convex-concave setting an approximate Nash equilibrium can be found efficiently by variants
of gradient descent-ascent (GDA) algorithms [4,18], which alternate between one or more gradient
decent steps in the x variable and gradient ascent steps in the y coordinate. Indeed, even if E(x, y)
is either concave in y or convex in x, there are available some multi-step GDA algorithms; see
[36, 42] for instance. However, as soon as the payoff function becomes nonconvex-nonconcave,
finding a global equilibrium is in general an NP-hard problem [33]. For this reason, some recent
works such as [9,31] consider a local version of equilibria. More precisely, a point (x∗, y∗) ∈ X ×Y
is called local Nash equilibrium if there exists some δ > 0 such that (x∗, y∗) satisfies Definition 1 in
a δ-neighborhood of (x∗, y∗). Local Nash equilibria can be characterized in terms of the so-called
quasi-Nash equilibrium condition [39] or the first-order Nash equilibrium condition [36]. Even
so, we mention two recent works where special classes of nonconvex-nonconcave payoff functions
are concerned. When E(x, y) is weakly convex in x and weakly concave in y and the associated
Minty variational inequality admits a solution, Liu et al. [25] employ the inexact proximal point
method and prove the first-order convergence, while under the so-called “sufficiently bilinear”
condition, the stochastic Hamiltonian method is investigated by Loizou et al. [28]. In this work,
we shall drop such restrictions and the gradient-dependence in the algorithms and consider a
zero-order (derivative-free) method with rigorous convergence guarantees. Note that the family of
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population-based algorithms, such as Particle Swarm Optimization (PSO) [22], has been adapted
to solve min-max problems as done for instance in [23,24,44]. One straightforward approach is
to treat the min-max problem as a minimization problem and embed the maximization part in
the calculation of the objective values [24]. Alternatively, a multi-PSO strategy [23,44] may be
employed, where the min-max problem is converted into two optimization problems, one being a
maximization problem, and the other a minimization problem. Two PSO algorithms are then used
to solve these two optimization problems, respectively, and they are run independently. Each PSO
is treated as a changing environment of the other PSO, allowing them to cooperate through the
calculation of the objective. Both approaches cannot avoid the necessity of nested loops/circles of
optimization algorithms, which significantly increases the time complexity.

In the present paper we propose a zero-order consensus-based optimization method for finding
the global Nash equilibrium (x∗, y∗) of a smooth objective function E : X × Y → R with X = Rd1

and Y = Rd2 , which is designed to be amenable to a rigorous theoretical convergence analysis,
missing so far in the literature on population-based methods for min-max problems. The dynamics
of the algorithm is inspired by consensus-based optimization, a paradigm for global nonconvex
minimizations, which was introduced by the authors of [40]. Their method employs a system
of interacting particles which explore the energy landscape in order to form a global consensus
about the global minimizer of the objective function as time passes. Taking inspiration from this
concept, let us consider two sets of particles (Xi)N1

i=1 and (Y i)N2
i=1 of potentially different size, one

for minimization, the other for maximization. Each individual particle of either set is formally
described by a stochastic process. In order to achieve consensus about the equilibrium point of E ,
the particles interact through a system of stochastic differential equations (SDEs) of the form

dXi
t = −λ1

(
Xi

t − xYα (ρ̂
N1
X,t)

)
dt+ σ1D

(
Xi

t − xYα (ρ̂
N1
X,t)

)
dBX,i

t , ρ̂N1
X,t =

1
N1

∑N1
i=1 δXi

t
, (1a)

dY i
t = −λ2

(
Y i
t − yXβ (ρ̂N2

Y,t)
)
dt+ σ2D

(
Y i
t − yXβ (ρ̂N2

Y,t)
)
dBY,i

t , ρ̂N2
Y,t =

1
N2

∑N2
i=1 δY i

t
, (1b)

which is complemented by suitable initial conditions Xi
0 ∼ ρX,0 ∈ P(Rd1) for i = 1, . . . , N1 and

Y i
0 ∼ ρY,0 ∈ P(Rd2) for i = 1, . . . , N2 and where

((
BX,i

t

)
t≥0

)
i=1,...,N1

and
((
BY,i

t

)
t≥0

)
i=1,...,N2

are

independent standard Brownian motions in Rd1 and Rd2 , respectively. Moreover, ρ̂N1
X,t and ρ̂N2

Y,t

denote the empirical measures of the particles’ x- and y-positions, respectively. While the dynam-
ics (1a) performs minimization in the x-variable, (1b) performs maximization in the y-coordinate.
This is encoded in the computation of the so-called consensus point

(
xYα (ρ̂

N1
X,t), y

X
β (ρ̂N2

Y,t)
)
, whose

components are given by

xYα (ρ̂
N1
X,t) =

∫
x

ωα

(
x,
∫
y dρ̂N2

Y,t(y)
)∥∥ωα

(
· ,
∫
y dρ̂N2

Y,t(y)
)∥∥

L1(ρ̂
N1
X,t)

dρ̂N1
X,t(x), with ωα(x, y) :=exp(−αE(x, y)), (2a)

yXβ (ρ̂N2
Y,t) =

∫
y

ω−β

( ∫
x dρ̂N1

X,t(x), y
)∥∥ω−β

( ∫
x dρ̂N1

X,t(x), ·
)∥∥

L1(ρ̂
N2
Y,t)

dρ̂N2
Y,t(y), with ω−β(x, y) :=exp(βE(x, y)). (2b)

Attributed to the Laplace principle [32], xYα (ρ̂
N1
X,t) can be interpreted as an approximation of

argmini=1,...,N1
E(Xi

t ,
∫
y dρ̂N2

Y,t(y)) as α → ∞ while yXβ (ρ̂N2
Y,t) ≈ argmaxi=1,...,N2

E(
∫
x dρ̂N1

X,t(x), Y
i
t )

as β → ∞, see, e.g., [14, Equation (7)]. The dynamics of each of the particles in (1) is governed by
two terms. A drift term drags the particles towards the respective component of the instantaneous
consensus point

(
xYα (ρ̂

N1
X,t), y

X
β (ρ̂N2

Y,t)
)
and thereby expectedly improves the position of the particles.

The second term injects stochasticity into the dynamics by diffusing the particles according to a
scaled Brownian motion, which features the exploration of the landscape of the objective. In what
follows we use anisotropic noise, i.e., D( · ) = diag( · ), which is typically more competitive in high
dimensions compared to isotropic noise D( · ) = ∥ · ∥2, see, e.g., [6, 15]. The theoretical results of
this paper, however, can be obtained mutatis mutandis also in the isotropic setting.
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An implementable scheme for a numerical algorithm can be obtained from (1) by a simple
Euler-Maruyama time discretization [19, 41]. For details about the implementation we refer to
Algorithm 1 in Section 5.1.

Remark 2. While the definition of the consensus point in (2) is a natural option, there are two
equally reasonable alternatives. The first possibility is to replace the mean

∫
y dρ̂N2

Y,t(y) in (2a) simply

by y and integrate w.r.t. the joint measure ρ̂Nt . This case would require N1 = N2. Analogously,∫
x dρ̂N1

X,t(x) is substituted by x in (2b). The second option is to use the other component of the

consensus point instead of the respective mean, i.e., yXβ (ρ̂N2
Y,t) replaces

∫
y dρ̂N2

Y,t(y) in (2a) and

xYα (ρ̂
N1
X,t) substitutes

∫
x dρ̂N1

X,t(x) in (2b).
The main motivation for using the variant as in (2) is of theoretical nature. Using either of

the other two alternatives significantly complicates the convergence analysis in Sections 3 and 4.

Understanding the convergence properties of the dynamics (1) can take place either by
investigating the long time behavior of the interacting particle system itself, or by analyzing the
macroscopic behavior of the agent density associated with (1) through a mean-field limit. This
theoretical approach proved successful in [2,3, 5–7,12–15,43] for proving global convergence for
several variants of consensus-based optimization in the setting of minimization. It is moreover
theoretically justified by the mean-field approximation which shows that (ρ̂N1

X,t, ρ̂
N2
Y,t) converges in

some sense to a mean field law (ρX,t, ρY,t) as N1, N2 → ∞. Again, for consensus-based optimization
there exist by now several results in this direction such as [11, 14, 20], which may be extended
to CBO-SP in an immediate manner. In the setting of saddle point problems, the mean-field
dynamics associated with (1) can be described by the self-consistent mono-particle dynamics

dXt = −λ1

(
Xt − xYα (ρX,t)

)
dt+ σ1D

(
Xt − xYα (ρX,t)

)
dBX

t , ρX,t =
∫
dρt( · , y), (3a)

dYt = −λ2

(
Yt − yXβ (ρY,t)

)
dt+ σ2D

(
Yt − yXβ (ρY,t)

)
dBY

t , ρY,t =
∫
dρt(x, · ), (3b)

where ρt = ρ(t) = Law
(
(Xt, Yt)

)
with marginals ρX,t and ρY,t, respectively. In particular, the

measure ρ ∈ C([0, T ],P(Rd1+d2)) weakly satisfies the nonlinear nonlocal Fokker-Planck equation

∂tρt =λ1divx
((
x− xYα (ρ

X
t )
)
ρt
)
+ λ2divy

((
y − yXβ (ρYt )

)
ρt
)

+
σ2
1

2

d1∑
k=1

∂2
xkxk

(
(x− xYα (ρ

X
t ))2kρt

)
+

σ2
2

2

d2∑
k=1

∂2
ykyk

(
(y − yXβ (ρYt ))

2
kρt
)
.

(4)

Contributions. Motivated by the fundamental importance of nonconvex-nonconcave saddle
point problems in various applicational areas and the desire for having numerical algorithms with
rigorous global convergence guarantees, we theoretically analyze in this work a novel consensus-
based optimization method (CBO-SP) capable of tackling saddle point problems. Using mean-field
analysis techniques, we rigorously prove that CBO-SP converges to saddle points as the number
of interacting particles goes to infinity. Our results hold under reasonable assumptions about the
objective function and under certain conditions of well-preparation of the hyperparameters and
the initial data.

1.1 Organization

In Section 2 we first investigate the well-posedness of both the interacting particle system (1) of
CBO-SP and its associated mean-field dynamics (3). Section 3 then presents and discusses the main
theoretical statement of this work concerned with the convergence of the mean-field dynamics (3)
towards saddle points of the objective function E , which are proven in Section 4. Section 5 contains
details about the implementation of the numerical algorithm as well as instructive numerical
examples which illustrate how CBO-SP works, before we conclude the paper in Section 6. In the
GitHub repository https://github.com/KonstantinRiedl/CBOSaddlePoints we provide the
Matlab code implementing CBO-SP.
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2 Well-Posedness of CBO-SP and its Mean-Field Dynamics

In the first part of this section we provide a well-posedness result about the interacting particle
system (1) of CBO-SP, i.e., we show that a process obeying (1) exists and is unique. Afterwards
we also prove the well-posedness of the nonlinear macroscopic SDE (3).

2.1 Well-Posedness of the Interacting Particle System

To keep the notation concise in what follows, let us denote the state vector of the entire particle sys-

tem (1) by Z ∈ C([0,∞),RN1d1+N2d2) with Z(t) = Zt =
(
(X1

t )
T , . . . , (XN1

t )T , (Y 1
t )

T , . . . , (Y N2
t )T

)T
for every t ≥ 0. Equation (1) can then be reformulated as

dZt = −λF(Zt) dt+ σM(Zt) dBt (5)

with (Bt)t≥0 being a standard Brownian motion in RN1d1+N2d2 and definitions

F(Zt) :=
(
F 1,X(Zt)

T , . . . , FN1,X(Zt)
T , F 1,Y (Zt)

T , . . . , FN2,Y (Zt)
T
)T

with F i,X(Zt) =
(
Xi

t − xYα (ρ̂
N1
X,t)

)
and F i,Y (Zt) =

(
Y i
t − yXβ (ρ̂N2

Y,t)
)
,

M(Zt) := diag
(
M1,X(Zt), . . . ,M

N1,X(Zt),M
1,Y (Zt), . . . ,M

N2,Y (Zt)
)

with M i,X(Zt) = D
(
Xi

t − xYα (ρ̂
N1
X,t)

)
and M i,Y (Zt) = D

(
Y i
t − yXβ (ρ̂N2

Y,t)
)
.

The diag operator in the definition of M maps the input matrices onto a block-diagonal matrix
with them as its diagonal. λ and σ are (N1d1 + N2d2) × (N1d1 + N2d2)-dimensional diagonal
matrices, whose first N1d1 entries are λ1 and σ1, and the remaining N2d2 entires are λ2 and σ2,
respectively.

Having fixed the notation, we have the following well-posedness result for the SDE system (5),
respectively (1), which is proven towards the end of this section.

Theorem 3. Let E ∈ C(Rd1+d2) be locally Lipschitz continuous. Then, for N1, N2 ∈ N fixed, the
system of SDEs (1) admits a unique strong solution (Zt)t≥0 for any initial condition Z0 satisfying

E∥Z0∥22 < ∞.

In order to employ the standard result [10, Chapter 5, Theorem 3.1] about the existence and
uniqueness of solutions to SDEs, we need to verify that the coefficients of the SDE are locally
Lipschitz continuous and of at most linear growth. This is inherited from the assumed local
Lipschitz continuity of E as we make explicit in the subsequent lemma.

Lemma 4. Let N1, N2 ∈ N, α, β > 0 and R > 0 be arbitrary. Let z, ẑ ∈ RN1d1+N2d2 be of the

form z = (xT ,yT )T =
(
(x1)T , . . . , (xN1)T , (y1)T , . . . , (yN2)T

)T
and analogously for ẑ. Then, for

any z, ẑ with ∥z∥2 ≤ R and ∥ẑ∥2 ≤ R it holds for any i the bounds∥∥F i,X(z)
∥∥
2
≤ ∥xi∥2 + ∥x∥2 and

∥∥F i,Y (z)
∥∥
2
≤ ∥yi∥2 + ∥y∥2,

and, abbreviating cR(γ) := 4γe2γ∆RE∥∥∥∇zE∥2
∥∥
L∞(BR)

with ∆RE := supz∈BR
E(z)− infz∈BR

E(z),

∥∥F i,X(z)− F i,X(ẑ)
∥∥
2
≤ ∥xi − x̂i∥2 +

(
1 +

cR(α)

N1

√
N1 ∥x̂i∥22 + ∥x̂∥22

)(
∥x− x̂∥2 + ∥y − ŷ∥2

)
,

∥∥F i,Y (z)− F i,Y (ẑ)
∥∥
2
≤ ∥yi − ŷi∥2 +

(
1 +

cR(β)

N2

√
N2 ∥ŷi∥22 + ∥ŷ∥22

)(
∥x− x̂∥2 + ∥y − ŷ∥2

)
.

Proof. To derive the first bound we note that

∥∥F i,X(z)
∥∥
2
=

∥∥∥∥∥∥xi −
N1∑
j=1

xj
ωα

(
xj , 1

N1

∑N1
k=1 y

k
)∑N1

j=1 ωα

(
xj , 1

N1

∑N1
k=1 y

k
)
∥∥∥∥∥∥
2

≤ ∥xi∥2 + ∥x∥2 .
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Analogously the bound for
∥∥F i,Y (z)

∥∥
2
is obtained. For the other estimates we first notice that

F i,X(z)− F i,X(ẑ) =

∑N1
j=1(x

i − xj)ωα

(
xj , 1

N1

∑N1
k=1 y

k
)∑N1

j=1 ωα

(
xj , 1

N1

∑N1
k=1 y

k
) −

∑N1
j=1(x̂

i − x̂j)ωα

(
x̂j , 1

N1

∑N1
k=1 ŷ

k
)∑N1

j=1 ωα

(
x̂j , 1

N1

∑N1
k=1 ŷ

k
)

= I1 + I2 + I3

with I1, I2 and I3 being defined as in what follows. Firstly, for I1 we have

∥I1∥2 :=

∥∥∥∥∥
∑N1

j=1

(
(xi − xj)− (x̂i − x̂j)

)
ωα

(
xj , 1

N1

∑N1
k=1 y

k
)∑N1

j=1 ωα

(
xj , 1

N1

∑N1
k=1 y

k
) ∥∥∥∥∥

2

≤ ∥xi − x̂i∥2 + ∥x− x̂∥2 .

For I2 and I3, on the other hand, let us first notice that it holds∣∣∣∣∣ωα

(
xj ,

1

N1

N1∑
k=1

yk

)
− ωα

(
x̂j ,

1

N1

N1∑
k=1

ŷk

)∣∣∣∣∣
≤ αe−α infz∈BR

E(x,y)∥∥∥∇zE∥2
∥∥
L∞(BR)

(∥∥xj − x̂j
∥∥
2
+

1

N1

N1∑
k=1

∥∥yk − ŷk
∥∥
2

)

and

1∑N1
j=1 ωα

(
xj , 1

N1

∑N1
k=1 y

k
) ≤ 1

N1 infz∈BR
exp(−αE(x,y))

≤ 1

N1e
−α supz∈BR

E(x,y) .

With this we immediately obtain for the norm of I2 the upper bound

∥I2∥2 :=

∥∥∥∥∥∥
∑N1

j=1(x̂
i − x̂j)

(
ωα

(
xj , 1

N1

∑N1
k=1 y

k
)
− ωα

(
x̂j , 1

N1

∑N1
k=1 ŷ

k
))

∑N1
j=1 ωα

(
xj , 1

N1

∑N1
k=1 y

k
)

∥∥∥∥∥∥
2

≤
2αeα∆RE∥∥∥∇zE∥2

∥∥
L∞(BR)

N1

√
N1 ∥x̂i∥22 + ∥x̂∥22

(
∥x− x̂∥2 + ∥y − ŷ∥2

)
,

where we abbreviate ∆RE := supz∈BR
E(x,y)− infz∈BR

E(x,y). Similarly, for I3 we have

∥I3∥2 :=

∥∥∥∥∥∥
N1∑
j=1

(x̂i − x̂j)ωα

(
x̂j ,

1

N1

N1∑
k=1

ŷk

) (∑N1
j=1 ωα

(
x̂j , 1

N1

∑N1
k=1 ŷ

k
)
− ωα

(
xj , 1

N1

∑N1
k=1 y

k
))

∑N1
j=1 ωα

(
x̂j , 1

N1

∑N1
k=1 ŷ

k
)∑N1

j=1 ωα

(
xj , 1

N1

∑N1
k=1 y

k
)
∥∥∥∥∥∥
2

≤
2αe2α∆RE∥∥∥∇zE∥2

∥∥
L∞(BR)

N1

√
N1 ∥x̂i∥22 + ∥x̂∥22

(
∥x− x̂∥2 + ∥y − ŷ∥2

)
.

Combining these bounds yields the result. Analogously we can bound
∥∥F i,Y (z)− F i,Y (ẑ)

∥∥
2
.

Proof of Theorem 3. The statement follows by invoking the standard result [10, Chapter 5, The-
orem 3.1] (see Theorem A.1 in the Appendix) on the existence and pathwise uniqueness of
a strong solution. That Condition (i) of Theorem A.1 about the local Lipschitz continuity
and linear growth of F(Zt) and M(Zt) holds, follows immediately from Lemma 4. To en-
sure Condition (ii) of Theorem A.1 we make use of [10, Chapter 5, Theorem 3.2] (see The-
orem A.2 in the Appendix) and verify that there exists a constant bN1,N2 > 0 such that
−2λZt · F(Zt) + tr(σM(Zt)M(Zt)

TσT ) ≤ bN1,N2(1 + ∥Zt∥22). Indeed, since

−λZt · F(Zt) ≤ λ1

N1∑
i=1

∥∥Xi
t

∥∥
2

∥∥F i,X(Zt)
∥∥
2
+ λ2

N2∑
i=1

∥∥Y i
t

∥∥
2

∥∥F i,Y (Zt)
∥∥
2

≤
(
λ1

(
1 +

√
N1

)
+ λ2

(
1 +

√
N2

))
∥Zt∥22
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and

tr(σM(Zt)M(Zt)
TσT ) = σ2

1

N1∑
i=1

∥∥F i,X(Zt)
∥∥2
2
+ σ2

2

N2∑
i=1

∥∥F i,Y (Zt)
∥∥2
2

≤ 2
(
σ2
1

(
1 +N1

)
+ σ2

2

(
1 +N2

))
∥Zt∥22 ,

the former holds with bN1,N2 defined as the sum of the two former upper bounds.

2.2 Well-Posedness of the Mean-Field Dynamics

In what follows let us furthermore ensure the well-posedness of the mean-field dynamics (3) and (4),
which is the main object of our studies in Section 3. We prove existence and uniqueness of a
solution for objective functions E that satisfies the following conditions.

Definition 5 (Assumptions). In this section we consider functions E ∈ C1(Rd1+d2), which

W1 are bounded in the sense that there exist E ∈ C1(Rd2) and E ∈ C1(Rd1) such that

E(y) ≤ E(x, y) ≤ E(x) for all (x, y) ∈ Rd1+d2 .

W2 are locally Lipschitz continuous in the sense that there exists a constant C1 > 0 such that
for all (x, y), (x′, y′) ∈ Rd1+d2 it holds∣∣E(x, y)− E(x′, y′)

∣∣ ≤ C1

(
1 + ∥x∥2+∥x′∥2+∥y∥2+∥y′∥2

) (
∥x− x′∥2 + ∥y − y′∥2

)
.

W3 have at most quadratic growth in the sense that there exists a constant C2 > 0 obeying

E(x, y)−E(y+sy′) ≤ C2

(
1+∥x∥22+∥y∥22+∥y′∥22

)
for all (x, y), (x′, y′) ∈ Rd1+d2 , s∈ [0, 1],

E(x+sx′)−E(x, y) ≤ C2

(
1+∥x∥22+∥x′∥22+∥y∥22

)
for all (x, y), (x′, y′) ∈ Rd1+d2 , s∈ [0, 1].

For such objectives we have the following well-posedness result for the macroscopic SDE (3)
and its associated Fokker-Planck equation (4).

Theorem 6. Let E satisfy Assumptions W1–W3. Let T > 0, ρ0 ∈ P4(Rd1+d2). Then there
exists a unique nonlinear process (X,Y ) ∈ C([0, T ],Rd1+d2) satisfying (3). The associated law
ρ = Law(X,Y ) has regularity ρ ∈ C([0, T ],P4(Rd1+d2)) and is a weak solution to the Fokker-Planck
equation (4).

Before giving the proof of Theorem 6 let us first provide some auxiliary results.

Lemma 7. Let ϱ, ϱ̂ ∈ P2(Rd1+d2) with
∫∫

∥x∥22+∥y∥22 dϱ(x, y) ≤ K and
∫∫

∥x̂∥22+∥ŷ∥22 dϱ̂(x̂, ŷ) ≤
K. Then, under Assumptions W1 and W3 on E, it holds for any s ∈ [0, 1] that

exp
(
−αE

(∫
ydϱY (y) + s

(∫
ŷdϱ̂Y (ŷ)−

∫
ydϱY (y)

)))∫
ωα

(
x,
∫
ydϱY (y)

)
dϱX(x)

≤ exp (αC2(1 + 2K)) := Cα
K (7a)

and

exp
(
βE
(∫

xdϱX(x) + s
(∫

x̂dϱ̂X(x̂)−
∫
xdϱX(x)

)))∫
ω−β

(∫
xdϱX(x), y

)
dϱX(x)

≤ exp (βC2(1 + 2K)) := Cβ
K . (7b)

Proof. By exploiting Assumption W3 and utilizing Jensen’s inequality, we obtain

exp
(
−αE

(∫
ydϱY (y) + s

(∫
ŷdϱ̂Y (ŷ)−

∫
ydϱY (y)

)))∫
ωα

(
x,
∫
ydϱY (y)

)
dϱX(x)

≤ 1

exp
(
−αC2

(∫
1 + ∥x∥22 +

∥∥∫ ydϱY (y)
∥∥2
2
+
∥∥∫ ŷdϱ̂Y (ŷ)

∥∥2
2
dϱX(x)

)) ≤ exp (αC2(1 + 2K)) ,

where in the last inequality we integrated the moment bounds on ϱ and ϱ̂. A similar estimate
gives (7b) by exploiting Assumption W3.
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Lemma 8. Let E satisfy Assumption W1 and the assumptions of Theorem 6. Let ϱ, ϱ̂ ∈ P4(Rd1+d2)
with

∫∫
∥x∥42+∥y∥

4
2 dϱ(x, y)≤K and

∫∫
∥x̂∥42+∥ŷ∥42 dϱ̂(x̂, ŷ)≤K. Then it holds the stability estimate∥∥xYα (ϱX)− xYα (ϱ̂X)
∥∥
2
+
∥∥yXβ (ϱY )− yXβ (ϱ̂Y )

∥∥
2
≤ c0W2(ϱ, ϱ̂) (8)

with c0 depending only on α, β, C1, C2 and K.

Proof. To keep the notation concise we write EϱY :=
∫
y dϱY (y) and Eϱ̂Y :=

∫
ŷ dϱ̂Y (ŷ) in what

follows. According to the definition of the consensus point in (2a) we have

xYα (ϱX)− xYα (ϱ̂X) =

∫∫
xωα

(
x,EϱY

)∫
ωα

(
x,EϱY

)
dϱX(x)

−
x̂ωα

(
x̂,Eϱ̂Y

)∫
ωα

(
x̂,Eϱ̂Y

)
dϱ̂X(x̂)︸ ︷︷ ︸

=:h(x)−h(x̂)

dπ(x, y, x̂, ŷ),

where π ∈ Π(ϱ, ϱ̂) is any coupling of ϱ and ϱ̂. By adding and subtracting mixed terms, we obtain
the decomposition

h(x)− h(x̂) =
(x− x̂)ωα

(
x,EϱY

)∫
ωα

(
x,EϱY

)
dϱX(x)

+
x̂
(
ωα

(
x,EϱY

)
− ωα

(
x̂,Eϱ̂Y

))∫
ωα

(
x,EϱY

)
dϱX(x)

+

∫∫
ωα

(
x̂,Eϱ̂Y

)
− ωα

(
x,EϱY

)
dπ(x, y, x̂, ŷ)(∫

ωα

(
x,EϱY

)
dϱX(x)

) (∫
ωα

(
x̂,Eϱ̂Y

)
dϱ̂X(x̂)

) x̂ωα

(
x̂,Eϱ̂Y

)
=: I1 + I2 + I3,

where I1, I2 and I3 correspond to the three summands. For I1, by using Assumption W3 and
Lemma 7 with s = 0, we obtain

∥I1∥2 ≤
ωα

(
x,EϱY

)∫
ωα

(
x,EϱY

)
dϱX(x)

∥x− x̂∥2 ≤
e−αE(EϱY )∫

ωα

(
x,EϱY

)
dϱX(x)

∥x− x̂∥2 ≤ Cα
K ∥x− x̂∥2 .

For I2 and I3, on the other hand, let us first notice that for some s, s′ ∈ [0, 1] it holds∣∣ωα

(
x,EϱY

)
− ωα

(
x̂,Eϱ̂Y

)∣∣ ≤ ∣∣ωα

(
x,EϱY

)
− ωα

(
x̂,EϱY

))∣∣+ ∣∣ωα

(
x̂,EϱY

)
− ωα

(
x̂,Eϱ̂Y

)∣∣
= |∂xωα(x+ s(x̂− x),EϱY )| ∥x− x̂∥2 +

∣∣∂yωα(x̂,EϱY + s′(Eϱ̂Y − EϱY ))
∣∣ ∥Eϱ̂Y − EϱY ∥2

≤ αC1e
−αE(EϱY )2

(
1 + ∥x∥2 + ∥x̂∥2 +

∥∥EϱY ∥∥2) ∥x− x̂∥2
+ αC1e

−αE(EϱY +s′(Eϱ̂Y −EϱY ))2
(
1 + ∥Eϱ̂Y ∥2 + ∥x̂∥2 +

∥∥EϱY ∥∥2) ∥Eϱ̂Y − EϱY ∥2

due to Assumptions W2 and W3. With this we immediately obtain the upper bounds

∥I2∥2 ≤ 2αC1C
α
K ∥x̂∥2

(
1 + ∥x∥2 + ∥Eϱ̂Y ∥2 + 2∥x̂∥2 + 2

∥∥EϱY ∥∥2) (∥x− x̂∥2 + ∥Eϱ̂Y − EϱY ∥2) ,
∥I3∥2 ≤ 2αC1(C

α
K)2 ∥x̂∥2

·
∫∫ (

1 + ∥x∥2+ ∥Eϱ̂Y ∥2 +2∥x̂∥2+2
∥∥EϱY ∥∥2) (∥x−x̂∥2+∥Eϱ̂Y −EϱY ∥2) dπ(x, y, x̂, ŷ).

Collecting the latter three estimates for ∥I1∥2 , ∥I2∥2 and ∥I3∥2 eventually gives after an application
of Jensen’s and Cauchy-Schwarz inequality

∥∥xYα (ϱX)− xYα (ϱ̂X)
∥∥
2
≤ C(α,C1, C

α
K ,K)

√∫∫
∥x− x̂∥22 dπ(x, y, x̂, ŷ) + ∥Eϱ̂Y − EϱY ∥22

≤ C(α,C1, C
α
K ,K)

√∫∫
∥x− x̂∥22 + ∥y − ŷ∥22 dπ(x, y, x̂, ŷ),

where the last step is due to Jensen’s inequality.
∥∥yXβ (ϱY )− yXβ (ϱ̂Y )

∥∥
2
can be bounded analogously.

Eventually, optimizing over all couplings π ∈ Π(ϱ, ϱ̂) gives the claim.
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Proof of Theorem 6. The proof is based on the Leray-Schauder fixed point theorem and follows
in the spirit of [5, Theorems 3.1, 3.2].
Step 1: For given functions uX ∈ C([0, T ],Rd1), uY ∈ C([0, T ],Rd2) and measure ρ0 ∈ P4(Rd1+d2),
according to standard SDE theory [1, Chapter 6], we can uniquely solve the SDE system

dX̃t = −λ1

(
X̃t − uXt

)
dt+ σ1D

(
X̃t − uXt

)
dBX

t , (9a)

dỸt = −λ2

(
Ỹt − uYt

)
dt+ σ2D

(
Ỹt − uYt

)
dBY

t (9b)

with (X̃0, Ỹ0) ∼ ρ0 as a consequence of the coefficients being locally Lipschitz continuous and
having at most linear growth. This induces ρ̃t = Law((X̃t, Ỹt)). Moreover, the regularity
of the initial distribution ρ0 ∈ P4(Rd1+d2) allows for a fourth-order moment estimate of the
form E

[
∥X̃t∥42 + ∥Ỹt∥42

]
≤
(
1 + 2E

[
∥X̃0∥42 + ∥Ỹ0∥42

])
ect, see, e.g. [1, Chapter 7]. So, in particular,

ρ̃ ∈ C([0, T ],P4(Rd1+d2)), i.e., supt∈[0,T ]

∫∫
∥x∥42 + ∥y∥42 dρ̃t(x, y) ≤ K for some K > 0.

Step 2: Let us now define the test function space

C2
∗(Rd1+d2) :=

{
ϕ ∈ C2(Rd1+d2) : ∥∇ϕ(x, y)∥2 ≤ Cϕ

(
1 + ∥x∥2 + ∥y∥2

)
for some Cϕ > 0

and max

{
max

k=1,...,d1

∥∥∂2
xkxk

ϕ
∥∥
∞, max

k=1,...,d2

∥∥∂2
ykyk

ϕ
∥∥
∞

}
< ∞

}
.

(10)

For any ϕ ∈ C2
∗(Rd), by Itô’s formula, we can derive

dϕ(X̃t, Ỹt) =∇xϕ(X̃t, Ỹt) ·
(
− λ1

(
X̃t − uXt

)
dt+ σ1D

(
X̃t − uXt

)
dBX

t

)
+∇yϕ(X̃t, Ỹt) ·

(
− λ2

(
Ỹt − uYt

)
dt+ σ2D

(
Ỹt − uYt

)
dBY

t

)
+

σ2
1

2

d1∑
k=1

∂2
xkxk

ϕ(X̃t, Ỹt)
(
X̃t − uXt

)2
k
dt+

σ2
2

2

d2∑
k=1

∂2
ykyk

ϕ(X̃t, Ỹt)
(
Ỹt − uYt

)2
k
dt.

After taking the expectation, applying Fubini’s theorem and observing that the stochastic in-
tegrals E

∫ t
0 ∇xϕ(X̃t, Ỹt) ·D

(
X̃t − uXt

)
dBX

t and E
∫ t
0 ∇yϕ(X̃t, Ỹt) ·D

(
Ỹt − uYt

)
dBY

t vanish as a
consequence of [37, Theorem 3.2.1(iii)] due to the established regularity ρ̃ ∈ C([0, T ],P4(Rd1+d2))
and ϕ ∈ C2

∗(Rd1+d2), we obtain

d

dt
Eϕ(X̃t, Ỹt) = − λ1E∇xϕ(X̃t, Ỹt) ·

(
X̃t − uXt

)
− λ2E∇yϕ(X̃t, Ỹt) ·

(
Ỹt − uYt

)
+

σ2
1

2
E

d1∑
k=1

∂2
xkxk

ϕ(X̃t, Ỹt)
(
X̃t − uXt

)2
k
+

σ2
2

2
E

d2∑
k=1

∂2
ykyk

ϕ(X̃t, Ỹt)
(
Ỹt − uYt

)2
k

as a consequence of the fundamental theorem of calculus. This shows that the measure ρ̃ ∈
C([0, T ],P4(Rd1+d2)) satisfies the Fokker-Planck equation

d

dt

∫
ϕ(x, y) dρ̃t(x, y) = −

∫
λ1∇xϕ(x, y) ·

(
x−uXt

)
+λ2∇yϕ(x, y) ·

(
y−uYt

)
dρ̃t(x, y)

+

∫
σ2
1

2

d1∑
k=1

∂2
xkxk

ϕ(x, y)
(
x−uXt

)2
k
+
σ2
2

2

d2∑
k=1

∂2
ykyk

ϕ(x, y)
(
y−uYt

)2
k
dρ̃t(x, y).

(11)

Step 3: Setting T u :=
(
(xYα (ρ̃X))T , (yXβ (ρ̃Y ))

T
)T ∈ C([0, T ],Rd1+d2) provides the self-mapping

property of the map

T : C([0, T ],Rd1+d2) → C([0, T ],Rd1+d2), u 7→ T u =
(
(xYα (ρ̃X))T , (yXβ (ρ̃Y ))

T
)T

.

By means of Lemma 8 we have∥∥xYα (ρ̃X,t)− xYα (ρ̃X,s)
∥∥
2
+
∥∥yXβ (ρ̃Y,t)− yXβ (ρ̃Y,s)

∥∥
2
≤ c0W2(ρ̃t, ρ̃s) ≲ c0 |t− s|

1
2 ,
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which shows the Hölder-1/2 continuity of T due to the compact embedding C0,1/2([0, T ],Rd1+d2) ↪→
C([0, T ],Rd1+d2). The last inequality, we note that due to Itô’s isometry it holds

W 2
2 (ρ̃t, ρ̃s)≤E

[∥∥X̃t−X̃s

∥∥2
2
+
∥∥Ỹt−Ỹs

∥∥2
2

]
≤4
(
(λ2

1+λ2
2)T+(σ2

1+σ2
2)
)(

K+
∥∥uX∥∥2

L∞+
∥∥uY ∥∥2

L∞

)
|t−s|.

Step 4: Now, for u ∈ C([0, T ],Rd1+d2) satisfying u = ϑT u with ϑ ∈ [0, 1], there exists ρ ∈
C([0, T ],P4(Rd1+d2)) satisfying (11) such that u = ϑ

(
(xYα (ρX))T , (yXβ (ρY ))

T
)T

. As a consequence
of Lemma 7 with s = 0 we can show that

∥ut∥22 ≤ ϑ2

(
(Cα

K)2
∫

∥x∥22 dρX,t(x) + (Cβ
K)2

∫
∥y∥22 dρY,t(y)

)
≤ ϑ2

(
(Cα

K)2 + (Cβ
K)2
)√

K

where we can use K =
(
1+2E

[
∥X̃0∥42+∥Ỹ0∥42

])
ecT as of Step 1. This allows for a uniform estimate

of ∥u∥L∞ < q for q > 0. An application of the Leray-Schauder fixed point theorem concludes the
proof of existence by providing a solution to (3).
Step 5: For uniqueness, suppose we have two fixed points u1 and u2 (as specified in the previous
step) together with corresponding processes ((X̃1)T , (Ỹ 1)T )T and ((X̃2)T , (Ỹ 2)T )T satisfying (9).
Then, taking their difference while keeping the initial conditions and respective Brownian motion
paths, we obtain after an application of Itô’s isometry and employment of Lemma 8 the bound

E
[∥∥X̃1

t − X̃2
t

∥∥2
2
+
∥∥Ỹ 2

t − Ỹ 2
t

∥∥2
2

]
≤ cE

∫ t

0

∥∥X̃1
τ −X̃2

τ

∥∥2
2
+
∥∥Ỹ 1

τ −Ỹ 2
τ

∥∥2
2
+
∥∥xYα (ρ̃1X,τ )−xYα (ρ̃

2
X,τ )

∥∥2
2
+
∥∥yXβ (ρ̃1Y,τ )−yXβ (ρ̃2Y,τ )

∥∥2
2
dτ

≲ cE
∫ t

0

∥∥X̃1
τ −X̃2

τ

∥∥2
2
+
∥∥Ỹ 1

τ −Ỹ 2
τ

∥∥2
2
dτ

with c = 4
(
(λ2

1 + λ2
2)T + (σ2

1 + σ2
2)
)
. Grönwall’s inequality eventually shows uniqueness since

E
[
∥X̃1

t − X̃2
t ∥22 + ∥Ỹ 2

t − Ỹ 2
t ∥22

]
= 0 for all t ∈ [0, T ].

3 Convergence to Saddle Points

Inspired by the theories of mean-field limits for consensus-based optimization methods (see
[11,14,20] for instance), the convergence of particles systems (1) to the mean-field dynamics (3)
follows in a similar way and thus the associated argument is omitted. In this section we present
the main theoretical result of our paper concerned with the convergence of the macroscopic
dynamics (3) towards saddle points of objective functions E that satisfy the following conditions.

Definition 9 (Assumptions). Throughout this section we are interested in objective functions
E ∈ C2(Rd1+d2), for which

A1 there exist two functions E ∈ C1(Rd2) and E ∈ C1(Rd1) such that

E(y) ≤ E(x, y) ≤ E(x)

for all (x, y) ∈ Rd1+d2. The functions E and E shall, for some constant C∇E > 0, satisfy
∥∇E(y)∥2 ≤ C∇E for all y ∈ Rd2 and ∥∇E(x)∥2 ≤ C∇E for all x ∈ Rd1.

A2 there exist constants C∇E , C∇2E > 0 such that

max

{
sup

(x,y)∈Rd1×Rd2

∥∇xE(x, y)∥2 , sup
(x,y)∈Rd1×Rd2

∥∇yE(x, y)∥2

}
≤ C∇E , and

max

{
max

k=1,...,d1

∥∥∂2
xkxk

E
∥∥
∞ , max

k=1,...,d2

∥∥∂2
ykyk

E
∥∥
∞ ,
∥∥ρ (∇2

xE
)∥∥

∞ ,
∥∥ρ (∇2

yE
)∥∥

∞

}
≤ C∇2E ,

where ∥ · ∥∞ denotes the L∞ norm on C
(
Rd1+d2

)
and ρ denotes the spectral radius.
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A3 there exist constants ϵ0, η, ν > 0 such that for each (x, y) ∈ Rd1+d2 satisfying E∗−E(x∗, y) ≤
ϵ0 and E(x, y∗)− E∗ ≤ ϵ0 for some saddle point (x∗, y∗) of E, we have

∥x− x∗∥2 ≤
1

η

(
|E(x, y∗)− E∗|

)ν
and ∥y − y∗∥2 ≤

1

η

(
|E(x∗, y)− E∗)|

)ν
.

Assumption A1 requires that the twice continuously differentiable objective function E is
bounded from below by a function E , which depends only on the y coordinate, and from above by
a function E , which depends only on the x coordinate. Moreover, the first order derivatives of E
and E are assumed to be uniformly bounded.

Assumption A2 is a mere technical regularity assumption about E in terms of the first and
second derivatives. In particular, it requires that the gradients as well as second order derivatives
of E are uniformly bounded, which is however necessary only for theoretical analysis of the long
time behavior of the algorithm. Analogous regularity assumptions may be found in the literature,
see, e.g., [5, 6, 21]. However, as a purely zero-order derivative-free method, our CBO-SP algorithm
only uses point-wise values of the objective function E in practical applications.

Assumption A3 on the other hand should be regarded as a tractability condition on the
landscape of the objective function E . It imposes coercivity of E around saddle points, which
relates the distance from (x∗, y∗) with the value of the objective function. We refer to the discussion
after [14, Remark 9] for related conditions in the machine learning literature.

In order to formulate in Theorem 11 below the result about the convergence of the dynamics (3)
towards saddle points of the objective functions E satisfying the aforementioned assumption, let
us define the variances

VarX(t) = E
∥∥Xt − EXt

∥∥2
2

and VarY (t) = E
∥∥Yt − EYt

∥∥2
2
, (12)

which act as Lyapunov functionals of the dynamics. In addition, we require certain well-
preparedness assumptions about the initial data and parameters. For this reason we introduce the
notations

M̃X(t) := E exp
(
−αE(Xt,EYt)

)
and M̃Y (t) := E exp

(
βE(EXt, Yt)

)
, (13a)

MX(t) := M̃X(t) eαE(EY t) and MY (t) := M̃Y (t) e−βE(EXt), (13b)

MX
∗ (t) := E exp

(
−αE(Xt, y

∗)
)

and MY
∗ (t) := E exp

(
βE(x∗, Yt)

)
, (13c)

where the definitions of MX
∗ and MY

∗ in (13c) may be different for potentially different saddle
points (x∗, y∗) (since our assumptions allow for the existence of multiple such points), meaning, in
particular, that there may be multiple functionals MX

∗ and MY
∗ . This ambiguity is clarified in

Remark 12.

Definition 10 (Well-preparedness of the initial data and parameters). The initial datum (X0, Y0)
and the parameters α, β, λ1, λ2, σ1 and σ2 of the CBO-SP method are well-prepared if

P1 µ1 := 2
(
λ1 − 4σ2

1/MX(0)
)
> 0 and µ2 := 2

(
λ2 − 4σ2

2/MY (0)
)
> 0,

P2 all saddle points (x∗, y∗) lie in supp(ρ0), where ρ0 := Law(X0, Y0) has marginals ρX0 and
ρY0 . Moreover, for any δ > 0, there exists some constant Cδ > 0 depending only on δ such
that it holds

ρX0

({
x : exp

(
−E(x,E(Y0))

)
> exp

(
− min

x∈Rd1

E(x,E(Y0))
)
− δ

})
≥ Cδ,

ρY0

({
y : exp

(
E(E(X0), y)

)
> exp

(
max
y∈Rd2

E(E(X0), y)

)
− δ

})
≥ Cδ

as well as

ρX0
(
{x : exp (−E(x, y∗)) > exp (−E∗)− δ}

)
≥ Cδ,

ρY0
(
{y : exp (E(x∗, y)) > exp (E∗)− δ}

)
≥ Cδ.

11



P3 it holds that

4αC∇2E

(
λ1 +

σ2
1

2

)
VarX(0)

µ1MX(0)
+ 2

√
2αλ2C∇E

√
VarY (0)

µ2

√
MY (0)

≤ 1

8
MX(0),

4βC∇2E

(
λ2 +

σ2
2

2

)
VarY (0)

µ2MY (0)
+ 2

√
2βλ1C∇E

√
VarX(0)

µ1

√
MX(0)

≤ 1

8
MY (0),

P4 it holds for any fixed (x∗, y∗) that

4ασ2
1C∇2E

(
λ1 +

σ2
1

2

)
VarX(0)

µ1MX(0)
+ 8αλ1C∇E

√
VarX(0)

µ1

√
MX(0)

+
√
2αλ2C∇E

√
VarY (0)

µ2

√
MY (0)

≤ 1

8
min

{
MX

∗ (0)eαE(y
∗),M̃X(0)e−αEM

}
,

4βC∇2E

(
λ2 +

σ2
2

2

)
VarY (0)

µ2MY (0)
+ 8βλ2C∇E

√
VarY (0)

µ2

√
MY (0)

+
√
2βλ1C∇E

√
VarX(0)

µ1

√
MX(0)

≤ 1

8
min

{
MY

∗ (0)e
−βE(x∗),M̃Y (0)e−βEM

}
,

where EM depends on (x̃, ỹ) as well as E and E (see Theorem 11 below).

Condition P1 can be satisfied appropriately big choices of λ1 and λ2. Condition P2 is valid
if the initial distribution ρ0 has some mass at the saddle points (x∗, y∗). While this may have a
certain locality flavor, in the case of functions E having multiple saddle points, the condition is
generically satisfied at least for one of them, allowing essentially to obtain a global result. It is
actually sufficient if there is at least one saddle point satisfying Condition P2, in which case the
method is agnostic to saddle points not in supp(ρ0). Conditions P3–P4 on the other hand may
be ensured if the initial variances VarX(0) and VarY (0) are sufficiently small. Well-preparedness
conditions similar to P2–P4 can be found in the literature about a convergence analysis of CBO
for minimization, see, e.g., [5, 6, 12, 21], while we note that the coupling of (X,Y ) due to the
intrinsic difference between games and optimizations prompts us to use some different techniques
in the proof.

We are now ready to state the result about the convergence of the dynamics (3) towards saddle
points of the objective functions E . The proof details are deferred to Section 4.

Theorem 11. Let E satisfy Assumptions A1 and A2 and let (Xt, Yt)t≥0 be a solution to the
SDE (3). Then the following statements hold.

(1) Under the assumption of well-preparedness of the initial datum (X0, Y0) and the param-
eters α, β, λ1, λ2, σ1 and σ2 in the sense of P1–P3, VarX and VarY as defined in (12)
converge exponentially fast to 0 as t → ∞. More precisely, it holds

VarX(t) + VarY (t) ≤ VarX(0)e−µ1t +VarY (0)e−µ2t. (14)

Moreover, there exists some (x̃, ỹ) depending in particular on α and β such that(
EXt,EYt) → (x̃, ỹ

)
and

(
xYα (ρX,t), y

X
β (ρY,t)

)
→ (x̃, ỹ) (15)

as t → ∞.

(2) For any given accuracy ε > 0, there exist some α0, β0 > 0 such that for all α ≥ α0 and
β ≥ β0 the point (x̃, ỹ) from (1) (which may depend on α and β) satisfies

|E(x̃, ỹ)− E∗| ≤ ε as well as E∗ − E(x∗, ỹ) ≤ ε and E(x̃, y∗)− E∗ ≤ ε (16)

provided that the well-preparedness Assumptions P1–P4 hold for such α and β together
with the initial datum (X0, Y0).

12



(3) If E satisfies Assumption A3 with respect to (x̃, ỹ) from (2) with ε ≤ ϵ0, i.e., there exists
some saddle point (x∗, y∗) depending on (x̃, ỹ) such that

∥x̃− x∗∥2 ≤
1

η
(|E(x̃, y∗)− E∗|)ν and ∥ỹ − y∗∥2 ≤

1

η
(|E(x∗, ỹ)− E∗|)ν ,

then we have

∥(x̃, ỹ)− (x∗, y∗)∥2 ≤
2

η
εν (17)

provided that the well-preparedness Assumptions P1–P4 hold for sufficiently large α and β
together with the initial datum (X0, Y0).

The first part (1) of Theorem 11 states that under suitable well-preparedness conditions on the
initialization and the parameters, the mean-field dynamics (3) reaches consensus at some location
(x̃, ỹ), which may depend in particular on α and β, as time evolves. In the second part (2) of the
statement, for sufficiently large α and β as well as under certain well-preparedness conditions,
properties of the corresponding point (x̃, ỹ) are specified which are typical for saddle points,
see (16). These properties eventually allow to conclude in the third part (3) of the result, that
the (x̃, ỹ) from before is arbitrarily close to any saddle point (x∗, y∗) which satisfies the inverse
continuity property A3.

Remark 12. It is worth mentioning at this point that in order to prove (16), any saddle point
(x∗, y∗) satisfying Assumption P4 can be used in the definitions of MX

∗ and MY
∗ . For the proof

of (17), on the other hand, it is necessary to use in the definitions of MX
∗ and MY

∗ a specific
saddle point (x∗, y∗) that satisfies the inverse continuity property A3 with respect to (x̃, ỹ) as well
as Assumption P4, so, in this case, the saddle point (x∗, y∗) does depend on (x̃, ỹ).

4 Proof Details for Section 3

In this section we provide the proof details for the convergence result of the mean-field dynamics (3)
to a saddle point of the objective function E . Sections 4.1–4.3 present individual statements which
are necessary in the proof of our main theorem, Theorem 11, which is then given in Section 4.4.

4.1 Time-Evolution of the Variances VarX and VarY

In order to ensure consensus formation of the mean-field dynamics (3) we show that the vari-
ances VarX(t) = E∥Xt − EXt∥22 and VarY (t) = E∥Yt − EYt∥22 of the particle distribution decay
to 0 as t → ∞. For this we need to analyze their time-evolutions, which is the content of the
following statement.

Lemma 13. Let VarX and VarY be as defined in (12) and let us recall the definitions of MX

and MY from (13b). Then, under Assumption A1, it holds

d

dt
VarX(t) ≤ −2

(
λ1−

2σ2
1

MX(t)

)
VarX(t) and

d

dt
VarY (t) ≤ −2

(
λ2−

2σ2
2

MY (t)

)
VarY (t). (18)

Proof. By means of Itô’s calculus we have

d
∥∥Xt − EXt

∥∥2
2
= 2

(
Xt − EXt

)
· dXt + σ2

1

∥∥Xt − xYα (ρX,t)
∥∥2
2
dt.

Since the appearing stochastic integral vanishes when taking the expectation as a consequence of
the regularity established in Theorem 6 and Assumption A1, we obtain

d

dt
VarX(t) = −2λ1E

[(
Xt − EXt

)
·
(
Xt − xYα (ρX,t)

)]
+ σ2

1E
∥∥Xt − xYα (ρX,t)

∥∥2
2

= −2λ1Var
X(t) + σ2

1E
∥∥Xt − xYα (ρX,t)

∥∥2
2
,

(19)

13



where we used that E
[(
Xt − EXt

)
·
(
EXt − xYα (ρX,t)

)]
= 0. Analogously, we derive

d

dt
VarY (t) = −2λ2Var

Y (t) + σ2
2E
∥∥Yt − yXβ (ρY,t)

∥∥2
2
. (20)

In order to control the terms E
∥∥Xt − xYα (ρX,t)

∥∥2
2
and E

∥∥Yt − yXβ (ρY,t)
∥∥2
2
appearing in (19) and

(20), let us first observe that, for any x̂ ∈ Rd1 , ŷ ∈ Rd2 , Jensen’s inequality gives∥∥x̂− xYα (ρX,t)
∥∥2
2
≤ 1

Eωα(Xt,EYt)

∫
∥x̂− x∥22 ωα(x,EYt) dρX,t(x), (21)

∥∥ŷ − yXβ (ρY,t)
∥∥2
2
≤ 1

Eω−β(EXt, Yt)

∫
∥ŷ − y∥22 ω−β(EXt, y) dρY,t(y). (22)

Exploiting the boundedness of E as of Assumption A1, the two latter bounds in particular imply

E
∥∥Xt−xYα (ρX,t)

∥∥2
2
≤ 2

Eωα(Xt,EYt)

∫ (
E
∥∥Xt − EXt

∥∥2
2
+
∥∥EXt−x

∥∥2
2

)
ωα(x,EYt) dρX,t(x)

≤2VarX(t)+
2

Eωα(Xt,EYt)
e−αE(EY t)VarX(t)≤4

VarX(t)

MX(t)

(23)

and analogously

E
∥∥Yt−yXβ (ρY,t)

∥∥2
2
≤4

VarY (t)

MY (t)
, (24)

which allow to conclude the proof when being inserted into (19) and (20), respectively.

4.2 Time-Evolution of the Functionals MX and MY from (13b)

In the time-evolutions (18) of the variances VarX and VarY there appear the functionals MX and
MY as defined in (13b), which need to be controlled in order to ensure that the decay rates can
be bounded from below by a positive constant, which eventually leads to at least exponential
decay of the variances and therefore consensus of the dynamics (3). We therefore investigate the

evolutions of MX and MY next. To do so, let us recall from (13b) that MX(t) = M̃X(t) eαE(EY t)

and MY (t) = M̃Y (t) e−βE(EXt). We first bound in Lemma 14 the evolutions of M̃X and M̃Y as
defined in (13a), before we use product rule to obtain a lower bound for the evolutions of MX

and MY in Lemma 15.
Let us furthermore remark, that M̃X and M̃Y will later allow to characterize the convergence

point of the dynamics (3).

Lemma 14. Let VarX and VarY be as defined in (12), and M̃X and M̃Y as in (13a). Then,
under Assumptions A1 and A2, it holds

d

dt
M̃X(t) ≥ −4αe−αE(EY t)C∇2E

(
λ1 +

σ2
1

2

)
VarX(t)

MX(t)
− αλ2e

−αE(EY t)C∇E

√
VarY (t)√
MY (t)

(25)

as well as

d

dt
M̃Y (t) ≥ −4βeβE(EXt)C∇2E

(
λ2 +

σ2
2

2

)
VarY (t)

MY (t)
− βλ1e

βE(EXt)C∇E

√
VarX(t)√
MX(t)

. (26)

Proof. With Itô’s formula and chain rule we first note that

dM̃X(t) = −αE
[
exp

(
−αE(Xt,EYt)

)
∇xE(Xt,EYt) · dXt

]
+

σ2
1

2

d1∑
k=1

E
[
exp

(
−αE(Xt,EYt)

)(
Xt−xYα (ρX,t)

)2
k
·
(
α2
(
∂xk

E(Xt,EYt)
)2−α∂2

xkxk
E(Xt,EYt)

)]
dt

− αE
[
exp

(
−αE(Xt,EYt)

)
∇yE(Xt,EYt) · dEYt

]
=: (T1 + T2 + T3) dt,
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where for the definition in the last step we exploited that the appearing stochastic integrals have
expectation 0 as a consequence of the regularity established in Theorem 6 and Assumptions A1
and A2. Noticing that E

[
exp

(
−αE(Xt,EYt)

) (
Xt − xYα (ρX,t)

)]
= 0 and ∇xE(xYα (ρX,t),EYt) is

deterministic, we obtain for T1 the lower bound

T1 = αλ1E
[
exp

(
−αE(Xt,EYt)

)
∇xE(Xt,EYt) ·

(
Xt − xYα (ρX,t)

)]
= αλ1E

[
exp

(
−αE(Xt,EYt)

) (
∇xE(Xt,EYt)−∇xE(xYα (ρX,t),EYt)

)
·
(
Xt − xYα (ρX,t)

)]
≥ −αλ1e

−αE(EY t)C∇2EE
∥∥Xt − xYα (ρX,t)

∥∥2
2
,

where we made use of the assumptions again. For T2 it holds

T2 ≥ −α
σ2
1

2

d1∑
k=1

E
[
exp

(
−αE(Xt,EYt)

) (
Xt − xYα (ρX,t)

)2
k
∂2
xkxk

E(Xt,EYt)
]
dt

≥ −α
σ2
1

2
e−αE(EY t)C∇2EE

∥∥Xt − xYα (ρX,t)
∥∥2
2
.

And, eventually, for T3 we have the following bound from below

T3 = αλ2E
[
exp

(
−αE(Xt,EYt)

)
∇yE(Xt,EYt) ·

(
EYt − yXβ (ρY,t)

)]
≥ −αλ2e

−αE(EY t)C∇E
∥∥EYt − yXβ (ρY,t)

∥∥
2
,

where we used the bounds on the gradient of E required through Assumption A1 in the last step.
Collecting the estimates for T1, T2 and T3, and inserting them into the first equation gives

d

dt
M̃X(t)≥−αe−αE(EY t)C∇2E

(
λ1+

σ2
1

2

)
E
∥∥Xt−xYα (ρX,t)

∥∥2
2
−αλ2e

−αE(EY t)C∇E
∥∥EYt−yXβ (ρY,t)

∥∥
2
.

The two appearing norms can be bounded by recalling (23) and noticing that (22) gives

∥∥EYt − yXβ (ρY,t)
∥∥2
2
≤ 1

Eω−β(EXt, Yt)
eβE(EXt)

∫ ∥∥EYt − y
∥∥2
2
dρY,t(y) ≤

VarY (t)

MY (t)
. (27)

Inserting these two latter estimates allows to continue the former as desired as

d

dt
M̃X(t) ≥ −4αe−αE(EY t)C∇2E

(
λ1 +

σ2
1

2

)
VarX(t)

MX(t)
− αλ2e

−αE(EY t)C∇E

√
VarY (t)√
MY (t)

. (28)

The estimate for d
dtM̃

Y (t) can be obtained analogously.

As mentioned already before we derive in the next lemma the time-evolutions of the functionals
MX and MY as defined in (13b). This is an immediate consequence of product rule and Lemma 14.

Lemma 15. Let VarX and VarY be as defined in (12), and MX and MY as in (13b). Then,
under Assumptions A1 and A2, it holds

d

dt
MX(t) ≥ −4αC∇2E

(
λ1 +

σ2
1

2

)
VarX(t)

MX(t)
− 2αλ2C∇E

√
VarY (t)√
MY (t)

(29)

as well as

d

dt
MY (t) ≥ −4βC∇2E

(
λ2 +

σ2
2

2

)
VarY (t)

MY (t)
− 2βλ1C∇E

√
VarX(t)√
MX(t)

. (30)
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Proof. By product rule we have d
dtM

X(t) = eαE(EY t) d
dtM̃

X(t)+M̃X(t) d
dte

αE(EY t). While the first
summand is controlled by recalling Lemma 14, for the second term we straightforwardly compute

d

dt
eαE(EY t) = αeαE(EY t)∇E(EY t) ·

d

dt
EY t ≥ −αλ2e

αE(EY t)C∇E
∥∥EYt − yXβ (ρY,t)

∥∥
2
,

where we used the bounds on the gradient of E required through Assumption A1 together with
the regularity from Theorem 6. Recalling (27) and putting everything together yields

d

dt
MX(t) ≥ −4αC∇2E

(
λ1 +

σ2
1

2

)
VarX(t)

MX(t)
−
(
1 +MX(t)

)
αλ2C∇E

√
VarY (t)√
MY (t)

,

which gives the claim after noting that MX(t) ≤ 1. The proceeding for d
dtM

Y (t) is identical.

4.3 Time-Evolution of the Functionals MX
∗ and MY

∗ from (13c)

Similarly to the preceding sections we study the time-evolution of two functionals MX
∗ and MY

∗ as
defined in (13c), which aids to prove properties of the limit point of the mean-field dynamics (3).

Lemma 16. Let VarX and VarY be as defined in (12), MX and MY as in (13b), and MX
∗ and

MY
∗ as in (13c). Then, under Assumptions A1 and A2, it holds

d

dt
MX

∗ (t) ≥ −4αλ1e
−αE(y∗)C∇E

√
VarX(t)√
MX(t)

− 2ασ2
1e

−αE(y∗)C∇2E
VarX(t)

MX(t)
(31)

as well as

d

dt
MY

∗ (t) ≥ −4βλ2e
βE(x∗)C∇E

√
VarY (t)√
MY (t)

− 2βσ2
2e

βE(x∗)C∇2E
VarY (t)

MY (t)
. (32)

Proof. With Itô’s formula and chain rule we first note that

dMX
∗ (t) = −αE

[
exp

(
−αE(Xt, y

∗)
)
∇xE(Xt, y

∗) · dXt

]
+

σ2
1

2

d1∑
k=1

E
[
exp

(
−αE(Xt, y

∗)
)
·

·
(
Xt−xYα (ρX,t)

)2
k

(
α2
(
∂xk

E(Xt, y
∗)
)2−α∂2

xkxk
E(Xt, y

∗)
)]

dt =: (T1 + T2) dt,

(33)

where for the definition in the last step we again exploited that the appearing stochastic integral
has expectation 0 as a consequence of the assumptions. For T1 we have the lower bound

T1≥−αλ1e
−αE(y∗)E

[∥∥∇xE(Xt, y
∗)
∥∥
2

∥∥Xt−xYα (ρX,t)
∥∥
2

]
≥−αλ1e

−αE(y∗)C∇E

√
E
∥∥Xt−xYα (ρX,t)

∥∥2
2
.

For T2 it holds

T2 ≥ −α
σ2
1

2

d1∑
k=1

E
[
exp

(
−αE(Xt, y

∗)
) (

Xt − xYα (ρX,t)
)2
k
∂2
xkxk

E(Xt, y
∗)
]
dt

≥ −α
σ2
1

2
e−αE(y∗)C∇2EE

∥∥Xt − xYα (ρX,t)
∥∥2
2
.

Collecting the two former estimates for the terms T1 and T2, and inserting them into (33) gives

d

dt
MX

∗ (t)≥−αλ1e
−αE(y∗)C∇E

√
E
∥∥Xt−xYα (ρX,t)

∥∥2
2
−α

σ2
1

2
e−αE(y∗)C∇2EE

∥∥Xt−xYα (ρX,t)
∥∥2
2
, (34)

where the last expression can be bounded by employing (23). The estimate for d
dtM

Y
∗ (t) can be

obtained analogously.
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4.4 Proof of Theorem 11

Proof of Theorem 11. Step 1a: Let us define the time horizon

T := inf

{
t ≥ 0 : MX(t) <

1

2
MX(0) or MY (t) <

1

2
MY (0)

}
with inf ∅ = ∞, (35)

where MX and MY are as defined in (13b). Obviously, by continuity, T > 0. We claim that
T = ∞, which is shown by contradiction in what follows. Therefore, let us assume T < ∞. Then,
as a consequence of the definition of the time horizon T , the prefactors of VarX(t) and VarY (t)
in Lemma 13 are upper bounded by −µ1 and −µ2, respectively, for all t ∈ [0, T ]. Consequently,
Lemma 13 permits the upper bounds

d

dt
VarX(t) ≤ −µ1Var

X(t) and
d

dt
VarY (t) ≤ −µ2Var

Y (t) (36)

for the time-evolution of the functionals VarX and VarY . The negativity of the rate is ensured by
the well-preparedness condition P1. An application of Grönwall’s inequality gives

VarX(t) ≤ VarX(0)e−µ1t and VarY (t) ≤ VarY (0)e−µ2t. (37)

Let us now derive the contradiction. It follows from Lemma 15 for MX and MY from (13b) that

d

dt
MX(t) ≥ −8αC∇2E

(
λ1 +

σ2
1

2

)
VarX(0)e−µ1t

MX(0)
− 2

√
2αλ2C∇E

√
VarY (0)e−µ2t/2√

MY (0)
,

d

dt
MY (t) ≥ −8βC∇2E

(
λ2 +

σ2
2

2

)
VarY (0)e−µ2t

MY (0)
− 2

√
2βλ1C∇E

√
VarX(0)e−µ1t/2√

MX(0)

(38)

where we used the formerly derived (37) as well as thatMX(t) ≥ MX(0)/2 andMY (t) ≥ MY (0)/2
for all t ∈ [0, T ] by definition of T . Integrating (38) and employing the well-preparedness
condition P3 shows for all t ∈ [0, T ]

MX(t) ≥ MX(0)− 8αC∇2E

(
λ1 +

σ2
1

2

)
VarX(0)

µ1MX(0)
− 4

√
2αλ2C∇E

√
VarY (0)

µ2

√
MY (0)

≥ 3

4
MX(0),

MY (t) ≥ MY (0)− 8βC∇2E

(
λ2 +

σ2
2

2

)
VarY (0)

µ2MY (0)
− 4

√
2βλ1C∇E

√
VarX(0)

µ1

√
MX(0)

≥ 3

4
MY (0).

This entails that there exists δ > 0 such that MX(t) ≥ MX(0)/2 and MY (t) ≥ MY (0)/2 hold
for all t ∈ [T, T + δ] as well, contradicting the definition of T and therefore showing T = ∞.
Consequently (37) as well as

MX(t) ≥ 1

2
MX(0) and MY (t) ≥ 1

2
MY (0) (39)

hold for all t ≥ 0, which proves (14).
Step 1b: With Jensen’s inequality and by making use of the bounds (23) and (24) combined
with (37) and (39) we further observe that

∥∥∥∥ d

dt
EXt

∥∥∥∥
2

≤ λ1E
∥∥Xt − xYα (ρX,t)

∥∥
2
≤ 2λ1

√
VarX(0)e−µ1t/2√

MX(0)
→ 0 as t → ∞,

∥∥∥∥ d

dt
EYt
∥∥∥∥
2

≤ λ2E
∥∥Yt − yXβ (ρY,t)

∥∥
2
≤ 2λ2

√
VarY (0)e−µ2t/2√

MY (0)
→ 0 as t → ∞.
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We therefore have
(
EXt,EYt

)
→ (x̃, ỹ) for some (x̃, ỹ) ∈ Rd1+d2 . In fact, following from (37),(

Xt, Yt
)
→ (x̃, ỹ) and

(
xYα (ρX,t), y

X
β (ρY,t)

)
→ (x̃, ỹ) in L2 thanks to (23) and (24). This shows (15).

Step 2a: It remains to verify (16) for the point (x̃, ỹ). With similar arguments as in Step 1a

let us first derive analogous statements as in (39) for M̃X and M̃Y as defined in (13a) as well
as MX

∗ and MY
∗ as defined in (13c), respectively. To do so, we first notice that (EXt,EYt) is

continuous and since it converges to (x̃, ỹ) as t → ∞, there exists M > 0, potentially depending
on (x̃, ỹ), such that

∥∥EXt

∥∥
2
+
∥∥EYt∥∥2 ≤ M for all t ≥ 0. Since moreover E and E are continuous,

there exists EM > 0 such that −EM ≤ E(EYt) ≤ E(EXt) ≤ EM for all t > 0. Utilizing this together

with (37) and (39) we derive from Lemma 14 for M̃X and M̃Y from (13a) that

d

dt
M̃X(t) ≥ −8αeαEMC∇2E

(
λ1+

σ2
1

2

)
VarX(0)e−µ1t

MX(0)
−
√
2αλ2e

αEMC∇E

√
VarY (0)e−µ2t/2√

MY (0)
,

d

dt
M̃Y (t) ≥ −8βeβEMC∇2E

(
λ2+

σ2
2

2

)
VarY (0)e−µ2t

MY (0)
−
√
2βλ1e

βEMC∇E

√
VarX(0)e−µ1t/2√

MX(0)
.

(40)

Analogously, by using (37) and (39) it follows directly from Lemma 16 for MX
∗ and MY

∗ from
(13c) that

d

dt
MX

∗ (t) ≥ −8αλ1e
−αE(y∗)C∇E

√
VarX(0)e−µ1t/2√

MX(0)
− 4ασ2

1e
−αE(y∗)C∇2E

VarX(0)e−µ1t

MX(0)
,

d

dt
MY

∗ (t) ≥ −8βλ2e
βE(x∗)C∇E

√
VarY (0)e−µ2t/2√

MY (0)
− 4βσ2

2e
βE(x∗)C∇2E

VarY (0)e−µ2t

MY (0)
.

(41)

Integrating (40) and employing the well-preparedness condition P3 shows for all t ≥ 0 that

M̃X(t)≥M̃X(0)−8αeαEMC∇2E

(
λ1+

σ2
1

2

)
VarX(0)

µ1MX(0)
−2

√
2αλ2e

αEMC∇E

√
VarY (0)

µ2

√
MY (0)

≥ 3

4
M̃X(0),

M̃Y (t)≥M̃Y (0)−8βeβEMC∇2E

(
λ2+

σ2
2

2

)
VarY (0)

µ2MY (0)
−2

√
2βλ1e

βEMC∇E

√
VarX(0)

µ1

√
MX(0)

≥ 3

4
M̃Y (0).

Analogously, using (41) together with P3 shows for all t ≥ 0 that

MX
∗ (t)≥MX

∗ (0)−16αλ1e
−αE(y∗)C∇E

√
VarX(0)

µ1

√
MX(0)

−4ασ2
1e

−αE(y∗)C∇2E
VarX(0)

µ1MX(0)
≥ 3

4
MX

∗ (0),

MY
∗ (t)≥MY

∗ (0)−16βλ2e
βE(x∗)C∇E

√
VarY (0)

µ2

√
MY (0)

−4βσ2
2e

βE(x∗)C∇2E
VarY (0)

µ2MY (0)
≥ 3

4
MY

∗ (0).

Thus, in particular it holds for all t ≥ 0

M̃X(t) ≥ 1

2
M̃X(0) and M̃Y (t) ≥ 1

2
M̃Y (0) (42)

as well as

MX
∗ (t) ≥ 1

2
MX

∗ (0) and MY
∗ (t) ≥

1

2
MY

∗ (0). (43)

Step 2b: By Chebyshev’s inequality, for each δ > 0 it holds that

ρt({∥(x− x̃, y − ỹ)∥2 ≥ δ}) ≤ 2

δ2
(
VarX(t) + VarY (t) +

∥∥EXt − x̃
∥∥2
2
+
∥∥EYt − ỹ

∥∥2
2

)
→ 0, as t → ∞.
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Thus, the pair (Xt, Yt) converges to (x̃, ỹ) in probability as t tends to infinity. Recall the convergence(
EXt,EYt

)
→ (x̃, ỹ), the continuity of E , and the fact that for all t ≥ 0,

exp(−αE(Xt,EYt)) ≤ exp(αEM ), a.s.

By the dominated convergence theorem, one can pass to the limit in t to obtain limt→∞ M̃X(t) =

exp (−αE(x̃, ỹ)). Analogously, one may get M̃Y (t) → exp (βE(x̃, ỹ)) as t → ∞. Using this when
taking the limit t → ∞ in the bounds (42) after applying the logarithm and multiplying both
sides with −1/α and 1/β, respectively, we obtain

E(x̃, ỹ) = lim
t→∞

(
− 1

α
log M̃X(t)

)
≤ 1

α
log 2− 1

α
log M̃X(0),

E(x̃, ỹ) = lim
t→∞

(
1

β
log M̃Y (t)

)
≥ − 1

β
log 2 +

1

β
log M̃Y (0).

(44)

Due to the first set of well-preparedness conditions from P2, the Laplace principle in form of
Lemmas A.3 and A.4 when choosing µα as the law of the initial data X0 and µβ as the law of Y0,
now allows to choose α ≥ (2 log 2)/ε and β ≥ (2 log 2)/ε large enough such that for given ε > 0 it
moreover holds

− 1

α
log M̃X(0)− min

x∈Rd1

E(x,EY0) = − 1

α
logE exp

(
−αE(X0,EY0)

)
− min

x∈Rd1

E(x,EY0) ≤ ε/2,

− 1

β
log M̃Y (0) + max

y∈Rd2

E(EX0, y) = − 1

β
logE exp

(
βE(EX0, Y0)

)
+ max

y∈Rd2

E(EX0, y) ≤ ε/2.
(45)

Notice here that we well-prepare α and β simultaneously with the initial data (X0, Y0) (therewith
(X0, Y0) depends on α, β). However due to the well-preparedness conditions P2, α and β can still
be taken sufficiently large as ensured in Lemmas A.3 and A.4.

Such choices of parameters in Equation (44) immediately give

E(x̃, ỹ) ≤ min
x∈Rd1

E(x,EY0) + ε and E(x̃, ỹ) ≥ max
y∈Rd2

E(EX0, y)− ε (46)

and consequently

E(x̃, ỹ) ≤ min
x∈Rd1

max
y∈Rd2

E(x, y) + ε and E(x̃, ỹ) ≥ max
y∈Rd2

min
x∈Rd1

E(x, y)− ε, (47)

which proves the first part of (16). Secondly, following an analogous argumentation for MX
∗ and

MY
∗ as defined in (13c), we obtain the remainder of (16). More precisely, we first note that, as

t → ∞,
MX

∗ (t) → exp (−αE(x̃, y∗)) and MY
∗ (t) → exp (βE(x∗, ỹ)) . (48)

Taking now the limit t → ∞ in (43) after suitable algebraic manipulations, we obtain

E(x̃, y∗) = lim
t→∞

(
− 1

α
logMX

∗ (t)

)
≤ 1

α
log 2− 1

α
logMX

∗ (0),

E(x∗, ỹ) = lim
t→∞

(
1

β
logMY

∗ (t)

)
≥ − 1

β
log 2 +

1

β
logMY

∗ (0).

(49)

A potentially larger choice of α and β allows (again by the Laplace principle in form of Lemmas A.3
and A.4, which applies due to the second set of well-preparedness conditions from P2) to guarantee

− 1

α
logMX

∗ (0)− min
x∈Rd1

E(x, y∗) = − 1

α
logE exp

(
−αE(X0, y

∗)
)
− min

x∈Rd1

E(x, y∗) ≤ ε/2,

− 1

β
logMY

∗ (0) + max
y∈Rd2

E(x∗, y) = − 1

β
logE exp

(
βE(x∗, Y0)

)
+ max

y∈Rd2

E(x∗, y) ≤ ε/2
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for the specified ε. Such choices of parameters in Equation (49) immediately give

E(x̃, y∗) ≤ min
x∈Rd1

E(x, y∗) + ε and E(x∗, ỹ) ≥ max
y∈Rd2

E(x∗, y)− ε , (50)

which completes the proof of (16).
Step 3: Finally, under the inverse continuity property A3 and making use of what we just proved,
we additionally obtain (17), which concludes the proof.

5 Implementation of CBO-SP and Numerical Experiments

5.1 Numerical Algorithm and Implementation

In order to implement and run CBO-SP on a computer, we first fix a discrete time step size ∆t
as well as a number of iterations K or define any other suitable stopping criterion. Then, by
discretizing the interacting particle system (1) via an Euler-Maruyama time discretization [19, 41]
as

X̂i
k+1 = X̂i

k − λ1∆t
(
X̂i

k − xYα (ρ̂
N1
X,k)

)
+ σ1D

(
X̂i

k − xYα (ρ̂
N1
X,k)

)
BX,i

k , (51a)

Ŷ i
k+1 = Ŷ i

k − λ2∆t
(
Ŷ i
k − yXβ (ρ̂N2

Y,k)
)
+ σ2D

(
Ŷ i
k − yXβ (ρ̂N2

Y,k)
)
BY,i

k , (51b)

where ρ̂N1
X,k and ρ̂N2

Y,k denote the empirical averages of the iterates (X̂i
k)i=1,...,N1 and (Ŷ i

k )i=1,...,N2

and where

x̂Yα (ρ̂
N1
X,k) =

∫
x

ωα

(
x,
∫
y dρ̂N2

Y,k(y)
)∥∥ωα

(
· ,
∫
y dρ̂N2

Y,k(y)
)∥∥

L1(ρ̂
N1
X,k)

dρ̂N1
X,k(x), (52a)

ŷXβ (ρ̂N2
Y,k) =

∫
y

ω−β

( ∫
x dρ̂N1

X,k+1(x), y
)∥∥ω−β

( ∫
x dρ̂N1

X,k+1(x), ·
)∥∥

L1(ρ̂
N2
Y,k)

dρ̂N2
Y,k(y), (52b)

we obtain the implementable iterative scheme, which is used in the formulation of Algorithm 1.
Moreover,

(
(BX,i

k )k=1,...,K

)
i=1,...,N1

and
(
(BY,i

k )k=1,...,K

)
i=1,...,N2

in (51) are independent Gaussian

vectors in Rd1 and Rd2 , respectively, with covariance matrix ∆tId. Note that in Equation (52b)
we could also use the old iterates ρ̂N1

X,k instead of the new ones ρ̂N1
X,k+1 for the computation.

Algorithm 1 CBO-SP

Input: Objective E , discrete time step size ∆t, number of iteratesK, parameters λ1, λ2, σ1, σ2, α, β,
number of particles N1 and N2, initialization ρ0

Output: Approximation
(
x̂Yα (ρ̂

N1
X,k), ŷ

X
β (ρ̂N2

Y,k)
)
of the saddle point (x∗, y∗) of E

1: Generate the particles’ initial positions (Xi
0)i=1,...,N1 and (Y i

0 )i=1,...,N2 according to the initial
laws ρX,0 and ρY,0, respectively. Set k = 0.

2: while k ≤ K or stopping criterion not fulfilled
3: Compute the component x̂Yα (ρ̂

N1
X,k) of the consensus point according to (52a).

4: Update the X-positions by computing
(
X̂i

k+1

)
i=1,...,N1

according to (51a).

5: Compute the component ŷXβ (ρ̂N2
Y,k) of the consensus point according to (52b).

6: Update the Y -positions by computing
(
Ŷ i
k+1

)
i=1,...,N2

according to (51b).

7: Check the stopping criterion and break if fulfilled. If not, continue and set k = k + 1.
8: end while
9: Compute consensus point

(
x̂Yα (ρ̂

N1
X,k), ŷ

X
β (ρ̂N2

Y,k)
)
as final approximation to saddle point (x∗, y∗).
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5.2 Illustrative Numerical Experiments for CBO-SP

To visualize the behavior of the CBO-SP algorithm in practice, we depict in Figure 1 below
snapshots of the positions of the particles for four different types of saddle point functions, which
are plotted in the first row of the figure. The experiments include two nonconvex-nonconcave
examples, which is in general the setting of particular interest in modern applications. We observe

(a) The objective function
E(x, y) = x2 − y2

(b) The objective function
E(x, y) = R(x)−R(y)

(c) The objective function
E(x, y) = x2 − 2xy − y2

(d) The objective function
E(x, y) = R(x)−2xy−R(y)

(a0) Initial configuration of
the particles for (a)

(b0) Initial configuration of
the particles for (b)

(c0) Initial configuration of
the particles for (c)

(d0) Initial configuration of
the particles for (d)

(a1) Positions of the particles
at t = 2 for (a)

(b1) Positions of the parti-
cles at t = 2 for (b)

(c1) Positions of the particles
at t = 2 for (c)

(d1) Positions of the parti-
cles at t = 2 for (d)

(a2) Final configuration of
the particles for (a)

(b2) Final configuration of
the particles for (b)

(c2) Final configuration of
the particles for (c)

(d2) Final configuration of
the particles for (d)

Figure 1: Illustration of the dynamics of CBO-SP when searching the global Nash equilibrium of four different saddle
point functions plotted in (a)–(d) in d = 1, where R(x) =

∑d
k=1 x

2
k + 5

2

(
1− cos(2πxk)

)
is the Rastrigin function.

Each column visualizes the positions of the N = 20 particles when running CBO-SP with parameters α = β = 1015,
λ1 = λ2 = 1, σ1 = σ2 =

√
0.1 and time step size ∆t = 0.1 at three different points in time (t = 0, t = 2 and

t = T = 4). The particles are sampled initially from ρ0 ∼ N (2, 4)×N (2, 4).

that in all cases (also in case of different initializations) the saddle point is found fast and reliably.
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5.3 Solving a Quadratic Game with CBO-SP

To demonstrate the practicability of CBO-SP, we solve a strongly-monotone quadratic game [27,
Section 5] of the form

min
x∈Rd1

max
y∈Rd2

1

n

n∑
i=1

1

2
xTAix+ xTBiy −

1

2
xTCiy (53)

with sample size n = 100 and for various dimensions d1 and d2. The matrices Bi ∈ Rd1×d2

have random Gaussian entries and the positive definite matrices Ai ∈ Rd1×d1 and Ci ∈ Rd2×d2

are of the form Ai = ÃT
i Ãi and Ci = C̃T

i C̃i with Ãi ∈ Rd1×d1 and C̃i ∈ Rd2×d2 having random
Gaussian entries. We employ CBO-SP with parameters α = β = 1015, λ1 = λ2 = 1, σ1 = σ2 = 2
using N ∈ {40, 80, 120, 200} particles, and with time horizon T = 100 and discrete time step
size ∆t = 0.1. The particles are sampled initially from ρ0 ∼ N (4, 2Id)×N (4, 2Id) (i.e., they are
initialized substantially far from the saddle point). We depict in Table 1 below the success rates,
average ℓ∞-error and average run time of CBO-SP algorithm computed on the basis of 100 runs.
A run is considered successful if the obtained solution has an accuracy of 10−3 w.r.t. the ℓ∞-norm.
In brackets, we indicate the average (over the runs) runtime in milliseconds (ms) as well as the
average (over the runs) ℓ∞-error.

Table 1: Success rates, average runtime (in ms) and average ℓ∞-error of the CBO-SP algorithm when solving a quadratic
game as specified in (53) for different dimensions d1 and d2, and with different numbers of particles N . All results are
computed on the basis of 100 runs of the algorithm.

N = 40 N = 80 N = 120 N = 200

d1 = 20, d2 = 8 31% (32ms, 1.5 · 10−2) 100% (50ms, 2.4 · 10−7) 100% (182ms, 6.1 · 10−8) 100% (229ms, 2.9 · 10−8)

d1 = 20, d2 = 20 7% (41ms, 3.0 · 10−2) 100% (63ms, 4.5 · 10−7) 100% (339ms, 3.7 · 10−8) 100% (462ms, 2.4 · 10−8)

d1 = 40, d2 = 8 0% (154ms, 1.1) 1% (190ms, 3.6 · 10−2) 53% (226ms, 2.6 · 10−3) 100% (418ms, 4.8 · 10−5)

d1 = 40, d2 = 20 0% (162ms, 1.2) 0% (285ms, 4.9 · 10−2) 52% (436ms, 3.8 · 10−3) 100% (539ms, 8.2 · 10−5)

d1 = 40, d2 = 40 0% (330ms, 1.9) 0% (336ms, 1.2 · 10−1) 25% (421ms, 5.4 · 10−3) 100% (606ms, 7.9 · 10−5)

We observe that with already moderately many particles, the CBO-SP algorithm is capable of
consistently finding the desired saddle point for relatively high-dimensional minimax problems.

Experiments in much higher dimensions and more applied settings coming for instance from
economics or arising when training GANs are left to future and more experimental research, which
focuses on benchmarking rather than providing rigorous convergence guarantees.

6 Conclusions

In this paper we propose consensus-based optimization for saddle point problems (CBO-SP) and
analyze its global convergence behavior to global Nash equilibria. As apparent from the proof,
our technique requires the equilibrium to satisfy the saddle point property, i.e., that minxmaxy
and maxy minx coincide. We leave to further research the extension of the results to sequential
games, where the latter condition does not hold. This is in particular relevant in, for instance, the
training of GANs, which are formulated as non-simultaneous games.
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optimization on the sphere. SIAM Journal on Optimization, 32(3):1984–2012, 2022.

[14] M. Fornasier, T. Klock, and K. Riedl. Consensus-based optimization methods converge
globally. arXiv:2103.15130, 2021.

[15] M. Fornasier, T. Klock, and K. Riedl. Convergence of anisotropic consensus-based optimization
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A Appendix

A.1 Existence and Uniqueness of Solutions to SDEs

For the sake of a self-consistent presentation, let us recall two results from [10] about the existence
and pathwise uniqueness of a strong solution of a SDE of the form

Zt = Z0 +

∫ t

0
b(Zs) ds+

∫ t

0
σ(Zs) dBs. (⋆)

These results are used in the proof of Theorem 3. Note that here we adopted the notation of [10],
i.e., in our setting we have Zt = Zt as well as b(Zt) = −λF(Zt) and σ(Zt) = σM(Zt).
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Theorem A.1 ([10, Chapter 5, Theorem 3.1]). Suppose that

(i) for any n < ∞ we have |bi(z)− bi(z
′)| ≤ Kn |z − z′| and |σij(z)− σij(z

′)| ≤ Kn |z − z′|
for |z| , |z′| ≤ n,

(ii) there is a constant A < ∞ and a function φ(z) ≥ 0 so that if Zt is a solution of (⋆), then
e−Atφ(Zt) is a local supermartingale.

Then (⋆) has a strong solution and pathwise uniqueness holds.

Theorem A.2 ([10, Chapter 5, Theorem 3.2]). Let a = σσT and suppose that
∑d

i=1 2zibi(z) +
aii(z) ≤ B(1 + |z|2). Then (ii) in Theorem A.1 holds with A = B and φ(z) = 1 + |z|2.

A.2 The Laplace Principle

Lemma A.3. For any fixed y ∈ Rd2 and any δ > 0, define the set

Sy,δ =

{
x ∈ Rd1 : exp (−E(x, y)) > exp

(
− min

x∈Rd1

E(x, y)
)
− δ

}
.

Let {µα}α≥1 be a family of measures in P(Rd1) and assume that there exists some constant Cδ > 0
depending only on δ such that µα(Sy,δ) ≥ Cδ for all α ≥ 1. Then it holds

lim
α→∞

− 1

α
log

(∫
Rd1

exp (−αE(x, y)) dµα(x)

)
= min

x∈Rd1

E(x, y).

Proof. We first notice that by definition of the set Sy,δ it holds(∫
Rd1

exp (−αE(x, y)) dµα(x)

) 1
α

≥

(∫
Sy,δ

(
exp

(
−minx∈Rd1 E(x, y)

)
− δ
)α

dµα(x)

) 1
α

=
(
exp

(
−minx∈Rd1 E(x, y)

)
− δ
)
µα(Sy,δ)

1
α

≥
(
exp

(
−minx∈Rd1 E(x, y)

)
− δ
)
C

1
α
δ

→ exp
(
−minx∈Rd1 E(x, y)

)
− δ as α → ∞.

Thus, for any δ > 0, we have

lim inf
α→∞

(∫
Rd1

exp (−αE(x, y)) dµα(x)

) 1
α

≥ exp
(
−minx∈Rd1 E(x, y)

)
− δ.

On the other hand, clearly

lim sup
α→∞

(∫
Rd1

exp (−αE(x, y)) dµα(x)

) 1
α

≤ exp
(
−minx∈Rd1 E(x, y)

)
.

Since δ was arbitrary, this implies

lim
α→∞

(∫
Rd1

exp (−αE(x, y)) dµα(x)

) 1
α

= exp
(
−minx∈Rd1 E(x, y)

)
,

giving the result after taking the logarithm on both sides.

Analogously we obtain the following.

Lemma A.4. For any fixed x ∈ Rd1 and any δ > 0, define the set

Sx,δ =

{
y ∈ Rd2 : exp (E(x, y)) > exp

(
max
y∈Rd2

E(x, y)
)
− δ

}
.

Let {µβ}β≥1 be a family of measures in P(Rd2) and assume that there exists some constant Cδ > 0
depending only on δ such that µβ(Sx,δ) ≥ Cδ for all β ≥ 1. Then it holds

lim
β→∞

1

β
log

(∫
Rd2

exp (βE(x, y)) dµβ(y)

)
= max

y∈Rd2

E(x, y).
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