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Abstract

We characterize all digraphs H such that orientations of chordal graphs with no induced copy of H
have bounded dichromatic number.

1 Introduction

Throughout this paper, we only consider simple digraphs G, that is, for every two distinct vertices u and
v, the digraph G contains either an arc from u to v, or an arc from v to u, or neither; but not both. Given
a digraph G, we denote by V (G) its set of vertices and A(G) its set of arcs. For a vertex x of a digraph
G, we denote by x+(G) (resp. x−(G)) the set of its out-neighbours (resp. in-neighbours). If there is no
ambiguity on the digraph, we will simply use x+ and x−.

A k-dicolouring (or acylic k-colouring) of a digraph G is a mapping c : V (G) → I using a colour
set I of size k such that for every colour i ∈ I , its preimage c−1(i) induces an acyclic subdigraph of G.
The dichromatic number of G, denoted by −→χ (G) and introduced by Neumann-Lara in [12], is the smallest
integer k such that G admits a k-dicolouring.

A tournament is an orientation of a complete graph. A transitive tournament is an acyclic tournament
and we denote by TTk the unique acyclic tournament on k vertices. Given a transitive tournament T on n

vertices {v1, . . . , vn}, we say that v1, . . . , vn is the topological ordering of T if, for all 1 ≤ i < j ≤ n,
we have vivj ∈ A(T ). Given two tournaments H1 and H2, we denote by ∆(1, H1, H2) the tournament
obtained from pairwise disjoint copies of H1 and H2 plus a vertex x, and all arcs from x to the copy of
H1, all arcs from the copy of H1 to the copy of H2, and all arcs from the copy of H2 to x. We write
∆(1, k,H) for ∆(1, TTk, H). For tournaments H1 and H2, we denote by H1 ⇒ H2 the digraph obtained
from disjoint copies of H1 and H2 by adding all arcs from the copy of H1 to the copy of H2.

Given two digraphs G and H , we say that G is H-free if it does not contain an induced copy of H .
Given a hereditary class of digraphs C, we say that a digraph H is a hero in C if every H-free digraph of C
has bounded dichromatic number.

In a breakthrough paper, Berger, Choromansky, Chudnovsky, Fox, Loebl, Scott, Seymour and Thomassé
gave a recursive characterization of all heroes in tournaments, as follows.

Theorem 1.1 (Berger et al. [5])

A digraph H is a hero in tournaments if and only if :

• H = K1 (the one-vertex digraph), or

• H = (H1 ⇒ H2), where H1 and H2 are heroes in tournaments, or
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• H = ∆(1, k,H ′) or H = ∆(1, H ′, k), where k ≥ 1 and H ′ is a hero in tournaments.

Observe that if a class of digraphs C contains all tournaments, then a hero in C must be a hero in tour-
naments. A chordal graph is a graph with no induced cycle of length at least 4. A classical theorem of
Dirac [8] states that all chordal graphs can be obtained by iteratively gluing some complete graphs along
cliques (see Section 2.1 for a formal statement). This implies for undirected graph colouring that chordal
graphs are perfect graphs, and thus their chromatic numbers and colouring properties are determined solely
by the (largest) cliques contained in them. It is then natural to ask whether also for the dichromatic number
of orientations of chordal graphs important characteristics are determined by the largest dichromatic num-
bers of their subtournaments. In particular, it is a natural problem to characterise the heroes in orientations
of chordal graphs and to see whether they are the same as for tournaments.

In this paper, we find surprising answers to the above questions. First, there is very few heroes in
orientations of chordal graphs and as our main contribution, we completely describe these digraphs, as
follows.
Theorem 1.2

A digraph H is a hero in orientations of chordal graphs if and only if H is a transitive tournament or
isomorphic to ∆(1, 1, k) for some integer k ≥ 1.

Secondly, our constructions in the proof of the above characterisation exhibit orientations of chordal
graphs with arbitrarily large dichromatic number all whose subtournaments are 2-colourable, showing
that in contrast to chromatic number the dichromatic number of an orientation of a chordal graph heavily
depends on its global structure and not only on the cliques contained in it.

We denote by ~C3 the directed cycle on three vertices, also called directed triangle (observe that ~C3 =
∆(1, 1, 1)). It is easy to see that a hero in tournaments is either a transitive tournament, or isomorphic to
∆(1, 1, k) for some integer k ≥ 1, or it contains one of the heros ∆(1, 2, 2), K1 ⇒ ~C3 or ~C3 ⇒ K1 as
a subtournament. Moreover, since reversing all arcs of a (~C3 ⇒ K1)-free orientation of a chordal graph
results in a (K1 ⇒ ~C3)-free orientation of a chordal graph and does not change the dichromatic number,
proving that ~C3 ⇒ K1 is not a hero in orientations of chordal graphs implies that K1 ⇒ ~C3 is not either.
Hence, to prove Theorem 1.2, it will be enough to prove the following:

• Transitive tournaments and ∆(1, 1, k) for k ≥ 1 are heroes in orientations of chordal graphs. This
is done in Section 2.2.

• ∆(1, 2, 2) and ~C3 ⇒ K1 are not heroes in orientations of chordal graphs. This is respectively done
in subsections 2.3.1 and 2.3.2.

Related results:
Given a digraph H , denote by Forbind(H) the class of digraphs with no induced copy of H . A

result of [11] implies that if H is not an orientation of a forest, then no digraph is a hero in Forbind(H)
except for the isolated vertex and the arc. A systematic study of heroes in classes of digraphs of the form
Forbind(H) where H is an oriented forest has been initiated in [4]. An oriented star is an orientation of
a star, that is a tree with only one non-leaf vertex. It is proved [4] that if H is not the disjoint union of
oriented stars, then no hero in Forbind(H) contains a directed triangle. A result in [7] implies that every
transitive tournament is a hero in Forbind(H) when H is a disjoint union of oriented stars. It is proved
in [9] that heroes in Forbind(Kk) are the same as heroes in tournaments, where Kk is the graph on k

vertices with no arc (which is in particular the simplest union of disjoint oriented stars). In [1] and [14],
it is proved that K1 ⇒ ~C3 is a hero in Forbind( ~K1,2), where ~K1,2 is the star on three vertices with a
vertex of out-degree 2. In [2], heroes in the class of orientations of complete multipartite graphs (which
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corresponds to the class Forbind(K1 + ~K2) where K1 + ~K2 is the graph made of an isolated vertex and
an arc) are almost fully characterized, up to one particular digraph, namely ∆(1, 2, 2).

The clique number ω(G) of a digraph G is the size of a largest clique in the underlying graph of G.
We say that a hereditary class of digraphs C is −→χ -bounded if there exists a function f such that for every
G ∈ C, −→χ (G) ≤ f(ω(G)). It is easy to see that a class of digraphs C is −→χ -bounded if and only if TTk is a
hero in C for every integer k (this is because every orientation of a large enough complete graph contains
a copy of TTk). We denote by ~Pk the directed path on k vertices. It is proved in [6] that, for every k ≥ 3,
the class of digraphs with no induced ~Pk and no induced directed cycle of length at most k − 1 is −→χ -
bounded. It is proved in [3] that the class of digraphs with no induced directed cycle of length at least 4 is
not −→χ -bounded (more precisely it is proved that TT3 is not a hero in the class).

2 Proofs

2.1 A few words on chordal graphs

A graph G is chordal if it contains no induced cycle of length at least 4. Chordal graphs have been studied
for the first time in the pioneer work of Dirac [8] who proved that every chordal graph G is either a
complete graph, or contains a clique S such that G \S is disconnected. This easily implies that all chordal
graphs can be obtained by gluing complete graphs along cliques. From this point of view, it is natural to
try to generalize results on tournaments to orientations of chordal graphs.

In this paper, we will use the two following well-known properties of chordal graphs. The first one
formalizes the notion of ‘gluing along a clique’.

Lemma 2.1. [8] Let G1 and G2 be two chordal graphs such that V (G1) ∩ V (G2) induces a complete

graph both in G1 and G2. Then their union is a chordal graph.

A vertex is simplicial if its neighborhood induces a complete graph.

Lemma 2.2. [8] Every chordal graph has a simplicial vertex.

2.2 ∆(1, 1, k) and transitive tournaments are heroes in orientations of chordal

graphs

Theorem 2.3 (Stearns, [13])

For each integer n ≥ 1, a tournament with at least 2n−1 vertices contains a transitive tournament with
n vertices.

In the following, we define the triangle degree of a vertex x in a digraph G as the maximum size of a
collection of directed triangles that pairwise share the common vertex x but no further vertices.

Lemma 2.4. Every vertex of a ∆(1, 1, k)-free tournament has triangle degree less than 22k−2.

Proof : Let G be a ∆(1, 1, k)-free tournament and x a vertex of G. Assume for contradiction that x has triangle
degree at least 22k−2, that is, there exist pairwise distinct vertices a1, b1, . . . , a22k−2 , b22k−2 such that x →
ai → bi → x. By Theorem 2.3 we can find a transitive tournament T in G[{a1, . . . , a22k−2}] of size at least
2k − 1. Up to renaming the vertices, we may assume that T = G[{a1, . . . , a2k−1}] and that a1, . . . , a2k−1

is the topological ordering of T . Then look at b2k−1. Set b+2k−1 ∩T = T+ and b−2k−1 ∩T = T− and observe
that V (T ) = T+ ∪ T− since we are in a tournament. If |T+| ≥ k, then T+ together with b2k−1 and a2k−1

contains a ∆(1, 1, k), a contradiction. So |T+| ≤ k − 1. If |T−| ≥ k, then T− together with b2k−1 and x
contains ∆(1, 1, k), a contradiction. So |T+| ≤ k − 1. Hence, |V (T )| ≤ 2k − 2, a contradiction.
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Theorem 2.5

Transitive tournaments and ∆(1, 1, k) are heroes in orientations of chordal graphs. More precisely,
TTk-free orientations of chordal graphs have dichromatic number at most 2k−1 − 1 and ∆(1, 1, k)-
free orientations of chordal graphs have dichromatic number at most 22k−2.

Proof : A TTk-free orientation of a chordal graph has no clique of size at least 2k−1 − 1 by Theorem 2.3, and
since chordal graphs are perfect graphs, its underlying graph has chromatic number at most 2k−1−1 and thus
dichromatic number at most 2k−1 − 1.

We now prove that ∆(1, 1, k)-free orientations of chordal graphs have dichromatic number at most 22k−2.
We proceed by induction on the number of vertices. Let G be a ∆(1, 1, k)-free orientation of a chordal graph.
Let x be a simplicial vertex of the underlying graph of G. Note that the triangle degree of x in G is equal to
the triangle degree of x in the subtournament G[{x} ∪ x+ ∪ x−], which by Lemma 2.4 is less than 22k−2.

We can then find an acyclic colouring of G \ x with 22k−2 colours by induction, and since the triangle
degree of x in G is less than 22k−2, there is a colour i ∈ {1, . . . , 22k−2} such that assigning i to x does not
produce a monochromatic directed triangle. The resulting colouring is thus an acyclic colouring of G: For if
there existed a monochromatic directed cycle in this colouring of G, there would also have to exist an induced

monochromatic directed cycle, and since all induced cycles in G have length 3, this cycle would have to be a
monochromatic directed triangle. However, such a triangle does not exist, neither through x nor in G \ x (by
inductive assumption).

2.3 Constructions

2.3.1 ∆(1, 2, 2) is not a hero in orientations of chordal graphs

In this subsection, we present a construction of orientations of chordal graphs with arbitrarily large dichro-
matic number but containing no copy of ∆(1, 2, 2).

Theorem 2.6

∆(1, 2, 2) is not a hero in orientations of chordal graphs.

Proof : We inductively construct a sequence (Gk)k∈N of digraphs such that for each k ≥ 1, the digraph Gk is an
orientation of a chordal graph with no copy of ∆(1, 2, 2) satisfying ~χ(Gk) = k.

Let G1 be the digraph on one vertex, and having defined Gk, define Gk+1 as follows. Start with a copy T
of TTk+1, and for each arc e = uv of T , create a distinct copy Ge

k of Gk (vertex-disjoint for different choices
of the arc e ∈ A(T ), and all vertex-disjoint from T ). Next, for each e = uv ∈ A(T ), we add all the arcs vy
and yu for every y ∈ V (Ge

k). This completes the description of the digraph Gk+1.

For every arc e = uv ∈ A(T ), consider the underlying graph of Gk+1[{u, v} ∪ V (Ge
k)]. By definition,

this graph is obtained from the chordal underlying graph of Ge
k by adding an adjacent pair of universal vertices.

Since the addition of universal vertices preservers the chordality of a graph, we can see that the underlying
graph of Gk+1[{u, v} ∪ V (Ge

k)] is chordal, for every choice of e. Since T and Gk+1[{u, v} ∪ V (Ge
k)]

intersect in the clique {u, v}, we may now repeatedly apply Lemma 2.1 to see that Gk+1 is still an orientation
of a chordal graph.

Next, let us prove that Gk+1 does not contain ∆(1, 2, 2). Assume towards a contradiction that Gk+1

contains a copy of ∆(1, 2, 2), induced by the set of vertices A ⊆ V (Gk+1). Since the copies Ge
k, e ∈ A(T )

of Gk are vertex disjoint and have no connecting arcs, and since A induces a tournament, A intersects at most
one of the vertex sets of these copies. Let f = xy ∈ A(T ) be a fixed edge such that A ⊆ V (T ) ∪ V (Gf

k).

Since Gf

k is ∆(1, 2, 2)-free by inductive assumption, it follows that A intersects V (T ) in at least one
vertex. As ∆(1, 2, 2) is not acyclic, A is also not fully contained in V (T ), and thus A ∩ V (Gf

k) 6= ∅.

The argument above implies that A ∩ V (T ) ⊆ {x, y}, as x and y are the only vertices in V (T ) whose
neighborhoods in Gk+1 intersect V (Gf

k). In fact, we must have A ∩ V (T ) = {x, y}, for if |A ∩ V (T )| =
1 then either x would form a sink in Gk+1[A] or y would form a source in Gk+1[A], both of which are
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impossible, since Gk+1[A] ≃ ∆(1, 2, 2) is strongly connected. Note that by definition of Gk+1, every vertex
in A \ {x, y} ⊆ V (Gf

k) must form a directed triangle together with the arc xy.

But A induces ∆(1, 2, 2) in Gk and there is no arc in ∆(1, 2, 2) forming a directed triangle with every
other vertex, as there is no arc from the only vertex of ∆(1, 2, 2) of outdegree 1 to the only vertex of ∆(1, 2, 2)
of indegree 1, a contradiction. This shows that Gk+1 is indeed ∆(1, 2, 2)-free.

Finally, let us prove that −→χ (Gk) = k+1. A (k+1)-dicolouring of Gk can easily be obtained by piecing
together individual k-dicolourings of the copies Ge

k, e ∈ A(T ) of Gk and assigning to all vertices in the
transitive tournament T a new (k + 1)th colour not appearing in the copies. To show that −→χ (Gk+1) > k,
assume towards a contradiction that Gk admits a k-dicolouring c : V (Gk+1) → {1, . . . , k}. Then, since
T is a clique on k + 1 vertices, there exists a monochromatic arc e = uv. Let i ∈ {1, . . . , k} be such that
c(u) = c(v) = i. Then since −→χ (Gk) = k, the copy Ge

k of Gk glued to uv must use all k colours in the
dicolouring induced on it by c, and in particular there exists some w ∈ V (Ge

k) such that c(w) = i. Now,
however, the directed triangle x → y → w → x is monochromatic, a contradiction to our choice of c. This
completes the proof that −→χ (Gk+1) = k + 1, and hence the proof of the theorem.

2.3.2 ~C3 ⇒ K1 is not a hero in orientations of chordal graphs

All along this subsection, we denote by C the class of (~C3 ⇒ K1)-free orientations of chordal graphs. The
goal of this subsection is to construct digraphs in C with arbitrarily large dichromatic number.

Lemma 2.7. Let G,F ∈ C and let T be a transitive subtournament of G. Then the digraph K obtained

from G and F by adding every arc from T to F is in C.

Proof : Given a graph G, the graph obtained by adding a vertex v adjacent with every vertex of G results in a
chordal graph as, if v lies in an induced cycle, there is an arc between v and every other vertex of this cycle,
which is thus a triangle. Thus, adding vertices of T to F one by one, together with all arcs from T to F ,
returns a chordal graph F ′. The intersection of V (F ′) and V (G) is T , which is a tournament. Hence, by
Lemma 2.1, the union of G and F ′, that is K, is an orientation of a chordal graph.

Suppose for contradiction that K contains a subgraph H isomorphic to ~C3 ⇒ K1. Since G,F ∈ C, H
must intersect both G and F and since H is a tournament, it must be included in T ∪ F . Since there is no arc
from F to T , the directed triangle of H cannot intersect both T and F , and hence must be included in F (as
T is a transitive tournament and thus have no directed triangle). The fourth vertex of H contains the directed
triangle in its in-neighborhood, and thus must also be in F , a contradiction.

Lemma 2.8. Let G ∈ C and let T be a transitive subtournament of G on vertices {v1, . . . , vn} such that

v1, . . . , vn is the topological ordering of T . Then for every j ∈ {1, . . . , n − 1}, the digraph F obtained

from G by adding a vertex x that sees v1, . . . , vj and is seen by vj+1, . . . , vn is in C.

Proof : By Lemma 2.1, F is an orientation of a chordal graph. Assume for contradiction that F contains a copy H
of K1 ⇒ ~C3. Since G ∈ C, H must contain x and thus be included in G[K] where K = V (T )∪ {x}. Now,
observe that x− ∩K, v−i ∩K for i = 1, . . . , j and v−k ∩K for k = j + 1, . . . , n are transitive tournaments.
Thus G[K] cannot contain H , since one vertex in H includes a directed triangle in its in-neighbourhood.

In the following, given a k-colouring c : V (F ) → {1, . . . , k} of a digraph F , we say that a subdigraph
of F is rainbow (with respect to c), if its vertices are assigned pairwise distinct colours.

Lemma 2.9. Let G ∈ C such that −→χ (G) = k. There exists a digraph F = F (G) ∈ C with −→χ (F ) = k sat-

isfying the following property: For every k-dicolouring of F , there exists a rainbow transitive tournament

of size k contained in F .

Proof : We prove the lemma by showing the following statement using induction on i (the lemma then follows
by setting F := F (k)).
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(⋆) For every i ∈ {1, . . . , k}, there exists a digraph F (i) ∈ C such that −→χ (F (i)) = k, and for every
k-dicolouring of F (i), there exists a copy of TTi contained in F (i) which is rainbow.

The statement of (⋆) is trivially true for i = 1, since we may put F (1) := G, and in every k-dicolouring
of F (1) any single vertex forms a rainbow TT1.

For the inductive step, let i ∈ {1, . . . , k − 1} and suppose we have established the existence of a digraph
F (i) ∈ C of dichromatic number k such that every k-dicolouring of F (i) contains a rainbow copy of TTi.

We now construct a digraph F (i+1) from F (i) as follows: Let X denote the set of all X ⊆ F (i) such
that X induces a TTi in F (i). Now, for every X ∈ X create a distinct copy GX of the digraph G (pairwise
vertex-disjoint for different choices of X , and all vertex-disjoint from F (i)). Finally, for every X ∈ X , add all
the arcs xy with x ∈ X and y ∈ V (GX). Since F (i) ∈ C and GX ∈ C for every X ∈ X , we can repeatedly
apply Lemma 2.7 to find that the resulting digraph, which we call F (i+1), is still contained in C.

Note that by construction, no directed cycle in F (i+1) intersects more than one of the vertex-disjoint
subdigraphs F (i) and (GX |X ∈ X ) of F (i+1), and hence, these digraphs may be coloured independently in
every dicolouring of F (i+1). This immediately implies −→χ (F (i+1)) = max{−→χ (F (i)),−→χ (G)} = k.

To prove the inductive claim, consider any k-dicolouring c : V (F (i+1)) → {1, . . . , k} of F (i+1). Then
by inductive assumption, there exists a rainbow copy of TTi contained in the subdigraph of F (i+1) isomorphic
to F (i). Let X denote its vertex-set, and let I ⊆ {1, . . . , k} be the set of i distinct colours used on X . Since
i < k and −→χ (GX) = k, there exists a vertex v ∈ V (GX) such that c(v) /∈ I . Now, the vertex-set X ∪ {v}
induces a rainbow TTi+1 contained in F (i+1), as desired. This proves (⋆) and thus the lemma.

Theorem 2.10

The digraph ~C3 ⇒ K1 is not a hero in orientations of chordal graphs.

Proof : We construct a sequence of digraphs (Gk)k∈N such that −→χ (Gk) = k and Gk ∈ C. Let G1 be the one-
vertex-digraph and, having defined Gk, define Gk+1 as follows. Let Fk := F (Gk) ∈ C be the digraph given
by Lemma 2.9, such that −→χ (Fk) = k and such that every k-dicolouring of Fk contains a rainbow copy of
TTk.

Let T denote the set of transitive tournaments which are subdigraphs of Fk . Now, for each transitive
subtournament T ∈ T , add a copy F T

k of Fk (vertex-disjoint for different choices of T , and all vertex-disjoint
from Fk). Next, for every T ∈ T , add all the arcs xy with x ∈ V (T ) and y ∈ V (F T

k ). Finally, for every
choice of T ∈ T and every transitive subtournament T ′ of F T

k , add a vertex xT,T ′ that is seen by every vertex
of T ′ and that sees every vertex of T . This completes the description of the digraph Gk+1.

By repeatedly applying Lemma 2.7 and Lemma 2.9, we can see that all of the operations performed to
construct Gk+1 preserve containment in C, and hence, since Fk ∈ C, we also must have Gk+1 ∈ C.

Let us now prove that −→χ (Gk+1) = k + 1. A (k + 1)-dicolouring can be achieved by piecing together
individual k-dicolourings of Fk and its copies F T

k , T ∈ T , and assigning to all vertices of the form xT,T ′

(which form a stable set in Gk+1) a distinct (k + 1)-th colour.

Finally, to prove that −→χ (Gk+1) > k, assume towards a contradiction that Gk+1 admits a dicolouring
using colours from {1, . . . , k}. Then by Lemma 2.9, in this colouring Fk contains a rainbow transitive
tournament T of size k. Again by Lemma 2.9, also F T

k contains a rainbow transitive subtournament T ′ of
size k. Now consider the vertex xT,T ′ in G, and let i ∈ {1, . . . , k} denote its colour. Since both T and
T ′ contain all k colours, there exist vertices t1 ∈ V (T ) and t2 ∈ V (T ′) which are both assigned colour
i. Finally, this yields a contradiction, since now the directed triangle t1 → t2 → xT,T ′ → t1 in Gk+1 is
monochromatic.

3 Further works

After characterising heroes in orientations of chordal graphs, it is natural to ask what are the heroes in
orientations of subclasses or superclasses of chordal graphs.
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Concerning superclasses of chordal graphs, consider the following construction (already mentioned
in [4]). Let G1 be the graph on 1 vertex, and having defined Gk−1 inductively, define Gk as follows:
start with three disjoint copies G1

k−1
, G2

k−1
, G3

k−1
of Gk−1 plus a vertex x, and add all arcs from x to

V (G1
k−1

), all arcs from V (G1
k−1

) to V (G2
k−1

), all arcs from V (G2
k−1

) to V (G3
k−1

) and finally, all arcs
from V (G3

k−1
) to x. It is then easy to see that −→χ (Gk) = k and that the underlying graph of Gk does not

contain induced path of length 4. Hence, the underlying graphs of the Gk’s are perfect graphs, and even
co-graphs, which implies that ~C3 is not a hero in orientation of perfect graphs. So the only possible heroes
are transitive tournaments, which are trivially, since transitive tournaments are heroes in any orientations
of graphs in C, whenever C is a χ-bounded class of graphs.

Concerning subclasses of chordal graphs, orientations of interval graphs seems to be an intriguing case.
On one hand, we were not able to decide whether or not ∆(1, 2, 2) or ~C3 ⇒ K1 are heroes in this class,
and our attempts have not led us to a strong opinion as to the answer. On the other hand, we can prove the
following. A unit interval graph is an interval graph that admits an interval representation in which every
interval has unit length.

Theorem 3.1

Heroes in orientations of unit interval graphs are the same as heroes in tournaments.

Proof : Since complete graphs are unit interval graphs, the set of heroes in orientations of proper interval graphs
is a subset of the set of heroes in tournaments.

We are going to prove the following, which easily implies that every hero in tournaments is a hero in
orientation of unit interval graphs.

(⋆) For every integer C, if G is an orientation of a unit interval graph in which every subtournament has
dichromatic number at most C, then G is 2C-dicolourable.

Let G be an orientation of a unit interval graph and C an integer such that every subtournament of G has
dichromatic number at most C. Consider an interval representation of G where each interval has length 1 and
assume without loss of generality that the endpoints of each interval are not integers. For every integer k, let
Kk be the set of vertices of G whose associated interval contains k. So each Kk induces a subtournament
of G, and by hypothesis, G[Kk] is C-dicolourable. Moreover, since each interval has length 1 and their
extremities are not integers, the Kk’s partition the vertices of G and there is no arc between Ki and Kj

whenever |i− j| ≥ 2. Hence, piecing together dicolourings of G[Kk] with colours from {1, . . . , C} when k
is odd, and from {C + 1, . . . , 2C} when k is even, results in a 2C-dicolouring of G.

We say that a digraph is t-local if the out-neighborhood of each of its vertices induces a digraph with
dichromatic number at most t. A class of digraphs C has the local to global property if, for every integer
t, t-local digraphs in C have bounded dichromatic number. It is proved in [10] that tournaments have the
local to global property, and this result was generalised to the class of digraphs with bounded independence
number in [9]. Since K1 ⇒ ~C3 is not a hero in orientations of chordal graphs, we get that the class of
orientations of chordal graphs does not have the local to global property, and that even 1-local orientations
of chordal graphs can have arbitrarily large dichromatic number. We wonder if other interesting classes of
digraphs have it. .
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