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Abstract

This work is focused on the modelling of signal propagations in myelinated axons to characterize the functions
of the myelin sheath in the neural structure. Based on reasonable assumptions on the medium properties, we
derive a two-dimensional neural-signaling model in cylindrical coordinates from the time-harmonic Maxwell’s
equations. The well-posedness of model is established upon Dirichlet boundary conditions at the two ends of
the neural structure and the radiative condition in the radial direction of the structure. Using the perfectly
matched layer (PML) method, we truncate the unbounded background medium and propose an approximate
problem on the truncated domain. The well-posedness of the PML problem and the exponential convergence of
the approximate solution to the exact solution are established. Numerical experiments based on finite element
discretization are presented to demonstrate the theoretical results and the efficiency of our methods to simulate
the signal propagation in axons.

Keywords: Neural signal transmission, myelin sheath, Maxwell equation, perfectly-matched-layer

1 Introduction
The problem of the signal transmission in neural system is one of the most fundamental and important issues

in neuroscience. Axons are the primary transmission lines of the nervous system and can be characterized into two
types: myelinated and unmyelinated axons. It is studied in [16] that generation of new myelin is important for
learning motor skills. For the myelinated axons, the myelin sheath is a layer of membrane wrapped around the
axons and gaps in the myelin sheath, known as nodes of Ranvier, occur at evenly spaced intervals. It is understood
that the functions of the myelin sheath and nodes of Ranvier are to insulate and cause the saltatory conduction
of the action potential. However, it seems extremely difficult to experimentally observe the signal propagation in
axon and quantitatively or qualitatively describe the effects of myelin sheath and nodes of Ranvier. Therefore, it has
become more and more important to derive and investigate efficient mathematical and physical models to numerically
simulate the transmission of signal in axon.

In open literature, the transmission of signals in axon is commonly treated by an equivalent circuit, see for
example [10]. However, the model of an equivalent circuit, wherein frequencies in the kHz range is considered, is not
consistent with the fact that biological macromolecules usually exhibit collective vibrations in the electromagnetic
field in the infrared to terahertz (THz) spectral range [13,17,20] and furthermore, the roles of myelin features remain
poorly understood. Recently, a novel dielectric waveguide model is proposed in [14] to explain the mechanism of
infrared and terahertz neurotransmission through myelinated nerves. It is experimentally demonstrated in [14] that,
at a certain THz/infrared frequency region, myelin exhibits a significantly higher refractive index than axons which
supports the hypothesis that the myelin sheath serves as a dielectric waveguide. Then based on an electromagnetic
waveguide model, the explicit waveguide modes can be calculated by assuming that an infinite axon is completely
wrapped by the myelin sheath without any node of Ranvier. But this analytic method is not applicable for the
case of finite myelinated axon with nodes of Ranvier, for which, only a schematic illustration has been provided.
The numerical simulation of analogous waveguide models for myelinated axon has also been considered in [21, 22].
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However, these results still can not effectively characterize the functions of myelin sheath, and moreover, there is
no mathematical and numerical analysis, for example, the well-posedness and convergence, for the considered model
and associated numerical solver.

Inspired by [14,21,22], this paper devotes to proposing a novel waveguide problem of the electromagnetic waves to
model the signal transmission in myelinated axon and providing solid mathematical analysis and numerical demon-
stration for the deduced model, for which the corresponding numerical analysis is left for future works. As shown in
Figure 1(a), the signal propagation in the integrated neuron is quite complicated. Given an electromagnetic signal at
one end of the axon, the propagation interested in this work is only restricted to the axon region as well as the myelin
sheath. As shown in Figure 1(b) in cylindrical coordinates, let D1, D2 denote the domain of axon and myelin sheath,
respectively. Note that the skin depth is much larger than the neurological scale. Thus, exterior to the myelinated
axon, an infinite domain Dc of fluid is assumed, see Figure 1(b). In addition, the cross section of myelinated axon
can be viewed as a concentric structure. Then from the classical Maxwell’s equations and assuming the wave fields
to be always perpendicular to the direction of propagation (i.e., the length direction of axon) and independent of the
angle variable, new time-harmonic TM and TE models in cylindrical coordinates, are introduced and appropriate
boundary conditions are imposed at the end of axon Γleft, Γright for approximation. Given an incident field on Γleft, a
zero mixed Dirichlet and Neumann boundary condition on Γright is considered. The discussion of the corresponding
time-dependent model remains individually interesting and is left for future works.

(a) (b)

Figure 1: Left: a cartoon representation of a neuron with a myelinated axon [1]. Right: geometric settings for the
mathematical model.

Then the main theoretical part of this work lies in proving the well-posedness of the derived electromagnetic
problem and the convergence of the solution to an approximate problem resulting from the perfectly-matched-layer
(PML) truncation. In both mathematical and engineering communities, related wave propagation problems in
electromagnetics, as well as in acoustics and elastodynamics, have been extensively investigated [7, 12, 18], wherein
the Dirichlet-to-Neumann (DtN) map [8, 9, 11] or the PML stretching [2, 4, 6] is commonly utilized to truncate the
unbounded domain. For the newly derived electromagnetic problem, an exact DtN map and appropriate Sobolev
spaces in cylindrical coordinates are introduced to prove the well-posedness of the corresponding variational problem
as well as an inf-sup condition related to the weak formulation. The DtN truncated problem can be used for the
numerical implementation, however, the DtN map is defined as an infinite series which is nonlocal and requires to
be truncated into a finite sum in practical computation. Compared with the DtN technique, The PML method, first
proposed by Bérenger for solving the time-dependent Maxwell equations [3] and considered in [21, 22] for different
models of nerve signal propagation, takes advantages in numerical implementation and provides a viable alternative
for solving the considered problem. Relying on the error estimate between the exact DtN map and the PML
equivalent DtN map, the well-posedness and exponential convergence of the solution to the PML truncated problem
are established. Then numerical experiments are reported to both verify our theoretical results and provide efficient
simulation results to characterize the signal transmission phenomenon in axon, especially, the existence of myelin
sheath can gather the electromagnetic wave to propagate mainly in myelin sheath.

The remainder of this paper is organized as follows. Section 2 proposes an electromagnetic scattering problem in
cylindrical coordinates to model the signal transmission in myelinated axon. Then the well-posedness of the problem
in appropriate Sobolev space is investigated in Section 3 by utilizing an exact DtN map to reduce the original problem
onto a bounded domain. The PML stretching technique is introduced in Section 4 and then the well-posedness of the
PML truncated problem, as well as the exponential convergence of the solutions with respect to PML parameters,
is proved. Numerical experiments are presented in Section 5 to demonstrate the accuracy of the numerical solver
and the efficiency of the mathematical model, especially, to provide an intuitive numerical description for the signal
transmission in myelinated axon.
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2 Mathematical model
Following the discussion in introduction, as shown in Figure 1(b), this section devotes to deriving a new electro-

magnetic problem in cylindrical coordinates to model the signal propagation in axon.

2.1 Governing equations
We begin with the Maxwell’s equations given by

−iωµH + curlE = 0, (2.1a)
iωεE + curlH = σE. (2.1b)

Here, ε, µ and σ denote the electric permittivity, the magnetic permeability, and the electric conductivity, respectively
and we assume that µ is a positive constant and ε, σ are nonnegative and piece-wise constant. Compared with the
axon, the electric conductivity in myelin sheath and water can be ignored and thus, σ = 0 in D2 and Dc. By
eliminating H or E, the second-order equation

curl curlE − (k2 + iωµσ)E = 0, (2.2)

holds for the electric field E where k = ω
√
εµ, and the second-order equation

curl
[
(k2 + iωµσ)−1 curlH

]
−H = 0. (2.3)

holds for the magnetic field H.
Since axons usually maintain a constant radius, we next consider the Maxwell’s equations in cylindrical coordinates

and write
E = Err̂ + r−1Eθθ̂ + Ezẑ, H = Hrr̂ + r−1Hθθ̂ +Hzẑ, (2.4)

where r̂, θ̂, ẑ are the unit vectors in the positive r-, θ-, and z-directions, respectively. Then for the TM mode, (2.2)
is reduced to

r
∂

∂r

(
1

r

∂Eθ
∂r

)
+
∂2Eθ
∂z2

+ (k2 + iωµσ)Eθ = 0. (2.5)

Similarly, for the TE mode, we can derive from (2.3) that

r
∂

∂r

(
1

(k2 + iωµσ)r

∂Hθ

∂r

)
+

∂

∂z

(
1

k2 + iωµσ

∂Hθ

∂z

)
+Hθ = 0. (2.6)

Denote Ω = (0,+∞)× (0, Z). Then in Dc where σ = 0, both (2.5) and (2.6) take a simplified form as follows:

r
∂

∂r

(
1

r

∂u

∂r

)
+
∂2u

∂z2
+ k2u = 0, u = Eθ or Hθ. (2.7)

2.2 Boundary and radiation conditions
To complete the modeling of signal propagation in axon, we impose the boundary conditions

u(r, 0) = u0(r) on Γleft,
∂u
∂z (r, Z) = uN (r) on Γ1

right := Γright ∩ ∂D1,

u(r, Z) = u1(r) on Γcright := Γright ∩ ∂Dc,

(2.8)

for u = Eθ or u = Hθ on Γleft and Γright, and u0(r), u1(r) are compactly supported, i.e., there exists some R > 0 such
that for r > R, u0(r) = u1(r) = 0. On the other hand, since both E and H are bounded at r = 0, (2.4) indicates
that on Γ0,

lim
r→0

r−1u = 0 ∀ z ∈ [0, Z]. (2.9)

Moreover, it is necessary to force appropriate radiation condition for u as r →∞. The commonly used Silver-Müller
radiation conditions for the electromagnetic fields E,H are given by

lim
|x|→∞

|x| |curlE × x̂− ikE| = 0, lim
|x|→∞

|x| |curlH × x̂− ikH| = 0.

Then we assume that u = Eθ or Hθ admits the radiation condition as

lim
r→∞

∣∣∣∣∂u∂r − iku
∣∣∣∣ = 0. (2.10)

3



3 The well-posedness analysis
This section devotes to studying the well-posedness of the electromagnetic model derived in Section 2 through the

variational approach. For simplicity, we only consider the problem of TM mode which consists of the equation (2.5),
the boundary conditions (2.8)-(2.9) and the radiation condition (2.10). The results for the problem of TE mode can
be carried out analogously and thus is omitted here. For the convenience of the following investigations, we denote by
Ωr = {(ξ, η) : 0 < ξ < r, 0 < η < Z} a truncated domain and denote the boundary Γr = {(r, z) : 0 < z < Z},Σr =
∂Ωr\(Γr ∪Γ0∪Γ1

right). Denote Dc
r = Ωr\D1 ∪D2. Let R > 0 be large enough such that supp(u0)∪ supp(u1) ⊂ [0, R]

and supp(σ) ⊂ ΩR.

3.1 Sobolev spaces on the truncated domain
First we introduce some Sobolev spaces and their trace spaces in cylindrical coordinates. We define the space UR

equipped with a weighted L2-norm as

UR =
{
v ∈ L2(ΩR) : ‖v‖UR <∞

}
, ‖v‖2UR =

∫
ΩR

|u|2 r−1drdz.

The subspaces VR and VR,0 equipped with a weighted H1-norm are defined as

VR =
{
v ∈ H1(ΩR) : ‖v‖VR <∞, lim

r→0
r−1v = 0

}
, VR,0 =

{
v ∈ VR : v|ΣR = 0

}
,

and

‖v‖2VR =

∫
ΩR

(∣∣∣∂u
∂r

∣∣∣2 +
∣∣∣∂u
∂z

∣∣∣2)r−1drdz + k2 ‖v‖2UR .

Lemma 3.1. The injection from VR into UR is compact.

Proof. Let {vn}∞n=1 ⊂ VR be a bounded sequence. The compact injection VR ↪→↪→ L2(ΩR) implies that there exists
a subsequence {vnk} which is convergent in L2(ΩR) and thus, ‖eij‖L2(ΩR) → 0 as i, j → ∞ where eij := vni − vnj .
Since eij vanishes on Γ0 for all i and j, we deduce that∫

ΩR

1

r
|eij(r, z)|2 drdz =

∫
ΩR

1

r
ēij(r, z)

[ ∫ r

0

∂eij
∂t

(t, z)dt

]
drdz

≤ ‖eij‖L2(ΩR)

[ ∫
ΩR

1

r2

∣∣∣ ∫ r

0

∂eij
∂t

(t, z)dt
∣∣∣2drdz

]1/2

≤ ‖eij‖L2(ΩR)

[ ∫
ΩR

1

r

∫ r

0

∣∣∣∂eij
∂t

(t, z)
∣∣∣2dtdrdz

]1/2

≤ ‖eij‖L2(ΩR)

[ ∫
ΩR

∫ R

0

1

t

∣∣∣∂eij
∂t

(t, z)
∣∣∣2dtdrdz

]1/2

=R1/2 ‖eij‖L2(ΩR) ‖eij‖VR .

Hence, {vnk} is a Cauchy sequence under the norm ‖·‖UR . It is easy to see that UR is a Banach space. Therefore,
the subsequence {vnk} is convergent in UR which means that VR is compactly embedded into UR.

Now we study the Sobolev spaces on ΓR. For any v ∈ L2(ΓR), we can write it into a Fourier series v =∑∞
m=0

[
v1,m cos(mπz/Z) + v2,m sin(mπz/Z)

]
. An equivalent norm on L2(ΓR) is defined by the Parseval identity

‖v‖2L2(ΓR) =
Z

2

∞∑
m=0

(
|v1,m|2 + |v2,m|2

)
.

Similarly, the norm on H1/2(ΓR) is defined as

‖v‖2H1/2(ΓR) =

∞∑
m=0

m
(
|v1,m|2 + |v2,m|2

)
.
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Let H1/2
0 (ΓR) denote the closure of C∞0 (ΓR) in H1/2(ΓR), namely,

H
1/2
0 (ΓR) := C∞0 (ΓR)

‖·‖
H1/2(ΓR) . (3.1)

It is easy to see that H1/2
0 (ΓR) is the trace space of VR,0 on ΓR. The dual space of H1/2

0 (ΓR) is denoted by
H−1/2(ΓR) :=

[
H

1/2
0 (ΓR)]′. Any w ∈ H

1/2
0 (ΓR) admits a Fourier expansion w =

∑∞
m=1 wm sin(mπz/Z). The

equivalent norms on H1/2
0 (ΓR) and H−1/2(ΓR) are, respectively, defined as

‖w‖2
H

1/2
0 (ΓR)

=

∞∑
m=1

m |wm|2 , ‖w‖2H−1/2(ΓR) =

∞∑
m=1

m−1 |wm|2 .

3.2 Dirichlet-to-Neumann (DtN) map and truncated problem

Since u(r, 0) = u(r, Z) = 0 for r ≥ R, we can write u into a Fourier series u(r, z) =
∞∑
m=1

um(r) sin(mπz/Z) for

r ≥ R, 0 ≤ z ≤ Z. Substituting the series into (2.7), we get an ordinary differential equation

u′′m(r)− r−1u′m(r) + k2
mum(r) = 0, km =

{√
k2 −m2π2/Z2 if k > mπ/Z,

i
√
m2π2/Z2 − k2 otherwise.

(3.2)

To eliminate resonance mode, we assume that k 6= mπ/Z for all m ≥ 1. Using (2.10), the outgoing solution of (3.2)
is given by

um(r) = amrH
(1)
1 (kmr), (3.3)

where H(1)
1 is the first order Hankel function of the first kind. It is easy to see that

∂

∂r
(r−1u) = r−2

∞∑
m=1

h(kmr)um(r) sin(mπz/Z), h(t) := tH
(1) ′
1 (t)/H

(1)
1 (t). (3.4)

Remark 3.2. Since
∣∣H(1)

1 (t)
∣∣ ∼ t−1/2 as t → +∞, equation (3.3) implies that |um(r)| grows at the rate r1/2 as

r → +∞. In view of (2.4), it is r−1u that represents the angular component of E or H. Therefore, the growing rate
of um(r) is reasonable.

For any η ∈ H1/2
0 (ΓR) which admits a Fourier series η =

∑∞
m=1 ηm sin(mπz/Z), we define a Dirichlet-to-Neumann

(DtN) map T : H
1/2
0 (ΓR)→ H−1/2(ΓR) by

Tη =
∂

∂r
(r−1v)

∣∣
ΓR
,

where v is the solution of (2.7) in ΩcR = Ωc\ΩR satisfying the Dirichlet boundary conditions v(R, z) = η for 0 ≤ z ≤ Z
and v(r, 0) = v(r, Z) = 0 for r ≥ R, and the radiation condition (2.10). Using (3.4), the DtN map can be expressed
as

Tη =

∞∑
m=1

h(kmR)ηm sin(mπz/Z). (3.5)

Utilizing the continuity of the fields crossing the boundary ΓR, we can reformulate the model of TM mode on the
truncated domain

r
∂

∂r

(
1

r

∂u

∂r

)
+
∂2u

∂z2
+ (k2 + iωµσ)u = 0 in ΩR, (3.6a)

lim
r→0

r−1u = 0 on Γ0, (3.6b)

u = uD on ΣR, (3.6c)
∂u

∂z
= uN on Γ1

right, (3.6d)

∂

∂r
(r−1u) = R−2Tu on ΓR, (3.6e)

5



where uD ∈ H1/2(ΣR) is defined as

uD = u0 on Γleft, uD = u1 on Γcright.

Multiplying both sides of (3.6a) with v/r where v ∈ VR,0, integrating the result on ΩR and taking integration by
part, we can obtain the corresponding variational problem of (3.6) as follows: find u ∈ VR such that u = uD on ΣR
and

a(u, v) =

∫
Γ1

right

uN v̄dr ∀ v ∈ VR,0, (3.7)

where a is a sesquilinear form on VR × VR defined by

a(u, v) =

∫
ΩR

[
∂u

∂r

∂v̄

∂r
+
∂u

∂z

∂v̄

∂z
− (k2 + iωµσ)uv̄

]
1

r
drdz − 1

R2
〈Tu+ u, v〉ΓR . (3.8)

Here 〈ξ, v〉ΓR :=

∫
ΓR

ξv̄dz stands for the duality product if ξ ∈ H−1/2(ΓR) and v ∈ H1/2
0 (ΓR) or the inner product

if ξ, v ∈ L2(ΓR).

3.3 The well-posedness of problem (3.7)
In this subsection, we shall prove the inf-sup condition for the sesquilinear form a and establish the well-

posedness of problem (3.7). For any v, w ∈ H
1/2
0 (ΓR), we always write v =

∑∞
m=1 vm sin(mπz/Z) and w =∑∞

m=1 wm sin(mπz/Z). First we prove some useful results of the DtN map.

Lemma 3.3. Im〈Tv, v〉ΓR ≥ 0 for any v ∈ H
1/2
0 (ΓR) and Im〈Tv, v〉ΓR = 0 implies v ∈

Span {sin(mπz/Z) : m > kZ/π}.

Proof. It follows from (3.5) that Im〈Tv, v〉ΓR = Z
2

∑∞
m=1 Im[h(kmR)] |vm|2 for any v ∈ H1/2

0 (ΓR). For k > mπ/Z,
we have km > 0. Recalling that for t > 0, l ∈ Z, H(1)

l (t) = Jl(t) + iYl(t) and Jl(t)Yl−1(t)− Jl−1(t)Yl(t) = 2/(πt), we
have

H
(1)
l−1(t)H

(1)
l (t) = Jl−1(t)Jl(t) + Yl−1(t)Yl(t) + 2i/(πt) ∀ t > 0, l ∈ Z.

Therefore, from the relation tH(1) ′
1 (t) = tH

(1)
0 (t)−H(1)

1 (t), we know

Im[h(kmR)] =
∣∣∣H(1)

1 (t)
∣∣∣−2

Im
[
tH

(1)
0 (t)H

(1)
1 (t)

]
=

2

π

∣∣∣H(1)
1 (kmR)

∣∣∣−2

> 0. (3.9)

For k < mπ/Z, we recall the modified Bessel functions Kl which satisfy

H
(1)
l (it) =

2

π
e−(l+1)π/2iKl(t), t > 0. (3.10)

Since Kl(t) are real for all l and t > 0, from (3.4) and (3.10), we easily know that Im[h(kmR)] = 0. The proof is
complete.

Lemma 3.4. There exists a constant C > 0 depending only on k, R, and Z such that

‖Tv‖H−1/2(ΓR) ≤ C ‖v‖H1/2(ΓR) ∀ v ∈ H1/2
0 (ΓR).

Proof. Note that for 1 ≤ m < kZ/π, km > 0. We know from [15, (3.17)] that

4k2
mR

2

4k2
mR

2 + 3
≤ −Reh(kmR) ≤ 1

2
+

9

16k2
mR

2
. (3.11)

Then (3.9) and (3.11) yield that there exists a constant C > 0 depending only on k such that|h(kmR)| ≤ C. For
m > kZ/π, from (3.10), the positivity of Km(t) for all m ≥ 0, t > 0 and [19, eq. (10.37.1)], we have

−h(kmR) = 1 + |km|R
K0(|km|R)

K1(|km|R)
≤ 1 + |km|R ≤ 1 +mπR/Z.

6



For any v, w ∈ H1/2
0 (ΓR), we have

|〈Tv,w〉ΓR | =
Z

2

∞∑
m=1

|h(kmR)vmwm| ≤ C
∞∑
m=1

m |vmwm|

≤ C ‖v‖H1/2(ΓR) ‖w‖H1/2(ΓR) .

This leads to

‖Tv‖H−1/2(ΓR) = sup
w∈H1/2

0 (ΓR)

|〈Tv,w〉ΓR |
‖w‖H1/2(ΓR)

≤ C ‖v‖H1/2(ΓR) .

The proof is finished.

The proof of Lemma 3.4 also indicates the following useful result.

Lemma 3.5. It holds that −Re〈Tv, v〉ΓR ≥ 0 for all v ∈ H1/2
0 (ΓR).

The uniqueness of the variational problem (3.7) is given in the following lemma.

Lemma 3.6. The variational problem (3.7) has at most one solution.

Proof. Since (3.7) is a linear problem, it is suffices to show that uD = uN = 0 implies u ≡ 0. Now we suppose
u ∈ VR,0 and take v = u in (3.7). The imaginary part of the equation shows

ωµ

∫
ΩR

σ |u|2 r−1drdz +R−2 Im〈Tu, u〉ΓR = 0.

From Lemma 3.3, we infer that u ≡ 0 in D1. From (2.7), we have

r
∂

∂r

(
1

r

∂u

∂r

)
+
∂2u

∂z2
+ k2u = 0 in ΩR\D1.

Since u ≡ 0 in D1, we also have

r
∂

∂r

(
1

r

∂u

∂r

)
+
∂2u

∂z2
+ k2u = 0 in ΩR. (3.12)

Take a p ∈ ∂D1 and an open disk Bδ(p) with the radius δ and the the center being p. Assume Bδ(p) ⊂ ΩR
without loss of generality. There exists a constant depending on δ and k such that∣∣∣∣∂2u

∂r2
+
∂2u

∂z2

∣∣∣∣ ≤ C(∣∣∣∣∂u∂r
∣∣∣∣+ |u|

)
a.e. in Bδ(p).

Note that u ≡ 0 in Bδ(p)∩D1. By the unique continuation theory (see Lemma 4.15 in [18], page 93), we have u ≡ 0
in Bδ(p). Moreover, we can extend the arguments from Bδ(p) to ΩR and end up with u ≡ 0 in ΩR.

Now, we are ready to show the inf-sup condition for the sesquilinear form a and establish the well-posedness of
problem (3.7).

Theorem 3.7. There exists a unique solution to the variational problem (3.7). Moreover, the inf-sup condition

sup
06=v∈VR,0

|a(w, v)|
‖v‖VR

≥ Cinf ‖w‖VR , ∀w ∈ VR,0,

holds where Cinf > 0 is a constant depending only on k, R, Z and material parameters.

Proof. It suffices to prove that, for any ` ∈ V ′R,0, there exists a unique solution w ∈ VR,0 to the problem

a(w, v) = `(v) ∀ v ∈ VR,0, (3.13)
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and that the solution satisfies ‖w‖VR ≤ C ‖`‖V ′R,0 . To do this, we define another sesquilinear form a+ on VR × VR as

a+(u, v) =

∫
ΩR

[
∂u

∂r

∂v̄

∂r
+
∂u

∂z

∂v̄

∂z
+ (k2 − iωµσ)uv̄

]
1

r
drdz − 1

R2
〈Tu, v〉ΓR . (3.14)

By Lemmas 3.3-3.5, there is a generic constant C > 0 depending only on k, R, Z and material parameters such that

|a+(v, v)| ≥ Re a+(v, v) ≥ ‖v‖2VR , |a+(u, v)| ≤ C ‖u‖VR ‖v‖VR . (3.15)

Let K0 : UR → VR,0 and K1 : L2(ΓR) → VR,0 be two operators defined as follows: for w ∈ UR and η ∈ L2(ΓR),
K0w and K1η are the unique solutions to the following two problems, respectively,

a+(K0w, v) = 2k2

∫
ΩR

wv̄
1

r
drdz, a+(K1η, v) = R−2〈η, v〉ΓR ∀ v ∈ VR,0. (3.16)

Then (3.15) together with Lax-Milgram theorem implies that K0 and K1 are continuous operators, namely,

‖K0w‖VR ≤ C ‖w‖UR , ‖K1η‖VR ≤ C ‖η‖L2(ΓR) .

By Lemma 3.1 and the compact injection H1/2(ΓR) ↪→↪→ L2(ΓR), both K0 : VR,0 → VR,0 and K1 : H
1/2
0 (ΓR)→ VR,0

are compact operators.
Let γR denote the trace operator which maps VR,0 onto H1/2

0 (ΓR) continuously. We can write problem (3.13)
into an equivalent operator equation

w − (K0 +K1γR)w = f, (3.17)

where f ∈ VR,0 is the unique solution to the problem

a+(f, v) = `(v) ∀ v ∈ VR,0.

Since K0 +K1γR : VR,0 → VR,0 is a compact operator, (3.17) is a Fredholm equation of second kind. By Lemma 3.6
and Fredholm alternative theorem, we conclude that there exists a unique solution to the variational problem (3.13).
Let I denote the identity operator on VR,0. The arbitrariness of ` ∈ V ′R,0 shows that (I − K0 −K1γR)−1 exists and
is a continuous operator from VR,0 to VR,0. We end up with

‖w‖VR ≤ C ‖f‖VR ≤ C ‖`‖V ′R,0 = C sup
06=v∈VR,0

|a(w, v)|
‖v‖VR

.

The proof is complete.

Remark 3.8. In this section, we establish the well-posedness for the derived electromagnetic model by introducing
the exact DtN map to truncate the unbounded domain. Incorporating with the finite element method (FEM), which is
called DtN-FEM, the variational problem (3.7) can be used for the numerical simulation. Noting that the discretization
of the sesquilinear form 〈Tu, v〉ΓR is a nonlocal integral, in the rest of this work we utilize an alternative way, the
PML method, to truncate the unbounded domain Ωc and study the convergence of this method. The analysis and
application of DtN-FEM, including the truncation of the infinite series in the DtN map and adaptivity, are left for
future works.

4 The truncated PML problem and convergence study
Besides the DtN map discussed in Section 3, this section proposes an approximate problem applying the PML

truncation strategy. Suppose ρ ≥ 2R and let Ωρ := {0 < r < ρ, 0 < z < Z} be the domain in which the truncated
PML problem is formulated. Denote Ωpml := Ωρ\Ω̄R the PML region with d = ρ − R being the thickness of Ωpml.
To derive the truncated PML problem, we introduce the following complex stretching of radial coordinate. Define

r̃ = F (r) := r + (1 + i)χ(r), χ(r) =

{
0 if r ≤ R,
χ0(r −R)2 if r > R,

(4.1)
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where χ0 > 0 is a constant. Clearly, χ is C1-smooth in (0,+∞). Denote

α(r) = F ′(r) = 1 + (1 + i)χ′(r), β(r) = r̃/r = 1 + (1 + i)χ(r)/r. (4.2)

We have already assumed that k 6= mπ/Z for all m ≥ 1. Without loss of generality, we additionally assume

κχ0R ≥ 1, κ := min
m≥1
|km| . (4.3)

4.1 The approximate problem
Note from (3.3) that, for r ≥ R, the exact solution to problem (3.6) can be represented as

u(r, z) = r

∞∑
m=1

amH
(1)
1 (kmr) sin(mπz/Z) ∀ r ≥ R. (4.4)

With this explicit representation, we can define the analytic continuation of u from the real variable r to the complex
variable r̃ by

u(r̃, z) = r̃
∞∑
m=1

amH
(1)
1 (kmr̃) sin(mπz/Z) ∀ r ≥ R. (4.5)

Then by the chain rule, it is easy to see that ũ(r, z) := u(r̃, z) satisfies the modified equation

rβ

α

∂

∂r

(
1

rαβ

∂ũ

∂r

)
+
∂2ũ

∂z2
+ (k2 + iωµσ)ũ = 0 in Ω. (4.6)

To truncate the unbounded domain Ω, it is reasonable to impose the Dirichlet boundary condition û = 0 on Γρ
regarding to the exponential decay of the Hankel functions with a complex argument. Hence, the approximate
problem to (3.6) is proposed as follows

rβ

α

∂

∂r

(
1

rαβ

∂û

∂r

)
+
∂2û

∂z2
+ (k2 + iωµσ)û = 0 in Ωρ, (4.7a)

lim
r→0

r−1û = 0 on Γ0, (4.7b)

û = uD on Σρ, û = 0 on Γρ, (4.7c)
∂û

∂z
= uN on Γ1

right. (4.7d)

Letting the spaces Vρ, Vρ,0, as well as the equipped norms, be defined analogous to VR, VR,0, respectively, by replacing
the domain ΩR by Ωρ and denote V 0

ρ := {v ∈ Vρ,0 : v|Γρ = 0}. Then the weak formulation of the problem (4.7)
reads: find û ∈ Vρ such that û = uD on Σρ and

aρ(û, v) =

∫
Γ1

right

uN v̄dr ∀ v ∈ V 0
ρ , (4.8)

where

aρ(û, v) :=

∫
Ωρ

1

rβ

(
1

α

∂û

∂r

∂v̄

∂r
+ α

∂û

∂z

∂v̄

∂z
− α(k2 + iωµσ)ûv̄

)
drdz.

The purpose of the remaining parts of this section is to study the well-posedness of the approximate problem
(4.7) and its convergence, i.e., the error estimate between the exact solution u of problem (3.6) and the approximate
solution û of problem (4.7). Since problem (3.6) is defined on ΩR, we next reformulate (4.7) into a problem on ΩR
utilizing the DtN map strategy. Let T̂ : H

1/2
0 (ΓR)→ H−1/2(ΓR) be a DtN map defined as, for any η ∈ H1/2

0 (ΓR),

T̂ η := R2 ∂

∂r
(r−1w)

∣∣
ΓR
, (4.9)
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where w is the solution to the Dirichlet problem in the PML

rβ

α

∂

∂r

(
1

rαβ

∂w

∂r

)
+
∂2w

∂z2
+ k2w = 0 in Ωpml, (4.10a)

w = η on ΓR, (4.10b)
w = 0 on ∂Ωpml\ΓR. (4.10c)

The well-posedness of problem (4.10), which will be addressed in the next subsection, ensures that the DtN operator
T̂ is well-defined. Then the continuity of the fields crossing the boundary ΓR indicates that we can reformulate the
problem (4.7) in ΩR as follows:

r
∂

∂r

(
1

r

∂û

∂r

)
+
∂2û

∂z2
+ (k2 + iωµσ)û = 0 in ΩR, (4.11a)

lim
r→0

r−1û = 0 on Γ0, (4.11b)

û = uD on ΣR, (4.11c)
∂û

∂z
= uN on Γ1

right, (4.11d)

∂

∂r

(
r−1û

)
= R−2T̂ û on ΓR. (4.11e)

This leads us to study the well-posedness of problem (4.11) and the error estimate between the exact solution u of
problem (3.6) and the approximate solution û of problem (4.11).

4.2 The well-posedness of problem (4.10)
To establish the well-posedness of problem (4.10), we use separation of variables and the Fourier expansions of w

and η formulated as

w(r, z) =

∞∑
m=1

wm(r) sin(mπz/Z), η(z) =

∞∑
m=1

ηm sin(mπz/Z), (4.12)

to reduce the problem (4.10) into a system of ordinary differential equations, for m ≥ 1,

rβ

α

∂

∂r

(
1

rαβ

∂wm
∂r

)
+ k2

mwm = 0 for R < r < ρ, (4.13a)

wm(R) = ηm, wm(ρ) = 0. (4.13b)

The variational formulation of (4.13) is given as follows: find wm ∈ H1((R, ρ)) which satisfies (4.13b) and

Am(wm, v) :=

∫ ρ

R

1

rβ

(
α−1w′mv

′ − αk2
mwmv̄

)
dr = 0 ∀ v ∈ H1

0 ((R, ρ)). (4.14)

We first prove the well-posedness of the problem (4.13) for each m ≥ 1.

Lemma 4.1. There exist two positive constants C0, C1 independent of m, χ0, and ρ such that, for any v ∈ H1
0 ((R, ρ)),

Re Am(v, v) ≥
∫ ρ

R

ξ |v′|2 dr − C0k
2
m

∫ ρ

R

η |v|2 dr if m > kZ/π, (4.15)

Re Am(v, v)− C1d
3 |α(ρ)|2 Im Am(v, v)

≥ 1

2

∫ ρ

R

ξ |v′|2 dr + C0d
3 |α(ρ)|2

∫ ρ

R

ηχ′ |v|2 dr if m < kZ/π, (4.16)

where ξ = (r+ rχ′+χ)/ |rαβ|2 and η = (r+ rχ′+χ+ 2χχ′)/ |rβ|2. As a result, there exists a unique solution to the
problem (4.13) for all m ≥ 1.
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Proof. Write ξ1 = (rχ′ + χ+ 2χχ′)/ |rαβ|2 and η1 = (rχ′ − χ)/ |rβ|2 for convenience. It is easy to see

Re Am(v, v) =

∫ ρ

R

(
ξ |v′|2 − k2

mη |v|
2
)
, (4.17)

Im Am(v, v) = −
∫ ρ

R

(
ξ1 |v′|

2
+ k2

mη1 |v|2
)
. (4.18)

Since k2
m = k2 −m2π2/Z2 < 0 for m > kZ/π, (4.15) comes directly from (4.17). Next, we prove (4.16). Since

v(R) = 0 and χ′(r) = 2χ0(r −R), we have∫ ρ

R

η |v|2 dr ≤ ε−1

∫ ρ

R

ηχ′ |v|2 +
ε

4

∫ ρ

R

η(r)

χ′(r)

∣∣∣∣ ∫ r

R

v′(t)dt

∣∣∣∣2dr

≤ ε−1

∫ ρ

R

ηχ′ |v|2 dr + C2εχ0d
4|α(ρ)|2

∫ ρ

R

ξ |v′|2 dr, (4.19)

where ε > 0 is a constant to be specified and C2 is a positive constant independent of m, χ0, and ρ. Inserting (4.19)
into (4.17), we have

Re Am(v, v) ≥
[
1− C2εk

2
mχ0d

4|α(ρ)|2
] ∫ ρ

R

ξ |v′|2 dr − k2
mε
−1

∫ ρ

R

ησ′ |v|2 dr. (4.20)

For (4.18), noting that there exists a positive constant C3 independent of m, χ0, and ρ such that

η1

ηχ′
=

r − χ/χ′

r + rχ′ + χ+ 2χχ′
≤ C3,

we get

Im Am(v, v) ≤ − C3k
2
m

∫ ρ

R

ηχ′ |v|2 dr. (4.21)

Then combining (4.20) and (4.21) yields

Re Am(v, v)− 2C−1
3 ε−1 Im Am(v, v)

≥
[
1− C2εk

2
mχ0d

4|α(ρ)|2
] ∫ ρ

R

ξ |v′|2 dr + ε−1k2
m

∫ ρ

R

ηχ′ |v|2 dr. (4.22)

Then choosing ε−1 = 2C2k
2
mχ0d

4|α(ρ)|2 gives (4.16).
Finally, the well-posedness of problem (4.13) for all m ≥ 1 follows directly from the estimates (4.15)-(4.16). The

proof is complete.

Now we are ready to get the the well-posedness of problem (4.10) which will further leads to a continuity estimate
for the DtN map T̂ .

Theorem 4.2. There exists a unique solution w ∈ H1(Ωpml) to the problem (4.10). Moreover, there exists a constant
C > 0 independent of χ0 and ρ such that

‖w‖H1(Ωpml)
≤ Cd6 |α(ρ)|4 |β(ρ)|2 ‖η‖H1/2(ΓR) .

Proof. There exists an extension p ∈ H1(Ω2R\Ω̄R) which satisfies p = η on ΓR, p = 0 on ∂Ω2R\∂ΩR, and

‖p‖H1(Ω2R\Ω̄R) ≤ C ‖η‖H1/2(ΓR) , (4.23)

where the constant C depends only on R and Z. Now we extend p by zero to Ω∞\Ω̄2R and designate the extension
still by p. A weak formulation of (4.10) is to find ŵ := w − p ∈ H1

0 (Ωpml) such that

apml(ŵ, v) = −apml(p, v) ∀ v ∈ H1
0 (Ωpml),
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where

apml(ŵ, v) :=

∫
Ωpml

1

rβ

(
1

α

∂ŵ

∂r

∂v̄

∂r
+ α

∂ŵ

∂z

∂v̄

∂z
− αk2ŵv̄

)
.

Consider the Fourier series of ŵ and p with coefficients ŵm and pm, respectively which satisfy ŵm = wm − pm.
Define

W1 =
∑

m<kZ/π

ŵm sin(mπz/Z), P1 =
∑

m<kZ/π

pm sin(mπz/Z),

W2 =
∑

m>kZ/π

ŵm sin(mπz/Z), P2 =
∑

m>kZ/π

pm sin(mπz/Z).

It is clear that ŵ = W1 +W2, p = P1 + P2, and

apml(W1,W1) = −apml(P1,W1), apml(W2,W2) = −apml(P2,W2). (4.24)

Let the function ξ(r) and the constant C1 be given in Lemma 4.1, and let the space V (Ωpml), as well as the equipped
norm, be defined analogous to VR. Using (4.16) and ŵm(R) = 0, we have

‖W1‖2V (Ωpml)

≤C
∑

m<kZ/π

[ ∫ ρ

R

1

r
|ŵ′m(r)|2 dr + (k2 +m2π2/Z2)

∫ ρ

R

1

r

∣∣∣∣ ∫ r

R

ŵ′m(t)dt

∣∣∣∣2dr

]

≤Cd3 |α(ρ)|2 |β(ρ)|2
∑

m<kZ/π

∫ ρ

R

ξ(r) |ŵ′m(r)|2 dr

≤Cd3 |α(ρ)|2 |β(ρ)|2
∑

m<kZ/π

[
Re Am(ŵm, ŵm)− C1d

3 |α(ρ)|2 Im Am(ŵm, ŵm)
]
.

Using (4.24) and the relation apml(W1,W1) =
Z

2

∑
m<kZ/π

Am(ŵm, ŵm), we deduce that

‖W1‖2V (Ωpml)
≤Cd6 |α(ρ)|4 |β(ρ)|2 |apml(P1,W1)| .

Since P1 is only supported in Ω2R\ΩR, using (4.23) and Schwartz’s inequality, we easily get

‖W1‖V (Ωpml)
≤ Cd6 |α(ρ)|4 |β(ρ)|2 ‖P1‖V (Ω2R\ΩR) ≤ Cd

6 |α(ρ)|4 |β(ρ)|2 ‖η‖H1/2(ΓR) . (4.25)

The estimate of W2 is similar but easier. Since k2
m < 0 for m > kZ/π, we have

‖W2‖2V (Ωpml)
≤C

∑
m>kZ/π

∫ ρ

R

1

r

[
|ŵ′m(r)|2 − k2

m |ŵm(r)|2
]
dr

≤Cd |α(ρ)|2 |β(ρ)|2
∑

m>kZ/π

∫ ρ

R

[
ξ |ŵ′m(r)|2 − C0k

2
mη |ŵm(r)|2

]
dr

≤Cd |α(ρ)|2 |β(ρ)|2
∑

m>kZ/π

Re Am(ŵm, ŵm).

Analogously, using (4.24) and the relation apml(W2,W2) =
Z

2

∑
m>kZ/π

Am(ŵm, ŵm), we deduce that

‖W2‖V (Ωpml)
≤ Cd |α(ρ)|2 |β(ρ)|2 ‖η‖H1/2(ΓR) . (4.26)

The proof is finished by combining (4.25)–(4.26) and (4.23).
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Corollary 4.3. Let T̂ be the approximate DtN operator defined in (4.9). There exists a constant C > 0 independent
of χ0 and ρ such that ∥∥T̂ η∥∥

H−1/2(ΓR)
≤ Cd6 |α(ρ)|4 |β(ρ)|2 ‖η‖H1/2(ΓR) ∀ η ∈ H1/2

0 (ΓR).

Proof. Given η ∈ H
1/2
0 (ΓR), let w ∈ H1(Ωpml) be the solution to (4.10). Define v =

( 1

rαβ

∂w

∂r
,
α

rβ

∂w

∂z

)
. From

(4.10a) we know that

divr,z v =
∂

∂r

(
1

rαβ

∂w

∂r

)
+

∂

∂z

(
α

rβ

∂w

∂z

)
= −k2 α

rβ
w ∈ L2(Ωpml). (4.27)

Let n = (1, 0) denote the outer normal on ΓR. Then (4.9) and the trace theorem indicate that∥∥T̂ η∥∥
H−1/2(ΓR)

=R2

∥∥∥∥ ∂∂r (r−1w)

∥∥∥∥
H−1/2(ΓR)

≤R2

∥∥∥∥ 1

rαβ

∂w

∂r

∥∥∥∥
H−1/2(ΓR)

+ ‖w‖H−1/2(ΓR)

=R2 ‖v · n‖H−1/2(ΓR) + ‖w‖H−1/2(ΓR)

≤C
(
‖v‖H(div,Ωpml)

+ ‖w‖H1(Ωpml)

)
.

Together with (4.27), this yields
∥∥T̂ η∥∥

H−1/2(ΓR)
≤ C ‖w‖H1(Ωpml)

. The proof is finished upon using Theorem 4.2.

4.3 Estimation of T − T̂

Before studying the convergence of the approximate solution û of the problem (4.11), the error estimate of Tη−T̂ η
for any η ∈ H1/2

0 (ΓR) will be addressed in this subsection. To do this, we define the wave propagation operator P
which extends η to the exterior of ΩR in the following way

P(η)(r, z) :=
r

R

∞∑
m=1

H
(1)
1 (kmr)

H
(1)
1 (kmR)

ηm sin(mπz/Z) ∀ r ≥ R.

In view of (4.4), it is easy to see that P(η) is the solution to the scattering problem

r
∂

∂r

(
1

r

∂

∂r
P(η)

)
+

∂2

∂z2
P(η) + k2P(η) = 0 in Ω\ΩR,

P(η) = η on ΓR,

lim
r→∞

∣∣∣∣ ∂∂rP(η)− ikP(η)

∣∣∣∣ = 0.

In particular, the exact solution u to the scattering problem (3.6) satisfies P(u|ΓR) = u in Ω\Ω̄R.
Using the complex stretching, we also define a modified wave propagation operator as

P̃(η)(r, z) :=
r̃

R

∞∑
m=1

H
(1)
1 (kmr̃)

H
(1)
1 (kmR)

ηm sin(mπz/Z) ∀ r ≥ R. (4.28)

It is clear that P̃(η)(r, z) = P(η)(r̃, z). The chain rule indicates that P̃(η) satisfies

rβ

α

∂

∂r

(
1

rαβ

∂

∂r
P̃(η)

)
+

∂2

∂z2
P̃(η) + k2P̃(η) = 0 in Ω\ΩR,

P̃(η) = η on ΓR.

Lemma 4.4. There exists a constant C > 0 independent of ρ and χ0 such that∥∥P̃(η)
∥∥
H1/2(Γρ)

≤ CR−1
∣∣ρ̃∣∣e−0.8κχ0d

2

‖η‖H1/2(ΓR).

13



Proof. We recall [5, Lemma 2.2] for the following estimate∣∣∣H(1)
1 (z)

∣∣∣ ≤ e−(1−t2/|z|2)1/2 Im(z)
∣∣∣H(1)

1 (t)
∣∣∣ , 0 < t ≤ |z|, 0 ≤ arg(z) ≤ π/2.

For 1 ≤ m < kZ/π, we have km > 0 and 0 < arg ρ̃ < π/2. It follows from R/|ρ̃| ≤ 0.5 that∣∣H(1)
1 (kmρ̃)

∣∣ ≤ e−0.8κχ0d
2∣∣H(1)

1 (kmR)
∣∣. (4.29)

For m > kZ/π, we have km = i |km|, H(1)
1 (kmρ̃) is connected with the modified Bessel function through

H
(1)
1 (kmρ̃) = − 2

π
K1(|km|ρ̃).

Moreover, by [19, eq. (10.32.9)], the modified Bessel function of the mth order satisfies

K1(|km|ρ̃) =

∫ ∞
0

e−|km|ρ̃ cosh t cosh(t)dt.

We infer that ∣∣H(1)
1 (kmρ̃)

∣∣ ≤ 2

π

∫ ∞
0

e−|km|(Re ρ̃) cosh t cosh(t)dt ≤ e−κχ0d
2∣∣H(1)

1 (kmR)
∣∣. (4.30)

Substituting (4.29) and (4.30) into (4.28) shows

∥∥P̃(η)
∥∥2

H1/2(Γρ)
=

∣∣ρ̃∣∣2
R2

∞∑
m=1

m

∣∣∣∣ H(1)
1 (kmr̃)

H
(1)
1 (kmR)

∣∣∣∣2 |ηm|2 ≤
∣∣ρ̃∣∣2
R2

e−1.6κχ0d
2

‖η‖2H1/2(ΓR).

The proof is finished.

The error estimates of T − T̂ is given in the following corollary.

Corollary 4.5. For any η ∈ H1/2(ΓR), there exists a constant C > 0 independent of ρ and χ0 such that

‖Tη − T̂ η‖H−1/2(ΓR) ≤ Cd6 |α(ρ)|4 |β(ρ)|2
∣∣ρ̃∣∣e−0.8κχ0d

2

‖η‖H1/2(ΓR). (4.31)

Proof. To prove this result, we consider the following problem in the PML region

rβ

α

∂

∂r

(
1

rαβ

∂p

∂r

)
+
∂2p

∂z2
+ k2p = 0 in Ωpml, (4.32a)

p = 0 on ΓR, (4.32b)
p = 0 on {z = 0} ∪ {z = Z}, (4.32c)
p = w on Γρ. (4.32d)

It follows analogously from the proof of Theorem 4.2 that there exists a constant C > 0 independent of ρ and χ0

such that

‖p‖H1(Ωpml)
≤ Cd6 |α(ρ)|4 |β(ρ)|2 ‖w‖H1/2(Γρ) .

For any ϕ ∈ H1(Ωpml) such that ϕ = 0 on Γρ, we obtain

apml(p, ϕ) +
1

R

∫
ΓR

∂p

∂r
ϕ̄dz = 0.

Thus, ∥∥∥∥∂p∂r
∥∥∥∥
H−1/2(ΓR)

≤ C1d
6 |α(ρ)|4 |β(ρ)|2 ‖w‖H1/2(Γρ) , (4.33)

where C1 > 0 is a constant independent of ρ and χ0. Now, for any η ∈ H1/2(ΓR), it follows from the definitions of
T and T̂ that

Tη − T̂ η = R2 ∂

∂r
(r−1p) on ΓR, (4.34)

where p is the solution to the Dirichlet problem (4.32) with w = P̃(η) on Γρ. Then the final estimates (4.31) results
by combining (4.33) and (4.34).
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4.4 Exponential convergence
Now we are ready to show the convergence of the solution û to the approximate problem (4.7) , or equivalently,

problem (4.11). Similar to (3.7), the variational problem of (4.11) is proposed as follows: find û ∈ VR such that
û = uD on ΣR and

â(û, v) =

∫
Γ1

right

uN v̄dr ∀ v ∈ VR,0, (4.35)

where the sesquilinear form â is defined by

â(u, v) =

∫
ΩR

[
∂u

∂r

∂v̄

∂r
+
∂u

∂z

∂v̄

∂z
− (k2 + iωµσ)uv̄

]
1

r
drdz − 1

R2
〈T̂ u+ u, v〉ΓR . (4.36)

Theorem 4.6. Assuming the PML parameters ρ and χ0 being such that

C0 := Cinf − C1d
6 |α(ρ)|4 |β(ρ)|2

∣∣ρ̃∣∣e−0.8κχ0d
2

> 0, (4.37)

where the constants Cinf > 0, C1 > 0 independent of ρ and χ0 come from Theorem 3.7 and Corollary 4.5, then there
exists a unique solution to the variational problem (4.35). Moreover, there exists a constant C > 0 independent of ρ
and χ0 such that

‖u− û‖VR ≤ Cd
6 |α(ρ)|4 |β(ρ)|2

∣∣ρ̃∣∣e−0.8κχ0d
2

‖û‖VR . (4.38)

Proof. It follows from Theorem 3.7 and Corollary 4.5 that there exists constants Cinf > 0, C1 > 0 independent of ρ
and σ0 such that

sup
06=v∈VR,0

|â(u, v)|
‖v‖VR

= sup
06=v∈VR,0

∣∣∣a(u, v) +R−2〈(T − T̂ )u, v〉ΓR
∣∣∣

‖v‖VR

≥ sup
06=v∈VR,0

|a(u, v)|
‖v‖VR

−R−2 sup
06=v∈VR,0

∣∣∣〈(T − T̂ )u, v〉ΓR
∣∣∣

‖v‖VR
≥
(
Cinf − C1d

6 |α(ρ)|4 |β(ρ)|2
∣∣ρ̃∣∣e−0.8κχ0d

2
)
‖u‖VR .

Then under the assumption (4.37), the existence and uniqueness of the solution to the variational problem (4.35)
follows immediately. It remains to prove the error estimate (4.38). From (3.7) and (4.35), it is easy to see that the
error function e := u− û ∈ VR,0 satisfies

a(e, v) = R−2〈(T − T̂ )û, v〉ΓR ∀ v ∈ VR,0. (4.39)

By the inf-sup condition in Theorem 3.7, we have

‖u− û‖VR ≤C
−1
inf sup

0 6=v∈VR,0

|a(e, v)|
‖v‖VR

=R−2C−1
inf sup

06=v∈VR,0

∣∣∣〈(T − T̂ )û, v〉ΓR
∣∣∣

‖v‖VR
≤Cd6 |α(ρ)|4 |β(ρ)|2

∣∣ρ̃∣∣e−0.8κχ0d
2

‖û‖VR ,

where C > 0 is a constant independent of ρ and χ0.

5 Numerical experiments
In this section, two numerical examples are presented to illustrate the efficiency of our model to simulate the

signal propagation in axons. All the parameters are selected in dimensionless type. The finite element method is
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utilized for the numerical discretization, for which the error estimates is left for future work, and the particular
implementation for the numerical experiments is programmed in Matlab.

In the first example, we test the convergence of the numerical solution arising from the PML truncation and finite
element discretization. We consider the following PML problem

rβ

α

∂

∂r

(
1

rαβ

∂w

∂r

)
+
∂2w

∂z2
+ k2w = 0 in Ω′,

w = η on ΓR′ ,

w = 0 on ∂Ω′\ΓR′ ,

where Ω′ = [0, π]× [1, 11] with the PML region Ωpml = [0, π]× [10, 11] and R = 10, R′ = 11. We set k = 2, χ0 = 40

and the exact solution is given by w = rH
(1)
1 (kmr) sin(mz) with m = 1. Figure 2 displays the numerical errors

in L2 and H1-norms with respect to the finite element meshsize h which clearly shows the second- and first-order
convergence, respectively.

Figure 2: Log-log plot the numerical errors in L2 and H1-norms with respect to the finite element meshsize h.

Next, we test the propagation of an incident signal given on Γleft in the axon and the TE mode is considered. We
set

u1(r) =

{
−J1(kcr) on Γleft ∩ ∂D1,

0 otherwise,
u2(r) = 0, uN = 0,

with kc = 2× 3.831705970207512 and choose the parameters

(ε, σ) =


(2, 0.2) in D1,

(10, 0) in D2,

(1.2, 0) in Dc,

ω = 5, µ = 1.

The considered axon structures, wherein the axon is wrapped by a long myelin sheath or two separated myelin
sheaths or the myelin sheath is absent, are presented in Figure 3. The real parts of the wave fields Hθ and Ez, Er
are plotted in Figures 4-6, respectively. It can be clearly observed that the existence of myelin sheath can gather the
electromagnetic fields to propagate mainly in myelin sheath.
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Figure 3: The set-up for simulations wherein the axon is coated by a long myelin sheath (a) or two separated myelin
sheaths (b), or the myelin sheath is absent (c). The yellow, red, blue and grey zones represent the regions D1, D2,
Dc
R and Ωpml, respectively.

Figure 4: The real part of the magnetic fieldHθ for the considered axon structure shown in Figure 3. Left: Figure 3(a),
middle: Figure 3(b), right: Figure 3(c).

Figure 5: The real part of the magnetic field Ez for the considered axon structure shown in Figure 3. Left: Figure 3(a),
middle: Figure 3(b), right: Figure 3(c).

Figure 6: The real part of the magnetic field Er for the considered axon structure shown in Figure 3. Left: Figure 3(a),
middle: Figure 3(b), right: Figure 3(c).
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