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Abstract. We propose a new algorithm for Promise Constraint Satisfaction Problems (PCSPs).
It is a combination of the Constraint Basic LP relaxation and the Affine IP relaxation (CLAP).
We give a characterization of the power of CLAP in terms of a minion homomorphism. Using this
characterization, we identify a certain weak notion of symmetry which, if satisfied by infinitely many
polymorphisms of PCSPs, guarantees tractability. We demonstrate that there are PCSPs solved by
CLAP that are not solved by any of the existing algorithms for PCSPs; in particular, not by the
BLP+AIP algorithm of Brakensiek et al. [SIAM J. Comput., 49 (2020), pp. 1232--1248] and not by
a reduction to tractable finite-domain CSPs.
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1. Introduction.
Constraint satisfaction. Constraint Satisfaction Problems (CSPs) have driven

some of the most influential developments in theoretical computer science, from NP-
completeness to the PCP theorem [1, 2, 39] to semidefinite programming algorithms
[63] to the Unique Games Conjecture [53].

A CSP over domain A is specified by a finite collection A of relations over A, and
is denoted by CSP(A). Given on input a set of variables and a set of constraints, each
of which uses relations from A, the task is to decide the existence of an assignment of
values from A to the variables that satisfies all the constraints. Classic examples of
CSPs include 2-SAT, graph 3-coloring, and linear equations of fixed width over finite
groups.

For Boolean CSPs, which are CSPs with | A| = 2, Schaefer proved that every such
CSP is either solvable in polynomial time or is NP-complete [65]. Feder and Vardi
famously conjectured that the same holds true for CSPs over arbitrary finite domains
[41]. Furthermore, they realized the importance of considering closure properties of so-
lution spaces of CSPs [41], which initiated the algebraic approach [26, 49, 50]. The key
notion in the algebraic approach is that of polymorphisms, which are operations that
take solutions to a CSP and are guaranteed to return, by a coordinatewise application,
a solution to the same CSP. All CSPs admit projections (also known as dictators) as
polymorphisms. However, the presence of less trivial polymorphisms, satisfying some
notion of symmetry, is necessary for tractability. For instance, the set of solutions to
2-SAT is closed under the ternary majority operation maj : \{ 0,1\} 3 \rightarrow \{ 0,1\} that satis-
fies the following notion of symmetry: maj(a,a, b) =maj(a, b, a) =maj(b, a, a) = a for

\ast 
Received by the editors February 7, 2022; accepted for publication (in revised form) October 11,

2022; published electronically January 25, 2023. An extended abstract of this work appeared in the
Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms (SODA'22) [32].

https://doi.org/10.1137/22M1476435
Funding: The authors' research was supported by the European Research Council (ERC) under

the European Union's Horizon 2020 research and innovation programme (grant agreement 714532)
and by UKRI EP/X024431/1. The second author's research was also supported by a Royal Society
University Research Fellowship.

\dagger 
Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, OX1

3QD Oxford, UK (lorenzo.ciardo@cs.ox.ac.uk, standa.zivny@cs.ox.ac.uk).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1

D
ow

nl
oa

de
d 

02
/0

9/
23

 to
 1

63
.1

.2
03

.5
9 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/22M1476435
mailto:lorenzo.ciardo@cs.ox.ac.uk
mailto:standa.zivny@cs.ox.ac.uk


2 LORENZO CIARDO AND STANISLAV \v ZIVN\'Y

any a, b\in \{ 0,1\} . Similarly, the set of solutions to Horn-SAT is closed under the binary
minimum operation min : \{ 0,1\} 2 \rightarrow \{ 0,1\} that satisfies a different notion of symme-
try: min(a,a) = a, min(a, b) = min(b, a), and min(a,min(b, c)) = min(min(a, b), c) for
any a, b, c \in \{ 0,1\} . The binary max operation---which is a polymorphism of dual
Horn-SAT---has the same notion of symmetry, called semilattice [11]. Together with
the ternary minority polymorphism, which captures linear equations on \{ 0,1\} , this
gives all nontrivial tractable cases from Schaefer's dichotomy result.1

The polymorphisms of any CSP form a clone, in that they include all projec-
tions and are closed under composition. For instance, since Horn-SAT has min as a
polymorphism, it also has the 4-ary minimum operation

min4(a, b, c, d) =min(a,min(b,min(c, d)))

as a polymorphism. Building on the connection to universal algebra, the algebraic
approach has been tremendously successful beyond decision CSPs, e.g., for robust
satisfiability of CSPs [10, 35, 36], for exact optimization of CSPs [54, 57, 66], and for
characterizing the power of algorithms [9, 14, 55, 56, 59, 67, 68]. The culmination
of the algebraic approach is the positive resolution of the dichotomy conjecture by
Bulatov [28] and Zhuk [71]. We refer the reader to [11] for a survey on the algebraic
approach.

Promise constraint satisfaction. In this paper, we study Promise Constraint Sat-
isfaction Problems (PCSPs), whose systematic study was initiated by Austrin, Gu-
ruswami, and H\r astad [5], and Brakensiek and Guruswami [20]. PCSPs form a vast
generalization of CSPs. In PCSP(A,B), each constraint comes in two forms, a strict
one in A and a weak one in B. The goal is to distinguish between (i) the case in which
(the strong form of) the constraints can be simultaneously satisfied in A and (ii) the
case in which (even the weak form of) the constraints cannot be simultaneously sat-
isfied in B. The promise is that it is never the case that the PCSP is not satisfiable
in the strict sense but is satisfiable in the weak sense. If the strict and weak forms
coincide in every constraint (i.e., if A=B) we get the (nonpromise) CSPs. However,
PCSPs include many fundamental problems that are inexpressible as CSPs.

The simplest example of strict versus weak constraints is when the weak con-
straints are supersets of the strict constraints on the same domain (the first two
examples below) or on a larger domain (the third example below); the notion of
homomorphism from A to B formalizes this for any PCSP.

First, can we distinguish a g-satisfiable k-SAT instance (in the sense that there
is an assignment that satisfies at least g literals in each clause) from an instance that
is not even 1-satisfiable? This problem was studied in [5], where it was shown to be
solvable in polynomial time if g

k \geq 1
2 and NP-complete otherwise. Recently, this result

has been generalized to arbitrary finite domains [23].
Second, can we distinguish a 3-SAT formula that admits an assignment satisfy-

ing exactly 1 literal in each clause (i.e., a satisfiable instance of 1-in-3-SAT) from
one that does not admit an assignment satisfying 1 or 2 literals in each clause
(i.e., a nonsatisfiable instance of Not-All-Equal-3-SAT)? Remarkably, while both
1-in-3 and NAE are NP-hard, this promise version is solvable in polynomial time
[19, 20].

Third, can we distinguish a k-colorable graph from a graph that is not even
\ell -colorable, where k \leq \ell ? This is the approximate graph coloring problem, which is

1The trivial cases, called 0- and 1-valid, are captured by the constant-0 and constant-1 polymor-
phisms, respectively.
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CLAP: A NEW ALGORITHM FOR PROMISE CSPs 3

believed to be NP-hard for any fixed 3\leq k \leq \ell , but has been elusive since the 1970s
[43]. In particular, the larger the gap is between k and \ell , the easier the problem
could in principle be and, thus, the more challenging it is to prove NP-hardness. The
current state of the art is NP-hardness for k= 3 and \ell = 5 [8], while already the case
of k= 3 and \ell = 6 is open. For any k\geq 4 and \ell = \ell (k) =

\bigl( 
k

\lfloor k\rfloor /2
\bigr) 
 - 1, NP-hardness has

been established in [70].
While a systematic study of PCSPs was initiated only recently [5, 20], concrete

PCSPs have been considered for a while, e.g., approximate graph [16, 43, 44, 51,
52, 69] and hypergraph coloring [40]. A highlight result is the dichotomy of Boolean
symmetric PCSPs [42] (in which all constraint relations are symmetric), following
an earlier classification of Boolean symmetric PCSPs with disequalities [20]. Very
recent works have investigated certain Boolean nonsymmetric PCSPs [24] and certain
non-Boolean symmetric PCSPs [7]. Other recent results include, e.g., [4, 21, 45].

Most of the recent progress, including results on the approximate graph coloring
problem [8, 70] and on the approximate graph homomorphism problem [58, 70], rely
on the algebraic approach to PCSPs [8]. In particular, the breakthrough results in
[8], building on [12], established that the complexity of PCSPs is captured by the
polymorphism minions and certain types of symmetries these minions satisfy ---these
are nonnested identities on polymorphisms, such as the majority example but not the
semilattice example. Crucially, minions are less structured than clones: A minion
(of functions) is a set of operations closed under permuting coordinates, identifying
coordinates, and introducing dummy coordinates, but not under composition.2 Thus,
unlike in our earlier CSP example (corresponding to Horn-SAT), a binary minimum
polymorphism of a PCSP cannot, in general, be used to generate a 4-ary minimum
polymorphism of the same PCSP.

Despite the momentous results in [8], there is a long way to go to classify all
PCSPs, and it is not even clear whether a dichotomy for all PCSPs should be expected.
When Feder and Vardi conjectured a CSP dichotomy [41], the Boolean case [65] and
the graph case [46] had been fully classified. We seem quite far from these two cases
being classified for PCSPs. Thus, further progress is needed on both the hardness
and tractability part. This paper focuses on the latter.

Finite tractability. Although PCSPs are (much) more general than CSPs, some
PCSPs can be reduced to tractable CSPs. This idea was introduced in [19] under
the name of homomorphic sandwiching (cf. section 2 for a precise definition); PC-
SPs that are reducible to tractable (finite-domain) CSPs are called finitely tractable.
Finite tractability is not sufficient to explain tractability of all tractable PCSPs. In
particular, Barto et al. [8] showed that the above-mentioned example 1-in-3 ver-
sus NAE is not finitely tractable, despite being a tractable PCSP [20]. We remark
that it is not inconceivable (and in fact was conjectured in [19]) that every tractable
(finite-domain) PCSP could be reducible to a tractable CSP possibly over an infi-
nite domain; this is the case for the 1-in-3 versus NAE problem [19]. However,
while certain infinite-domain CSPs are amenable to algebraic methods, the com-
plexity of infinite-domain CSPs is far from understood; cf. [13, 17, 18] for recent
work.

Since finite tractability does not capture all tractable PCSPs, there is need for
other algorithmic tools. One possibility is to attempt to extend algorithmic techniques
developed for CSPs.

2In this work, we shall use the more abstract notion of minion introduced in [22]; cf. Definition
2.6.
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4 LORENZO CIARDO AND STANISLAV \v ZIVN\'Y

There are two main algorithmic approaches to CSPs. On the one hand, there
are local consistency methods [41], which have been studied in theoretical computer
science but also in artificial intelligence, logic, and database theory. The power of
local consistency for CSPs has been characterized in [9, 25], and it is known that the
third level of consistency solves all so-called bounded-width CSPs [6]. On the other
hand, there are CSPs solvable by algorithms based on generalizations of Gaussian
elimination, most notably CSPs with a Mal'tsev polymorphism [29]. This method
has been pushed to its limit, in a way, in [14, 48]. While the NP-hardness part of the
CSP dichotomy has been known since [26], the challenge in proving the algorithmic
part is the complicated interaction of these two very different algorithmic approaches.
Although this interaction does not occur in Boolean CSPs, it occurs already in CSPs
on three-element domains [27].

The characterization of the power of the first level of the consistency methods,
1-consistency (also known as arc-consistency [61]), has been lifted from CSPs [41] to
PCSPs in [8]. Rather than establishing 1-consistency combinatorially, one can employ
convex relaxations.

Relaxations. A canonical analogue of 1-consistency is the basic linear program-
ming relaxation (BLP) [59], which in fact is stronger than 1-consistency [60]. The
characterization of the power of BLP has been lifted from CSPs [59] to PCSPs in [8],
both in terms of a minion and a property of polymorphisms. The power of BLP is
captured by a minion consisting of rational stochastic vectors3 or, equivalently, by
the presence of symmetric polymorphisms of all arities; these are polymorphisms in-
variant under any permutation of the coordinates. For example, we have seen that
Horn-SAT, a classic CSP, has a binary symmetric polymorphism, namely min. We
have also seen that min can generate a 4-ary operation min4, which is symmetric.
Similarly, min can generate (via composition) symmetric operations of all arities, and
thus Horn-SAT is solved by BLP.

A different relaxation of PCSPs is the basic affine integer programming relaxation
(AIP) [19]. The power of AIP has been characterized, both in terms of a minion and
a property of polymorphisms, in [8]. The minion capturing AIP consists of integer
affine vectors.4 Concerning polymorphisms, AIP is captured by polymorphisms of all
odd arities that are invariant under permutations that only permute odd and even
coordinates separately, and additionally satisfy that adjacent coordinates cancel each
other out. The 1-in-3 versus NAE problem is solved by AIP (cf. Example 2.5).

Brakensiek et al. [22] proposed a combination of the two above-mentioned relax-
ations, called BLP + AIP. Their algorithm has many interesting features. First, it
solves PCSPs that admit only infinitely many symmetric polymorphisms (i.e., not all
arities are required as in the case of BLP). Second, it solves all tractable Boolean
CSPs, thus demonstrating how research on PCSPs can shed new light on (nonpromise)
CSPs. In fact, [22] established the power of BLP+AIP in terms of a minion and (a
property of) polymorphisms. The minion capturing BLP+AIP is essentially a prod-
uct of the BLP and AIP minions [22]. Concerning polymorphisms, BLP + AIP is
captured by polymorphisms of all odd arities that are invariant under permutations
that only permute odd and even coordinates.

It may be that BLP + AIP is the only algorithm needed to solve all tractable
Boolean PCSPs. However, as already observed in [22], BLP + AIP does not solve
some rather simple, tractable, non-Boolean PCSPs. Motivated by this, we investigate

3A vector is stochastic if its entries are nonnegative and sum up to one.
4An integer vector is affine if its entries sum up to one.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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CLAP: A NEW ALGORITHM FOR PROMISE CSPs 5

algorithms that are stronger than BLP+AIP. We note that all PCSPs hitherto known
to be tractable are solved by BLP+AIP or by finite tractability (i.e., by a reduction
to a tractable finite-domain CSP). In this work, we provide an example of a PCSP
that is tractable (through our algorithm) but is not solved by either of those two
algorithmic techniques.

Contributions. Building on the work of Brakensiek et al. [22], we study stronger
relaxations for PCSPs and give three main contributions.

(1) CLAP Our first contribution is the introduction of CLAP to the study of
PCSPs. Our goal was to design an algorithm that, unlike BLP+AIP, solves all CSPs
of bounded width. While all bounded-width CSPs can be solved by 3-consistency [6],
and thus also by the third level of the Sherali--Adams hierarchy for BLP (e.g., by [67]),
Kozik showed that already (a special case of) the singleton arc-consistency (SAC)
algorithm, introduced in [38] (cf. [15, 30]), solves all bounded-width CSPs [56]. Thus,
we study the LP relaxation that we call the singleton BLP (SBLP), which is at least
as strong as SAC. A special case of SBLP (without this name) implicitly appeared in
the literature, e.g., in [5, 20] for Boolean PCSPs. The idea behind SBLP is essentially
to run SAC but replace the arc-consistency check by the BLP; i.e., the algorithm
repeatedly takes a variable-value pair (x,a) and tests the feasibility of the BLP with
the requirement that x should be assigned the value a. If this LP is infeasible, then a
is removed from the domain of x. This is repeated until convergence. If any variable
ends up with an empty domain, then SBLP rejects, otherwise it accepts. Overall, the
number of BLP calls occurring for an instance of PCSP(A,B) with variable-set X
is at most polynomial in the size of X. As mentioned above, this simple algorithm
solves all bounded-width CSPs [56].

We adopt a modification of SBLP that turns out to be more naturally captured
by a minion-oriented analysis: the constraint BLP (CBLP). This (possibly) stronger
algorithm is a generalization of SBLP in which we do not consider only variable-value
pairs (x,a), but rather the constraint-assignment pairs (x,a) for every constraint in
the instance. As in SBLP, if fixing a (local) assignment to a constraint yields an
infeasible BLP, then the assignment is removed from the constraint relation. Upon
convergence, which takes at most polynomially many BLP calls, if any constraint ends
up with an empty relation, then CBLP rejects, otherwise it accepts.

Our algorithm CLAP first runs CBLP and then, upon termination, refines the
solutions of CBLP by running (essentially) AIP. If one believes the suggestion in [22]
that constantly many rounds of the Sherali--Adams hierarchy for BLP + AIP could
solve all tractable (non-promise) CSPs, then it is not outrageous to believe that the
same could be true for CLAP, and CLAP might be easier to analyze than such an
algorithm.

(2) Characterization Our second contribution is a minion characterization of
the power of CLAP, stated as Theorem 3.3. The objects in the minion are essentially
matrices with a particular structure, which we call skeletal (cf. Definition 3.1). These
matrices capture the CBLP part of CLAP and together with certain integer affine
vectors form the minion (cf. Definition 3.2). Another, more conceptual contribution
is the introduction of a minion of matrices to the study of PCSPs.

(3) H-symmetric polymorphisms The minion characterization is crucial to
our third contribution: the identification of a sufficient condition for CLAP to work in
terms of the symmetries of the polymorphisms. This is stated as Theorem 3.5, using
the notion of H-symmetry. This condition can be more easily checked for concrete
templates, thus allowing us to design a separating example that is not finitely tractable
and is not solved by BLP + AIP (nor by local consistency methods; see [3]), but is

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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6 LORENZO CIARDO AND STANISLAV \v ZIVN\'Y

solved by CLAP. It follows that our new algorithm is strictly more powerful than
BLP+AIP (and separated by an interesting PCSP that is not reducible to a tractable
finite-domain CSP via ``gadget reductions,"" which capture the algebraic approach to
PCSPs [8]).

For a matrix H, a polymorphism f is H-symmetric if f is invariant under per-
mutations of the coordinates but only on a specific set of inputs determined by H (cf.
Definition 3.4). For instance, if H is a row vector, then we obtain the requirement that
f be symmetric on all inputs. If H is the identity matrix, then we require that f be
symmetric only on inputs in which different entries occur with different multiplicities.
In general, the intuition is that we capture ``symmetry with exceptions that depend
on multiplicities."" We refer the reader to the discussion in section 3 for details.

After necessary background material in section 2, our algorithm CLAP and the
main results are presented in section 3; the proofs appear in sections 4 and 5.

2. Preliminaries. We let \BbbN = \{ 1,2, . . .\} and \BbbN 0 = \BbbN \cup \{ 0\} . The cardinality of
\BbbN shall be denoted by \aleph 0. For k \in \BbbN , [k] denotes the set \{ 1, . . . , k\} . For a set A,
\scrP (A) denotes the set of all subsets of A. We denote by \leq p many-one polynomial-time
reductions. We shall use standard notation for vectors and matrices. Vectors will be
treated as column vectors and whenever convenient identified with the corresponding
(row) tuples. Both tuples and vectors will be typed in bold font. We denote by ei
the ith standard unit vector of the appropriate size (which will be clear from the
context); i.e., ei is equal to 1 in the ith coordinate and 0 elsewhere. We denote by 0p

and by 1p the all-zero and all-one vector, respectively, of size p; if the size is clear, we
occasionally drop the subscript. The support of a vector v = (vi) of size p is the set
supp(v) = \{ i\in [p] : vi \not = 0\} . Ip denotes the identity matrix of order p, while O denotes
an all-zero matrix of suitable size.

Promise CSPs. A signature \sigma is a finite set of relation symbols R, each with its
arity ar(R)\in \BbbN . A relational structure over a signature \sigma , or a \sigma -structure, is a finite
universe A, called the domain of A, and a relation RA \subseteq Aar(R) for each symbol R \in \sigma .
For two \sigma -structures A and B, a mapping f :A\rightarrow B is called a homomorphism from
A to B, denoted by f : A \rightarrow B, if f preserves all relations; that is, for every R \in \sigma 
and every tuple a \in RA, we have f(a) \in RB, where f is applied coordinatewise. The
existence of a homomorphism from A to B is denoted by A\rightarrow B. A PCSP template
is a pair (A,B) of relational structures over the same signature such that A \rightarrow B.
Without loss of generality, we will often assume that A, the domain of A, is [n].

Definition 2.1. Let (A,B) be a PCSP template. Then, the decision version of
PCSP(A,B) is the following problem: Given as input a relational structure X over
the same signature as A and B, output Yes if X\rightarrow A and No if X \not \rightarrow B. The search
version of PCSP(A,B) is the following problem: Given as input a relational structure
X over the same signature as A and B and such that X\rightarrow A, find a homomorphism
from X to B.

For a relational structure A, the CSP with template A [41], denoted by CSP(A),
is PCSP(A,A).

Example 2.2. For k \geq 2, let Kk be the structure with domain [k] and a binary
relation \{ (i, j) \in [k]2 | i \not = j\} . Then, CSP(Kk) is the standard graph k-coloring
problem. For k \leq \ell , PCSP(Kk,K\ell ) is the approximate graph coloring problem [43].
In the decision version, the task is to decide whether a graph is k-colorable or not
even \ell -colorable. In the search version, given a k-colorable graph G, the task is to find
an \ell -coloring of G. It is widely believed that for any fixed 3\leq k \leq \ell , PCSP(Kk,K\ell )

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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CLAP: A NEW ALGORITHM FOR PROMISE CSPs 7

is NP-hard; i.e., constantly many colors do not help. The current most general NP-
hardness result is known for k = 3 and \ell = 5 by Bul\'{\i}n, Krokhin, and Opr\v sal [8] and
for k\geq 4 and \ell = \ell (k) =

\bigl( 
k

\lfloor k\rfloor /2
\bigr) 
 - 1 by Wrochna and \v Zivn\'y [70].

We call a PCSP template (A,B) tractable if any instance of PCSP(A,B) can be
solved in polynomial time in the size of the input structure X. It is easy to show that
the decision version reduces to the search version [8] (but the converse is not known
in general); for CSPs, the two versions are equivalent [26, 33]. Our results are for the
decision version.

Example 2.3. Let 1-in-3 be the Boolean structure with domain \{ 0,1\} and a single
ternary relation \{ (0,0,1), (0,1,0), (1,0,0)\} . Let NAE be the structure with domain
\{ 0,1\} and a single ternary relation \{ 0,1\} 3 \setminus \{ (0,0,0), (1,1,1)\} . Then, CSP(1-in-3) is
the (positive) 1-in-3-SAT problem and CSP(NAE) is the (positive) Not-All-Equal-3-
SAT problem. Since both of these problems are NP-hard [65], the PCSP templates
(1-in-3,1-in-3) and (NAE,NAE) are both intractable. However, the PCSP tem-
plate (1-in-3,NAE) is tractable, as shown by Brakensiek and Guruswami [20].

Definition 2.4. Let (A,B) be a PCSP template with signature \sigma . An operation
f : AL \rightarrow B, where L \in \BbbN , is a polymorphism of arity L of (A,B) if for every R \in \sigma 
of arity k = ar(R) and for any possible L \times k matrix whose rows are tuples in RA,
the application of f on the columns of the matrix gives a tuple in RB. We denote by
Pol(A,B) the set of all polymorphisms of (A,B).

Example 2.5. The unary operation \neg : \{ 0,1\} \rightarrow \{ 0,1\} defined by \neg (a) = 1 - a is
a polymorphism of (NAE,NAE) but not a polymorphism of (1-in-3,1-in-3). For
any odd L, the L-ary operation f : \{ 0,1\} L \rightarrow \{ 0,1\} defined by f(a1, . . . , aL) = 1 if
a1  - a2 + a3  - \cdot \cdot \cdot + aL > 0 and f(a1, . . . , aL) = 0 otherwise is a polymorphism of
(1-in-3,NAE).

Minions. Polymorphisms of CSPs form clones; i.e., Pol(A,A) contains all projec-
tions (also known as dictators) and is closed under composition [11]. Polymorphisms
of the (more general) PCSPs form minions; i.e., they are closed under taking minors.5

Formally, given an L-ary function f :AL \rightarrow B, itsminor relative to a map \pi : [L]\rightarrow [L\prime ]

is the L\prime -ary function f/\pi :AL
\prime 
\rightarrow B defined by

(2.1) f/\pi (a1, . . . , aL\prime ) = f(a\pi (1), . . . , a\pi (L)).

Equivalently, a minor of f is a function obtained from f by identifying variables,
permuting variables, and introducing dummy variables. Rather than focusing on
minions of functions, we consider here abstract minions, as described and used in
[22].

Definition 2.6. A minion M consists of the disjoint union of sets M (L) for

L \in \BbbN equipped with operations (\cdot )/\pi : M (L) \rightarrow M (L
\prime 
) for all functions \pi : [L]\rightarrow [L\prime ],

which satisfy
\bullet (M/\pi )/\~\pi =M/\~\pi \circ \pi for \pi : [L]\rightarrow [L\prime ], \~\pi : [L\prime ]\rightarrow [L\prime \prime ] and
\bullet M/ id =M

for all M \in M (L).

Definition 2.7. For two minions M and N , a minion homomorphism \xi :M \rightarrow 
N is a map that preserves arities and minors: Given M \in M (L) and \pi : [L]\rightarrow [L\prime ],
\xi (M)\in N (L) and \xi (M/\pi ) = \xi (M)/\pi .

5We remark that clones are also closed under taking minors.
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8 LORENZO CIARDO AND STANISLAV \v ZIVN\'Y

For any PCSP template (A,B), the set Pol(A,B) of its polymorphisms equipped
with the operations described by (2.1) is a minion [8]. One of the results in [8] estab-
lished that minion homomorphisms give rise to polynomial-time reductions: If there
is a minion homomorphism from Pol(A,B) to Pol(A\prime ,B\prime ), then PCSP(A\prime ,B\prime ) \leq p

PCSP(A,B). Minions are also useful for characterizing the power of algorithms, as
we will discuss later.

Remark 2.8. Although we will not use this categorical view, we remark that
a minion is nothing but a functor from the category of nonempty finite sets to the
category of nonempty sets, and a minion homomorphism is a natural transformation.

Existing algorithms. One way to establish tractability of PCSPs is to reduce to
CSPs. Let (A,B) be a PCSP template. A structure C is called a (homomorphic)
sandwich if A \rightarrow C \rightarrow B. It is known that, in this case, PCSP(A,B) \leq p CSP(C).6

Thus, if C is a tractable CSP template, then (A,B) is a tractable PCSP template. If
C has a finite domain, we say that (A,B) is finitely tractable.

Example 2.9. The PCSP template (1-in-3,NAE) from Example 2.3 is tractable,
as shown in [20], but not finitely tractable unless P=NP, as shown in [8].

Another way to establish tractability for PCSPs is to leverage convex relax-
ations. In section 1, we mentioned three studied relaxations: BLP [59], AIP [20],
and BLP + AIP [22]. Their powers have been characterized in [8, 22] in terms of
certain minions and polymorphism identities. The details of these relaxations and
the characterizations are provided in Appendix A.

All PCSPs hitherto known to be tractable are solved by finite tractability (i.e.,
by a reduction to a tractable finite-domain CSP) or by BLP+AIP. The next example
identifies a simple PCSP template not captured by either of these two methods.

Example 2.10. Consider the relational structures A = (A;RA
1 ,RA

2 ) and B =
(B;RB

1 ,R
B
2 ) on the domain A = B = \{ 0, . . . ,6\} with the following relations: RA

1 =
\{ (0,0,1), (0,1,0), (1,0,0)\} is 1-in-3 on \{ 0,1\} , RB

1 = \{ 0,1\} 3\setminus \{ (0,0,0), (1,1,1)\} isNAE
on \{ 0,1\} , and RA

2 = RB
2 = \{ (2,3), (3,2), (4,5), (5,6), (6,4)\} . The identity mapping is

a homomorphism from A to B, so (A,B) is a PCSP template. Since the directed
graph corresponding to RA

2 = RB
2 is a disjoint union of a directed 2-cycle and a

directed 3-cycle, [22, Example 6.1] shows that the BLP + AIP algorithm does not
solve PCSP(A,B). We claim that the template (A,B) is not finitely tractable. For
contradiction, assume that there is a finite relational structure C = (C;RC

1 ,R
C
2 )

such that A \rightarrow C \rightarrow B and CSP(C) is tractable. We will argue that this would
imply finite tractability of (1-in-3,NAE), which contradicts the result in [8] (unless
P=NP); cf. Example 2.9. Indeed, the existence of such C gives the following chain
of homomorphisms:

1-in-3= (\{ 0,1\} ;RA
1 )\rightarrow (A;RA

1 )\rightarrow (C;RC
1 )\rightarrow (B;RB

1 )\rightarrow (\{ 0,1\} ;RB
1 ) =NAE,

(2.2)

where the first map is the inclusion of \{ 0,1\} in A, the second and the third are
the maps witnessing A \rightarrow C \rightarrow B, and the fourth is any map g : B \rightarrow \{ 0,1\} such
that g(0) = 0 and g(1) = 1. Let \~C = (C;RC

1 ). Observe that \~C is tractable since
the inclusion map gives a minion homomorphism Pol(C,C) \rightarrow Pol( \~C, \~C), and thus
CSP( \~C) = PCSP( \~C, \~C)\leq p PCSP(C,C) = CSP(C) by [8, Theorem 3.1]. This proves
the claim, as (2.2) established 1-in-3\rightarrow \~C\rightarrow NAE.

6This is a special case of homomorphic relaxation [8], which we do not need here.
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CLAP: A NEW ALGORITHM FOR PROMISE CSPs 9

Notice that the assignment f \mapsto \rightarrow g \circ f | \{ 0,1\} L (where f is a polymorphism of (A,B)
of arity L and g is the map considered above) yields a minion homomorphism from
Pol(A,B) to Pol(1-in-3,NAE). As established in [3, Corollary 4.2], the template
(1-in-3,NAE) does not have bounded width--- i.e., is not solved by local consistency
methods. It follows from [8, Lemma 7.5] that (A,B) does not have bounded width
either.

The template from Example 2.10 will be proved tractable later (in Example 3.6)
using our new algorithm, which we will present next.

3. The CLAP algorithm. Let (A,B) be a PCSP template with signature \sigma ,
and let X be an instance of PCSP(A,B). Without loss of generality, we assume that
\sigma contains a unary symbol Ru such that RX

u = X, RA
u = A, and RB

u = B. If this
is not the case, the signature and the instance can be extended without changing
the set of solutions. Our algorithm---the combined CBLP+AIP algorithm (CLAP),
presented in Algorithm 3.1 and discussed below---builds on BLP [8] and BLP+AIP
[22].

CLAP works in two stages. In the first stage, it runs CBLP; i.e., a modified version
of the singleton arc-consistency algorithm (cf. [38]) where (i) the ``arc-consistency""
part is replaced by BLP, and (ii) the ``singleton"" part is boosted by requiring that
every constraint-assignment pair (as opposed to every variable-value pair) is fixed at
each iteration. In the second stage, it refines CBLP by doing an additional sanity
check: At least one of the solutions computed by CBLP should be compatible with a
solution of AIP. As in [22], this second stage requires that the AIP solution should
only use those variables from the CBLP solution that have nonzero weight. There
are two equivalent ways to enforce this requirement: Either by storing the nonzero
variables at each iteration of CBLP in the first stage of the algorithm, or by sim-
ply running BLP + AIP as a black box in the second stage of the algorithm. We
adopt the latter option to achieve a simpler presentation. Concretely, the first stage
of CLAP is performed by initializing the sets Sx,R of constraint-assignment pairs to
the entire relation RA, and then progressively shrinking these sets by cycling over all
constraint-assignment pairs and removing a pair whenever it yields an infeasible BLP.
The second stage, that occurs if all sets Sx,R are nonempty, is performed by cycling
over each feasible constraint-assignment pair and running BLP+AIP on it. As soon
as one constraint-assignment pair is accepted by BLP + AIP, the algorithm termi-
nates and outputs Yes. If no constraint-assignment pair is accepted, the algorithm
outputs No.

As in Appendix A, where BLP, AIP, and BLP+AIP are presented in full detail
for completeness, by \lambda x,R(a) we denote the variable of BLP(X,A) associated with
x \in RX and a \in RA, where R \in \sigma . The algorithm has polynomial time complexity in
the size of the input instance: Letting g=

\sum 
R\in \sigma | RX| | RA| , \scrO (g2) BLP calls and \scrO (g)

BLP + AIP calls occur. We say that CLAP accepts an instance X of PCSP(A,B)
if Algorithm 3.1 returns Yes. We say that CLAP solves PCSP(A,B) if, for every
instance X of PCSP(A,B), we have (i) if X\rightarrow A, then CLAP accepts X, and (ii) if
X is accepted by CLAP, then X\rightarrow B.

Characterization. Our first main result---Theorem 3.3---is a minion-theoretic
characterization of the power of the CLAP algorithm. In particular, we will in-
troduce in Definition 3.2 a minion C such that, for any PCSP template (A,B), the
CLAP algorithm solves PCSP(A,B) if and only if there is a minion homomorphism
from C to Pol(A,B). The two directions will be proved in Theorems 4.10 and 4.11,
respectively, in section 4. Combining Theorem 4.10 with our second main result---
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10 LORENZO CIARDO AND STANISLAV \v ZIVN\'Y

Algorithm 3.1 The CLAP algorithm.
Require: an instance X of PCSP(A,B) of signature \sigma 
Ensure: yes if X\rightarrow A and no if X \not \rightarrow B
1: for R \in \sigma , x\in RX do
2: set Sx,R :=RA

3: end for
4: repeat
5: for R \in \sigma ,x\in RX,a\in Sx,R do
6: if BLP(X,A) with \lambda x,R(a) = 1 and \lambda x\prime ,R\prime (a\prime ) = 0 for every R\prime \in \sigma ,

x\prime \in R\prime X, and a\prime \not \in Sx\prime ,R\prime is not feasible then
7: remove a from Sx,R

8: end if
9: end for
10: until no set Sx,R is changed
11: if some Sx,R is empty then
12: return No;
13: else
14: for R \in \sigma ,x\in RX, a\in Sx,R do
15: if BLP+AIP(X,A) with \lambda x,R(a) = 1 and \lambda x\prime ,R\prime (a\prime ) = 0 for every R\prime \in \sigma ,

x\prime \in R\prime X, and a\prime \not \in Sx\prime ,R\prime is feasible then
16: return Yes
17: else
18: return No
19: end if
20: end for
21: end if

Theorem 3.5, proved in section 5---will then yield a sufficient condition for CLAP
to solve a given PCSP template, in terms of a weak notion of symmetry for the
polymorphisms of the template.

The L-ary objects of the minion C are pairs (M,\bfitmu ), where M is a matrix with L
rows and infinitely many columns encoding the BLP computations of CLAP and \bfitmu 
is an L-ary vector of integers encoding the AIP computation of CLAP. The matrices
M in C have a special structure, which we call ``skeletal.""

Definition 3.1. Let M be a p\times \aleph 0 matrix with p\in \BbbN . We say that M is skeletal
if, for each j \in [p], either eTj M = 0T

\aleph 0
or Mei = ej for some i\in \BbbN .

In other words, either the jth row of M is the zero vector or some column of M is
the jth standard unit vector. Equivalently, M is skeletal if there exist permutation

matrices P \in \BbbR p,p and Q \in \BbbR \aleph 0,\aleph 0 such that PMQ =

\biggl[ 
Ik \~M
O O

\biggr] 
for some k \leq p and

some \~M \in \BbbR k,\aleph 0 . The name indicates that the ``body"" of a skeletal matrix (the
nonzero rows) is completely supported by a ``skeleton"" (the identity block).

We are now ready to define the minion C . The L-ary objects of C are pairs
(M,\bfitmu ), where M is a skeletal matrix of size L\times \aleph 0 and \bfitmu is an affine vector (i.e., an
integer vector whose entries sum up to one) of size L. We require that every column
of M should be stochastic and M should have only finitely many different columns;
the latter is formalized in (c5) in Definition 3.2, which says that starting from some
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CLAP: A NEW ALGORITHM FOR PROMISE CSPs 11

point all the columns are equal. We also require a particular relationship between M
and \bfitmu formalised in (c4).

Definition 3.2. For L \in \BbbN , let C (L) be the set of pairs (M,\bfitmu ) such that M \in 
\BbbQ L,\aleph 0 , \bfitmu \in \BbbZ L, and the following requirements are met:

(c1) M is entrywise nonnegative; (c4) supp(\bfitmu )\subseteq supp(Me1);
(c2) 1

T
LM = 1T

\aleph 0
; (c5) \exists t\in \BbbN such that Mei =Met \forall i\geq t;

(c3) 1
T
L\bfitmu = 1; (c6) M is skeletal.

We define C as the disjoint union of L-ary parts, C :=
\bigcup 

L\geq 1 C (L).

We defined C as a set. For C to be a minion, we need to define the minor operation
on C and verify that it preserves the structure of C . This is easy and done in section
4.1.

Our first result is the following characterization of the power of CLAP.

Theorem 3.3. Let (A,B) be a PCSP template. Then, CLAP solves PCSP(A,B)
if and only if there is a minion homomorphism from C to Pol(A,B).

H-symmetry. Our second main result is a sufficient condition on a PCSP tem-
plate (A,B) to guarantee that CLAP solves PCSP(A,B). The condition is through
symmetries satisfied by polymorphisms of the template. In particular, in Theorem
3.5 we will show that if Pol(A,B) contains infinitely many operations that are ``H-
symmetric"" for a suitable matrix H, then there is a minion homomorphism from C
to Pol(A,B), and thus CLAP solves PCSP(A,B) by Theorem 4.10.

In order to define the notion of H-symmetry, we need a few auxiliary definitions.
A vector w= (wi)\in \BbbR p is tieless if, for any two indices i \not = i\prime \in [p], wi \not = 0 \Rightarrow wi \not =wi\prime .
A tie matrix is a matrix having integer nonnegative entries, each of whose columns is
a tieless vector. Given an m\times p tie matrix H, we say that a vector v \in \BbbR p is H-tieless
if Hv is tieless.

Let A be a finite set, let L \in \BbbN , and take a = (a1, . . . , aL) \in AL. We define the
(multiplicity) vector a\# as the integer vector of size | A| whose ath entry is | \{ i \in [L] :
ai = a\} | for each a\in A.

Definition 3.4. Let A,B be finite sets, and consider a function f :AL \rightarrow B for
some L\in \BbbN . Given an m\times | A| tie matrix H, we say that f is H-symmetric if

f/\pi (a) = f(a) \forall \pi : [L]\rightarrow [L] permutation, \forall a\in AL such that a\# is H-tieless.

Our second result is the following sufficient condition for tractability of PCSPs.

Theorem 3.5. Let (A,B) be a PCSP template and suppose Pol(A,B) contains
H-symmetric operations of arbitrarily large arity for some m \times | A| tie matrix H,
m\in \BbbN . Then there exists a minion homomorphism from C to Pol(A,B).

Recall from Definition 3.1 the notion of a skeletal matrix. As will be clear from the
rest of this paper, the ``skeleton"" represents the link between CLAP and the above-
defined notion of H-symmetry. Indeed, on the one hand the presence of the identity
block in a skeletal matrix captures the fact that each BLP solution computed by
CLAP gives probability 1 to some constraint-assignment pair and probability 0 to all
other constraint-assignment pairs for the same constraint (cf. line 6 of Algorithm 3.1).
On the other hand, Lemma 5.2 (stated and proved in section 5) shows that finitely
many skeletal matrices can always be simultaneously reduced to H-tieless probability
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12 LORENZO CIARDO AND STANISLAV \v ZIVN\'Y

distributions---which are exactly the distributions on which H-symmetric functions
are symmetric (cf. Definition 3.4).

We now mention some consequences of Theorem 3.5. First, observe that a vector
of size 1 is always tieless. Hence, if we take any 1\times | A| integer nonnegative matrix as
H, we have that H is a tie matrix and a\# is H-tieless for each tuple a in the domain
of f ; therefore, for such an H, f being H-symmetric reduces to f being symmetric.
On the other hand, having Definition 3.4 in mind, adding rows to H increases the
chance that Ha\# has some ties, in which case f is released from the requirement of
being symmetric on a. In this sense, H encodes the ``exceptions to symmetry"" that
f is allowed to have: The more rows H has, the stronger Theorem 3.5 becomes. If,
for instance, H is the identity matrix of order | A| , then an H-symmetric operation
needs to be symmetric only on those tuples where each entry occurs with a different
multiplicity. A very special example of such an I| A| -symmetric operation is a function
f that returns (the homomorphic image of) the most-frequent entry in the input tuple
whenever it is unique, and, in any other case, f is say (the homomorphic image of)
a projection. Other more creative choices for H allow capturing operations having
more complex exceptions to symmetry, as shown in Example 3.6.

Theorems 3.3 and 3.5 together establish that the CLAP algorithm solves any
PCSP template admitting arbitrarily large polymorphisms having some exceptions to
symmetry that can be encoded via a tie matrix.

The importance of the next example lies in the fact that it provably separates
CLAP from finite tractability and BLP+AIP; i.e., there are PCSP templates solvable
by CLAP that are not finitely tractable and not solvable by BLP+AIP.

Example 3.6. Recall the PCSP template (A,B) from Example 2.10, where it was
shown that PCSP(A,B) is not finitely tractable and not solved by the BLP + AIP
algorithm from [22]. We will show that PCSP(A,B) is solved by CLAP.

Take L \in \BbbN and consider the function f : AL \rightarrow B defined as follows: For a =
(a1, . . . , aL)\in AL,

\bullet if a\in \{ 0,1\} L, look at a\#1 , i.e., the multiplicity of 1\in A in the tuple a;

\ast if a\#1 < L
3 , set f(a) = 0;

\ast if a\#1 > L
3 , set f(a) = 1;

\ast if a\#1 = L
3 , set f(a) = a1;

\bullet if a\in \{ 2,3,4,5,6\} L,
\ast if there is a unique element a\in A having maximum multiplicity in a, set
f(a) = a;

\ast if there is more than one element of A having maximum multiplicity in
a, set f(a) = a1;

\bullet otherwise, set f(a) = 0.7

We claim that f \in Pol(A,B). To see that f preserves R1, consider a tuple \bfitrho =
(r1, . . . ,rL) of elements of RA

1 , where ri = (ai, bi, ci) for i \in [L]. We shall let a =
(a1, . . . , aL), b= (b1, . . . , bL), and c= (c1, . . . , cL). Notice that

a\#1 + b\#
1 + c\#1 =L.(3.1)

If f(a) = f(b) = f(c) = 0, then a\#1 \leq L
3 , b

\#
1 \leq L

3 , and c\#1 \leq L
3 ; by (3.1), this implies

that a\#1 = b\#
1 = c\#1 = L

3 . Hence, (0,0,0) = (f(a), f(b), f(c)) = (a1, b1, c1) = r1 \in RA
1 ,

7Assigning any value in \{ 0, . . . ,6\} to f(a) would work here.
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CLAP: A NEW ALGORITHM FOR PROMISE CSPs 13

a contradiction. Similarly, f(a) = f(b) = f(c) = 1 would yield a\#1 \geq L
3 , b

\#
1 \geq L

3 ,

and c\#1 \geq L
3 ; again by (3.1), this implies that a\#1 = b\#

1 = c\#1 = L
3 , hence (1,1,1) =

(f(a), f(b), f(c)) = (a1, b1, c1) = r1 \in RA
1 , also a contradiction. We conclude that

f(\bfitrho ) = (f(a), f(b), f(c))\in RB
1 , thus showing that f preserves R1.

As for R2, let \bfitrho = (r1, . . . ,rL) be a tuple of elements of RA
2 , where ri = (ai, bi)

for i \in [L], and let a = (a1, . . . , aL) and b = (b1, . . . , bL). The directed graph having
vertex set \{ 2,3,4,5,6\} and edge set RA

2 = RB
2 consists of the disjoint union of a

directed 2-cycle and a directed 3-cycle and, hence, all of its vertices have in-degree
and out-degree one. As a consequence, the multiplicity of a directed edge (a, b) in
the tuple \bfitrho equals both the multiplicity of a in a and the multiplicity of b in b.
Therefore, if the tuple \bfitrho has a unique element r= (a, b) with maximum multiplicity,
then f(\bfitrho ) = (f(a), f(b)) = (a, b) = r \in RB

2 . Otherwise, f(\bfitrho ) = (a1, b1) = r1 \in RB
2 .

This shows that f preserves R2, too, and is thus a polymorphism of (A,B).
Consider the matrix H =diag(1,2,1,1,1,1,1), and observe that H is a tie matrix.

We claim that f is H-symmetric. Let \pi : [L] \rightarrow [L] be a permutation, and take
a tuple a = (a1, . . . , aL) \in AL such that a\# is H-tieless; i.e., the vector Ha\# =
(a\#0 ,2a

\#
1 ,a

\#
2 ,a

\#
3 ,a

\#
4 ,a

\#
5 ,a

\#
6 ) is tieless. Write \~a= (a\pi (1), . . . , a\pi (L)), and observe that

\~a\# = a\#.
\bullet If a \in \{ 0,1\} L, we get a\#0 \not = 2a\#1 ; since a\#0 + a\#1 =L, this gives 2a\#1 \not =L - a\#1

so that a\#1 \not = L
3 . As a consequence, f(a) = f(\~a).

\bullet If a\in \{ 2,3,4,5,6\} L, the condition above implies that the tuple

(a\#2 ,a
\#
3 ,a

\#
4 ,a

\#
5 ,a

\#
6 )

has a unique maximum element and, hence, there is a unique element a of A
having maximum multiplicity in a (and in \~a). Therefore, f(a) = a= f(\~a).

\bullet If a \not \in \{ 0,1\} L \cup \{ 2,3,4,5,6\} L, then f(a) = 0= f(\~a).
We conclude that, in each case, f(a) = f(\~a) = f/\pi (a), which means that f is H-
symmetric. By Theorems 3.3 and 3.5, CLAP solves PCSP(A,B).

Remark 3.7. Consider the minion MBLP+AIP from [22] (cf. Appendix A.3). A
direct consequence of Example 3.6, Theorem 3.3, and [22, Lemma 5.4] is that there is
no minion homomorphism from MBLP+AIP to C . On the other hand, the function

\vargamma :C \rightarrow MBLP+AIP

(M,\bfitmu ) \mapsto \rightarrow (Me1,\bfitmu )

is readily seen to be a minion homomorphism. It follows that CLAP solves any
PCSP template solved by BLP+AIP (as is also clear from the description of the two
algorithms).

Remark 3.8. Similar to [22], the assumption in Theorem 3.5 can be weakened as
follows: Instead of requiring H-symmetric polymorphisms of arbitrarily large arity,
it turns out to be enough requiring H-block-symmetric polymorphisms of arbitrarily
large width, where the definition of an H-block-symmetric operation mirrors that
of a block-symmetric operation in [22]. The proof of this possibly stronger result is
very similar to that of Theorem 3.5. For completeness, we include it in Appendix
C. We point out that we do not know whether the condition in Theorem 3.5 (or the
possibly weaker condition based on H-block-symmetric polymorphisms) is necessary
for tractability via CLAP, but we suspect it is not.

Remark 3.9. A possibly stronger version of the CLAP algorithm consists of run-
ning BLP+AIP (instead of just BLP) at each iteration in the for loop in lines 5--9 of
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14 LORENZO CIARDO AND STANISLAV \v ZIVN\'Y

Algorithm 3.1, and then removing the additional for loop in lines 14--18. This algo-
rithm can be called C(BLP+AIP). An analysis entirely analogous to the one presented
in this paper shows that the power of C(BLP+AIP) is captured by the minion \~C de-
fined like C with the following difference: The L-ary elements of \~C are pairs (M,N),
where M is as in C while N is an integer matrix of the same size as M taking the role
of \bfitmu (in particular, N satisfies the ``refinement condition"" supp(Nei) \subseteq supp(Mei)
\forall i\in \BbbN , analogous to (c4) in Definition 3.2). A possible direction for future research is
to investigate whether the richer structure of \~C can be exploited to obtain a stronger
version of Theorem 3.5.

Remark 3.10. For CSPs, the characterization of bounded width [9, 25] and its
collapse [6] was preceded by a characterization of width-1 CSPs [37, 41] and the
collapse of width 2 to width 1 [34]. Thus the difference between width-1 CSPs and
bounded-width CSPs is well understood. BLP and SBLP are the (convex relaxation)
analogues of width 1 and SAC, respectively, and SAC solves all bounded-width CSPs
[56]. Therefore, a natural question is whether a similar analysis can cast light on the
difference in power between BLP on one side, and SBLP (and thus perhaps also of
CBLP and CLAP) on the other side. We remark on two obstacles: First, BLP is
strictly more powerful than width 1 for CSPs [60]. Second, a good characterization
of the power of SBLP (and stronger algorithms studied in the present paper) would
imply that these algorithms solve, in the special case of CSPs, all bounded-width
CSPs---a nontrivial result implied by [56].

4. The power of the CLAP algorithm. The goal of this section is to prove
Theorem 3.3. In section 4.1, we will verify that C , which appears in the statement
of Theorem 3.3, is indeed a minion. In sections 4.2 and 4.3, we will establish a
compactness argument and present a condition that captures CLAP, respectively;
both will be needed in the proof of Theorem 3.3. The two directions of Theorem 3.3
will be then proved in section 4.4.

Minions are not only useful for capturing the complexity of PCSPs but also for
characterizing the power of algorithms. This will be done by using the concept of
the free structure generated, for a given minion, by a relational structure [22] (cf. [8,
Definition 4.1] for the definition in the special case of minions of functions).

Definition 4.1. Let M be a minion, and let A be a (finite) relational structure
with signature \sigma . The free structure \BbbF M (A) is a relational structure with domain
M (| A| ) (potentially infinite) and signature \sigma . Given a relation R \in \sigma of arity k, a
tuple (M1, . . . ,Mk) of elements of M (| A| ) belongs to R\BbbF M (A) if and only if there is

some Q \in M (| R\bfA | ) such that Mi = Q/\pi i
for each i \in [k], where \pi i : R

A \rightarrow A maps
a\in RA to its ith coordinate ai.

The next result will be useful to establish the connection between our algorithm
CLAP, presented in section 3, and the minion C .

Lemma 4.2. Let M be a minion, and let (A,B) be a PCSP template. Then there
is a minion homomorphism from M to Pol(A,B) if and only if \BbbF M (A)\rightarrow B.

The proof of Lemma 4.2 is based on that of [8, Lemma 4.4], which proves one-to-one
correspondence but only for minions of functions. For completeness, we prove Lemma
4.2 in Appendix B.

4.1. C is a minion. The minor operation on C is naturally defined via a matrix
multiplication with a matrix that encodes the minor map. For a function \pi : [L]\rightarrow [L\prime ],
let P\pi be the L\prime \times L matrix whose (i, j)th entry is 1 if \pi (j) = i, and 0 otherwise. Note
that PT

\pi 1L\prime = 1L and, for each i\in [L\prime ], PT
\pi ei =

\sum 
j\in \pi  - 1(i) ej .
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CLAP: A NEW ALGORITHM FOR PROMISE CSPs 15

Definition 4.3. For (M,\bfitmu )\in C (L), we define M/\pi = P\pi M and \bfitmu /\pi = P\pi \bfitmu , and
we let the minor of (M,\bfitmu ) with respect to \pi be (M,\bfitmu )/\pi := (M/\pi ,\bfitmu /\pi ).

We remark that this definition is consistent with the minions Qconv and Zaff studied
in [8], and the minion MBLP+AIP studied in [22]; cf. Appendices A.1, A.2, and A.3.

Proposition 4.4. C is a minion.

Proof. Write M = [mij ] and \bfitmu = (\mu i). Observe that M/\pi \in \BbbQ L\prime ,\aleph 0 and \bfitmu /\pi \in \BbbZ L\prime 
.

The requirements (c1), (c2), (c3), and (c5) are trivially satisfied by (M,\bfitmu )/\pi . As for
(c4), suppose that eTi P\pi Me1 = 0 but eTi P\pi \bfitmu \not = 0. It follows that \mu j \not = 0 for some
j \in \pi  - 1(i). Hence, mj1 > 0, and then,

eTi P\pi Me1 =
\sum 

j\prime \in \pi  - 1(i)

eTj\prime Me1 \geq eTj Me1 > 0,

which is a contradiction. We now show that M/\pi is skeletal. Choose j \in [L\prime ], and
suppose that eTj M/\pi \not = 0T

\aleph 0
. We obtain

0\aleph 0 \not =MTPT
\pi ej =

\sum 
\ell \in \pi  - 1(j)

MTe\ell 

and, in particular, \exists \ell \in \pi  - 1(j) such that eT\ell M \not = 0T
\aleph 0
. Since M is skeletal, this implies

that Mei = e\ell for some i\in \BbbN . This yields

M/\pi ei = P\pi Mei = P\pi e\ell = e\pi (\ell ) = ej

as required. Hence, (c6) is satisfied, too, and (M,\bfitmu )/\pi \in C (L\prime ).
Finally, considering \~\pi : [L\prime ]\rightarrow [L\prime \prime ] and the identity map id : [L]\rightarrow [L], one readily

checks that P\~\pi \circ \pi = P\~\pi P\pi and Pid = IL. Hence, the minor operations defined above
satisfy the requirements of Definition 2.6.

4.2. A compactness argument for C . The set C (L) of the L-ary objects in
C is infinite unless L = 1. As a consequence, given a relational structure A whose
domain has size at least 2, the free structure \BbbF C (A) has an infinite domain. We now
describe a standard compactness argument analogous to [8, Remark 7.13] that will
circumvent this inconvenience.

For D,L\in \BbbN , consider the set

C
(L)
D = \{ (M,\bfitmu )\in C (L) :DM is entrywise integer,

Mei =MeD \forall i\geq D, and 1T
L| \bfitmu | \leq D\} ,

where | \bfitmu | denotes the vector whose entries are the absolute values of the entries of \bfitmu .
Since C

(L)
D is unambiguously determined by L\times (D+1) integer numbers belonging to

the set \{  - D, . . . ,D\} , it is finite. Observe that the set CD =
\bigcup 

L\in \BbbN C
(L)
D is closed under

taking minors. Indeed, given (M,\bfitmu ) \in C
(L)
D and \pi : [L] \rightarrow [L\prime ], DP\pi M = P\pi DM is

entrywise integer, P\pi Mei = P\pi MeD \forall i\geq D, and 1T
L\prime | P\pi \bfitmu | \leq 1T

L\prime P\pi | \bfitmu | = 1T
L| \bfitmu | \leq D.

Hence, CD is a subminion of C . Observe also that C =
\bigcup 

D\in \BbbN CD. To see this, take

(M,\bfitmu )\in C (L) and suppose that Mei =Met \forall i\geq t. Let \~D be a common denominator
of the finite set of rational numbers \{ mij : i \in [L], j \in [t]\} , so that \~DM is entrywise
integer. Also let \^D= 1T

L| \bfitmu | . Then, (M,\bfitmu )\in Ct \~D \^D.
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16 LORENZO CIARDO AND STANISLAV \v ZIVN\'Y

Proposition 4.5. Let M be a minion such that M (L) is finite for each L \in \BbbN ,
and suppose that there exist minion homomorphisms \xi D : CD \rightarrow M for each D \in \BbbN .
Then there exists a minion homomorphism \zeta :C \rightarrow M .

Proof. For D \in \BbbN , let C\{ D\} =
\bigcup 

L\leq D C
(L)
D! . Observe that C\{ D\} is a finite set and

C\{ D\} \subseteq C\{ D+1\} . Moreover,
\bigcup 

D\in \BbbN C\{ D\} =
\bigcup 

D\in \BbbN CD = C . Indeed, given D\prime \in \BbbN , we
have that C\{ D\prime \} \subseteq CD\prime ! \subseteq 

\bigcup 
D\in \BbbN CD, and given L \in \BbbN , C

(L)
D\prime \subseteq C

(L)
(D\prime L)! \subseteq C\{ D\prime L\} \subseteq \bigcup 

D\in \BbbN C\{ D\} . Consider an infinite rooted tree whose vertices are all the restrictions
of the homomorphisms \xi D to some C\{ D\prime \} , whose root is the empty mapping, and
the parent of a vertex corresponding to a function C\{ D\prime +1\} \rightarrow M is the vertex cor-
responding to the restriction of the function to C\{ D\prime \} . This is an infinite connected
tree. Moreover, since M (L) is finite for each L\in \BbbN and since minion homomorphisms
preserve the arities, there exist only finitely many distinct restrictions of minion ho-
momorphisms to C\{ D\} ; hence, the tree is locally finite. By K\H onig's lemma, it con-
tains an infinite path, which corresponds to an infinite chain of maps \zeta i : C\{ i\} \rightarrow M
such that \zeta i+1 extends \zeta i \forall i \in \BbbN . Their union \zeta : C \rightarrow M is then a minion
homomorphism.

4.3. The CLAP condition. Given a finite set C, consider the set \BbbS (C) of the
rational stochastic vectors of size | C| . Let U \subseteq Ck. For i\in [k], consider the | C| \times | U | 
matrix E(U,i) such that, for c\in C and c= (c1, . . . , ck)\in U , the (c,c)th entry of E(U,i)

is 1 if ci = c, and 0 otherwise. Given \bfitxi \in \BbbS (U) and i \in [k], we define the ith marginal
of \bfitxi as

\bfitxi (i) =E(U,i)\bfitxi .

Observe that

\bfitxi (i)
T
1| C| = \bfitxi TE(U,i)T1| C| = \bfitxi T1| U | = 1,

so that \bfitxi (i) \in \BbbS (C). We also define the set \BbbZ (C) of the integer vectors of size | C| 
whose entries sum up to 1. Given U \subseteq Ck, \bfitzeta \in \BbbZ (U), and i\in [k], we define

\bfitzeta (i) =E(U,i)\bfitzeta .

As before, observe that

\bfitzeta (i)T1| C| = \bfitzeta TE(U,i)T1| C| = \bfitzeta T1| U | = 1,

so \bfitzeta (i) \in \BbbZ (C).
Let A be a relational structure having domain A and signature \sigma . We define the

relational structures \BbbS (A) and \BbbZ (A) as follows:

\bullet \BbbS (A) has domain \BbbS (A) and for every symbol R \in \sigma of arity k, R\BbbS (A) =
\{ (\bfitxi (1), . . . ,\bfitxi (k)) : \bfitxi \in \BbbS (RA)\} ;

\bullet \BbbZ (A) has domain \BbbZ (A) and for every symbol R \in \sigma of arity k, R\BbbZ (A) =
\{ (\bfitzeta (1), . . . ,\bfitzeta (k)) : \bfitzeta \in \BbbZ (RA)\} .

Remark 4.6. \BbbS (A) and \BbbZ (A) are denoted by LP(A) and IP(A) in [8], respectively.
As noted in [8, Remarks 7.11 and 7.21], \BbbS (A) coincides with the free structure of the
minion Qconv generated by A, and similarly, \BbbZ (A) is the free structure of the minion
Zaff generated by A. (See Appendices A.1 and A.2 for the definitions of Qconv and
Zaff , respectively.) In particular, given a relational structure X with signature \sigma ,
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CLAP: A NEW ALGORITHM FOR PROMISE CSPs 17

BLP accepts X as an instance of CSP(A) if and only if X \rightarrow \BbbS (A); similarly, AIP
accepts X as an instance of CSP(A) if and only if X\rightarrow \BbbZ (A).

Remark 4.7. The assignment f : a \mapsto \rightarrow ea for each a \in A yields both a canonical
homomorphism from A to \BbbS (A) and a canonical homomorphism from A to \BbbZ (A).
Indeed, for R \in \sigma of arity k and a= (a1, . . . , ak)\in RA,

f(a) = (ea1
, . . . ,eak

) = (E(R\bfA ,1)ea, . . . ,E
(R\bfA ,k)ea)

which belongs to both R\BbbS (A) and R\BbbZ (A) since ea \in \BbbS (RA)\cap \BbbZ (RA).

In Proposition 4.9, we characterize the instances of a given PCSP template for
which the CLAP algorithm returns Yes in terms of the condition described in the
following definition.

Definition 4.8. Let (A,B) be a PCSP template, where A and B have signature
\sigma . Given an instance X of PCSP(A,B), we say that X has the CLAP condition if
the following holds: \forall R \in \sigma of arity k \exists sR :RX \rightarrow \scrP (RA) \setminus \{ \emptyset \} such that

(I) \forall x = (x1, . . . , xk) \in RX,\forall a = (a1, . . . , ak) \in sR(x) there is a homomorphism
hx,a :X\rightarrow \BbbS (A) that satisfies the following:

1. hx,a(xi) = eai \forall i\in [k];
2. \forall \~R \in \sigma of arity \~k, \forall \~x= (\~x1, . . . , \~x\~k)\in \~RX \exists \bfitxi \in \BbbS ( \~RA) such that

\ast hx,a(\~xi) =E( \~R\bfA ,i)\bfitxi \forall i\in [\~k];

\ast supp(\bfitxi )\subseteq s
\~R(\~x).

(II) \exists \=R \in \sigma , \=x \in \=RX, \=a \in s
\=R(\=x) such that there is a homomorphism g :X\rightarrow \BbbZ (A)

that satisfies the following:

1\prime . \forall \~R \in \sigma of arity \~k, \forall \~x = (\~x1, . . . , \~x\~k) \in \~RX \exists \bfitxi \in \BbbS ( \~RA), \exists \bfitzeta \in \BbbZ ( \~RA) such
that

\ast h\=x,\=a(\~xi) =E( \~R\bfA ,i)\bfitxi \forall i\in [\~k];

\ast g(\~xi) =E( \~R\bfA ,i)\bfitzeta \forall i\in [\~k];

\ast supp(\bfitzeta )\subseteq supp(\bfitxi )\subseteq s
\~R(\~x).

Proposition 4.9. Given an instance X of PCSP(A,B), CLAP accepts X if and
only if X has the CLAP condition.

Proof. Suppose that CLAP accepts X, and let \{ Sx,R : R \in \sigma ,x \in RX\} be the
family of sets generated by the algorithm at termination. For each R \in \sigma , consider
the map sR : RX \rightarrow \scrP (RA) \setminus \{ \emptyset \} defined by sR(x) = Sx,R. For each x \in RX,a \in 
sR(x), consider the corresponding solution to BLP(X,A) generated by the algorithm.
Letting wx be the probability distribution on A associated with x \in X in the linear
program, we observe that the assignment x \mapsto \rightarrow wx yields a homomorphism (call it
hx,a) from X to \BbbS (A) that satisfies the requirement 1. Moreover, letting \bfitxi be the
probability distribution associated with a constraint \~x \in \~RX for some \~R \in \sigma , observe
that hx,a also satisfies the requirement 2. Finally, let \=R \in \sigma , \=x\in \=RX, \=a\in S\=x, \=R be such
that the condition in the if statement of line 15 of Algorithm 3.1 is met. Then 1\prime 

follows from the description of BLP+AIP.
The converse implication follows almost analogously, except for the following sub-

tlety. The BLP+AIP algorithm requires that the BLP solution should be picked from
the relative interior of the polytope of the feasible solutions (cf. Algorithm A.1 in
Appendix A.3). However, the homomorphism h\=x,\=a, whose existence witnesses part
(II) of the CLAP condition may correspond to a BLP solution that is not in the
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18 LORENZO CIARDO AND STANISLAV \v ZIVN\'Y

relative interior of the polytope P of the feasible solutions of BLP(X,A) satisfying
\lambda \=x, \=R(\=a) = 1 and \lambda x\prime ,R\prime (a\prime ) = 0 for every R\prime \in \sigma , x\prime \in R\prime X, and a\prime \not \in Sx\prime ,R\prime . If that
is the case, the algorithm would not consider (h\=x,\=a, g) as a solution for BLP + AIP.
However, letting h\prime be a solution in the relative interior of P , the conditions (I) and
(II) of CLAP are still satisfied if we let h\prime replace h\=x,\=a; and, in this case, the homo-
morphisms witnessing the CLAP condition do correspond to solutions found by the
CLAP algorithm.8 Hence, CLAP accepts X.

4.4. Proof of Theorem 3.3. Our first goal is to prove the following.

Theorem 4.10. If there is a minion homomorphism from C to Pol(A,B), then
CLAP solves PCSP(A,B).

Proof. Let X be an instance of PCSP(A,B).
First, we show that if X\rightarrow A, then CLAP accepts X, which is the easy direction.

Consider a homomorphism f :X\rightarrow A. Given R \in \sigma of arity k and x= (x1, . . . , xk) \in 
RX, let sR(x) = \{ f(x)\} . For x \in RX and a = (a1, . . . , ak) = f(x) \in sR(x), let
hx,a :X\rightarrow \BbbS (A) be the homomorphism obtained by composing f with the canonical
homomorphism from A to \BbbS (A) of Remark 4.7---i.e., hx,a(x) = ef(x) \forall x\in X. Observe

that hx,a(xi) = ef(xi) = eai for any i \in [k] and, given \~R \in \sigma of arity \~k and \~x =

(\~x1, . . . , \~x\~k) \in \~RX, setting \bfitxi = ef(\~x) yields hx,a(\~xi) = ef(\~xi) =E( \~R\bfA ,i)ef(\~x) =E( \~R\bfA ,i)\bfitxi 

for any i \in [\~k], and supp(\bfitxi ) = supp(ef(\~x)) = \{ f(\~x)\} = s
\~R(\~x). This shows that part

(I) of Definition 4.8 is satisfied. As for part (II), choose any \=R \in \sigma and \=x \in \=RX, let
\=a = f(\=x), and consider the homomorphism g : X \rightarrow \BbbZ (A) obtained by composing f
with the canonical homomorphism from A to \BbbZ (A) of Remark 4.7---i.e., g(x) = ef(x)
\forall x\in X. Given \~R \in \sigma of arity \~k and \~x= (\~x1, . . . , \~x\~k)\in \~RX, setting \bfitxi = \bfitzeta = ef(\~x) yields

g( \~xi) = h\=x,\=a(\~xi) = ef(\~xi) = E( \~R\bfA ,i)ef(\~x) = E( \~R\bfA ,i)\bfitxi = E( \~R\bfA ,i)\bfitzeta for any i \in [\~k], and

supp(\bfitzeta ) = supp(\bfitxi ) = \{ f(\~x)\} = s
\~R(\~x). It follows that X has the CLAP condition. By

Proposition 4.9, CLAP accepts X.
Second, we show that if X is accepted by CLAP, then X\rightarrow B. So, suppose that

X is accepted by CLAP. By Proposition 4.9, X has the CLAP condition. Using the
terminology of Definition 4.8, consider the set \{ h1, . . . , ht\} = \{ hx,a :R \in \sigma ,x\in RX,a\in 
sR(x)\} , where each hx,a is a homomorphism from X to \BbbS (A) described in part (I)
of Definition 4.8. We also consider the homomorphism g : X \rightarrow \BbbZ (A) of part (II) of
Definition 4.8, corresponding to \=R \in \sigma , \=x \in \=RX, \=a \in s

\=R(\=x). Without loss of generality,
we set h1 = h\=x,\=a.

Let n= | A| . Given x\in X, consider the matrix Mx \in \BbbQ n,\aleph 0 and the vector \bfitmu x \in \BbbZ n

defined by

Mxei = hi(x) \forall i\in [t],
Mxei = ht(x) \forall i\in \BbbN \setminus [t],
\bfitmu x = g(x).

We claim that (Mx,\bfitmu x) \in C (n). The requirements (c1), (c2), (c3), and (c5) in Defi-
nition 3.2 are easily seen to be satisfied. To check that Mx is skeletal, take a \in A
and suppose that eTaMx \not = 0T

\aleph 0
. This means that eTaMxed \not = 0 for some d \in [t].

8Another way to phrase this is by saying that the existence of a pair (h, g) of homomorphisms
such that each variable for g is zero whenever the corresponding variable for h is zero is equivalent to
the existence, for any h\prime in the nonempty relative interior of the polytope of solutions of the BLP, of
a solution g\prime of AIP that sets to zero any variable that is zero in h\prime . This is implicit in the analysis
in [22].
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CLAP: A NEW ALGORITHM FOR PROMISE CSPs 19

Hence, a \in supp(Mxed) = supp(hd(x)). Recall that we are assuming (with no loss
of generality) that the signature \sigma of X, A, and B contains a unary symbol Ru

such that RX
u = X, RA

u = A, and RB
u = B. Notice that E(R\bfA 

\mathrm{u} ,1) = In. From part
(I) of Definition 4.8, we deduce that supp(hd(x)) \subseteq sR\mathrm{u}(x), and hence, a \in sR\mathrm{u}(x).
We can then take the homomorphism hi = hx,a, which satisfies hi(x) = ea, that is,
Mxei = ea. So, Mx is skeletal and (c6) is satisfied. Finally, to check (c4), choose
a\in A and suppose that eTaMxe1 = 0. Since Mxe1 = h1(x) = h\=x,\=a(x), this implies that
a \not \in supp(h\=x,\=a(x)). Choosing Ru as \~R and x as \~x in 1\prime of Definition 4.8, and using

again the fact that E(R\bfA 
\mathrm{u} ,1) = In, we see that supp(g(x))\subseteq supp(h\=x,\=a(x)). Therefore,

a \not \in supp(g(x)) = supp(\bfitmu x). Hence, (c4) is satisfied, too, and the claim is proved.
Consider the map \gamma : X \rightarrow C (n) defined by x \mapsto \rightarrow (Mx,\bfitmu x). We claim that \gamma is

a homomorphism from X to \BbbF C (A). With this claim, we can finish the proof. By
assumption, there is a minion homomorphism from C to Pol(A,B). By Lemma 4.2
applied to C , we have \BbbF C (A) \rightarrow B. Composing \gamma with this homomorphism yields
X\rightarrow B, as required. It remains to establish the claim.

Claim. \gamma is a homomorphism from X to \BbbF C (A).
Take R \in \sigma of arity k, and let x = (x1, . . . , xk) \in RX. We need to show that
((Mx1 ,\bfitmu x1

), . . . , (Mxk
,\bfitmu xk

)) \in R\BbbF C (A). For each i \in [t] \setminus \{ 1\} , consider a probabil-
ity distribution \bfitxi i \in \BbbS (RA) corresponding to the homomorphism hi and witness-
ing part 2 in Definition 4.8. Also, consider the probability distribution \bfitxi 1 \in \BbbS (RA)
and the integer distribution \bfitzeta \in \BbbZ (RA) corresponding to h1 and g, respectively, and

witnessing 1\prime . We introduce the matrix Q \in \BbbQ | R\bfA | ,\aleph 0 and the vector \bfitdelta \in \BbbZ | R\bfA | 

defined by

Qei = \bfitxi i \forall i\in [t],
Qei = \bfitxi t \forall i\in \BbbN \setminus [t],
\bfitdelta = \bfitzeta .

We claim that (Q,\bfitdelta )\in C (| R\bfA | ). The requirements (c1), (c2), (c3), and (c5) in Definition
3.2 are easily seen to be satisfied. Suppose eTaQ \not = 0T

\aleph 0
for some a= (a1, . . . , ak)\in RA,

so that there exists d \in [t] such that eTaQed \not = 0. Hence, a \in supp(Qed) = supp(\bfitxi d)\subseteq 
sR(x). Pick hj = hx,a. We have that

E(R\bfA ,p)\bfitxi j = hj(xp) = hx,a(xp) = eap \forall p\in [k].

Suppose that \bfitxi j \not = ea. Then, \exists a\prime = (a\prime 1, . . . , a
\prime 
k) \in RA such that a\prime \not = a and eTa\prime \bfitxi j > 0.

Choose q \in [k] such that a\prime q \not = aq, and observe that

0 = eTa\prime 
q
eaq

= eTa\prime 
q
E(R\bfA ,q)\bfitxi j \geq eTa\prime \bfitxi j > 0,

which is a contradiction. Hence, Qej = \bfitxi j = ea. We conclude that Q is skeletal and,
therefore, (c6) is satisfied. Finally, suppose that a \not \in supp(Qe1) = supp(\bfitxi 1) for some
a \in RA. Recalling that \bfitxi 1 \in \BbbS (RA) corresponds to the homomorphism h1 = h\=x,\=a, it
follows from 1\prime that supp(\bfitzeta )\subseteq supp(\bfitxi 1). Hence, a \not \in supp(\bfitzeta ) = supp(\bfitdelta ), so that (c4)

is satisfied, too. As a consequence, (Q,\bfitdelta )\in C (| R\bfA | ), as claimed.
Now, we need to show that (Mx\alpha 

,\bfitmu x\alpha 
) = (Q,\bfitdelta )/\pi \alpha 

for each \alpha \in [k], where \pi \alpha :
RA \rightarrow A maps a \in RA to its \alpha th coordinate. Observe first that, by definition,
P\pi \alpha 

=E(R\bfA ,\alpha ) for each \alpha \in [k]. We see that
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20 LORENZO CIARDO AND STANISLAV \v ZIVN\'Y

Q/\pi \alpha 
ei = P\pi \alpha Qei =E(R\bfA ,\alpha )Qei =E(R\bfA ,\alpha )\bfitxi i = hi(x\alpha ) =Mx\alpha ei for i\in [t],

Q/\pi \alpha 
ei = P\pi \alpha Qei = P\pi \alpha Qet =Mx\alpha et =Mx\alpha ei for i\in \BbbN \setminus [t],

which yields Q/\pi \alpha 
=Mx\alpha 

. Moreover,

\bfitdelta /\pi \alpha 
= P\pi \alpha 

\bfitdelta =E(R\bfA ,\alpha )\bfitdelta =E(R\bfA ,\alpha )\bfitzeta = g(x\alpha ) =\bfitmu x\alpha 
.

It follows that (Mx\alpha ,\bfitmu x\alpha 
) = (Q/\pi \alpha 

,\bfitdelta /\pi \alpha 
) = (Q,\bfitdelta )/\pi \alpha 

. By Definition 4.1,

((Mx1
,\bfitmu x1

), . . . , (Mxk
,\bfitmu xk

))\in R\BbbF C (A),

so \gamma :X\rightarrow \BbbF C (A) is a homomorphism.

Our second goal is to prove the following.

Theorem 4.11. If CLAP solves PCSP(A,B), then there is a minion homomor-
phism from C to Pol(A,B).

Remark 4.12. The proof of Theorem 4.11 proceeds essentially by establishing
that the free structure \BbbF C (A) has the CLAP condition as an instance of PCSP(A,B).
However, some care is needed when handling Proposition 4.9, which only applies to
finite structures, while \BbbF C (A) is not finite, in general. To overcome this problem, we
use a compactness argument tailored to our minion C discussed in section 4.2, which
follows the ideas of [8].

We remark that the compactness argument for relational structures in the form
stated in [22, Lemma A.6] does not entirely fit our proof structure, as the element
(e11

T
\aleph 0
,e1) having the role of \=x in Definition 4.8 does not belong to every induced

substructure of \BbbF C (A). A different option would have been to use the general com-
pactness argument known as the (uncountable version of the) compactness theorem of
logic [62], which applies to all minion tests9 as derived in [31, Proposition 6] through
[64].

Proof of Theorem 4.11. Let n = | A| . For D \in \BbbN , denote \BbbF CD
(A) by F (where

CD is the subminion of C introduced in section 4.2). Hence, the domain of F is

C
(n)
D , which is finite. We claim that F has the CLAP condition as an instance of

PCSP(A,B).
For each R \in \sigma of arity k and for each \bfittau = ((M1,\bfitmu 1), . . . , (Mk,\bfitmu k)) \in RF, take

(Q\bfittau ,\bfitdelta \bfittau ) \in C
(| R\bfA | )
D satisfying (Mj ,\bfitmu j) = (Q\bfittau ,\bfitdelta \bfittau )/\pi j

\forall j \in [k], where \pi j : RA \rightarrow A

maps a\in RA to its jth coordinate; i.e., Mj =E(R\bfA ,j)Q\bfittau and \bfitmu j =E(R\bfA ,j)\bfitdelta \bfittau \forall j \in [k].
Given R \in \sigma of arity k, consider the map

sR :RF \rightarrow \scrP (RA) \setminus \{ \emptyset \} 

\bfittau \mapsto \rightarrow 
\bigcup 
i\in \BbbN 

supp(Q\bfittau ei).

Let us first check part (I) of Definition 4.8. Pick \bfittau = ((M1,\bfitmu 1), . . . , (Mk,\bfitmu k)) \in RF

and a = (a1, . . . , ak) \in sR(\bfittau ). We have that a \in supp(Q\bfittau e\alpha ) for some \alpha \in \BbbN , i.e.,
eTaQ\bfittau e\alpha \not = 0. Since Q\bfittau is skeletal, the set L\bfittau ,a = \{ \ell \in \BbbN :Q\bfittau e\ell = ea\} is nonempty; let
\ell (\bfittau ,a) :=min(L\bfittau ,a). Consider the map

h\bfittau ,a :C
(n)
D \rightarrow \BbbS (A)

( \^M, \^\bfitmu ) \mapsto \rightarrow \^Me\ell (\bfittau ,a).

9Compare Remark 4.13.
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CLAP: A NEW ALGORITHM FOR PROMISE CSPs 21

We claim that h\bfittau ,a is a homomorphism from F to \BbbS (A). Take \~R \in \sigma of arity \~k, and

let \~\bfittau = (( \~M1, \~\bfitmu 1), . . . , ( \~M\~k, \~\bfitmu \~k))\in \~RF. Consider the pair (Q\~\bfittau ,\bfitdelta \~\bfittau )\in C
(| \~R\bfA | )
D . We have

that

h\bfittau ,a(\~\bfittau ) = ( \~M1e\ell (\bfittau ,a), . . . , \~M\~ke\ell (\bfittau ,a)) =
\Bigl( 
E( \~R\bfA ,1)Q\~\bfittau e\ell (\bfittau ,a), . . . ,E

( \~R\bfA ,\~k)Q\~\bfittau e\ell (\bfittau ,a)

\Bigr) 
.

Since Q\~\bfittau e\ell (\bfittau ,a) \in \BbbS ( \~RA), we deduce that h\bfittau ,a(\~\bfittau )\in \~R\BbbS (A), as wanted. Therefore, h\bfittau ,a

is a homomorphism from F to \BbbS (A). We now check that the requirements 1 and 2 in
Definition 4.8 are met. The former follows from

h\bfittau ,a((Mi,\bfitmu i)) =Mie\ell (\bfittau ,a) =E(R\bfA ,i)Q\bfittau e\ell (\bfittau ,a) =E(R\bfA ,i)ea = eai \forall i\in [k].

To check the latter requirement, take \~R \in \sigma of arity \~k and

\~\bfittau = (( \~M1, \~\bfitmu 1), . . . , ( \~M\~k, \~\bfitmu \~k))\in \~RF,

and consider \bfitxi :=Q\~\bfittau e\ell (\bfittau ,a). Observe that
\bullet h\bfittau ,a(( \~Mi, \~\bfitmu i)) = \~Mie\ell (\bfittau ,a) =E( \~R\bfA ,i)Q\~\bfittau e\ell (\bfittau ,a) =E( \~R\bfA ,i)\bfitxi \forall i\in [\~k],

\bullet supp(\bfitxi ) = supp(Q\~\bfittau e\ell (\bfittau ,a))\subseteq 
\bigcup 
i\in \BbbN 

supp(Q\~\bfittau ei) = s
\~R(\~\bfittau ).

We now check part (II) of Definition 4.8. Take Ru as \=R, and observe that

RF
u = \{ (M,\bfitmu )\in C

(n)
D : \exists (Q,\bfitdelta )\in C

(n)
D such that M =E(R\bfA 

\mathrm{u} ,1)Q,

\bfitmu =E(R\bfA 
\mathrm{u} ,1)\bfitdelta \} =C

(n)
D ,

where we have used that E(R\bfA 
\mathrm{u} ,1) = In. Consider the element \=\tau = (e11

T
\aleph 0
,e1)\in C

(n)
D =

RF
u . Using again that E(R\bfA 

\mathrm{u} ,1) = In, we see that (Q\=\tau ,\bfitdelta \=\tau ) = \=\tau . We obtain

sR\mathrm{u}(\=\tau ) =
\bigcup 
i\in \BbbN 

supp(e11
T
\aleph 0
ei) =

\bigcup 
i\in \BbbN 

supp(e1) = \{ 1\} .

Hence, we pick \=a= 1. Notice that

\ell (\=\tau , \=a) =min\{ \ell \in \BbbN : e11
T
\aleph 0
e\ell = e1\} =min\{ \ell \in \BbbN : e1 = e1\} =min\BbbN = 1.

Consider the function

g :C
(n)
D \rightarrow \BbbZ (A)

( \^M, \^\bfitmu ) \mapsto \rightarrow \^\bfitmu .

Following the same procedure as for h\bfittau ,a, we easily check that g is a homomorphism
from F to \BbbZ (A). We now verify that condition 1\prime of Definition 4.8 is satisfied. Given
\~R \in \sigma of arity \~k and \~\bfittau = (( \~M1, \~\bfitmu 1), . . . , ( \~M\~k, \~\bfitmu \~k)) \in \~RF, let \bfitxi := Q\~\bfittau e1 \in \BbbS ( \~RA) and
\bfitzeta := \bfitdelta \~\bfittau \in \BbbZ ( \~RA). Then, given i\in [\~k],

\ast h\=\tau ,\=a(( \~Mi, \~\bfitmu i)) = \~Mie\ell (\=\tau ,\=a) = \~Mie1 =E( \~R\bfA ,i)Q\~\bfittau e1 =E( \~R\bfA ,i)\bfitxi ;

\ast g(( \~Mi, \~\bfitmu i)) = \~\bfitmu i =E( \~R\bfA ,i)\bfitdelta \~\bfittau =E( \~R\bfA ,i)\bfitzeta ;

\ast supp(\bfitzeta ) = supp(\bfitdelta \~\bfittau )\subseteq supp(Q\~\bfittau e1) = supp(\bfitxi )\subseteq 
\bigcup 
i\in \BbbN 

supp(Q\~\bfittau ei) = s
\~R(\~\bfittau ),

where, for the first inclusion in the third line, we have used (c4) in Definition 3.2.
It follows that F has the CLAP condition as an instance of PCSP(A,B), as

claimed. Then, Proposition 4.9 implies that CLAP accepts F. Since, by hypothesis,
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22 LORENZO CIARDO AND STANISLAV \v ZIVN\'Y

CLAP solves PCSP(A,B), we deduce that \BbbF CD
(A) = F \rightarrow B. By Lemma 4.2,

there exists a minion homomorphism from CD to Pol(A,B). Finally, since the set of
polymorphisms of (A,B) of arity L is finite for every L \in \BbbN , Proposition 4.5 allows
us to conclude that there exists a minion homomorphism from C to Pol(A,B).

Remark 4.13. It follows from the proofs of Theorems 4.10 and 4.11 that CLAP
fits within the framework of minion tests recently introduced in [31]. More precisely,
CLAP = TestC , which means that, for two \sigma -structures X and A, CLAP(X,A)
accepts if and only if X \rightarrow \BbbF C (A). Additionally, it follows from [31] that CLAP
is a conic minion test, which essentially means that one can build a progressively
tighter hierarchy of relaxations based on CLAP whose kth level correctly classifies all
instances of size k.

5. H-symmetric polymorphisms. This section contains the proof of Theorem
3.5. We remark that the machinery developed here can be extended to the more
general setting of H-block-symmetric polymorphisms, at the only cost of dealing with
a more cumbersome notation. This is done in Appendix C and results in Theorem
C.3---a slightly stronger version of Theorem 3.5.

We shall need two helpful lemmas. The first lemma shows a property of H-
symmetric functions that will be useful in the proof of Theorem 3.5. Throughout this
section, without loss of generality, we consider A= [n].

Lemma 5.1. Let f :AL \rightarrow B be H-symmetric for some m\times n tie matrix H, with
m \in \BbbN . Consider two maps \pi , \~\pi : [L] \rightarrow [n] such that P\pi 1L = P\~\pi 1L and the vector
P\pi 1L is H-tieless. Then

f/\pi (1, . . . , n) = f/\~\pi (1, . . . , n).

Proof. For a\in [n], we have

| \pi  - 1(a)| =
\sum 
i\in [L]

(P\pi )ai =
\sum 
i\in [L]

eTa P\pi ei = eTa P\pi 1L = eTa P\~\pi 1L = | \~\pi  - 1(a)| .

Hence, we can consider bijections \varphi a : \pi 
 - 1(a)\rightarrow \~\pi  - 1(a) for each a\in [n]. Clearly, their

union

\varphi =
\bigcup 

a\in [n]

\varphi a : [L]\rightarrow [L]

is also a bijection. For each i\in [L], we have

(\~\pi \circ \varphi )(i) = \~\pi (\varphi (i)) = \~\pi (\varphi \pi (i)(i)) = \pi (i)

and, hence, \~\pi \circ \varphi = \pi . Let \~a= (\~\pi (1), . . . , \~\pi (L)). Notice that, for each a\in [n],

eTa \~a
\# = | \{ i\in [L] : \~\pi (i) = a\} | = eTa P\~\pi 1L

and, therefore, \~a\# = P\~\pi 1L = P\pi 1L, which is H-tieless. Using that f is H-symmetric,
we find

f/\~\pi (1, . . . , n) = f(\~a) = f/\varphi (\~a) = (f/\varphi )/\~\pi (1, . . . , n) = f/\~\pi \circ \varphi (1, . . . , n) = f/\pi (1, . . . , n),

as required.

One intriguing property of skeletal matrices is that they can be simultaneously
reduced to H-tieless vectors, in the sense of the next lemma. We say that a vector is
finitely supported if it only has a finite number of nonzero entries.
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CLAP: A NEW ALGORITHM FOR PROMISE CSPs 23

Lemma 5.2 (tiebreak lemma). For k, p,m\in \BbbN , let M1, . . . ,Mk \in \BbbQ p,\aleph 0 be skeletal
matrices, and let H be an m \times p tie matrix. Then there exists a stochastic finitely
supported vector v \in \BbbQ \aleph 0 with eT1 v> 0 such that Mjv is H-tieless for any j \in [k].

Proof. Let \Omega be the set of rational stochastic finitely supported vectors of size \aleph 0

whose first entry is nonzero, and consider the map

f : \Omega \rightarrow \BbbN 0

\^v \mapsto \rightarrow 
\sum 
j\in [k]

| \{ (i, i\prime )\in [m]2 : i \not = i\prime and eTi HMj \^v= eTi\prime HMj \^v \not = 0\} | .

In other words, f(\^v) counts the total number of ties in the set of vectors \{ HMj \^v :
j \in [k]\} . Let v attain the minimum of f over \Omega . If f(v) = 0, we are done. Otherwise,
let j \in [k], i, i\prime \in [m] be such that i \not = i\prime and eTi HMjv = eTi\prime HMjv \not = 0. From
eTi HMjv \not = 0, we see that \exists \beta \in [p] such that eTi He\beta \not = 0 and eT\beta Mjv \not = 0. In

particular, we have eT\beta Mj \not = 0T
\aleph 0
; since Mj is skeletal, this implies that Mje\alpha = e\beta for

some \alpha \in \BbbN . For \epsilon \in \BbbQ , 0 < \epsilon < 1, consider the vector v\epsilon = (1 - \epsilon )v + \epsilon e\alpha . Observe
that v\epsilon \in \Omega . For g \in [k], we have HMgv\epsilon = (1 - \epsilon )HMgv + \epsilon HMge\alpha . By choosing
\epsilon sufficiently small, we can assume that, for each g \in [k], HMgv\epsilon does not have new
ties other than those in HMgv. Moreover,

HMjv\epsilon = (1 - \epsilon )HMjv+ \epsilon HMje\alpha = (1 - \epsilon )HMjv+ \epsilon He\beta ,

and hence,

eTi HMjv\epsilon = (1 - \epsilon )eTi HMjv+ \epsilon eTi He\beta = (1 - \epsilon )eTi\prime HMjv+ \epsilon eTi He\beta 

\not = (1 - \epsilon )eTi\prime HMjv+ \epsilon eTi\prime He\beta = eTi\prime HMjv\epsilon ,

where the disequality follows from eTi He\beta \not = 0 and from the fact that He\beta is a
tieless vector by the definition of tie matrix. We conclude that f(v\epsilon ) < f(v), which
contradicts our assumption.

Theorem 5.3 (Theorem 3.5 restated). Let (A,B) be a PCSP template, and
suppose Pol(A,B) contains H-symmetric operations of arbitrarily large arity for some
m\times | A| tie matrix H, m \in \BbbN . Then there exists a minion homomorphism from C to
Pol(A,B).

Remark 5.4. Before proving Theorem 3.5, we provide some intuition on the
construction of the minion homomorphism whose existence shall establish the result.
First, one fixes an H-symmetric polymorphism f . Then, the image of an L-ary
element (M,\bfitmu ) of C under the homomorphism is the function that (i) takes a tuple
(a1, . . . , aL) of variables in A as input, (ii) deforms the tuple by changing the frequency
of each variable according to the information carried by M and \bfitmu , and (iii) returns
as output the evaluation of f on the deformed tuple. The deformation in step (ii)
is encoded by the map \varphi defined in (5.1). Essentially, \varphi decides what frequency to
assign to a variable ai on the basis of the weight of i in the probability distribution
Mv, where v is the tie-breaking vector from Lemma 5.2. The integer distribution \bfitmu is
also taken into account by \varphi , and its role is essentially to fill the gap between the size
of the deformed tuple obtained above and the arity of f . If Pol(A,B) is rich enough
to provide H-symmetric polymorphisms of whichever arity we need, \bfitmu is inessential
(cf. Remark 5.5).
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24 LORENZO CIARDO AND STANISLAV \v ZIVN\'Y

Proof of Theorem 3.5. For D \in \BbbN , consider the subminion CD of C described
in section 4.2. Observe that S = \{ M : (M,\bfitmu ) \in C

(n)
D \} is a finite set of skeletal

matrices. Therefore, we can apply the tiebreak lemma, Lemma 5.2, to find a stochastic
finitely supported vector v \in \BbbQ \aleph 0 with eT1 v > 0 such that Mv is H-tieless for any
M \in S. Since v is finitely supported, we can find N \prime \in \BbbN such that N \prime v has integer
entries. Let \sigma H

1 denote the largest singular value of H, i.e., the square root of the
largest eigenvalue of HTH. Set N = 2\lceil \sigma H

1 + 1\rceil D2N \prime , and let f be an H-symmetric
polymorphism of arity c \geq N2. Write c = N\alpha + \beta with \alpha ,\beta \in \BbbN 0, \beta \leq N  - 1. Note
that N2 \leq c=N\alpha + \beta \leq N\alpha +N  - 1<N(\alpha + 1), so N <\alpha + 1, and hence, \beta <\alpha .

Consider the function

\xi D :CD \rightarrow Pol(A,B)

defined as follows. Given L \in \BbbN and (M,\bfitmu ) \in C
(L)
D , take the map \varphi : [c] \rightarrow [L] such

that the corresponding L\times c matrix P\varphi is

P\varphi =

\left(      
1T
eT
1 (\alpha NMv+\beta \bfitmu )

0T . . . 0T

0T 1T
eT
2 (\alpha NMv+\beta \bfitmu )

. . . 0T

...
...

. . .
...

0T 0T . . . 1T
eT
L(\alpha NMv+\beta \bfitmu )

\right)      .(5.1)

To verify that (5.1) is well defined, observe first that

L\sum 
i=1

eTi (\alpha NMv+ \beta \bfitmu ) = 1T
L(\alpha NMv+ \beta \bfitmu )

= \alpha N1T
LMv+ \beta 1T

L\bfitmu = \alpha N1T
\aleph 0
v+ \beta = \alpha N + \beta = c.

Moreover, for each i\in [L], eTi (\alpha NMv+\beta \bfitmu ) = eTi (2\alpha \lceil \sigma H
1 +1\rceil D(DM)(N \prime v)+\beta \bfitmu ) is an

integer. If eTi (\alpha NMv+ \beta \bfitmu ) was negative, then eTi \bfitmu < 0. By the requirement (c4) in
Definition 3.2, this would imply that eTi Me1 > 0, and hence, 0< eTi Me1e

T
1 v\leq eTi Mv.

As a consequence, eTi (DM)(N \prime v)\geq 1 so that

eTi (\alpha NMv+ \beta \bfitmu ) = 2\alpha \lceil \sigma H
1 + 1\rceil DeTi (DM)(N \prime v) + \beta eTi \bfitmu 

\geq 2\alpha \lceil \sigma H
1 + 1\rceil D+ \beta eTi \bfitmu \geq \alpha D - \beta D > 0,

which is a contradiction. In conclusion, the numbers eTi (\alpha NMv+\beta \bfitmu ) are nonnegative
integers summing up to c, so (5.1) is well defined.

We define \xi D((M,\bfitmu )) := f/\varphi . Clearly, \xi D((M,\bfitmu ))\in Pol(A,B). We claim that the
map \xi D is a minion homomorphism. It is straightforward to check that \xi D preserves
arities so, to conclude, we need to show that it also preserves minors. Take L\prime \in \BbbN 
and choose a map \pi : [L] \rightarrow [L\prime ]. Letting \~\varphi : [c] \rightarrow [L\prime ] be the map corresponding to
the matrix

P \~\varphi =

\left(      
1T
eT
1 (\alpha NP\pi Mv+\beta P\pi \bfitmu )

0T . . . 0T

0T 1T
eT
2 (\alpha NP\pi Mv+\beta P\pi \bfitmu )

. . . 0T

...
...

. . .
...

0T 0T . . . 1T
eT
L\prime (\alpha NP\pi Mv+\beta P\pi \bfitmu )

\right)      ,
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CLAP: A NEW ALGORITHM FOR PROMISE CSPs 25

we see that \xi D((M,\bfitmu )/\pi ) = f/ \~\varphi . Moreover, \xi D((M,\bfitmu ))/\pi = (f/\varphi )/\pi = f/\pi \circ \varphi , where \varphi 

corresponds to the matrix P\varphi in (5.1). Take a= (a1, . . . , aL\prime )\in AL\prime 
, and consider the

map

\pi a : [L
\prime ]\rightarrow [n]

i \mapsto \rightarrow ai.

Observe that

f/ \~\varphi (a) = (f/ \~\varphi )/\pi \bfa 
(1, . . . , n) = f/\pi \bfa \circ \~\varphi (1, . . . , n), and similarly,

f/\pi \circ \varphi (a) = (f/\pi \circ \varphi )/\pi \bfa 
(1, . . . , n) = f/\pi \bfa \circ \pi \circ \varphi (1, . . . , n).(5.2)

Notice that

P\pi \bfa \circ \~\varphi 1c = P\pi \bfa P \~\varphi 1c = P\pi \bfa (\alpha NP\pi Mv+ \beta P\pi \bfitmu )

= P\pi \bfa P\pi (\alpha NMv+ \beta \bfitmu ) = P\pi \bfa P\pi P\varphi 1c = P\pi \bfa \circ \pi \circ \varphi 1c.

We claim that the vector P\pi \bfa \circ \~\varphi 1c is H-tieless. Let u = (ui) = HP\pi \bfa \circ \~\varphi 1c; the claim
is equivalent to u being tieless. Let w = (wi) = \alpha NHP\pi \bfa \circ \pi Mv and z = (zi) =
\beta HP\pi \bfa \circ \pi \bfitmu , so that u = w + z. Choose i, i\prime \in [m] such that i \not = i\prime and ui \not = 0. We
need to show that ui \not = u\prime 

i. Suppose wi = 0. We can write HTei =
\sum 

g\in G \lambda geg for

G= supp(HTei), where each \lambda g is a positive integer (note that G \not = \emptyset since, otherwise,
HTei = 0n, which would imply ui = 0). Let F = (\pi a \circ \pi ) - 1(G). From wi = 0, we
obtain

0 = eTi HP\pi \bfa \circ \pi Mv= (HTei)
TP\pi \bfa \circ \pi Mv

=
\sum 
g\in G

\lambda ge
T
g P\pi \bfa \circ \pi Mv=

\sum 
g\in G

\lambda g

\sum 
j\in (\pi \bfa \circ \pi ) - 1(g)

eTj Mv,

and hence, the following chain of implications holds:

0 =
\sum 
g\in G

\sum 
j\in (\pi \bfa \circ \pi ) - 1(g)

eTj Mv=
\sum 
j\in F

eTj Mv \Rightarrow eTj Mv= 0 \forall j \in F

\Rightarrow eTj Me1 = 0 \forall j \in F \Rightarrow eTj \bfitmu = 0 \forall j \in F

(where the second implication follows from eT1 v > 0, and the third follows from (c4)
in Definition 3.2). Hence,

zi = \beta eTi HP\pi \bfa \circ \pi \bfitmu = \beta 
\sum 
g\in G

\lambda ge
T
g P\pi \bfa \circ \pi \bfitmu = \beta 

\sum 
g\in G

\lambda g

\sum 
j\in (\pi \bfa \circ \pi ) - 1(g)

eTj \bfitmu = 0,

so that ui =wi + zi = 0, a contradiction. Hence, wi > 0. Observe that

(M/\pi \bfa \circ \pi ,\bfitmu /\pi \bfa \circ \pi )\in C
(n)
D ,

and hence, M/\pi \bfa \circ \pi \in S. By the choice of v, this implies that the vector P\pi \bfa \circ \pi Mv =
M/\pi \bfa \circ \pi v is H-tieless; i.e., HP\pi \bfa \circ \pi Mv is tieless. It follows that the vector

HP\pi \bfa \circ \pi (DM)(N \prime v) =
1

2\alpha \lceil \sigma H
1 + 1\rceil D

w
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26 LORENZO CIARDO AND STANISLAV \v ZIVN\'Y

is also tieless; being that it is entrywise integer, and since 1
2\alpha \lceil \sigma H

1 +1\rceil Dwi > 0, we obtain

\bigm| \bigm| \bigm| \bigm| 1

2\alpha \lceil \sigma H
1 + 1\rceil D

wi  - 
1

2\alpha \lceil \sigma H
1 + 1\rceil D

wi\prime 

\bigm| \bigm| \bigm| \bigm| \geq 1, which yields | wi  - wi\prime | \geq 2\alpha \lceil \sigma H
1 + 1\rceil D.

Denote the \ell 1-norm and the \ell 2-norm of a vector by \| \cdot \| 1 and \| \cdot \| 2, respectively.
Recall that the largest singular value of a matrix is its spectral operator norm, i.e.,
\sigma H
1 =max0\not =x\in \BbbR n

\| Hx\| 2

\| x\| 2
(see [47]). In particular, \| Hx\| 2 \leq \sigma H

1 \| x\| 2 for each vector x
of size n. Using the Cauchy--Schwarz inequality and the fact that the \ell 1-norm of a
vector is greater than or equal to its \ell 2-norm, we find

| zi  - zi\prime | = \beta | (ei  - ei\prime )
THP\pi \bfa \circ \pi \bfitmu | \leq \beta \| ei  - ei\prime \| 2\| HP\pi \bfa \circ \pi \bfitmu \| 2

\leq \beta \| ei  - ei\prime \| 2\sigma H
1 \| P\pi \bfa \circ \pi \bfitmu \| 2

\leq \beta \| ei  - ei\prime \| 1\lceil \sigma H
1 + 1\rceil \| P\pi \bfa \circ \pi \bfitmu \| 1

= 2\beta \lceil \sigma H
1 + 1\rceil 1T

n | P\pi \bfa \circ \pi \bfitmu | \leq 2\beta \lceil \sigma H
1 + 1\rceil 1T

nP\pi \bfa \circ \pi | \bfitmu | 
= 2\beta \lceil \sigma H

1 + 1\rceil 1T
L| \bfitmu | \leq 2\beta \lceil \sigma H

1 + 1\rceil D< 2\alpha \lceil \sigma H
1 + 1\rceil D.

We conclude the proof of the claim by noting that

| ui  - ui\prime | = | (wi  - wi\prime ) - (zi\prime  - zi)| \geq | wi  - wi\prime |  - | zi  - zi\prime | 
> 2\alpha \lceil \sigma H

1 + 1\rceil D - 2\alpha \lceil \sigma H
1 + 1\rceil D= 0,

which implies ui \not = ui\prime . As a consequence, the vector P\pi \bfa \circ \~\varphi 1c is H-tieless. We can
then apply Lemma 5.1 to conclude that f/\pi \bfa \circ \~\varphi (1, . . . , n) = f/\pi \bfa \circ \pi \circ \varphi (1, . . . , n). Hence,
by (5.2), f/ \~\varphi = f/\pi \circ \varphi . Therefore, \xi D((M,\bfitmu )/\pi ) = \xi D((M,\bfitmu ))/\pi , as required. It follows
that \xi D is a minion homomorphism.

Since the set of polymorphisms of (A,B) of arity L is finite for every L \in \BbbN ,
we can apply Proposition 4.5 to conclude that there exists a minion homomorphism
\zeta :C \rightarrow Pol(A,B).

Remark 5.5. If Pol(A,B) contains H-symmetric operations of all arities---as it
happens for the PCSP template (A,B) from Example 2.10, cf. Example 3.6 ---the
AIP part of CLAP is not required. Indeed, in that case, we can choose f in the
proof of Theorem 3.5 to be an H-symmetric polymorphism of arity c = N2, which
implies \beta = 0. Therefore, the affine vector \bfitmu does not have any role in the definition
of P\varphi in (5.1), nor in the definition of the minion homomorphism \xi D. It follows that,
under this stronger hypothesis, Pol(A,B) admits a minion homomorphism from a
minion \^C whose L-ary elements are matrices in \BbbQ L,\aleph 0 satisfying the requirements
(c1), (c2), (c5), (c6) of Definition 3.2; notice that the projection (M,\bfitmu ) \mapsto \rightarrow M yields a
natural minion homomorphism from C to \^C . The proofs of Theorems 4.10 and 4.11
can be straightforwardly modified to show that \^C captures the power of the algorithm
CBLP,i.e., the simplified version of CLAP that does not run BLP+AIP at the end
(cf. the discussion in section 3).

Appendix A. Existing relaxations for PCSPs. Every CSP can be equiva-
lently expressed as a 0--1 integer program in a standard way.

If the variables are allowed to take values in [0,1], we obtain the so-called basic
linear programming relaxation (BLP) [59]. This naturally extends to PCSPs [8], as
we describe in Appendix A.1.
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0 ≤ λx,R(a) ≤ 1 ∀R ∈ σ, ∀x ∈ RX,∀a ∈ RA∑
a∈RA

λx,R(a) = 1 ∀R ∈ σ, ∀x ∈ RX

∑
a∈RA,ai=a

λx,R(a) = λxi,Ru(a) ∀R ∈ σ, ∀x ∈ RX,∀a ∈ A,∀i ∈ [ar(R)]

Fig. A.1. Definition of BLP(X,A).

τx,R(a) ∈ Z ∀R ∈ σ, ∀x ∈ RX,∀a ∈ RA∑
a∈RA

τx,R(a) = 1 ∀R ∈ σ, ∀x ∈ RX

∑
a∈RA,ai=a

τx,R(a) = τxi,Ru(a) ∀R ∈ σ, ∀x ∈ RX,∀a ∈ A,∀i ∈ [ar(R)]

Fig. A.2. Definition of AIP(X,A).

If the variables are allowed to take integer values, we obtain the so-called basic
affine integer programming relaxation (AIP) [20], studied in detail in [8], as we describe
in Appendix A.2.

A combination of the two relaxations, called the BLP + AIP relaxation, was
proposed in [22] and its power characterized in [22], as we describe in Appendix A.3.

Let (A,B) be a PCSP template with signature \sigma , and let X be an instance of
PCSP(A,B). In all three relaxations described below, we assume without loss of
generality that \sigma contains a unary symbol Ru such that RX

u = X, RA
u = A, and

RB
u = B. If this is not the case, the signature and the instance can be extended

without changing the set of solutions.

A.1. BLP. The BLP of X, denoted by BLP(X,A), is defined as follows.10 The
variables are \lambda x,R(a) for every R \in \sigma , x \in RX, and a \in RA, and the constraints are
given in Figure A.1.
We say that BLP(X,A) accepts if the LP in Figure A.1 is feasible, and rejects other-
wise. By construction, if X\rightarrow A, then BLP(X,A) accepts. We say that BLP solves
PCSP(A,B) if for every instance X accepted by BLP(X,A) we have X\rightarrow B.

We denote by Qconv the minion of stochastic vectors on \BbbQ with the minor op-
eration defined as in section 4.1; i.e., if q \in Qconv

(L) and \pi : [L] \rightarrow [L\prime ], then
q/\pi = P\pi q, where P\pi is the L\prime \times L matrix whose (i, j)th entry is 1 if \pi (j) = i, and 0
otherwise.

An L-ary operation f :AL \rightarrow B is called symmetric if

f(a1, . . . , aL) = f(a\pi (1), . . . , a\pi (L))

for every a1, . . . , aL \in A and every permutation \pi : [L]\rightarrow [L].
The power of BLP for PCSPs is characterized in the following result.

Theorem A.1 (see [8]). Let (A,B) be a PCSP template. The following are
equivalent:

10The definition does not depend on B and is the same as the BLP of an instance X of CSP(A);
the same holds for AIP and BLP+AIP.
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28 LORENZO CIARDO AND STANISLAV \v ZIVN\'Y

Algorithm A.1. The BLP+AIP algorithm.
Require: an instance X of PCSP(A,B) of signature \sigma 
Ensure: yes if X\rightarrow A and no if X \not \rightarrow B find a relative interior point

(\lambda x,R(a))R\in \sigma ,x\in R\bfX ,a\in R\bfA of BLP(X,A)
1: if no relative interior point exists then
2: return no
3: end if
4: refine AIP(X,A) by setting \tau x,R(a) = 0 if \lambda x,R(a) = 0
5: if the refined AIP(X,A) accepts then
6: return yes
7: else
8: return no
9: end if

(1) BLP solves PCSP(A,B).
(2) Pol(A,B) admits a minion homomorphism from Qconv.
(3) Pol(A,B) contains symmetric operations of all arities.

A.2. AIP The AIP of X, denoted by AIP(X,A), is defined as follows. The
variables are \tau x,R(a) for every R \in \sigma , x \in RX, and a \in RA, and the constraints are
given in Figure A.2.

We say that AIP(X,A) accepts if the affine program in Figure A.2 is feasible,
and rejects otherwise. By construction, if X\rightarrow A, then AIP(X,A) accepts. We say
that AIP solves PCSP(A,B) if for every instance X accepted by AIP(X,A) we have
X\rightarrow B.

We denote by Zaff the minion of affine vectors on \BbbZ with the minor operation
defined as in section 4.1; i.e., if z \in Zaff

(L) and \pi : [L]\rightarrow [L\prime ], then z/\pi = P\pi z, where
P\pi is the L\prime \times L matrix whose (i, j)th entry is 1 if \pi (j) = i, and 0 otherwise.

A (2L+1)-ary operation f :A2L+1 \rightarrow B is called alternating if f(a1, . . . , a2L+1) =
f(a\pi (1), . . . , a\pi (2L+1)) for every a1, . . . , a2L+1 \in A and every permutation \pi : [2L+1]\rightarrow 
[2L + 1] that preserves parity, and f(a1, . . . , a2L - 1, a, a) = f(a1, . . . , a2L - 1, a

\prime , a\prime ) for
every a1, . . . , a2L - 1, a, a

\prime \in A. Intuitively, an alternating operation is invariant under
permutations of its odd and even coordinates and has the property that adjacent
coordinates cancel each other out.

The power of AIP for PCSPs is characterized in the following result.

Theorem A.2 (see [8]). Let (A,B) be a PCSP template. The following are
equivalent:

(1) AIP solves PCSP(A,B).
(2) Pol(A,B) admits a minion homomorphism from Zaff .
(3) Pol(A,B) contains alternating operations of all odd arities.

A.3. BLP+AIP The combined basic LP and affine IP algorithm (BLP+AIP)
is presented in Algorithm A.1.

If X \rightarrow A, then BLP + AIP accepts X [22]. We say that BLP + AIP solves
PCSP(A,B) if for every instance X accepted by BLP+AIP we have X\rightarrow B.

We denote by MBLP+AIP the minion whose L-ary objects are pairs (q,z), where
q \in \BbbQ L is a stochastic vector and z \in \BbbZ L is an affine vector, with the property that,
for every i\in [L], qi = 0 implies zi = 0. As before, the minor operation is defined as in

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/0

9/
23

 to
 1

63
.1

.2
03

.5
9 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



CLAP: A NEW ALGORITHM FOR PROMISE CSPs 29

section 4.1; i.e., if (q,z)\in MBLP+AIP
(L) and \pi : [L]\rightarrow [L\prime ], then (q,z)/\pi = (P\pi q, P\pi z),

where P\pi is the L\prime \times L matrix whose (i, j)th entry is 1 if \pi (j) = i, and 0 otherwise.
A (2L+ 1)-ary operation f :A2L+1 \rightarrow B is called 2-block symmetric if

f(a1, . . . , a2L+1) = f(a\pi (1), . . . , a\pi (2L+1))

for every a1, . . . , a2L+1 \in A and every permutation \pi : [2L+1]\rightarrow [2L+1] that preserves
parity.

The power of BLP+AIP for PCSPs is characterized in the following result.

Theorem A.3 (see [22]). Let (A,B) be a PCSP template. The following are
equivalent:

(1) BLP+AIP solves PCSP(A,B).
(2) Pol(A,B) admits a minion homomorphism from MBLP+AIP.
(3) Pol(A,B) contains 2-block-symmetric operations of all odd arities.

Appendix B. Proof of Lemma 4.2. In this section, we shall prove Lemma
4.2, which we restate below. The proof is based on that of [8, Lemma 4.4], which
concerns minions of functions.

Lemma B.1 (Lemma 4.2 restated). Let M be a minion, and let (A,B) be a
PCSP template. Then there is a minion homomorphism from M to Pol(A,B) if and
only if \BbbF M (A)\rightarrow B.

Proof. Let A = [n], and let \sigma be the signature of A and B. Suppose \xi : M \rightarrow 
Pol(A,B) is a minion homomorphism, and consider the function

f :M (n) \rightarrow B

M \mapsto \rightarrow \xi (M)(1, . . . , n).

For R \in \sigma of arity k, consider a tuple (M1, . . . ,Mk) \in R\BbbF M (A). List the elements of
RA as a(1), . . . ,a(m). From Definition 4.1, \exists Q \in M (m) such that Mi =Q/\pi i

for each
i \in [k], where \pi i : [m] \rightarrow A maps j to the ith coordinate of a(j). It follows that, for
each i\in [k],

f(Mi) = f(Q/\pi i
) = \xi (Q/\pi i

)(1, . . . , n) = \xi (Q)/\pi i
(1, . . . , n) = \xi (Q)(\pi i(1), . . . , \pi i(m)).

Hence,

f(M1, . . . ,Mk) = (\xi (Q)(\pi 1(1), . . . , \pi 1(m)), . . . , \xi (Q)(\pi k(1), . . . , \pi k(m)))

= \xi (Q)(a(1), . . . ,a(m))\in RB

since \xi (Q) is a polymorphism of (A,B). Therefore, f is a homomorphism from \BbbF M (A)
to B.

Conversely, let f : \BbbF M (A) \rightarrow B be a homomorphism, and consider the function
\xi :M \rightarrow Pol(A,B) defined by \xi (M)(a1, . . . , aL) = f(M/\rho ) for each L\in \BbbN , M \in M (L),
(a1, . . . , aL)\in AL, where

\rho : [L]\rightarrow [n]

i \mapsto \rightarrow ai.

Let us first check that \xi is well defined, i.e., that \xi (M) \in Pol(A,B). For R \in \sigma of
arity k, consider a matrix Z \in AL,k such that each row of Z corresponds to a tuple in
RA. We need to show that \xi (M)(Z)\in RB. Consider the maps
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30 LORENZO CIARDO AND STANISLAV \v ZIVN\'Y

\tau : [L]\rightarrow RA, \rho j : [L]\rightarrow [n], \pi j :R
A \rightarrow [n],

i \mapsto \rightarrow ZTei, i \mapsto \rightarrow eTi Zej , a \mapsto \rightarrow eTj a

for j \in [k]. Observe that \rho j = \pi j \circ \tau , and set Q=M/\tau \in M (| R\bfA | ). We obtain

\xi (M)(Z) = f(M/\rho 1
, . . . ,M/\rho k

) = f(M/\pi 1\circ \tau , . . . ,M/\pi k\circ \tau ) = f(Q/\pi 1
, . . . ,Q/\pi k

)\in RB

since (Q/\pi 1
, . . . ,Q/\pi k

) \in R\BbbF M (A) and f is a homomorphism. Finally, we show that \xi 
is a minion homomorphism. Clearly, \xi preserves arities. To check that it preserves
minors, let M \in M (L) and take a map \pi : [L] \rightarrow [L\prime ]. Given (a1, . . . , aL\prime ) \in AL\prime 

,
consider the maps

\rho \prime : [L\prime ]\rightarrow [n], \rho \prime \prime : [L]\rightarrow [n],

i \mapsto \rightarrow ai, i \mapsto \rightarrow a\pi (i),

and observe that \rho \prime \prime = \rho \prime \circ \pi . We obtain

\xi (M/\pi )(a1, . . . , aL\prime ) = f((M/\pi )/\rho \prime ) = f(M/\rho \prime \circ \pi ) = f(M/\rho \prime \prime ) = \xi (M)(a\pi (1), . . . , a\pi (L))

= \xi (M)/\pi (a1, . . . , aL\prime ),

which yields \xi (M/\pi ) = \xi (M)/\pi , as desired.

Appendix C. H-block-symmetric polymorphisms. Let \scrC = (\scrC 1, . . . ,\scrC \ell ) be
a partition of c \in \BbbN ; i.e., the sets \scrC i are pairwise disjoint and their union is [c]. Let
ci = | \scrC i| , so that c=

\sum 
i\in [\ell ] ci. For each i \in [\ell ], we consider the unique monotonically

increasing function \vargamma i : [ci]\rightarrow [c] such that \vargamma i([ci]) = \scrC i. We also consider the function
\chi i : \scrC i \rightarrow [ci] such that \vargamma i \circ \chi i is the inclusion map of \scrC i in [c]. Given c\prime \in \BbbN and a
map \pi : [c]\rightarrow [c\prime ], we let \pi (i) = \pi \circ \vargamma i.

Definition C.1. Let A,B be finite sets, and consider a function f :Ac \rightarrow B for
some c \in \BbbN . Given an m\times | A| tie matrix H and a partition \scrC = (\scrC 1, . . . ,\scrC \ell ) of c, we
say that f is H- \scrC -block-symmetric if

f/\pi (a) = f(a) \forall \pi : [c]\rightarrow [c] permutation such that \pi (\scrC i) = \scrC i \forall i\in [\ell ],

\forall a\in Ac such that (PT
\vargamma i
a)\# is H-tieless \forall i\in [\ell ].

We say that f is H-block-symmetric with width W if W is the largest integer for
which there is a partition \scrC of c such that each part of \scrC has size at least W and f is
H- \scrC -block-symmetric.11 Without loss of generality, we consider A= [n].

Lemma C.2. Let f :Ac \rightarrow B be H- \scrC -block-symmetric for some m\times n tie matrix
H (m\in \BbbN ) and some partition \scrC = (\scrC 1, . . . ,\scrC \ell ) of c. Consider two maps \pi , \~\pi : [c]\rightarrow [n]
such that, for each i \in [\ell ], P\pi (i)

1ci = P\~\pi (i)
1ci and the vector P\pi (i)

1ci is H-tieless.
Then

f/\pi (1, . . . , n) = f/\~\pi (1, . . . , n).

11The notion of H-block-symmetric operation is the H-analogue of that of block-symmetric
operation in [22] (cf. Theorem A.3).
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Proof. For i\in [\ell ] and a\in [n], we have

| \pi  - 1
(i) (a)| = eTa P\pi (i)

1ci = eTa P\~\pi (i)
1ci = | \~\pi  - 1

(i) (a)| .

Hence, we can consider bijections \varphi i,a : \pi 
 - 1
(i) (a)\rightarrow \~\pi  - 1

(i) (a) for each i \in [\ell ], a \in [n]. The
union

\varphi i =
\bigcup 

a\in [n]

\varphi i,a : [ci]\rightarrow [ci]

is also a bijection. Define \varphi : [c] \rightarrow [c] by letting \varphi | \scrC i = \vargamma i \circ \varphi i \circ \chi i for each i \in [\ell ].
Notice that \varphi (\scrC i) = \scrC i for each i \in [\ell ], so \varphi is a bijection. Take j \in [c] and suppose
that j \in \scrC i. We have

(\~\pi \circ \varphi )(j) = \~\pi (\varphi (j)) = \~\pi (\vargamma i(\varphi i(\chi i(j)))) = \~\pi (i)(\varphi i,\pi (i)(\chi i(j))(\chi i(j)))

= \pi (i)(\chi i(j)) = (\pi \circ \vargamma i \circ \chi i)(j) = \pi (j),

and, hence, \~\pi \circ \varphi = \pi . Let \~a= (\~\pi (1), . . . , \~\pi (c)). Notice that, for each i\in [\ell ] and a\in [n],

eTa (P
T
\vargamma i
\~a)\# = | \{ j \in [ci] : e

T
j P

T
\vargamma i
\~a= a\} | = | \{ j \in [ci] : e

T
\vargamma i(j)

\~a= a\} | 
= | \{ j \in [ci] : \~\pi (\vargamma i(j)) = a\} | 
= | \{ j \in [ci] : \~\pi (i)(j) = a\} | = eTa P\~\pi (i)

1ci ,

and therefore, (PT
\vargamma i
\~a)\# = P\~\pi (i)

1ci = P\pi (i)
1ci , which is H-tieless. Using that f is H-

\scrC -block-symmetric, we find

f/\~\pi (1, . . . , n) = f(\~a) = f/\varphi (\~a) = (f/\varphi )/\~\pi (1, . . . , n) = f/\~\pi \circ \varphi (1, . . . , n) = f/\pi (1, . . . , n),

as required.

Theorem C.3. Let (A,B) be a PCSP template, and suppose Pol(A,B) contains
H-block-symmetric operations of arbitrarily large width for some m\times | A| tie matrix
H, m\in \BbbN . Then there exists a minion homomorphism from C to Pol(A,B).

Proof. For D \in \BbbN , consider the subminion CD of C described in section 4.2.
Observe that S = \{ M : (M,\bfitmu ) \in C

(n)
D \} is a finite set of skeletal matrices. Therefore,

we can apply the tiebreak lemma, Lemma 5.2, to find a stochastic finitely supported
vector v \in \BbbQ \aleph 0 with eT1 v > 0 such that Mv is H-tieless for any M \in S. Since v is
finitely supported, we can find N \prime \in \BbbN such that N \prime v has integer entries. Let \sigma H

1

denote the largest singular value of H, i.e., the square root of the largest eigenvalue of
HTH. Set N = 2\lceil \sigma H

1 + 1\rceil D2N \prime , and let f be an H-block-symmetric polymorphism
of width W \geq N2. Letting c be the arity of f , consider a partition \scrC = (\scrC 1, . . . ,\scrC \ell ) of
c such that ci = | \scrC i| \geq W for each i \in [\ell ] and f is H- \scrC -block-symmetric. Write
ci = N\alpha i + \beta i with \alpha i, \beta i \in \BbbN 0, \beta i \leq N  - 1. Note that N2 \leq W \leq ci = N\alpha i + \beta i \leq 
N\alpha i +N  - 1<N(\alpha i + 1), so N <\alpha i + 1 and, hence, \beta i <\alpha i.

Consider the function

\xi D :CD \rightarrow Pol(A,B)

defined as follows. Given L \in \BbbN and (M,\bfitmu ) \in C
(L)
D , for each i \in [\ell ] take the map

\varphi i : [ci]\rightarrow [L] such that the corresponding L\times ci matrix P\varphi i
is
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32 LORENZO CIARDO AND STANISLAV \v ZIVN\'Y

P\varphi i
=

\left(      
1T
eT
1 (\alpha iNMv+\beta i\bfitmu )

0T . . . 0T

0T 1T
eT
2 (\alpha iNMv+\beta i\bfitmu )

. . . 0T

...
...

. . .
...

0T 0T . . . 1T
eT
L(\alpha iNMv+\beta i\bfitmu )

\right)      .(C.1)

To verify that (C.1) is well defined, observe first that

L\sum 
j=1

eTj (\alpha iNMv+ \beta i\bfitmu ) = 1T
L(\alpha iNMv+ \beta i\bfitmu ) = \alpha iN1T

LMv+ \beta i1
T
L\bfitmu 

= \alpha iN1T
\aleph 0
v+ \beta i = \alpha iN + \beta i = ci.

Moreover, for each j \in [L], eTj (\alpha iNMv+\beta i\bfitmu ) = eTj (2\alpha i\lceil \sigma H
1 +1\rceil D(DM)(N \prime v)+\beta i\bfitmu )

is an integer. If eTj (\alpha iNMv+ \beta i\bfitmu ) was negative, then eTj \bfitmu < 0. By the requirement
(c4) in Definition 3.2, this would imply that eTj Me1 > 0, and hence, 0< eTj Me1e

T
1 v\leq 

eTj Mv. As a consequence, eTj (DM)(N \prime v)\geq 1 so that

eTj (\alpha iNMv+ \beta i\bfitmu ) = 2\alpha i\lceil \sigma H
1 + 1\rceil DeTj (DM)(N \prime v) + \beta ie

T
j \bfitmu 

\geq 2\alpha i\lceil \sigma H
1 + 1\rceil D+ \beta ie

T
j \bfitmu \geq \alpha iD - \beta iD> 0,

which is a contradiction. In conclusion, the numbers eTj (\alpha iNMv+ \beta i\bfitmu ) are nonneg-
ative integers summing up to ci, so (C.1) is well defined.

Consider the function \varphi : [c] \rightarrow [L] defined by \varphi | \scrC i
= \varphi i \circ \chi i \forall i \in [\ell ], and let

\xi D((M,\bfitmu )) := f/\varphi . Clearly, \xi D((M,\bfitmu )) \in Pol(A,B). We claim that the map \xi D is a
minion homomorphism. It is straightforward to check that \xi D preserves arities so, to
conclude, we need to show that it also preserves minors. Take L\prime \in \BbbN and choose a
map \pi : [L]\rightarrow [L\prime ]. Letting \~\varphi i : [ci]\rightarrow [L\prime ] be the map corresponding to the matrix

P \~\varphi i
=

\left(      
1T
eT
1 (\alpha iNP\pi Mv+\beta iP\pi \bfitmu )

0T . . . 0T

0T 1T
eT
2 (\alpha iNP\pi Mv+\beta iP\pi \bfitmu )

. . . 0T

...
...

. . .
...

0T 0T . . . 1T
eT
L\prime (\alpha iNP\pi Mv+\beta iP\pi \bfitmu )

\right)      
for each i \in [\ell ], and considering \~\varphi : [c]\rightarrow [L\prime ] such that \~\varphi | \scrC i

= \~\varphi i \circ \chi i \forall i \in [\ell ], we see
that \xi D((M,\bfitmu )/\pi ) = f/ \~\varphi . Moreover, \xi D((M,\bfitmu ))/\pi = (f/\varphi )/\pi = f/\pi \circ \varphi , where \varphi is the

map defined above. Take a= (a1, . . . , aL\prime )\in AL\prime 
, and consider the map

\pi a : [L
\prime ]\rightarrow [n]

i \mapsto \rightarrow ai.

Observe that

f/ \~\varphi (a) = (f/ \~\varphi )/\pi \bfa 
(1, . . . , n) = f/\pi \bfa \circ \~\varphi (1, . . . , n), and similarly,

f/\pi \circ \varphi (a) = (f/\pi \circ \varphi )/\pi \bfa 
(1, . . . , n) = f/\pi \bfa \circ \pi \circ \varphi (1, . . . , n).(C.2)

Notice that, for each i\in [\ell ], \varphi \circ \vargamma i =\varphi i and \~\varphi \circ \vargamma i = \~\varphi i. Hence,

P(\pi \bfa \circ \~\varphi )(i)1ci = P\pi \bfa \circ \~\varphi \circ \vargamma i
1ci = P\pi \bfa P \~\varphi \circ \vargamma i

1ci = P\pi \bfa P \~\varphi i
1ci = P\pi \bfa (\alpha iNP\pi Mv+ \beta iP\pi \bfitmu )

= P\pi \bfa P\pi (\alpha iNMv+ \beta i\bfitmu ) = P\pi \bfa P\pi P\varphi i1ci

= P\pi \bfa \circ \pi \circ \varphi \circ \vargamma i1ci = P(\pi \bfa \circ \pi \circ \varphi )(i)1ci .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/0

9/
23

 to
 1

63
.1

.2
03

.5
9 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y
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We claim that the vector P(\pi \bfa \circ \~\varphi )(i)1ci = P\pi \bfa \circ \~\varphi i1ci is H-tieless. Let u = (ut) =
HP\pi \bfa \circ \~\varphi i1ci ; the claim is equivalent to u being tieless. Let

w= (wt) = \alpha iNHP\pi \bfa \circ \pi Mv

and z = (zt) = \beta iHP\pi \bfa \circ \pi \bfitmu , so that u = w + z. Choose t, t\prime \in [m] such that t \not = t\prime 

and ut \not = 0. We need to show that ut \not = ut\prime . Suppose wt = 0. We can write HTet =\sum 
g\in G \lambda geg for G= supp(HTet), where each \lambda g is a positive integer (note that G \not = \emptyset 

since, otherwise, HTet = 0n, which would imply ut = 0). Let F = (\pi a \circ \pi ) - 1(G).
From wt = 0, we obtain

0 = eTt HP\pi \bfa \circ \pi Mv= (HTet)
TP\pi \bfa \circ \pi Mv=

\sum 
g\in G

\lambda ge
T
g P\pi \bfa \circ \pi Mv

=
\sum 
g\in G

\lambda g

\sum 
j\in (\pi \bfa \circ \pi ) - 1(g)

eTj Mv,

and hence, the following chain of implications holds:

0 =
\sum 
g\in G

\sum 
j\in (\pi \bfa \circ \pi ) - 1(g)

eTj Mv=
\sum 
j\in F

eTj Mv \Rightarrow eTj Mv= 0 \forall j \in F

\Rightarrow eTj Me1 = 0 \forall j \in F \Rightarrow eTj \bfitmu = 0 \forall j \in F

(where the second implication follows from eT1 v > 0, and the third follows from (c4)
in Definition 3.2). Hence,

zt = \beta ie
T
t HP\pi \bfa \circ \pi \bfitmu = \beta i

\sum 
g\in G

\lambda ge
T
g P\pi \bfa \circ \pi \bfitmu = \beta i

\sum 
g\in G

\lambda g

\sum 
j\in (\pi \bfa \circ \pi ) - 1(g)

eTj \bfitmu = 0,

so that ut =wt + zt = 0, a contradiction. Hence, wt > 0. Observe that

(M/\pi \bfa \circ \pi ,\bfitmu /\pi \bfa \circ \pi )\in C
(n)
D ,

and hence, M/\pi \bfa \circ \pi \in S. By the choice of v, this implies that the vector P\pi \bfa \circ \pi Mv =
M/\pi \bfa \circ \pi v is H-tieless; i.e., HP\pi \bfa \circ \pi Mv is tieless. It follows that the vector

HP\pi \bfa \circ \pi (DM)(N \prime v) =
1

2\alpha i\lceil \sigma H
1 + 1\rceil D

w

is also tieless; being it entrywise integer, and since 1
2\alpha i\lceil \sigma H

1 +1\rceil Dwt > 0, we obtain\bigm| \bigm| \bigm| \bigm| 1

2\alpha i\lceil \sigma H
1 + 1\rceil D

wt  - 
1

2\alpha i\lceil \sigma H
1 + 1\rceil D

wt\prime 

\bigm| \bigm| \bigm| \bigm| \geq 1,

which yields

| wt  - wt\prime | \geq 2\alpha i\lceil \sigma H
1 + 1\rceil D.

Denote the \ell 1-norm and the \ell 2-norm of a vector by \| \cdot \| 1 and \| \cdot \| 2, respectively.
Recall that the largest singular value of a matrix is its spectral operator norm, i.e.,
\sigma H
1 =max0\not =x\in \BbbR n

\| Hx\| 2

\| x\| 2
(see [47]). In particular, \| Hx\| 2 \leq \sigma H

1 \| x\| 2 for each vector x
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of size n. Using the Cauchy--Schwarz inequality and the fact that the \ell 1-norm of a
vector is greater than or equal to its \ell 2-norm, we find that

| zt  - zt\prime | = \beta i| (et  - et\prime )
THP\pi \bfa \circ \pi \bfitmu | \leq \beta i\| et  - et\prime \| 2\| HP\pi \bfa \circ \pi \bfitmu \| 2

\leq \beta i\| et  - et\prime \| 2\sigma H
1 \| P\pi \bfa \circ \pi \bfitmu \| 2 \leq \beta i\| et  - et\prime \| 1\lceil \sigma H

1 + 1\rceil \| P\pi \bfa \circ \pi \bfitmu \| 1
= 2\beta i\lceil \sigma H

1 + 1\rceil 1T
n | P\pi \bfa \circ \pi \bfitmu \leq 2\beta i\lceil \sigma H

1 + 1\rceil 1T
nP\pi \bfa \circ \pi | \bfitmu | 

= 2\beta i\lceil \sigma H
1 + 1\rceil 1T

L| \bfitmu | \leq 2\beta i\lceil \sigma H
1 + 1\rceil D< 2\alpha i\lceil \sigma H

1 + 1\rceil D.

We conclude the proof of the claim by noting that

| ut  - ut\prime | = | (wt  - wt\prime ) - (zt\prime  - zt)| \geq | wt  - wt\prime |  - | zt  - zt\prime | 
> 2\alpha i\lceil \sigma H

1 + 1\rceil D - 2\alpha i\lceil \sigma H
1 + 1\rceil D= 0,

which implies ut \not = ut\prime . As a consequence, the vector P(\pi \bfa \circ \~\varphi )(i)1ci is H-tieless. We
can then apply Lemma C.2 to conclude that f/\pi \bfa \circ \~\varphi (1, . . . , n) = f/\pi \bfa \circ \pi \circ \varphi (1, . . . , n).
Hence, by (C.2), f/ \~\varphi = f/\pi \circ \varphi . Therefore, \xi D((M,\bfitmu )/\pi ) = \xi D((M,\bfitmu ))/\pi , as required.
It follows that \xi D is a minion homomorphism.

Since the set of polymorphisms of (A,B) of arity L is finite for every L \in \BbbN ,
we can apply Proposition 4.5 to conclude that there exists a minion homomorphism
\zeta :C \rightarrow Pol(A,B).
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