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FEEDBACK VERTEX SET AND EVEN CYCLE TRANSVERSAL
FOR \bfitH -FREE GRAPHS: FINDING LARGE BLOCK GRAPHS\ast 

GIACOMO PAESANI\dagger , DANI\"EL PAULUSMA\dagger , AND PAWE\L RZ \c A \.ZEWSKI\ddagger 

Abstract. We prove new complexity results for Feedback Vertex Set and Even Cycle
Transversal on H-free graphs, that is, graphs that do not contain some fixed graph H as an
induced subgraph. In particular, we prove that for every s \geq 1, both problems are polynomial-time
solvable for sP3-free graphs and (sP1 + P5)-free graphs; here, the graph sP3 denotes the disjoint
union of s paths on three vertices and the graph sP1 + P5 denotes the disjoint union of s isolated
vertices and a path on five vertices. Our new results for Feedback Vertex Set extend all known
polynomial-time results for Feedback Vertex Set on H-free graphs, namely for sP2-free graphs
[Chiarelli et al., Theoret. Comput. Sci., 705 (2018), pp. 75--83], (sP1+P3)-free graphs [Dabrowski et
al., Algorithmica, 82 (2020), pp. 2841--2866] and P5-free graphs [Abrishami et al., Induced subgraphs
of bounded treewidth and the container method, in Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms (SODA), SIAM, Philadelphia, 2021, pp. 1948--1964]. Together, the new
results also show that both problems exhibit the same behavior on H-free graphs (subject to some
open cases). This is in part due to a new general algorithm we design for finding in a (sP3)-free
or (sP1 + P5)-free graph G a largest induced subgraph whose blocks belong to some finite class
\scrC of graphs. We also compare our results with the state-of-the-art results for the Odd Cycle
Transversal problem, which is known to behave differently on H-free graphs.
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1. Introduction. For a set of graphs \scrF , an \scrF -transversal of a graph G is a set
of vertices that intersects the vertex set of every (not necessarily induced) subgraph of
G that is isomorphic to some graph of \scrF . The problem Min \scrF -Transversal (also
called \scrF -Deletion) is to find an \scrF -transversal of minimum size (or size at most k, in
the decision variant). Graph transversals form a central topic in discrete mathematics
and theoretical computer science, both from a structural and an algorithmic point of
view.

If \scrF is the set of all cycles, the set of all even cycles or odd cycles, then we
obtain the problems Feedback Vertex Set, Even Cycle Transversal, and
Odd Cycle Transversal, respectively. All three problems are NP-complete; hence,
they have been studied for special graph classes, in particular hereditary graph classes,
that is, classes closed under vertex deletion. Such classes can be characterized by a
(unique) set \scrH of minimal forbidden induced subgraphs. Then, in order to initiate
a systematic study, it is standard to first consider the case where \scrH has size 1, say
\scrH = \{ H\} for some graph H.

We aim to extend known complexity results for Feedback Vertex Set for H-
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free graphs and to perform a new, similar study for Even Cycle Transversal
(for which, so far, mainly parameterized complexity results exist [2, 3, 14, 16]). To
describe the known and new results we need some terminology. The cycle and path
on r vertices are denoted Cr and Pr, respectively. The disjoint union of two vertex-
disjoint graphs G1 and G2 is the graph G1 +G2 = (V (G1)\cup V (G2), E(G1)\cup E(G2)).
We write sG for the disjoint union of s copies of G. For a set S \subseteq V , let G[S] be
the subgraph of G induced by S. We write H \subseteq i G (or G \supseteq i H) if H is an induced
subgraph of G.

1.1. Known results. By Poljak's construction [19], for every integer g \geq 3,
Feedback Vertex Set is NP-complete for graphs of girth at least g (the girth
of a graph is the length of its shortest cycle). The same holds for Odd Cycle
Transversal [8]. It is also known that Feedback Vertex Set [17] and Odd
Cycle Transversal [8] are NP-complete for line graphs and thus for claw-free
graphs (the claw is the 4-vertex star). Hence, both problems are NP-complete for
the class of H-free graphs whenever H has a cycle or claw. A graph with no cycles
and no claws is a forest of maximum degree at most 2. Thus, it remains to consider
the case where H is a linear forest, that is, a collection of disjoint paths. Both
problems are polynomial-time solvable on permutation graphs [6] and thus on P4-free
graphs [6], on sP2-free graphs for every s \geq 1 [8] and on (sP1 + P3)-free graphs for
every s \geq 0 [10]. Additionally, Feedback Vertex Set is polynomial-time solvable
on P5-free graphs [1], and Odd Cycle Transversal is NP-complete for (P2 +
P5, P6)-free graphs [10]. A similar NP-hardness result for Feedback Vertex Set
or Even Cycle Transversal is unlikely: for every linear forest H, both problems
are quasipolynomial-time solvable on H-free graphs [11] (see section 6 for details).

1.2. New polynomial-time results. We first note that Min \scrF -Transversal
is polynomially equivalent to Max Induced \scrF -Subgraph, the problem of finding
a maximum-size induced subgraph of the input graph G that does not belong to \scrF 
(where we assume that G has at least one such subgraph). We say thatMax Induced
\scrF -Subgraph is the complementary problem ofMin \scrF -Transversal, and vice versa.
For example, setting \scrF = \{ P2\} yields the well-known complementary problems Min
Vertex Cover and Max Independent Set.

Using the complementary perspective, we now argue that Feedback Vertex
Set and Even Cycle Transversal are closely related, in contrast to Odd Cycle
Transversal. A graph G is biconnected if it has at least two vertices, is connected,
and G - u is connected for every u \in V (G). A block of a graph G is an inclusionwise
maximal biconnected subgraph of G. We now let \scrC be a set of biconnected graphs.
A graph G is a \scrC -block graph if every block of G is isomorphic to some graph in \scrC . If
\scrC = \{ P2\} , then \scrC -block graphs are precisely forests, and if \scrC = \{ P2, C3, C5, C7, . . .\} ,
then \scrC -block graphs are called odd cacti. It is well known that a graph is an odd
cactus if and only if it does not contain any even cycle as a subgraph. Hence, the
complementary problems of Even Cycle Transversal and Feedback Vertex
Set are somewhat similar: in particular, both forests and odd cacti have bounded
treewidth and their blocks have a very simple structure. This is in stark contrast to
Odd Cycle Transversal, whose complementary problem is to find a large induced
bipartite subgraph, which might be arbitrarily complicated.

The commonality of complementary problems of Even Cycle Transversal
and Feedback Vertex Set leads to the following optimization problem, where \scrC is
some fixed class of biconnected graphs, that is, \scrC is not part of the input but specified
in advance. Note that we consider the more general setting in which every vertex v
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FVS AND ECT FOR H-FREE GRAPHS 2455

of G is equipped with a weight w(v) > 0, and we must find a solution with maximum
total weight.

Max \scrC -Block Graph
Instance: a graph G = (V,E) with a vertex weight function w : V \rightarrow \BbbQ +.
Objective: find a maximum-weight set X \subseteq V such that G[X] is a \scrC -block

graph.

We observe that Max \scrC -Block Graph is well defined for every set \scrC , including
\scrC = \emptyset , as every independent set in a graph forms a solution. A restriction of the Max
\scrC -Block Graph problem was introduced and studied from a parameterized com-
plexity perspective by Bonnet et al. [4] as Bounded \scrC -Block Vertex Deletion
(so from the complementary perspective) where each block must, in addition, have
bounded size.

In section 2 we slightly extend a previously known result, concerning the so-called
blob graphs [11]. This extended version of the result forms a key ingredient for the
proof of our main results, shown in sections 3 and 4, respectively, which are the
following two theorems.

Theorem 1. For every integer s \geq 1 and every finite class \scrC of biconnected
graphs, Max \scrC -Block Graph can be solved in polynomial time for sP3-free graphs.

Theorem 2. For every integer s \geq 1 and every finite class \scrC of biconnected
graphs, Max \scrC -Block Graph can be solved in polynomial time for (sP1 + P5)-free
graphs.

We note that sP3-free graphs are the graphs that become a disjoint union of
cliques after removing the vertices of any induced (s - 1)P3 and their neighbors. The
class of (sP1 + P5)-free graphs is a natural generalization of the class of (P1 + P5)-
free graphs. The latter graphs are also known as the nearly P5-free graphs, that is,
graphs in which the subgraph induced by the nonneighborhood of any vertex is P5-
free. More generally, a graph is nearly \pi for some graph property \pi if the subgraph
induced by the nonneighborhood of any vertex has property \pi . It is easy to see that
Max Independent Set is polynomial-time solvable for graphs that are nearly \pi if
it is so for graphs with property \pi (see, for example, [5]). However, for many other
graph problems, including the problems we study in this paper, such a statement
either does not hold, is not known, or could be nontrivial to prove even for graphs
that are nearly P5-free (such as, for example, Connected Vertex Cover [13]).

We prove both theorems using the same technique. Essentially we reduce to
Max Independent Set for sP3-free blob graphs and (sP1 + P5)-free blob graphs,
respectively. In order to do this, we first perform a structural analysis of sP3-free \scrC -
block graphs and (sP1 + P5)-free \scrC -block graphs. These analyses have some common
elements, namely they are based on the so-called block-cut forest of the (unknown)
maximum-weight solution F . This forest contains as its vertices the cutvertices x
and blocks b of F such that xb is an edge if and only if x belongs to b. The precise
arguments are different and the resulting polynomial-time algorithms exploit the sP3-
freeness and (sP1 + P5)-freeness in different ways.

1.3. Implications and new hardness results. Theorems 1 and 2 imply cor-
responding results for Feedback Vertex Set, as the latter problem is equivalent
to Max \{ P2\} -Block Graph. The condition for \scrC to be finite is critical for our
proof technique. Nevertheless, we still have the corresponding result for Even Cy-
cle Transversal as well: for sP3-free graphs, the cases \scrC = \{ P2, C3, C5, C7, . . .\} 
and \scrC = \{ P2, C3, C5, . . . , C4s - 3\} are equivalent. Note that we cannot make such an
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argument for Odd Cycle Transversal, as arbitrarily large bicliques are 2P3-free.

Corollary 3. For every integer s \geq 1, Feedback Vertex Set and Even
Cycle Transversal can be solved in polynomial time for sP3-free graphs and (sP1+
P5)-free graphs.

Corollary 3 extends the aforementioned results for Feedback Vertex Set on
sP2-free graphs and (sP1 + P3)-free graphs. In section 5 we prove that Even Cycle
Transversal is NP-complete for graphs of large girth and for line graphs, and con-
sequently, for H-free graphs where H contains a cycle or a claw. Hence, Feedback
Vertex Set and Even Cycle Transversal behave similarly on H-free graphs,
subject to a number of open cases, which we listed in Table 1.

Table 1
The complexity of Feedback Vertex Set (FVS), Even Cycle Transversal (ECT), and

Odd Cycle Transversal (OCT) on H-free graphs for a linear forest H. All three problems are
\sansN \sansP -complete for H-free graphs when H is not a linear forest (see also section 5). The bold cases
(for FVS and ECT) are the algorithmic contributions of this paper. We write H \subseteq i H\prime if H is an
induced subgraph of H\prime . See section 1.1 for references to the known results in the table.

Polynomial-time Unresolved \sansN \sansP -complete

FVS H \subseteq i sP1 + P5 or
sP3 for s \geq 1

H \supseteq i P2 + P4 or P6 none

ECT H \subseteq i sP1 + P5 or
sP3 for s \geq 1

H \supseteq i P2 + P4 or P6 none

OCT H = P4 or
H \subseteq i sP1 + P3 or

sP2 for s \geq 1

H = sP1 + P5 for s \geq 0 or
H = sP1 + tP2 + uP3 + vP4

for s, t, u \geq 0, v \geq 1
with min\{ s, t, u\} \geq 1 if v = 1, or
H = sP1+tP2+uP3 for s, t \geq 0,
u \geq 1 with u \geq 2 if t = 0

H \supseteq i P6 or P2 + P5

2. Blob graph of graphs with no large linear forest. Let G = (V,E) be
a graph. A (connected) component is a maximal connected subgraph of G. The
neighborhood of a vertex u \in V is the set NG(u) = \{ v | uv \in E\} . For U \subseteq V , we let
NG(U) =

\bigcup 
u\in U N(u) \setminus U . Two sets X1, X2 \subseteq V (G) are adjacent if X1 \cap X2 \not = \emptyset or

there exists an edge with one endvertex in X1 and the other in X2. The blob graph
G\circ of G is defined as follows:

V (G\circ ) := \{ X \subseteq V (G) | G[X] is connected\} 
and E(G\circ ) := \{ X1X2 | X1 and X2 are adjacent\} .

Gartland et al. [11] showed that for every graph G, the length of a longest induced
path in G\circ is equal to the length of a longest induced path in G. We slightly generalize
this result.

Theorem 4. For every linear forest H, a graph G contains H as an induced
subgraph if and only if G\circ contains H as an induced subgraph.

Proof. As G is an induced subgraph of G\circ , the (\Rightarrow ) implication is immediate. We
prove the (\Leftarrow ) implication by induction on the number k of connected components
of H. If k = 1, then the claim follows directly from the aforementioned result of
Gartland et al. [11]. So assume that k \geq 2 and the statement holds for all linear
forests H with fewer than k connected components. Let P \prime be one of the connected
components of H, and define H \prime := H  - P \prime .
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Suppose that G\circ contains an induced subgraph isomorphic to H. Let \scrX be the
set of vertices of G\circ , such that G\circ [\scrX ] is isomorphic to H. Furthermore, let \scrY \subseteq \scrX 
be the set of vertices that induce in G\circ [\scrX ] the component P \prime of H, that is, G\circ [\scrY ] is
isomorphic to P \prime .

Let Y \subseteq V (G) be the union of sets in \scrY . Note that G\circ [\scrY ] is an induced subgraph
of (G[Y ])\circ . Thus, by the inductive assumption, G[Y ] contains an induced copy of P \prime .

Let X \subseteq V (G) be the union of sets in \scrX \setminus \scrY . Since the copy of H in G\circ is induced,
we know that in G\circ there are no edges between \scrX \setminus \scrY and \scrY . This is equivalent to
saying that X \cap N [Y ] = \emptyset . So we conclude that G\circ [\scrX \setminus \scrY ] is an induced subgraph of
(G  - N [Y ])\circ . Since G\circ [\scrX \setminus \scrY ], and thus (G  - N [Y ])\circ , contains an induced copy of
H \prime , by the inductive assumption we know that G  - N [Y ] contains an induced copy
of H \prime . Combining this subgraph with the induced copy of P \prime in G[Y ], we obtain an
induced copy of H in G.

3. The proof of Theorem 1. We start by analyzing the structure of sP3-free
\scrC -block graphs in section 3.1, where \scrC is any finite class of biconnected graphs. Then,
in section 3.2, we present our algorithm forMax \scrC -Block Graph on sP3-free graphs.

3.1. Structural lemmas. From now on, let \scrC be a finite class of biconnected
graphs. For some fixed positive integer s, let G = (V,E) be an sP3-free graph with
n vertices and vertex weights w : V \rightarrow \BbbQ +. Let X \subseteq V such that F = G[X] is a
\scrC -block graph. A component of F is trivial if it is a single vertex or a single block,
otherwise it is nontrivial. Let F \prime be the graph obtained from F by removing all trivial
components. Note that F \prime and F are sP3-free, as G is sP3-free.

We denote the set of cutvertices of F \prime and the set of blocks of F \prime by Cutvertices(F \prime )
and Blocks(F \prime ), respectively. The block-cut forest BCF(F \prime ) of F \prime has vertex set
Cutvertices(F \prime ) \cup Blocks(F \prime ) and an edge set that consists of all edges xb such that
x \in Cutvertices(F \prime ) and b \in Blocks(F \prime ), and x belongs to b. By definition, each
component of F \prime has a cutvertex; we pick an arbitrary one as the root for the corre-
sponding tree in BCF(F \prime ) to get a parent-child relation. Each leaf of BCF(F \prime ) belongs
to Blocks(F \prime ), and we call such blocks leaf blocks.

A cutvertex x of F \prime is a terminal of type 1 if x has at least two children in BCF(F \prime )
that are leaves, whereas x is a terminal of type 2 if there exists a leaf block, whose
great-grandparent in BCF(F \prime ) is x. In the latter case, there is a three-edge downward
path from x to a leaf in BCF(F \prime ); see also Figure 1. Let d be the maximum number
of vertices of a graph in \scrC .

Lemma 5. At most d \cdot (s - 1) vertices of F \prime are terminals of type 1.

Proof. For the sake of contradiction, suppose that there are at least d \cdot (s - 1)+1
terminals of type 1. We observe that F \prime is d-colorable. Indeed, each block has at
most d vertices, so d colors are sufficient to color each block. Furthermore, we can
permute the colors in each block, so that the colorings agree on cutvertices.

This implies that there is an independent set X of size at least s, whose every
element is a terminal of type 1. For each such terminal v, let its private P3 be a
3-vertex path with v as the central vertex and each endpoint belonging to a different
leaf block that is a child of v in BCF(F \prime ). Note that each private P3 is induced.
Furthermore, the private P3's of vertices in X are pairwise nonadjacent: this follows
from the definition of terminals of type 1 and the fact that X is independent. Thus
we have found an induced sP3 in F , a contradiction.

Lemma 6. At most (d+ 1) \cdot (s - 1) vertices of F \prime are terminals of type 2.
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v

v

u

x

w

y

u

w

x

y

z

z

Fig. 1. Left: a graph F \prime . Blue shapes are blocks, squares are terminals, and dots are non-
terminal cutvertices. Right: \sansB \sansC \sansF (F \prime ), rooted in the cutvertex v. Blue diamonds are blocks; w and
z are terminals of type 1, u and x are terminals of type 2, and y is a terminal of both types. The
remaining cutvertices are not terminals. We will also use this example with this particular \sansB \sansC \sansF (F \prime )
in later figures. (Figure in color online.)

Proof. For the sake of contradiction, suppose that there are at least (d+1) \cdot (s - 
1)+1 terminals of type 2. Observe that F \prime has a proper (d+1)-coloring f , satisfying
the following two properties:

1. the vertices in each block receive pairwise distinct colors and
2. if b is a block, then any vertex of b receives a color which is different than the

color of the cutvertex which is the great-grandparent of b in BCF(F \prime ) (if such
a cutvertex exists).

It is easy to find such a coloring of each tree in BCF(F \prime ) by choosing an arbitrary
color for the root and proceeding in a top-down fashion. Suppose we want to color
the block b and its parent in BCF(F \prime ) is the cutvertex v. Recall that b has at most d
vertices and exactly one of them is already colored. Furthermore, we want to avoid
the color of the grandparent of v (if such a vertex exists), so we have sufficiently many
free colors to color each vertex of b \setminus \{ v\} with a different one.

Now, by our assumption, there is a set X of at least s terminals of type 2 that
received the same color in f . For each v \in X, we define its private P3 as follows.
Recall that by the definition of a terminal of type 2, there is a leaf block b, whose
great-grandparent in BCF(F \prime ) is v. The private P3 of v is given by the first three
vertices on a shortest path P from v to b. Note that in the extreme case it might
happen that both b and its grandparent in BCF(F \prime ) are edges, but P always has at
least three vertices.

Clearly, each private P3 is an induced path. We claim that the private P3's asso-
ciated with any two vertices of X form an induced 2P3. For the sake of contradiction,
suppose otherwise. Let v1, v2 be distinct vertices of X, and let vi, xi, yi be the con-
secutive vertices of the private P3 associated with vi. Let bi be the block containing
vi and xi.

First, observe that the sets \{ v1, x1, y1\} and \{ v2, x2, y2\} are disjoint. Indeed, we
know that v1 \not = v2 by assumption, and because BCF(F \prime ) is a rooted forest, we have
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Bl1

Bl2

Bl3

Bw

Bin

composite-blocks

Fig. 2. The classification of blocks of the example of Figure 1 (so this classification is based on
the block-cut forest \sansB \sansC \sansF (F \prime ) from Figure 1).

that \{ x1, y1\} \cap \{ x2, y2\} = \emptyset . Furthermore, recall that f(v1) = f(v2) and by the
definition of f , we have that the colors of xi and of yi are different from the color of
vi.

So now suppose that there is an edge with one endvertex in \{ v1, x1, y1\} and the
other in \{ v2, x2, y2\} . Clearly this edge cannot join v1 and v2, as the coloring f is
proper. Furthermore, there is no edge between \{ x1, y1\} and \{ x2, y2\} , as v1 and v2 are
cutvertices of a rooted tree. Suppose that v2 is adjacent to x1 (the case that v1 is
adjacent to x2 is symmetric). As each vertex of b1 gets assigned a different color by
f and f(v1) = f(v2), we observe that v2 cannot belong to b1. Thus x1 is a cutvertex.
However, by the second property of f , we obtain that the color of v2 must be different
from the color of v1. As f(v1) = f(v2), this is a contradiction.

So finally suppose that v2 is adjacent to y1 (the case that v1 is adjacent to y2 is
symmetric). Note that then y1 cannot belong to a leaf block, meaning that y1 belongs
to b1. Similarly to the previous paragraph, the definition of f implies that the color
of v2 must be different from the color of v1, a contradiction.

We conclude that \{ v1, x1, y1, v2, x2, y2\} induces a 2P3. As v1 and v2 were arbi-
trary vertices of X and | X| \geq s, this means we have found an induced sP3 in F \prime , a
contradiction.

Lemmas 5 and 6 imply the following.

Lemma 7. The number of terminals of F \prime is at most (2d+ 1) \cdot (s - 1).

If v is a terminal of type 2, then by definition there is a cutvertex w that belongs
to both a block containing v as well as to some leaf block. We call such w a witness
of v. We note that a (nonleaf) block may contain multiple witnesses. Some of these
witnesses might be terminals (and in that case they are of type 1), whereas others
might not be terminals.

We now partition the set of blocks of F \prime into the following subsets; see also Figure
2:

\bullet \scrB l1 is the set of leaf blocks containing a terminal of type 1;
\bullet \scrB l2 is the set of leaf blocks containing a witness w that is not a terminal of
type 1;

\bullet \scrB l3 is the set of remaining leaf blocks, that is, the ones with a cutvertex that
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is neither a terminal nor a witness;
\bullet \scrB w is the set of blocks with at least two cutvertices, one of which is a terminal

of type 2 and all the other ones are nonterminal witnesses of that type-2
terminal;

\bullet \scrB in is the set of all remaining blocks.

Note that blocks in \scrB l2 and \scrB w come in groups, that is, for each block B in \scrB w, there
are at most d - 1 blocks B\prime in \scrB l2 , such that B and B\prime share a vertex (note that this
common vertex is a nonterminal witness). We will consider this group of blocks as
one object. Formally, a composite-block is a graph G[V (B)\cup 

\bigcup 
1\leq i\leq r V (Bi)] for some

integer r \leq d - 1 chosen to be maximum, such that
\bullet B \in \scrB w, so B has some vertex u that is a terminal of type 2;
\bullet for every i \in \{ 1, . . . , r\} , Bi \in \scrB l2 ; and
\bullet for every i \in \{ 1, . . . , r\} , | V (B) \cap V (Bi)| = 1 and u /\in V (Bi).

Note that each composite-block has at most (d - 1)d+d = d2 vertices and contains
exactly one terminal of type 2. Let \scrB d be the set of all composite-blocks.

A backbone of a component Z of F \prime is a minimum tree TZ contained in Z that
connects all terminals of F \prime that belong to Z; observe that all leaves of TZ are ter-
minals. The skeleton S of F \prime is the graph obtained from F \prime by removing all vertices
from the blocks in \scrB l1 except terminals of type 1 and all vertices from the composite-
blocks in \scrB d except terminals of type 2. Note that every backbone is a subgraph of
S. Furthermore, the vertices of the blocks in \scrB l3 all belong to S.

3.2. The algorithm. Outline. Our polynomial-time algorithm consists of the
following two phases:

1. Branching Phase, which consists of the following three steps:
1. guessing the terminals of F \prime ;
2. guessing the backbones of the components of F \prime ; and
3. guessing the skeleton of F \prime ; and

2. Completion Phase, where we extend the partial solutions obtained in the
Branching Phase to complete ones by finding nonskeleton vertices of F \prime and
trivial components of F ; we do this by
1. reducing the problem to Max Weight Independent Set for sP3-free

graphs using the blob graph construction in section 2 and
2. solving this problem using the polynomial-time algorithm of Brandst\"adt

and Mosca [7].

We now describe our algorithm, prove its correctness, and perform a running time
analysis.

Branching Phase. This phase of our algorithm consists of a series of guesses,
where we find certain vertices and substructures in G. The total number of vertices
to be guessed will be \scrO (s2d2). Since we guess them exhaustively, this results in a

recursion tree with \scrO (n\scrO (s2d2)) leaves. As both s and d are constants, this bound is
polynomial in n. We will ensure that the optimum solution F = G[X] will be found in
the call corresponding to at least one of the leaves of the recursion tree. Based on the
properties of F , we will expect the guessed vertices to satisfy certain conditions. If, at
some point, the guessed vertices do not satisfy these conditions, we just terminate the
current call, as it will not lead us to find F . This will be applied implicitly throughout
the execution of the algorithm.

The Branching Phase is illustrated in Figures 3--5. We use the convention that
gray/black elements are still unknown and blue elements are the ones that we have
already guessed.
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Fig. 3. Step 1 of the Branching Phase. Left: the graph F \prime . Right: the terminals of F \prime .

Fig. 4. Step 2 of the Branching Phase. Left: the tree T \prime 
Z . Right: the tree TZ .

Step 1. Guessing the terminals of F\prime . We guess the set C \subseteq V of terminals of F \prime .
By Lemma 7, the total number of terminals is bounded by (2d + 1) \cdot (s  - 1) \leq 3ds.
Hence, we consider O(n3ds) options and for each chosen set C we do as follows.
For each terminal in C, we guess its type (1, 2, or both). This results in 3| C| \leq 
33ds possibilities. We also guess the partition of C, corresponding to the connected
components of F . This results in at most | C| | C| \leq (3ds)3ds additional branches. In
total, we have \scrO (n\scrO (ds)) branches. Step 1 is illustrated in Figure 3.

Step 2. Guessing the backbone of each component of F\prime . Let Z be a component of
F \prime . Let CZ \subseteq C be the subset of terminals that are in Z. Let TZ be a backbone of Z.
Let T \prime 

Z be the tree obtained from TZ by contracting every path in TZ whose internal
vertices are all nonterminals and of degree 2 to an edge. Note that every nonterminal
vertex of T \prime 

Z has degree at least 3. Since T \prime 
Z has at most | CZ | vertices of degree at

most 2, by the handshaking lemma we observe that the total number of vertices of
T \prime 
Z is at most 2| CZ | . Recall that every edge of T \prime 

Z corresponds to an induced path
in TZ . Since F \prime is sP3-free and thus P4s - 1-free, we conclude that TZ has at most
2| CZ | \cdot (4s - 2) \leq 8s \cdot | CZ | vertices.

Let T be the forest whose components are the guessed backbones of the compo-
nents of F \prime . Note that the total number of vertices of T is at most

\sum 
Z 8s \cdot | CZ | =

8s \cdot | C| \leq 24ds2. Thus we may guess the whole forest T , which results in \scrO (n\scrO (ds2))
branches. Step 2 is illustrated in Figure 4.

Step 3. Guessing the skeleton of F\prime . Let T be the forest guessed in the previ-
ous step; recall that T has at most 24ds2 vertices. We guess the partition of E(T )
corresponding to blocks of F \prime ; note that a vertex v may be in several blocks: this
happens precisely if v is a cutvertex in F \prime . This results in at most | E(T )| \scrO (| E(T )| ) \leq 
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Fig. 5. Step 3 of the Branching Phase. Left: our knowledge about F \prime after guessing the blocks
in \scrB in. Right: our knowledge about F \prime after guessing the blocks in \scrB l3 .

| V (T )| \scrO (| V (T )| ) \leq (ds)\scrO (ds2) branches.
We now discuss some properties of the (composite-)blocks. We use the names

of vertices as in the definitions introduced in section 3.1; recall also Figure 2. The
crucial observation is that now there is a branch, where:

\bullet For each block in \scrB l1 , we have guessed its cutvertex and no other vertices.
\bullet For each block in \scrB l2 , we have not guessed any vertices.
\bullet For each block in \scrB l3 , we guessed no vertices yet except possibly its cutvertex

in F \prime (but in the latter case we have not indicated this yet).
\bullet For each block in \scrB w, we have guessed its type-2 terminal vertex and we
guessed no other vertices. Thus, for each composite-block in \scrB d, we have
guessed its cutvertex in F \prime and no other vertices.

\bullet For each block in \scrB in, we have guessed at least two vertices.

Now we proceed to the final guessing step; see Figure 5. First, we guess all blocks in
\scrB in. We can do it as

\bullet (i) we know at least two vertices of such a block,
\bullet (ii) the number of these blocks is at most | E(T )| \leq 24ds2, and
\bullet (iii) each block has at most d vertices.

This results in at most n\scrO (| E(T )| \cdot d) = n\scrO (d2s2) further branches. In each branch, we
guessed all vertices of a skeleton S except those that are noncutvertices of F \prime that
belong to the blocks in \scrB l3 . We will now guess which vertices of S will also belong to
exactly one block in \scrB l3 (so these vertices will be cutvertices in F \prime ). These vertices
belong to at least one block of \scrB in. As the union of the vertices of the blocks in \scrB in

has size at most 24d2s2, this leads to \scrO (1) extra branches.
Finally, we guess all blocks in \scrB l3 . Note that we can do it, as

\bullet (i) we know their cutvertices,
\bullet (ii) the number of these cutvertices is at most 24ds2,
\bullet (iii) each cutvertex is contained in exactly one block from \scrB l3 , and
\bullet (iv) each block has at most d vertices.

This results in at most n\scrO (| V (T )| \cdot d) = n\scrO (d2s2) branches, that is, at most n\scrO (d2s2) sets
that are potential skeletons S of F \prime . Step 3 is illustrated in Figure 5.

The following claim summarizes the outcome of the guessing phase of the algo-
rithm.

Claim A. In time \scrO (n\scrO (s2d2)) we can enumerate a collection \scrS of \scrO (n\scrO (s2d2))
triples (S,C1, C2), where S \subseteq V and C1, C2 \subseteq S such that \scrS has the following prop-
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erty. Let X \subseteq V , such that F = G[X] is a \scrC -block graph. Let X \prime \subseteq X be the vertex
set of the graph F \prime obtained from F by removing all trivial components. Then there
is at least one triple (S,C1, C2) \in \scrS , where
(a) C1 is the set of terminals of type 1 in F \prime ,
(b) C2 is the set of terminals of type 2 in F \prime ,
(c) G[S] is the skeleton of F \prime .

Completion Phase. Let \scrS be the collection from Claim A, and let (S,C1, C2) \in 
\scrS be a triple that satisfies the properties listed in the statement of Claim A for an
optimum solution F = G[X]. Let \scrX := \scrX 0 \cup \scrX 1 \cup \scrX 2 be the family of subsets of V
with

\scrX 0 :=\{ \{ v\} | v \in V \} ,
\scrX 1 :=\{ B \subseteq V | G[B] \in \scrC \} , and
\scrX 2 :=\{ B \subseteq V | B is a composite-block whose blocks are in \scrC \} .

Let G\scrC be the graph whose vertex set is \scrX , and edges join sets that are adjacent in
G. Furthermore, we define a weight function w\scrC : \scrX \rightarrow \BbbQ + as

w\scrC (A) =
\sum 
v\in A

w(v).

Note that in order to complete S to the optimum solution F = G[X], we need to
determine

\bullet all blocks in \scrB l1 ,
\bullet all composite-blocks in \scrB d,
\bullet all trivial components of F .

Note that the vertex sets of all these subgraphs are in the family \scrX and they form an
independent set in G\scrC . Furthermore, since X is of maximum weight, the total weight
of selected subsets must be maximized. Thus the idea behind the last step is to reduce
the problem to solving Max Weight Independent Set in an appropriately defined
subgraph of G\scrC and weights w\scrC .

To ensure that the selected subsets are consistent with our guess (S,C1, C2) \in \scrS ,
we will remove certain vertices from G\scrC . In particular, let \scrX \prime consist of the sets
A \in \scrX , such that

1. A \in \scrX 0 \cup \scrX 1 and A is nonadjacent to S; these are the candidates for trivial
components of F ,

2. A \in \scrX 1 and A intersects S in exactly one vertex, which is in C1; these are
the candidates for blocks in \scrB l1 ,

3. A \in \scrX 2 and A intersects S in exactly one vertex, which is in C2 and is not
the cutvertex of G[A]; these are the candidates for composite-blocks in \scrB d.

Now let \scrI \subseteq \scrX \prime be an independent set of G\scrC , and let S\prime =
\bigcup 

A\in \scrI A. It is straightfor-
ward to verify that if (S,C1, C2) \in \scrS satisfies the properties listed in Claim A, then
G[S \cup S\prime ] is a \scrC -block graph. Thus, in one of the branches, we will find the optimum
solution F = G[X].

Now let us argue that the last step can be performed in polynomial time. First,
observe that | \scrX | \leq n + nd + nd2

= n\scrO (d2) and the family \scrX can be exhaustively

enumerated in time n\scrO (d2). Next, \scrX \prime can be computed in time polynomial in | \scrX | , and
thus in n. This implies that the graph G\scrC [\scrX \prime ] can be computed in time polynomial
in n. We observe that G\scrC , and thus G\scrC [\scrX \prime ], is an induced subgraph of the blob
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graph G\circ , introduced in section 2. Hence, by Theorem 4, we conclude that G\scrC [\scrX \prime ] is
sP3-free.

The final ingredient is the polynomial-time algorithm for Max Weight Inde-
pendent Set in sP3-free graphs by Brandst\"adt and Mosca [7]. Its running time on

an n\prime -vertex graph is n\prime \scrO (s). Since the number of vertices of G\scrC [\scrX \prime ] is n\scrO (d2), we
conclude that a maximum-weight independent set in G\scrC [\scrX \prime ] can be found in time

n\scrO (sd2).
Summing up, in the guessing phase, in time n\scrO (s2d2) we enumerate the family \scrS 

of size n\scrO (s2d2). Then, for each member (S,C1, C2) of \scrS , we try to extend the partial

solution to a complete one. This takes time n\scrO (sd2) per element of \scrS . Among all
found solutions, we return the one with maximum weight. The total running time of
the algorithm is n\scrO (s2d2), which is polynomial in n, since s and d are constants. This
completes the proof of Theorem 1.

4. The proof of Theorem 2. In this section we prove that for every integer
s \geq 1 and every finite class \scrC of biconnected graphs, Max \scrC -Block Graph can be
solved in polynomial time for (sP1 + P5)-free graphs. In section 4.1 we consider two
boundary cases, namely the case where \scrC = \emptyset and the case where s = 0. We will use
these cases in our algorithm in section 4.3 after first proving some structural lemmas
in section 4.2.

4.1. Two boundary cases. First, assume that \scrC = \emptyset . Recall that Max \emptyset -
Block Graph is equivalent to Max Independent Set. The latter problem is
polynomial-time solvable for P5-free graphs (and even for P6-free graphs [12]).

Theorem 8 (see [15]). Max Independent Set can be solved in polynomial
time for P5-free graphs.

We also recall the aforementioned and well-known observation from section 1 on
graphs that are nearly \pi for some graph property \pi (see, for example, [5]). As a special
case, we find that Max Independent Set for (P1 + P5)-free graphs is polynomial-
time solvable if it is so for P5-free graphs. Combining Theorem 8 with s applications
of this argument leads to the following (known) extension of Theorem 8, which we
will need as a lemma.

Lemma 9. For every fixed s, Max Independent Set can be solved in polynomial
time in (sP1 + P5)-free graphs.

Now we deal with the case where s = 0. That is, we consider Max \scrC -Block
Graph restricted to P5-free graphs when \scrC is a finite class of biconnected graphs.
For this case we will use Monadic Second-Order Logic (MSO2) over graphs, which
consists of formulas with vertex variables, edge variables, vertex set variables, and
edge set variables, quantifiers, and standard logic operators. We also have a predicate
inc(v, e), indicating that the vertex v belongs to the edge e.

Abrishami et al. [1, Theorems 5.3 and 7.3] proved the following result, even for
the extension Counting Monadic Second-Order Logic (CMSO2) of MSO2, which allows
atomic formulas of the form | X| \equiv p mod q, where X is a set variable and 0 \leq p < q
are integers (however, we do not need this extension for our purposes). We refer the
reader to [9] for further information on MSO2 logic on graphs.

Theorem 10 (see [1]). For every fixed CMSO2 formula \Phi and every constant t,
it is possible for a P5-free graph G with weight function w : V (G) \rightarrow \BbbQ +, to find in
polynomial time a maximum-weight set X \subseteq V (G), such that G[X] is of treewidth at
most t and satisfies \Phi .
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We use Theorem 10 in our next lemma.

Lemma 11. For every finite class \scrC of biconnected graphs, Max \scrC -Block Graph
can be solved in polynomial time for P5-free graphs.

Proof. Note that every \scrC -block graph has treewidth at most maxC\in \scrC | V (C)| ,
which is a constant. In order to use Theorem 10 it remains to show that the property
that a set X \subseteq V (G) induces a \scrC -block graph in G is expressible in CMSO2. We show
that we can express this property already in MSO2.

In what follows, x and y are vertex variables, e is an edge variable, while X,X \prime ,
and Y denote vertex set variables. We will use some standard shortcuts (see also [9]),
for instance:

\forall (x \in X) : \phi stands for \forall x : (x \in X) \Rightarrow \phi and

\forall (X \prime \subseteq X) : \phi stands for \forall X \prime : (\forall (x \in X \prime ) : x \in X) \Rightarrow \phi .

We can now show the required claim. First, we express the property that G[X] is
connected in MSO2, in the usual way:

connected(X) := \forall (X \prime \subseteq X) : (\exists (x \in X \prime )\exists (y \in X)\exists e : y /\in X \prime \wedge inc(x, e) \wedge inc(y, e)) .

We now express the property that G[X] is biconnected in MSO2:

biconnected(X) := connected(X) \wedge \forall (x \in X) : connected(X \setminus \{ x\} ).

Now G[X] is a block of G[Y ] if it is biconnected and maximal with this property:

block(X,Y ) := biconnected(X) \wedge \forall (y \in Y ) : (y /\in X) \Rightarrow \neg biconnected(X \cup \{ y\} ).

If C is a fixed graph, then the property that G[X] is isomorphic to C can be easily
hard-coded in a formula. We denote this predicate by is-C(X). This can be extended
to checking whether G[X] \in \scrC (if \scrC is finite) by setting

in-\scrC (X) :=
\bigvee 
C\in \scrC 

is-C(X).

Finally, G[X] is a \scrC -block graph if and only if X satisfies

(4.1) is-\scrC -block-graph(X) := \forall (X \prime \subseteq X) : block(X) \Rightarrow in-\scrC (X).

This completes the proof of the lemma.

4.2. Structural lemmas. Let s \geq 0, and let G be the (sP1 + P5)-free instance
graph with weight function w. Let \scrC be a finite class of biconnected graphs. Let d
be the maximum number of vertices of a graph in \scrC . Similarly to section 3, we will
analyze the structure of an (unknown) maximum-weight solution. Let X \subseteq V (G)
be such that F = G[X] is a \scrC -block graph. Again we consider the block-cut forest
BCF(F ) of F . Recall that a leaf block is a block which is a leaf of BCF(F ).

Lemma 12. Every cutvertex of F belongs to at most s+ 1 nonleaf blocks.

Proof. For the sake of contradiction, let x be a cutvertex that belongs to s + 2
blocks b1, b2, . . . , bs+2. Consider one such block bi for i \in [s + 2]. As bi is not a leaf
block, there is a cutvertex yi \in V (bi) \setminus \{ xi\} and a block b\prime i \not = bi containing yi; see
Figure 6. Note that x /\in V (b\prime i). Let y\prime i be any vertex from V (b\prime i) \setminus \{ yi\} ; note that y\prime i
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is nonadjacent to x. Let Qi be a shortest x-y\prime i-path contained in V (bi) \cup V (b\prime i) and
note that Qi has at least two edges. Furthermore, for i, j \in [s + 2], such that i \not = j,
the paths Qi and Qj share one endvertex (namely x) and no other vertices. Thus
G[V (Q1) \cup V (Q2)] is an induced path with at least five vertices and consequently,

G[V (Q1) \cup V (Q2) \cup 
\bigcup s+2

i=3\{ y\prime i\} ] contains an induced sP1 + P5, a contradiction.

x

y1
y2 y3 ys+2

y′1 y′2 y′3 y′s+2

blocks bi:

blocks b′i:

Fig. 6. The induced sP1 + P5 in the proof of Lemma 12.

A vertex x \in V (F ) is called internal if it is a cutvertex or belongs to a nonleaf
block. All other vertices are external; see Figure 7.

Fig. 7. Internal (blue) and external (red) vertices of F . (Figure in color online.)

Lemma 13. Every component of F has at most (5 + 2s)(d(s + 1))5+2s internal
vertices.

Proof. Let Xint be the set of internal vertices of some component of F . Each
v \in Xint is in at most s + 1 blocks of G[Xint] by Lemma 12, and moreover, it has
degree at most d  - 1 in each block (as each block has at most d vertices). Thus the
maximum degree in G[Xint] is at most (d - 1)(s+ 1) \leq d(s+ 1). As G is (sP1 + P5)-
free, G[Xint] is (sP1 + P5)-free. Hence, G[Xint] is also P5+2s-free and as G[Xint] is
connected, it has a diameter at most 5 + 2s - 1. Every graph with maximum degree
at most d(s+ 1) and a diameter at most 5 + 2s - 1 has at most

1 + d(s+ 1) + (d(s+ 1))2 + \cdot \cdot \cdot + (d(s+ 1))5+2s - 1 \leq (5 + 2s)(d(s+ 1))5+2s

vertices.1 This completes the proof of the lemma.

1An astute reader might notice that this bound can actually be improved to the so-called Moore
bound. However, as we do not try to optimize the constants, we kept bounds as simple as possible.
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We say that a component F \prime of F is big if | V (F \prime )| \geq (ds+1)\cdot (5+2s)(d(s+1))5+2s.
Otherwise F \prime is small.

Lemma 14. If a component of F is big, then it has a cutvertex belonging to at
least s leaf blocks.

Proof. Let X \prime be such that G[X \prime ] = F \prime is a big component of F = G[X]. Let
X \prime 

int and X \prime 
ext be the sets of internal and external vertices of X \prime , respectively. Note

that X \prime = X \prime 
int \cup X \prime 

ext and X \prime 
int \cap X \prime 

ext = \emptyset . By Lemma 13 we have that | X \prime 
int| \leq 

(5 + 2s)(d(s+ 1))5+2s. Consequently,

| X \prime 
ext| = | V (F \prime )|  - | X \prime 

int| 
\geq (ds+ 1) \cdot (5 + 2s)(d(s+ 1))5+2s  - | X \prime 

int| 
\geq ds \cdot (5 + 2s)(d(s+ 1))5+2s.

As every block contains at most d vertices, the above implies that G[X \prime ] has at least
s \cdot (5 + 2s)(d(s + 1))5+2s \geq s \cdot | X \prime 

int| leaf blocks. Each leaf block contains exactly
one internal vertex, so by the pigeonhole principle we conclude that there must be
an internal vertex belonging to at least s leaf blocks. This completes the proof of the
lemma.

4.3. The algorithm. We are now ready to present our polynomial-time algo-
rithm for (sP1 +P5)-free graphs. Let s \geq 0, and let G be the (sP1 +P5)-free instance
graph with weight function w. Let \scrC be a finite class of biconnected graphs. Let d
be the maximum number of vertices of a graph in \scrC . Recall that F is the optimum
solution we are looking for.

The algorithm consist of three phases, in each of which we look for solutions of a
specific type. Afterwards, the algorithm returns the maximum solution found during
the whole execution.

Case 1. F has at most three big components. First, suppose that F has exactly
three big components F 1 = G[X1], F 2 = G[X2], and F 3 = G[X3]. See Figure 8. For
j \in [3], let Xj

int be the set of internal vertices of G[Xj ] (depicted in blue in Figure

8). By Lemma 13 we have that | Xj
int| \leq (5 + 2s)(d(s + 1))5+2s and thus the set

Xint :=
\bigcup 

i\in [3] X
j
int has at most 3(5+2s)(d(s+1))5+2s vertices. We guess the vertices

from Xint exhaustively; this results in \scrO (n(5+2s)(d(s+1))5+2s

) branches. We discard
the branches where G[Xint] is not a \scrC -block graph with three components.

For each Xint that we have not discarded the only thing left to do is to find

\bullet the small components of F (marked green in Figure 8) and
\bullet the leaf blocks of F 1, F 2, and F 3 (marked red in Figure 8).

This task is very similar to the final case of the algorithm in section 3.2. Let \scrX s be the
family of those subsets of V (G) \setminus N [Xint] of size smaller than (ds+1) \cdot (5+ 2s)(d(s+
1))5+2s that induce \scrC -block graphs. The elements of \scrX s are potential candidates for
the vertex sets of small components of F . The family \scrX s can be enumerated in time
\scrO (n(ds+1)\cdot (5+2s)(d(s+1))5+2s

).
Let \scrX \ell be the family of the sets S \subseteq V (G) \setminus Xint, satisfying the following prop-

erties:

(a) there is a unique x \in Xint with a neighbor in S,
(b) G[S \cup \{ x\} ] is a graph from \scrC .

The elements S of \scrX \ell are potential candidates for the sets of external vertices in the
leaf blocks of F 1, F 2, and F 3, where x is the unique neighbor of the block S \cup \{ x\} 
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Fig. 8. Case 1 in the algorithm. Internal vertices of the three big components of F are marked
blue, while the external ones are red. Small components are marked green. (Figure in color online.)

in BCF(F ). As each block has at most d vertices, each set from \scrX \ell has at most d - 1
vertices. Hence, the family \scrX \ell can be enumerated in time \scrO (nd - 1).

We now define \scrX := \scrX S \cup \scrX \ell and have reduced to Max Independent Set for
(sP1 + P5)-free graphs. Namely, we build in polynomial time the induced subgraph
G\circ [\scrX ] of G\circ and the task is to find a maximum independent set in G\circ [\scrX ]. As G\circ [\scrX ]
is (sP1 + P5)-free by Theorem 4, we can use the polynomial-time algorithm from
Lemma 9 for doing this. Afterwards, we use the solution found, together with \scrX , to
construct a forest F for G. Out of all the forests found in this way, we remember one
with maximum weight.

The algorithm also considers the three subcases where F has zero, one, or two big
components along the same lines as above but with some straightforward adjustments.
In the end it returns a maximum-weight solution amongst the four solutions found.
The total running time of Case 1 is polynomial, as there are \scrO (n(5+2s)(d(s+1))5+2s))
branches and each of them is processed in time n\scrO (d - 1), i.e., polynomial in n.

Case 2. F has at least four big components. Let X1, X2, X3, X4 be the vertex
sets of pairwise distinct big components of F = G[X]. For each j \in [4], there is
xj \in Xj that belongs to at least s leaf blocks of F by Lemma 14. Choose s leaf blocks

bj1, . . . , b
s
j containing xj and, let Lj := (

\bigcup s
i=1 V (bji )) \setminus \{ xj\} . Let L :=

\bigcup 
j\in [4] L

j , and

let G\prime := G - (N [L] \setminus \{ x1, x2, x3, x4\} ).
Now consider any X \prime \subseteq V (G\prime ), such that G\prime [X \prime ] is a \scrC -block graph. We observe

that G[X \prime \cup L] is also a \scrC -block graph.
Due to the above observation we can proceed as follows. We will guess x1, x2, x3, x4,

and L exhaustively. Note that in the intended solution \{ x1, x2, x3, x4\} \cup L should be a
\scrC -block graph whose block-cut forest is a disjoint union of four stars with x1, x2, x3, x4

as centers. If this is not the case for some guess, we discard the branch. As | L| \leq 4ds,
the number of branches is \scrO (n4+4ds). In each of those that we did not discard we
will consider the graph G\prime = G - (N [L]\setminus \{ x1, x2, x3, x4\} ) and find a maximum-weight
set X \prime \subseteq V (G\prime ) such that G\prime [X \prime ] is a \scrC -block graph. Then, by the above observation,
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X \prime \cup L induces a \scrC -block graph in G. We will return the maximum-weight solution
among all found in the branches.

The only thing left is to show that Max \scrC -Block Graph can be solved in
polynomial time for G\prime . For this, we make the following combinatorial claim.

Lemma 15. The graph G\prime is P5-free.

Proof. For the sake of contradiction, suppose that G\prime contains an induced P5. As
\{ x1, x2, x3, x4\} is an independent set, at least one vertex from this set, say x1, does
not belong to this path. Thus there exists an induced P5 in G\prime  - x1.

Note that G[L1] contains an independent set I of size s: it is sufficient to take one
vertex from each block. Furthermore, no vertex from N [I] is in G\prime  - x1. Consequently,
the induced P5 in G\prime  - x1, together with I, induces an sP1 + P5 in G, a contradic-
tion.

Due to Lemma 15, Max \scrC -Block Graph in G\prime can be solved in polynomial
time by Lemma 11.2

The total running time of Case 2 is polynomial, as there are \scrO (n4+4ds) branches
and processing each branch takes polynomial time. This completes the proof of The-
orem 2.

5. Hardness results for even cycle transversal on H-free graphs. In this
section we prove that subject to a number of unsolved cases, the complexity of Even
Cycle Transversal for H-free graphs coincides with the one for Feedback Ver-
tex Set.

An odd cycle factor of a graph G is a set of odd cycles such that every vertex of G
belongs to exactly one of them. The Odd Cycle Factor problem, which asks if a
graph has an odd cycle factor, is known to be NP-complete [20]. The line graph L(G)
of a graph G = (V,E) has a vertex set E and an edge between two distinct vertices e
and f if and only if e and f share an endvertex in G.

The proof of our next result for line graphs is somewhat similar to a proof for
Odd Cycle Transversal of [8] but uses some different arguments as well.

Theorem 16. Even Cycle Transversal is NP-complete for line graphs.

Proof. Let G = (V,E) be an instance of Odd Cycle Factor with n vertices
and m edges. We claim that G has an odd cycle factor if and only if its line graph
L := L(G) has an even cycle transversal of size at most m - n; see Figure 9.

First, suppose G has an odd cycle factor. Then there is E\prime \subseteq E, such that
| E\prime | = n and L[E\prime ] is a disjoint union of odd cycles. Hence, S := E \setminus E\prime is an even
cycle transversal of L of size | E|  - n = m  - n. Now suppose L has an even cycle
transversal S with | S| \leq m - n. Let E\prime := E \setminus S. As | E| = m, we have | E\prime | \geq n.

We prove the following claim.

Claim B. Every component of L[E\prime ] is either an odd cycle or the line graph of a
tree.

Proof. Let D be a component of L[E\prime ]. If D has no cycle, then D is a path, as L
is a line graph and thus is claw-free. Hence, D is the line graph of a path, and thus
a tree.

2Both the bound on the treewidth of a \scrC -block graph and the formula (4.1) depend on d, and the
dependence of these parameters (especially the \sansC \sansM \sansS \sansO 2 formula) in the work of Abrishami et al. [1]
is quite involved. Nevertheless, as d is a constant, the running time of the algorithm in Lemma 11 is
polynomial.
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Fig. 9. Left: a graph G with an odd cycle factor. Middle: the graph L = L(G) and the set E\prime 

(red). Black vertices form an even cycle factor. Right: the odd cactus L[E\prime ].

So suppose D has a cycle C. Then C is odd and induced, as L[E\prime ] is an odd
cactus. If D has no vertices except for the ones of C, then D is an odd cycle and we
are done. Suppose otherwise.

First, assume that C has at least five vertices. Since D has vertices outside C,
there is a vertex of C with a neighbor outside C. Hence, D contains either an even
cycle or an induced claw, both of which are not possible. So now suppose that C has
at most four vertices. Then C is a triangle, as D has no even cycles. Since D is an
induced subgraph of L, there exists a subgraph T of G such that D = L(T ). As D is
a connected graph with at least four vertices, containing a triangle, T is a connected
graph with at least four vertices.

We aim to show that T is a tree. For the sake of contradiction, suppose that T
contains a cycle CT . Then CT must be a triangle, as otherwise D would contain an
even cycle or an odd cycle with at least five vertices. Let a, b, c be the vertices of CT .
As T is connected and has at least four vertices, at least one of \{ a, b, c\} , say a, must
have a neighbor d /\in \{ b, c\} . However, the edges ad  - ab  - bc  - ac form a C4 in D, a
contradiction with D being an odd cactus. So we conclude that T contains no cycles
and thus T is a tree.

Each component of L[E\prime ] that is an odd cycle corresponds to an odd cycle inG. By
Claim B, each component D of L[E\prime ] that is not an odd cycle is the line graph of some
subtree T of G. So, if D has r vertices, then T has r + 1 vertices. Furthermore, the
vertex sets of G corresponding to distinct components of L[E\prime ] are pairwise disjoint.
Suppose that L[E\prime ] has p \geq 0 components that are not odd cycles. Let Q be the set of
vertices incident to at least one edge of E\prime . Then n = | V (G)| \geq | Q| = | E\prime | +p \geq n+p.
Hence, p = 0 and | Q| = n. So, the components of L[E\prime ] correspond to an odd cycle
factor of G. This completes the proof.

We make a straightforward observation similar to an observation for Feedback
Vertex Set [8, 19], except that we must subdivide edges of a graph an even number
of times.

Theorem 17. For every p \geq 3, Even Cycle Transversal is NP-complete for
graphs of girth at least p.

Proof. We reduce from Even Cycle Transversal for general graphs by noting
the following. Namely, the size of a minimum even cycle transversal in G is equal to
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the size of a minimum even cycle transversal in the graph G\prime obtained from G by
subdividing every edge 2p times, and the girth of G\prime is at least p.

The next theorem is analogous to the one for Feedback Vertex Set; see also
Table 1.

Theorem 18. Let H be a graph. Then Even Cycle Transversal for H-free
graphs is polynomial-time solvable if H \subseteq i sP3 or H \subseteq i sP1+P5 for some s \geq 0, and
it is NP-complete if H is not a linear forest.

Proof. If H \subseteq i sP3 or H \subseteq i sP1 + P5 for some integer s \geq 0, then we use
Corollary 3. If H is not a linear forest, then it has a cycle or a claw. If H has a cycle,
then we apply Theorem 17 for p = | V (H)| + 1. Otherwise, H has an induced claw
and we apply Theorem 16.

6. Conclusions. We have proven that the Max \scrC -Block Graph problem is
polynomial-time solvable on sP3-free graphs and (sP1 + P5)-free graphs (for every
s \geq 1). Hence, we have shown that for a large family of graphs \scrF , the Min \scrF -
Transversal problem is polynomial-time solvable on these graph classes. The two
best-known problems in this framework are Feedback Vertex Set and Even Cy-
cle Transversal. Our results for Feedback Vertex Set extend all the known
polynomial-time results for Feedback Vertex Set on H-free graphs, namely for
sP2-free graphs [8], (sP1 + P3)-free graphs [10], and P5-free graphs [1]. By proving
some new hardness results we have also shown that in contrast to the situation for
Odd Cycle Transversal, all other known complexity results for Feedback Ver-
tex Set on H-free graphs hold for Even Cycle Transversal as well. Hence, so
far both problems behave the same on special graph classes.

Due to the above, it would be interesting to prove polynomial equivalency of the
two problems more generally. Table 1 still shows some missing cases for each of the
three problems. In particular, we highlight the following borderline cases, namely
the cases H = P2 + P4 and H = P6 for Feedback Vertex Set and Even Cycle
Transversal and the case H = P1 + P4 for Odd Cycle Transversal.

We recall that in section 4.1 we showed that theMax \scrC -Block Graph problem is
a special case of finding a maximum-weight subset of vertices that induces a bounded-
treewidth graph which satisfies a given CMSO2 formula. The latter problem can
be solved in quasipolynomial time for Pr-free graphs for any fixed r [11]. Thus we
immediately obtain the following.

Corollary 19. For every linear forest H and every finite class \scrC of biconnected
graphs, Max \scrC -Block Graph can be solved in quasipolynomial time for H-free
graphs.

In particular, this implies quasipolynomial-time algorithms for Feedback Ver-
tex Set and Even Cycle Transversal for H-free graphs if H is a linear forest,
whereas Odd Cycle Transversal is NP-complete even for P6-free graphs [10].
Hence, a polynomial-time algorithm for Feedback Vertex Set and Even Cycle
Transversal on P6-free graphs would show that these two problems, restricted to
H-free graphs, differ in their complexity from Odd Cycle Transversal.

Acknowledgments. The first author thanks Carl Feghali for an inspiring initial
discussion. The third author thanks Marcin Pilipczuk for some fruitful discussions
including an alternative polynomial-time algorithm for Feedback Vertex Set on
(P1 + P5)-free graphs.
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