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Abstract
Lightness and sparsity are two natural parameters for Euclidean (1 + ε)-spanners. Classical results
show that, when the dimension d ∈ N and ε > 0 are constant, every set S of n points in d-space
admits an (1 + ε)-spanners with O(n) edges and weight proportional to that of the Euclidean MST
of S. In a recent breakthrough, Le and Solomon (2019) established the precise dependencies on
ε > 0, for constant d ∈ N, of the minimum lightness and sparsity of (1 + ε)-spanners, and observed
that Steiner points can substantially improve the lightness and sparsity of a (1 + ε)-spanner. They
gave upper bounds of Õ(ε−(d+1)/2) for the minimum lightness in dimensions d ≥ 3, and Õ(ε−(d−1)/2)
for the minimum sparsity in d-space for all d ≥ 1. Subsequently, Le and Solomon (2020) constructed
Steiner (1 + ε)-spanners of lightness O(ε−1 log ∆) in the plane, where ∆ ∈ Ω(

√
n) is the spread of S,

defined as the ratio between the maximum and minimum distance between a pair of points.
In this work, we improve several bounds on the lightness and sparsity of Euclidean Steiner

(1 + ε)-spanners. We establish lower bounds of Ω(ε−d/2) for the lightness and Ω(ε−(d−1)/2) for the
sparsity of such spanners in Euclidean d-space for all constant d ≥ 2. Our lower bound constructions
generalize previous constructions by Le and Solomon, but the analysis substantially simplifies
previous work, using new geometric insight, focusing on the directions of edges.

Next, we show that for every finite set of points in the plane and every ε ∈ (0, 1], there exists a
Euclidean Steiner (1 + ε)-spanner of lightness O(ε−1); this matches the lower bound for d = 2. We
generalize the notion of shallow light trees, which may be of independent interest, and use directional
spanners and a modified window partitioning scheme to achieve a tight weight analysis.

2012 ACM Subject Classification Mathematics of computing → Approximation algorithms; Mathe-
matics of computing → Paths and connectivity problems; Theory of computation → Computational
geometry.

Keywords and phrases Geometric spanner, (1 + ε)-spanner, lightness, sparsity, minimum weight.

1 Introduction

For an edge-weighted graph G, a subgraph H of G is a t-spanner if δH(u, v) ≤ t · δG(u, v),
where δG(u, v) denotes the shortest path distance between any two vertices u and v. The
parameter t is called the stretch factor of the spanner. Spanners are fundamental graph
structures with many applications in the area of distributed systems and communication,
distributed queuing protocol, compact routing schemes, and more; see [22, 30, 42, 43]. Two
important parameters of a spanner H are lightness and sparsity. The lightness of H is the
ratio w(H)/w(MST) between the total weight of H and the weight of a minimum spanning
tree (MST). The sparsity of H is the ratio |E(H)|/|E(MST)| ≈ |E(H)|/|V (G)| between the
number of edges of H and any spanning tree. As H is connected, the trivial lower bound for
both the lightness and the sparsity of a spanner is 1. When the vertices of G are points in a
metric space, the edge weights obey the triangle inequality. The most important examples
include Euclidean d-space and, in general, metric spaces with constant doubling dimensions
(the doubling dimension of Rd with L2-norm is Θ(d)).

In a geometric spanner, the underlying graph G = (S,
(

S
2
)
) is the complete graph on a

finite point set S in Rd, and the edge weights are the Euclidean distances between vertices.
Euclidean spanners are one of the fundamental geometric structures that find applications
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across domains, such as, topology control in wireless networks [46], efficient regression in
metric spaces [27], approximate distance oracles [29], and others. Rao and Smith [44] showed
the relevance of Euclidean spanners in the context of other geometric NP-hard problems, e.g.,
Euclidean traveling salesman problem and Euclidean minimum Steiner tree problem, and
introduced the so called banyans1, which is a generalization of graph spanners. Apart from
lightness and sparsity, various other optimization criteria have been considered, e.g., bounded-
degree spanners [12] and α-diamond spanners [19]. Several distinct construction approaches
have been developed for Euclidean spanners, that each found further applications in geometric
optimization, such as well-separated pair decomposition (WSPD) based spanners [14, 28],
skip-list spanners [3], path-greedy and gap-greedy spanners [1, 4], and more. For an excellent
survey of results and techniques on Euclidean spanners up to 2007, we refer to the book by
Narasimhan and Smid [41].

Sparsity. A large body of research on spanners has been devoted to sparse spanners where
the objective is to obtain a spanner with small number of edges, preferably O(|S|), with
1 + ε stretch factor, for any given ε > 0. Chew [15] was the first to show that there exists
a Euclidean spanner with a linear number of edges and stretch factor

√
10. The stretch

factor was later improved to 2 [16]. Later, Keil and Gutwin [32] showed that the Delanauy
triangulation of the point set S is a 2.42-spanner. Clarkson [17] designed the first Euclidean
(1 + ε)-spanner, for arbitrary small ε > 0; an alternative algorithm was presented by Keil [31].
Moreover, these papers introduced the fixed-angle Θ-graph2 as a potential new tool for
designing spanners in R2, which was later generalized to higher dimension by Ruppert and
Seidel [45]. One can construct a (1 + ε)-spanner with O(nε−d+1) edges by taking the angle
Θ to be proportional to ε in any constant dimension d ≥ 1. Recently, Le and Solomon [34]
showed that this bound is tight, as for every ε > 0 and constant d ∈ N, there are sets
of n points in Rd for which any (1 + ε)-spanner must have sparsity Ω(ε−d+1), whenever
ε = Ω(n−1/(d−1)).

Lightness. For a set of points S in a metric space, the lightness is the ratio of the spanner
weight (i.e., the sum of all edge weights) to the weight of the minimum spanning tree MST(S).
Das et al. [18] showed that the greedy-spanner, introduced by Althöfer et al. [1], has constant
lightness in R3 for any constant ε > 0. This was generalized later to Rd, for all d ∈ N,
by Das et al. [20]. However the dependency on the parameter ε (for constant d) has not
been addressed. Rao and Smith showed that the greedy-spanner has lightness ε−O(d) in
Rd for every constant d, and asked what is the best possible constant in the exponent. A
detailed analysis in the book on geometric spanners [41] shows that the lightness of the
greedy-spanner is O(ε−2d) in Rd. Le and Solomon [34] showed that the greedy-spanner has
lightness O(ε−d log ε−1) in Rd. Moreover, they constructed, for every ε > 0 and constant
d ∈ N, a set S of n points in Rd for which any (1 + ε)-spanner must have lightness Ω(ε−d),
whenever ε = Ω(n−1/(d−1)). Recently, Borradaile et al. [11] showed that the greedy-spanner
of a finite metric space of doubling dimension d has lightness ε−O(d).

1 A (1 + ε)-banyan for a set of points A is a set of points A′ and line segments S with endpoints in A ∪ A′

such that a 1 + ε optimal Steiner Minimum Tree for any subset of A is contained in S
2 The Θ-graph is a type of geometric spanner similar to Yao graph [50], where the space around each

point p ∈ P is partitioned into cones of angle Θ, and S will be connected to a point q ∈ P whose
orthogonal projection to some fixed ray contained in the cone is closest to S.
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Bounds Sparsity Lightness
Lower
Bounds

Ω(ε−1/2/ log ε−1) for d = 2 [34] Ω(ε−1/ log ε−1) for d = 2 [34]
Ω(ε(1−d)/2) [8] Ω(ε−d/2) for d ≥ 2 [8]

Upper
Bounds

Õ(ε−(d+1)/2) for d ≥ 3 [37]
O(ε(1−d)/2) [34] O(ε−1 log n) for d = 2 [35]

O(ε−1) for d = 2 [7]

Table 1 Previous and new results on Euclidean Steiner (1 + ε)-spanners; new results are
highlighted in magenta. The Ω(.) and O(.) notation hides constant coefficients dependent on d; and
Õ(.) also hides polylogarithmic factors in ε.

Euclidean Steiner spanners. Steiner points are additional vertices in a network (via points)
that are not part of the input, and a t-spanner must achieve stretch factor t only between
pairs of the input points in S. A classical problem on Steiner points arises in the context of
minimum spanning trees. The Steiner ratio is the supremum ratio between the weight of a
minimum Steiner tree and a minimum spanning tree of a finite point set, and it is at least 1

2
in any metric space due to the triangle inequality.

Le and Solomon [34] noticed that Steiner points can substantially improve the bound
on the lightness and sparsity of an (1 + ε)-spanner. Previously, Elkin and Solomon [26]
and Solomon [47] showed that Steiner points can improve the weight of the network in the
single-source setting. In particular, the so-called shallow-light trees (SLT) is a single-source
spanning tree that concurrently approximates a shortest-path tree (between the source and
all other points) and a minimum spanning tree (for the total weight). They proved that
Steiner points help to obtain exponential improvement on the lightness of SLTs in a general
metric space [26], and quadratic improvement on the lightness in Euclidean spaces [47].

Le and Solomon, used Steiner points to improve the bounds for lightness and sparsity of
Euclidean spanners. For minimum sparsity, they gave an upper bound of O(ε(1−d)/2) for d-
space and a lower bound of Ω(ε−1/2/ log ε−1) in the plane (d = 2) [34]. For minimum lightness,
Le and Solomon [35] gave an upper bound of O(ε−1 log ∆) in the plane and O(ε−(d+1)/2 log ∆)
in dimension d ≥ 3, where ∆ is the spread of the point set, defined as the ratio between
the maximum and minimum distance between a pair of points. In any space with doubling
dimension d (including Rd), we have log ∆ ≥ Ωd(log n). Subsequently, Le and Solomon [36]
noted that the factor log ∆ can be improved to log n using standard techniques. Moreover,
Le and Solomon [37] constructed Steiner (1 + ε)-spanners with lightness Õ(ε−(d+1)/2) in
dimensions d ≥ 3. Recently, we have studied online spanners in both Euclidean and general
metrics, and obtained several asymptotically tight bounds [9, 6].

Our Contribution. We improve the bounds on the lightness and sparsity of Euclidean
Steiner (1 + ε)-spanners; see Table 1. First, in Section 3, we prove the following lower bounds.

▶ Theorem 1. Let d ∈ N, d ≥ 2, be a constant and let ε > 0. For every integer n ≥
Ω(ε(1−d)/2), there exists a set S of n points in Rd such that any Euclidean Steiner (1 + ε)-
spanner for S has lightness Ω(ε−d/2) and sparsity Ω(ε(1−d)/2).

For lightness in dimension d = 2, this improves the earlier bound of Ω(ε−1/ log ε−1) by Le
and Solomon [34] by a logarithmic factor; and it is the first lower bound in dimensions d ≥ 3.
The point set S in Theorem 1 is fairly simple: It consists of two square grids in two parallel
hyperplanes in Rd. However, our lower-bound analysis is significantly simpler than that
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of [34]. In particular, our analysis does not depend on planarity, and it generalizes to higher
dimensions. The key new insight pertains to a geometric property of Steiner (1 + ε)-spanners:
If the length of an ab-path S between points a, b ∈ Rd is at most (1 + ε)∥ab∥, then “most” of
the edges of S are almost parallel to ab. We expand on this idea in Section 2.

Then, in Section 4 we prove the following theorem on light spanners.

▶ Theorem 2. For every set S of n points in Euclidean plane and every ε ∈ (0, 1), there
exists a Steiner (1 + ε)-spanner of lightness O(ε−1).

This result improves on an earlier bound of O(ε−1 log ∆) by Le and Solomon [35], where
∆ is the spread of the point set, defined as the ratio between the maximum and minimum
distance between a pair of points. Note that ∆ ≥ nΩ(1/d) in a metric space of doubling
dimension d.

The tight bound in Theorem 2 relies on three new ideas, which may be of independent
interest: First, we generalize Solomon’s SLTs to points on a staircase path or a monotone
rectilinear path (Section 6). Second, we reduce the proof of Theorem 2 to the construction
of “directional” spanners, in each of Θ(ε−1/2) directions, where it is enough to establish the
stretch factor 1 + ε for point pairs s, t ∈ S where the direction of st is in an interval of size√

ε (Section 4). Combining the first two ideas, we show how to construct light directional
spanners for points on a staircase path (Section 7). In each direction, we start with a
rectilinear MST of S, and augment it into a directional spanner. We refine the classical
window partition of a rectilinear polygon into histograms by subdividing each histogram into
special histograms (called tame histograms), whose boundary does not oscillate wildly; this
is the final piece of the puzzle. These histograms are sufficiently flexible to keep the total
weight of the subdivision under control, and we can construct directional (1 + ε)-spanners
for each face of such a subdivision (Sections 8–9).

2 Preliminaries

Let d ≥ 2 be an integer, and S a set of n points in Rd. For a, b ∈ Rd, the Euclidean distance
between a and b is denoted by ∥ab∥. For a set E of line segments in Rd, let ∥E∥ =

∑
e∈E ∥e∥

be the total weight of all segments in E. For a geometric graph G = (S, E), where S ⊂ Rd,
we also use the notation ∥G∥ = ∥E∥, which is the Euclidean weight of graph G.

We briefly review a few geometric primitives in d-space. For a, b ∈ Rd, the locus of
points c ∈ Rd with ∥ac∥ + ∥cb∥ ≤ (1 + ε)∥ab∥ is an ellipsoid Eab with foci a and b, and
major axis of length (1 + ε)∥ab∥; see Fig. 1(a). Note that all d − 1 minor axes of Eab are√

(1 + ε)2 − 1∥ab∥ =
√

2ε + ε2∥ab∥ <
√

3ε∥ab∥ when ε < 1. In particular, the aspect ratio
of the minimum bounding box of Eab is roughly

√
ε. By the triangle inequality, Eab contains

every ab-path of weight at most (1 + ε)∥ab∥.

(1 + ε)‖ab‖

√
2
ε
+

ε2
‖a

b‖ c

ba

(a) (b)

a b

Eab

Pab

Figure 1 (a) An ellipse Eab with foci a and b, and major axis (1 + ε)∥ab∥. (b) A monotone
ab-path Pab, and the projections of its edges to ab.
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The unit vectors in Rd are on the (d − 1)-sphere Sd−1; the direction vectors of a line
in Rd can be represented by vectors of a hemisphere. The angle between two unit vectors,
−→u 1 and −→u 2 is ∠(−→u 1, −→u 2) = arccos(−→u 1 · −→u 2) ∈ (−π, π). Between two (undirected) edges
e1 and e2 with unit direction vectors ±−→u 1 and ±−→u 2, we define the angle as ∠(e1, e2) =
arccos |−→u 1 · −→u 2| ∈ [0, π). A path (v0, v1, . . . , vm) in Rd is monotone in direction −→u if
−−−→vi−1vi · −→u ≥ 0 for all i ∈ {1, . . . , m}; and it is simply monotone if it is monotone in direction
−−−→v0vm. Let projab(e) denote the orthogonal projection of an edge e to the supporting line of
ab, see Fig. 1(b); and note that ∥projab(e)∥ = ∥e∥ cos∠(ab, e).

In Euclidean plane (d = 2), we can parameterize the directions by angles. The direction of
a line segment ab in R2, denoted dir(ab), is the minimum counterclockwise angle α ∈ [0, π) that
rotates the x-axis to be parallel to ab. The set of possible directions [0, π) is homeomorphic
to the unit circle S1, and an interval (α, β) of directions corresponds to the counterclockwise
arc of S1 from α (mod π) to β (mod π). A path in R2 is x-monotone (resp., y-monotone) if
it is monotone in direction −→u = (1, 0) (resp., −→u = (0, 1)). A staircase path is simple path
that is both x- and y-monotone. The width and height of a path or a polygon P is the
Euclidean length of its orthogonal projection to the x-axis and y-axis, respectively.

Angle-Bounded Paths. For δ ∈ (0, π/2], a polygonal path (v0, . . . , vm) in Rd is (θ ± δ)-
angle-bounded if the direction of every segment vi−1vi is in the interval [θ−δ, θ+δ]. Borradaile
and Eppstein [10, Lemma 5] observed that the weight of a (θ ± δ)-angle-bounded st-path is at
most (1 + O(δ2))∥st∥. We prove this observation in a more precise form in Rd. The quadratic
growth rate in δ is due to the Taylor estimate sec(x) = 1

cos(x) ≤ 1 + x2 for 0 ≤ x ≤ π
4 .

▶ Lemma 3. Let a, b ∈ Rd and let P = (v0, v1, . . . , vm) be an ab-path such that P is monotonic
in direction

−→
ab and ∠(ab, vi−1vi) ≤ δ ≤ π

4 , for i = 1, . . . , m. Then ∥P∥ ≤ (1 + δ2)∥ab∥.

Proof. For i = 0, . . . , m, let ui be the orthogonal projection of vi to the line ab, and let
αi = ∠(ab, vi−1vi). Since P is monotonic in direction

−→
ab, then ∥P∥ =

∑m
i=1 ∥vi−1vi∥ =∑m

i=1 ∥ui−1ui∥ sec∠(ab, vi−1vi) ≤ sec δ ·
∑m

i=1 ∥ui−1ui∥ ≤ (1 + δ2)∥ab∥, as claimed. ◀

Characterization for Short ab-Paths. Let a, b ∈ Rd, and let Pab be a polygonal ab-path of
weight at most (1 + ε)∥ab∥. We show that “most” edges along Pab must be “nearly” parallel
to ab. Specifically, for an angle α ∈ [0, π/2), we distinguish between two types of edges in
Pab. Denote by E(α) the set of edges e in Pab with ∠(ab, e) < α; and let F (α) be the set of
all other edges of Pab. Clearly, we have ∥Pab∥ = ∥E(α)∥ + ∥F (α)∥ for all α.

▶ Lemma 4. Let a, b ∈ Rd and let Pab be an ab-path of weight ∥Pab∥ ≤ (1 + ε)∥ab∥. Then
for every i ∈ {1, . . . , ⌊ π

2 /
√

ε⌋}, we have ∥E(i ·
√

ε)∥ ≥ (1 − 2/i2) ∥ab∥.

Proof. Suppose, to the contrary, that ∥E(i·
√

ε)∥ < (1−2/i2) ∥ab∥ for some i ∈ {1, . . . , ⌊ π
2 /

√
ε⌋}.

We have ∑
e∈E(i

√
ε)∪F (i

√
ε)

∥projab(e)∥ ≥ ∥ab∥, (1)

which implies∑
e∈F (i

√
ε)

∥projab(e)∥ ≥ ∥ab∥ −
∑

e∈E(i
√

ε)

∥projab(e)∥ (2)

≥ ∥ab∥ −
∑

e∈E(i
√

ε)

∥e∥

= ∥ab∥ − ∥E(i
√

ε)∥.
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Recall that for every edge e ∈ F (i
√

ε), we have ∠(e, ab) ≥ i ·
√

ε. Using the Taylor estimate
1

cos(x) ≥ 1 + x2

2 , for every e ∈ F (i
√

ε), we obtain

|e∥ ≥ ∥projab(e)∥
cos(i ·

√
ε)

≥ ∥projab(e)∥
(

1 + (i
√

ε)2

2

)
= ∥projab(e)∥

(
1 + i2 ε

2

)
,

Combined with (2), this yields

∥Pab∥ =
∑

e∈E(i
√

ε)

∥e∥ +
∑

e∈F (i
√

ε)

∥e∥

≥
∑

e∈E(i
√

ε)

∥e∥ +
∑

e∈F (i
√

ε)

∥projab(e)∥
(

1 + i2 ε

2

)

≥ ∥E(i
√

ε)∥ +
(
∥ab∥ − ∥E(i

√
ε)∥
)(

1 + i2 ε

2

)
=
(

1 + i2 ε

2

)
∥ab∥ − i2 ε

2 ∥E(i
√

ε)∥

>

(
1 + i2 ε

2

)
∥ab∥ − i2 ε

2

(
1 − 2

i2

)
∥ab∥

≥
(

1 + i2 ε

2

)
∥ab∥ −

(
i2

2 − 1
)

ε ∥ab∥

= (1 + ε)∥ab∥,

which is a contradiction, and completes the proof. ◀

We use Lemma 4 in the analysis of our lower bound construction in Section 3. We
can also derive a converse of Lemma 4 for monotone ab-paths. An ab-path is monotone
if ∠(

−→
ab, −→e ) > 0 for every directed edge −→e of Pab, where the path is directed from a to b.

Equivalently, an ab-path is monotone if it crosses every hyperplane orthogonal to ab at most
once. We show that if the angle ∠(

−→
ab, −→e ) is sufficiently small for “most” of the directed

edges −→e of Pab, then ∥Pab∥ ≤ (1 + ε)∥ab∥.

▶ Lemma 5. For every δ > 0, there is a κ > 0 with the following property. For a, b ∈ Rd

and a monotone ab-path Pab, if ∥F (i ·
√

εκ)∥ ≤ ∥Pab∥/i2+δ for all i ∈ {1, . . . , ⌈ π
2 /

√
εκ⌉},

then ∥Pab∥ ≤ (1 + ε)∥ab∥.

Proof. Let Pab be an ab-path with edge set E. Note that, by definition, F (0) = E. For
angles 0 ≤ α < β ≤ π/2, let E(α, β) denote the set of edges e ∈ E with α ≤ ∠(ab, e) < β.
For convenience, we put m = ⌈ π

2 /
√

εκ⌉. Using the Taylor estimate cos x ≥ 1 − x2/2, we can
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bound the excess weight of Pab as follows.

∥Pab∥ − ∥ab∥ =
∑
e∈E

∥e∥ −
∑
e∈E

∥projabe∥

=
∑
e∈E

∥e∥(1 − cos∠(ab, e))

≤
m∑

i=1
∥E((i − 1)

√
εκ, i

√
εκ)∥(1 − cos(i ·

√
εκ))

≤
m∑

i=1
∥E((i − 1)

√
εκ, i

√
εκ)∥ · i2 εκ

2

≤
m∑

i=1

(
∥F ((i − 1)

√
ε)∥ − ∥F (i

√
ε)∥
)

· i2 εκ

2

= F (0) · 12εκ

2 +
m∑

i=1
∥F (i

√
εκ)∥

(
(i + 1)2 εκ

2 − i2 εκ

2

)

≤ ∥Pab∥ · εκ

2 +
m∑

i=1

∥Pab∥
i2+δ

· (2i + 1)εκ

≤ εκ · ∥Pab∥

(
1
2 +

∞∑
i=1

2i + 1
i2+δ

)
.

For κ = 1
2 ( 1

2 +
∑∞

i=1(2i + 1)/22+δ)−1, we obtain

∥Pab∥ − ∥ab∥ ≤ ε

2 ∥Pab∥,

which readily implies ∥Pab∥ ≤ (1 − ε/2)−1∥ab∥ < (1 + ε)∥ab∥, as required. ◀

The criteria in Lemma 5 can certify that a geometric graph G is a Euclidean Steiner
(1 + ε)-spanner for a point set S. Intuitively, a geometric graph is a Steiner (1 + ε)-spanner
for S it it contains, for all point pairs a, b ∈ S, a monotone ab-path in which the majority of
edges e satisfy ∠(ab, e) ≤ O(

√
ε), with exceptions quantified by Lemma 5. This property has

already been used implicitly by Solomon [47] in the single-source setting, for the design of
shallow-light trees. We use shallow-light trees in our upper bound (Section 4), instead of
Lemma 5. However, the characterization of ab-paths of weight at most (1 + ε)∥ab∥, presented
in this section, may be of independent interest.

3 Lower Bounds

In this section we prove the following result.

▶ Theorem 1. Let d ∈ N, d ≥ 2, be a constant and let ε > 0. For every integer n ≥
Ω(ε(1−d)/2), there exists a set S of n points in Rd such that any Euclidean Steiner (1 + ε)-
spanner for S has lightness Ω(ε−d/2) and sparsity Ω(ε(1−d)/2).

Proof. First we establish the result for a point set of size Θd(ε(1−d)/2) and then generalize
to arbitrary n. We may assume that 0 < ε < (8d)−2. Let Q = [0, 1]d be a unit cube in Rd;
see Fig. 2. The point set S will consist of two square grids in two opposite faces of Q, with
roughly 8d ·

√
ε spacing. Specifically, let ϱ = ⌈ 1

8d·
√

ε
⌉ and consider the lattice L = ϱ−1 · Zd.

Let Q0 and Q1, respectively, be the two faces of Q orthogonal to the xd-axis. Now let
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3/
√
ε

1

1

1
3/
√
ε

Q

S

Figure 2 A schematic image of S in R3.

S0 = L ∩ Q0 and S1 = L ∩ Q1. We have |S0| = |S1| = (ϱ + 1)d−1 = Θd(ε(1−d)/2), hence
|S| = Θd(ε(1−d)/2).

Let N be a Euclidean Steiner (1+ε)-spanner for S. For any pair of points (a, b) ∈ S0 ×S1,
the spanner N contains an ab-path Pab of weight at most (1+ε)∥ab∥, which lies in the ellipsoid
Eab with foci a and b, and major axis (1+ε)∥ab∥. The ellipsoid Eab is, in turn, contained in an
infinite cylinder Cab with axis ab and radius 1

2 ·
√

(1 + ε)2 − 12 · ∥ab∥ <
√

ε · diam(Q) =
√

dε.
The intersection of the cylinder Cab with hyperplanes containing Q0 and Q1, resp., is an
ellipsoid of half-diameter less than

√
dε/ cos∠(ab, xd) ≤

√
dε ·

√
d ≤ d ·

√
ε, and their centers

are a and b, respectively. Hence, all point in S, other than a and b, are in the exterior of Cab.
We distinguish between two types of edges in the ab-path Pab. An edge e of Pab is near-

parallel to ab if ∠(ab, e) < 2 ·
√

ε. Let E(ab) be the set of edges of Pab that are near-parallel
to ab, and F (ab) the set of all other edges of Pab. Lemma 4 with i = 2 yields

∥E(ab)∥ ≥ 1
2∥ab∥ ≥ 1

2 . (3)

Notice that for two pairs (a1, b1), (a2, b2) ∈ S0 × S1, if {a1, b1} ≠ {a2, b2}, then E(a1b1) ∩
E(a2b2) = ∅. Indeed, in case ∠(a1b1, a2b2) ≥ 4

√
ε, this follows from the fact that the directions

near-parallel to a1b1 and a2b2, resp., are disjoint. Assume now that ∠(a1b1, a2b2) < 4
√

ε.
Translate a2b2 to a line segment a1c1. Then we have c1 ∈ L, and the sine theorem in the
triangle ∆(a1b1c1) yields

∥a1c1∥ = ∥a1b1∥ sin∠(b1a1, b1c1)
sin∠(c1a1, c1b1) ≤ diam(Q) sin∠(a1b1, a2b2)

1 ≤
√

d · sin
(
4
√

ε
)

< 4 ·
√

εd.

However, the minimum distance between any two points in the lattice L is ϱ−1 = ⌈ 1
8d·

√
ε
⌉−1.

Since ϱ = ⌈ 1
8d·

√
ε
⌉ < 2

8d·
√

ε
≤ 1

4·
√

εd
for 0 < ε < (8d)−2, then b1 and c1 cannot be distinct

lattice points. Therefore c1 = b1, hence a2b2 is parallel to a1b1. Consequently the cylinders
Ca1b1 and Ca2b2 have disjoint interiors, and so E(a1b1) ∩ E(a2b2) = ∅, as claimed. Combined
with (3), this yields

∥N∥ ≥
∑

(a,b)∈S0×S1

∥E(ab)∥ ≥ |S0| · |S1| · 1
2 ≥ Θd(ε1−d). (4)

Similarly to [34, Claim 5.3], we may assume that N ⊆ Q (indeed, we can replace every
vertex of N outside of Q by the closest point in the boundary of Q; such replacements do not
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increase the weight of N). In follows that the weight of every edge is at most diam(Q) =
√

d.
Consequently,

|E(N)| ≥ ∥N∥
maxe∈E(N) ∥e∥

= Ωd(ε1−d)√
d

= Ωd(ε1−d).

The sparsity of N is |E(N)|/|S| = Ωd(ε1−d/ε(1−d)/2) = Ωd(ε(1−d)/2), as required.
The MST for the point set S contains one unit-weight edge between S0 and S1, and the

remaining |S|−2 edges each have weight d
√

ε, which is the minimum distance between lattice
points in L (see [48] for the asymptotic behavior of the MST of a section of the lattice).
Therefore ∥MST(S)∥ = 1 + (|S| − 2)d

√
ε = Θd(ε1−d/2). It follows that the lightness of N

is ∥N∥/∥MST(S)∥ = Ωd(ε1−d/ε1−d/2) = Ωd(ε−d/2), as claimed. This completes the proof
when n = Θd(ε(1−d)/2).

General Case. Let S0 denote the above construction with |S0| = Θd(ε(1−d)/2). Finally, if
n > |S0|, we can generalize the construction by duplication. Assume w.l.o.g. that n = k |S0|
for some integer k ≥ 1. Let Q1, . . . , Qk, be disjoint axis-aligned unit hypercubes, such that
they each have an edge along the x1-axis, and two consecutive cubes are at distance 3 apart.
Let S be the union of k translates of the point set S0, on the boundaries of Q1, . . . , Qk. Let
N be a Euclidean Steiner (1 + ε)-spanner for S; and Ni = N ∩ Qi for i = 1, . . . k.

Since the ellipsoids induced by point pairs in different copies of S0 are disjoint, we have
∥N∥ ≥

∑k
i=1 ∥Ni∥ = Ωd(kε1−d) and |E(N)| ≥

∑k
i=1 |E(Ni)|. This immediately implies that

the sparsity of N is at least |E(N)|/n = |E(N1)|/|S0| ≥ Ωd(ε(1−d)/2).
The MST of S′ consists of k translated copies of MST(S) and k − 1 edges of weight 3

between consecutive copies. That is, ∥MST(S′)∥ = k ∥MST(S)∥ + 3(k − 1) = Θd(kε1−d/2).
It follows that the lightness of N ′ is Ωd(ε−d/2), as claimed. ◀

4 Upper Bound in the Plane: Reduction to Directional Spanners

In this section, we present our general strategy for the proof of Theorem 2, and reduce the
construction of a light (1 + ε)-spanner for a point set S in the plane to a special case of
directional spanners for a point set on the boundary of faces in a (modified) window partition.

Directional (1 + ε)-Spanners. Our strategy to construct a (1 + ε)-spanner for a point set S

is to partition the interval of directions [0, π) into O(ε−1/2) intervals, each of length O(ε1/2).
For each interval D ⊂ [0, π), we construct a geometric graph that serves point pairs {a, b} ⊆ S

with dir(ab) ∈ D. Then the union of these graphs over all O(ε−1/2) intervals will serve all
point pairs {a, b} ⊆ S. The following definition formalizes this idea.

▶ Definition 6 (Directional spanner). Let S be a finite point set in the plane, D ⊂ [0, π) a set
of directions, and ε > 0. A geometric graph G is a directional (1 + ε)-spanner for S and D

if G contains an ab-path of weight at most (1 + ε)∥ab∥ for every a, b ∈ S with dir(ab) ∈ D.

Reduction to Tilings. Assume that we wish to construct a directional (1 + ε)-spanner for a
set S of n points in the plane and an interval D = [ π−

√
ε

2 , π+
√

ε
2 ] of nearly vertical directions.

Our general strategy is the following two-step process: (1) Subdivide a bounding box of S

into a collection F of weakly simple polygons (faces) such that no point in S lies in the
interior any face. (2) For each face F ∈ F , construct a directional (1 + ε)-spanner GF for a
finite point set SF on the boundary ∂F of F . Specifically, let SF be the union of S ∩ ∂F and
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all points where a segment ab, with a, b ∈ S and dir(ab) ∈ D, crosses an edge of F or contains
a vertex of F . It is easily seen that this construction yields a directional (1 + ε)-spanner for
S.

▶ Lemma 7. Let S ⊂ R2, D, F , and SF for all F ∈ F as defined above. For each face
F ∈ F , let GF be a geometric graph that contains, for all p, q ∈ SF with dir(pq) ∈ D and
pq ⊂ F , a pq-path of weight at most (1 + ε)∥pq∥. Then G =

⋃
F ∈F GF is a directional

(1 + ε)-spanner for S.

Proof. Let a, b ∈ S with dir(ab) ∈ D. The segment ab is contained in the convex hull of
S, which is in turn contained in the union of faces in F . The boundaries of the faces in
F subdivide the line segment ab into a path (v0, v1, . . . , vm) of collinear segments, each of
which lies in some face F ∈ F with both endpoints in SF . For each i = 1, . . . , m, graph G

contains a vi−1vi-path of weight at most (1 + ε)∥vi−1vi∥. The concatenation of these paths
is an ab-path of weight at most

∑m
i=1(1 + ε)∥vi−1vi∥ = (1 + ε)∥ab∥, as required. ◀

Remark: How to Tile? We need to construct a tiling F for S that allows us to control
the total weight of the spanner ∥G∥ =

∑
F ∈F ∥GF ∥. An obvious lower bound for the

spanner weight is the weight of the tiling, which is the sum of the perimeters of the faces∑
F ∈F per(F ). Let B be an axis-aligned bounding box of S. The simplest tiles would be

rectangles, convex polygons, or possibly orthogonally convex polygons (bounded by four
staircase paths). However, the minimum weight of a rectangulation for n points in B is
O(∥MST(S)∥ log n), and this bound is the best possible [21]. The same bound holds for the
minimum weight tiling of B into orthogonally convex polygons. The minimum weight of a
convex partition for n points in B is O(∥MST(S)∥ log n/ log log n), and this bound is also
tight [24]. Due to the logarithmic factors, these tilings would be too heavy for our purposes,
for the construction of a (1 + ε)-spanner of weight O(ε−1∥MST(S)∥). Instead, we start with
a histogram decomposition of weight O(∥MST (S)∥).

Histogram Decomposition. In Section 5, we modify the standard window partition algo-
rithm and tile a bounding box of S with tame histograms and thin histograms, that we define
here. Refer to Fig. 3.

▶ Definition 8.
A polygon P = (v0, v1, . . . , vm) is simple if its boundary is a Jordan curve (i.e., the image
of an injective map γ : S2 → R2); and P is weakly simple if for every δ > 0, there exists
a simple polygon P ′ = (v′

0, v′
1, . . . , v′

m) with ∥viv
′
i∥ ≤ δ for all i = 0, 1, . . . , m. (Intuitively,

this means that γ may have self-intersections, but no self-crossings.)
An x-monotone histogram is a rectilinear weakly simple polygon bounded by a horizontal
line segment and an x-monotone path L. Similarly, a y-monotone histogram is a rectilinear
weakly simple polygon bounded by a vertical line segment and a y-monotone path L.
An x-monotone (resp., y-monotone) histogram is τ -tame for τ > 0 if for every horizontal
(resp., vertical) chord ab, with a, b ∈ L, the subpath Lab of L between a and b satisfies
∥Lab∥ ≤ (1 + τ)∥ab∥.
Finally, a tame histogram is an x-monotone 1-tame histogram, and a thin histogram as
a y-monotone ε1/2-tame histogram.

For a tame or thin histogram P and a finite set S of points on the boundary of P , we
construct geometric graphs that achieve the stretch factor 1 + ε for all point pairs a, b ∈ S

such that dir(ab) ∈ [ π−
√

ε
2 , π+

√
ε

2 ] and ab is a chord of P . A line segment ab is a chord of
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(c) (d)(a) (b)

a

Lab

p q

L

p

b

a
b

L

Labb

q

Figure 3 (a) An x-monotone histogram. (b) A y-monotone histogram. (c) A tame histogram.
(d) A thin histogram.

a weakly simple polygon P if a, b ∈ ∂P , and ab ⊂ P . The perimeter of a weakly simple
polygon P , denoted per(P ), is the total weight of the edges of a closed polygonal chain on
the boundary of P ; and the horizontal perimeter, denoted hper(P ), is the total weight of
the horizontal edges of that chain. Note that hper(H) = 2 width(P ) for an x-monotone
histogram H; and hper(H) ≥ 2 width(P ) for a y-monotone histogram.

▶ Lemma 9. We can subdivide a (weakly) simple rectilinear polygon P into a collection
F of tame histograms and thin histograms such that

∑
F ∈F per(F ) ≤ O(ε−1/2per(P )) and∑

F ∈F hper(F ) ≤ O(per(P )).

▶ Lemma 10. Let F be a tame or thin histogram, S ⊂ ∂F a finite point set, ε ∈ (0, 1], and
D = [ π−

√
ε

2 , π+
√

ε
2 ] an interval of nearly vertical directions. Then there exists a geometric

graph G of weight O(per(F ) + ε−1/2 hper(F )) such that for all a, b ∈ S, if ab is a chord of F

and dir(ab) ∈ D, then G contains an ab-path of weight at most (1 + O(ε))∥ab∥.

We prove Lemma 9 in Section 5 and Lemma 10 in Section 9. In the remainder of this
section, we show that these lemmas imply Lemma 11, which in turn implies Theorem 12.

Stretch Factor of 1+ε Versus 1+O(ε). In the geometric spanners we construct, an st-path
may comprise O(1) subpaths, each of which is angle-bounded or contained in an SLT. For
the ease of presentation, we typically establish a stretch factor of 1 + O(ε) in our proofs. It
is understood that 1 + ε can be achieved by a suitable scaling by a constant factor.

▶ Lemma 11. Let S ⊂ R2 be a finite point set, ε ∈ (0, 1], and D ⊂ [0, π) an interval of length√
ε. Then there exists a directional (1+ε)-spanner for S and D of weight O(ε−1/2 ∥MST(S)∥).

Proof. We may assume, by applying a suitable rotation, that D = [ π−
√

ε
2 , π+

√
ε

2 ], that is, an
interval of nearly vertical directions. We construct a directional (1 + ε)-spanner for S and D

of weight O(ε−1/2 ∥MST(S)∥).
Assume w.l.o.g. that the unit square U = [0, 1]2 is a minimum axis-parallel bounding

square of S. In particular, S has two points on two opposite sides of U , and so 1 ≤
diam(S) ≤ ∥MST(S)∥. Our initial graph G0 is composed of the boundary of U and a
rectilinear MST3 of S, where ∥G0∥ = O(∥MST(S)∥). Since each edge of G0 is on the
boundary of at most two faces, the total perimeter of all faces of G0 is also O(∥MST(S)∥).
Lemma 9 yields subdivisions of the faces of G0 into a collection F of tame or thin histograms
with

∑
F ∈F per(F ) = O(ε−1/2∥MST(S)∥) and

∑
F ∈F hper(F ) = O(∥MST(S)∥),

3 A rectilinear minimum spanning tree of a finite set S in Rd is a Steiner tree for S composed of axis-parallel
edges and having minimum weight in L1-norm.
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Let K(S) be the complete graph induced by S. For each face F ∈ F , let SF be the union
of S ∩ ∂F and the set of all points where an edge of K(S) crosses an edge of F or passes
through a vertex of F . For each face F , Lemma 10 yields a geometric graph GF of weight
O(per(F ) + ε−1/2hper(F )) with respect to the finite point set SF ⊂ ∂F .

We can now put the pieces back together. Let G be the union of G0 and the graphs GF for
all F ∈ F . By Lemma 7, G is a directional (1 + ε)-spanner for S and D. The weight of G is
bounded by ∥G∥ = ∥G0∥+

∑
F ∈F ∥GF ∥ = O(∥MST(S)∥+

∑
F ∈F (per(F )+ε−1/2hper(F ))) =

O(ε−1/2∥MST(S)∥). ◀

We prove Theorem 2 in the following form.

▶ Theorem 12. For every finite point sets S ⊂ R2 and ε ∈ (0, 1], there exists a Euclidean
Steiner (1 + ε)-spanner of weight O(ε−1 ∥MST(S)∥).

Proof of Theorem 12. Let S be a finite set in the plane, let ε ∈ (0, 1], and put k = ⌈πε−1/2⌉.
Partition the space of directions into k intervals of equal length, as [0, π) =

⋃k
i=1 Di. By

Lemma 11, there exists a directional (1 + ε)-spanner of weight O(ε−1/2∥MST(S)∥) for S

and Di for every i ∈ {1, . . . , k}. Let G =
⋃k

i=1 Gi. For every point pair s, t ∈ S, we have
dir(st) ∈ Di for some i ∈ {1, . . . , k}, and Gi ⊂ G contains an st-path of weight at most
(1 + ε)∥st∥. Consequently, G is a Euclidean Steiner (1 + ε)-spanner for S. The weight of G

is ∥G∥ ≤
∑k

i=1 ∥Gi∥ ≤ ⌈πε−1/2⌉ · O(ε−1/2∥MST(S)∥) ≤ O(ε−1∥MST(S)∥), as required. ◀

5 Construction of a Tiling

The so-called window partition of rectilinear simple polygon P is a recursive subdivision
of P into histograms [25, 38, 39, 49]. It can be computed in O(n log n) time if P has n

vertices. It was originally designed for data structures that support orthogonal visibility and
minimum-link path queries in P . Importantly, every axis-parallel chord of P intersects (stabs)
at most three histograms of the decomposition. The stabbing property implies that the total
perimeter of the histograms is O(per(P )). For completeness, we present the standard window
partition and the weight analysis here.

(a) (b)

P

e0

Figure 4 (a) The standard window partition of a rectilinear polygon P into histograms, starting
from a horizontal edge e0 (b) A decomposition of an x-monotone histogram into tame histograms.

▶ Lemma 13. Every rectilinear (weakly) simple polygon P can be subdivided into a collection
H of histograms such that

∑
H∈H per(H) ≤ O(per(P )).
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Proof. We describe a recursion on instances (R, e), where R is a rectilinear (weakly) simple
polygon, and e is an edge of R. We also maintain the invariant that ∂R \ e ⊂ ∂P . Initially,
let R = P and e an arbitrary horizontal edge of P ; clearly ∂P \ e ⊂ ∂P . In one iteration,
consider an instance (R, e); see Fig. 4(a) for example.

Assume w.l.o.g. that (R, e) is an instance where e is horizontal edge of R. We define a
histogram H ⊂ R as the set of all points that can be connected to a point in e by a vertical
line segment in R. Let C be the collection of connected components C of R \ H. Each
component C ∈ C is a weakly simple rectilinear polygon that has a unique vertical edge
(window) w(C) along the boundary of H. Recurse on the instances (C, w(C)) for all C ∈ C
if C ̸= ∅.
Weight analysis. Consider the input rectilinear polygon P , and the subdivision created by the
above algorithm. Each iteration of the recursion handles an instance (R, e), and creates an
x- or a y-monotone histogram He, which is not partitioned further. The cost of creating He

equals to the weight of the windows on boundary between He and R \ He. Each component
of ∂He ∩ ∂(R \ He) is the edge w(C) of an instance (C, w(C)) in a recursive call.

At the next level of the recursion, for each instance (C, w(C)), the algorithm constructs a
histogram Hw(C) ⊂ C. By our invariant, we have ∂C \ w(C) ⊂ ∂R; and we charge the weight
of w(C) to the boundary of R as follows. When w(C) is a horizontal (vertical) side of C, then
we charge the orthogonal projection of w(C) to horizontal (vertical) edges of ∂C \w(C) ⊂ ∂R.
The projection consists of one or more horizontal (vertical) line segments of total weight
∥w(C)∥. We charge w(C) to the common boundary of R and Hw(C), which is not partitioned
further, hence every line segment s on the boundary of the input polygon P receives a charge
of at most ∥s∥, and the overall weight of all windows is bounded by per(P ). As each window
contributes to the perimeter of precisely two faces in C, then

∑
C∈C per(C) = O(per(P )), as

claimed. ◀

Subdivision of Histograms into Tame and Thin Histograms Let H be a histogram pro-
duced by the window partition algorithm (Lemma 13). We subdivide H into tame or thin
histograms by a sweepline algorithm. Dumitrescu and Tóth [23] used similar methods to
partition a histogram into histograms of constant geometric dilation.

▶ Lemma 14. For every τ ∈ (0, 1], an x-monotone histogram H can be subdivided into a col-
lection T of τ -tame histograms such that

∑
T ∈T per(T ) = O(τ−1 per(H)) and

∑
T ∈T vper(T ) =

O(vper(H)).

Proof. Let H be an x-monotone histogram bounded by a horizontal line segment pq from
below, and an x-monotone pq-path L from above. We describe a sweepline algorithm that
recursively subdivides H with horizontal lines; see Fig. 4(b). Initially, set T = ∅. Sweep
H top-down with a horizontal line ℓ, and incrementally update L, H, and T as follows.
Whenever the sweepline ℓ contains a chord ab of H such that the subpath Lab of L between
a and b has weight (1 + τ)∥ab∥, then we add the simple polygon bounded by ab and Lab into
T , and replace Lab with the line segment ab in both L and H. When the sweepline ℓ reaches
the base of H, we add H to T , and return T .

First note that each polygon added into T is a τ -tame histogram. By construction,∑
T ∈T per(T ) is proportional to the sum of per(H) and the total weight of all horizontal

chords ab inserted by the algorithm. At the time when the algorithm creates a tame
histogram bounded by ab and Lab, we can charge the weight ∥ab∥ of the chord ab to the
vertical edges of the path Lab. Since the algorithm inserts only horizontal edges, all vertical
edges along this path lie on the boundary of the input polygon. Consequently, the total
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weight of vertical edges of Lab is τ ∥ab∥; and are not charged in subsequent steps of the
recursion. Each vertical segment s on the boundary of H receives a charge of at most
τ−1∥s∥. Overall, the total weight of the edges inserted by the algorithm is O(τ−1 vper(H)),
hence

∑
T ∈T per(T ) ≤ per(H) + O(τ−1 vper(H)) ≤ O(τ−1 per(H)), as required. Since all

subdivision edges are horizontal, then
∑

T ∈T vper(T ) = O(vper(H)). ◀

Proof of Lemma 9. The combination of Lemmas 13 and 14 implies Lemma 9.

▶ Lemma 9. We can subdivide a (weakly) simple rectilinear polygon P into a collection
F of tame histograms and thin histograms such that

∑
F ∈F per(F ) ≤ O(ε−1/2per(P )) and∑

F ∈F hper(F ) ≤ O(per(P )).

Proof. Let P be a rectilinear (weakly) simple polygon. By Lemma 13, we can partition P

into a collection H of histograms such that
∑

H∈H per(H) = O(per(P )).
Using Lemma 14 with τ = 1, we can partition each x-monotone histogram H ∈ H into a

collection T (H) of tame histograms of total perimeter O(per(H)). This implies that their
horizontal perimeter is also bounded by O(per(H)). Using Lemma 14 with τ = ε1/2, we can
also partition each y-monotone histogram H ∈ H into a collection T (H) of thin histograms
of total perimeter O(ε−1/2per(H)) and total horizontal perimeter O(per(H)).

Overall, we obtain a subdivision of P into a collection F =
⋃

H∈H T (H) of histograms,
each of which is either tame or thin, of total perimeter O(ε−1/2per(P )) and total horizontal
perimeter O(per(P )), as required. ◀

6 Generalized Shallow Light Trees

Shallow-light trees (SLT) were introduced by Awerbuch et al. [5] and Khuller et al. [33].
Given a source s and a point set S in a metric space, an (α, β)-SLT is a Steiner tree rooted
at s that contains a path of weight at most α ∥st∥ between the source s and any point t ∈ S,
and has weight at most β ∥MST(S)∥. We build on the following basic variant of SLT between
a source s and a set S of collinear points in the plane; see Fig. 6.

s

L

Figure 5 A shallow-light tree for a source s and a set of collinear points on a line segment L.

▶ Lemma 15 (Solomon [47, Section 2.1]). Let ε ∈ (0, 1], let s = (0, ε−1/2) be a point on the
y-axis, and let S be a set of points in the line segment L = [− 1

2 , 1
2 ] × {0} in the x-axis. Then

there exists a geometric graph of weight O(ε−1/2) that contains, for every point t ∈ L, an
st-path Pst with ∥Pst∥ ≤ (1 + ε) ∥st∥.

We note that the weight analysis of the st-path Pst in an SLT does not use angle-
boundedness. In particular, an SLT may contain short edges of arbitrary directions close to
t, but the long edges are nearly vertical.
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In Section 6.1, we generalize Lemma 15, and construct shallow-light trees between a source
s and points on a staircase path. In Section 6.3, we show how to combine two shallow-light
trees to obtain a spanner between point pairs on two staircase paths.

6.1 Shallow-Light Trees for Staircase Chains
We present a new, slightly modified proof for Solomon’s result on SLTs between a single
source s and a horizontal line segment, and then adapt the modified proof to obtain a SLT
between s and an x- and y-monotone polygonal chain. In the proof below, we use the Taylor
estimates cos x ≥ 1 − x2/2 and sin x ≥ x/2 for x ≤ π/3.

s s s

t1 t2 t3 t5t4 t6 t7 t8 t1 t2 t3 t5t4 t6 t7 t8 t1 t2 t3 t5t4 t6 t7 t8

Figure 6 The segments added to graph G at level j = 0, 1, 2 for m = 23 = 8 points. The intervals
[ta, tb] at level j are indicated below the line L.

Alternative proof for Lemma 15. Assume w.l.o.g. that ε = 2−k for k ∈ N. Let T = {ti :
i = 1, . . . , 2k+1} be 2k+1 points on the line segment L = [− 1

2 , 1
2 ] × {0} with uniform

1/(2k+1 − 1) < ε spacing between consecutive points. Consider the standard binary partition
of {1, . . . , 2k+1} into intervals, associated with a binary tree: At level 0, the root corresponds
to the interval [1, 2k+1] of all 2k+1 integers. At level j, we have intervals [i·2k−j+1, (i+1)·2k−j ]
for i = 0, . . . , 2j − 1. Note that if a point q is the left (resp., right) endpoint of an interval at
a level j, then q is the left (resp., right) endpoint of all descendant intervals that contains q.

For every q ∈ {1, . . . , 2k+1}, we define a line segment ℓq with one endpoint at tq: Let
j ≥ 0 be the smallest level such that q is an endpoint of some interval Iq at level j. Let Tq

be the line segment along the x-axis spanned by the points corresponding to Iq. If q is the
left (resp., right) endpoint of Iq, then let ℓq be the line segment of direction π

2 − 2(j−k)/2

(resp., π
2 + 2(j−k)/2) such that its orthogonal projection to the x-axis is Tq; see Fig. 6. Note

that for j = 0, we use directions π
2 ± 2−k/2 = π

2 ±
√

ε. Let G be the union of segments ℓq for
q = 1, . . . , 2k+1, the horizontal segment L, and the vertical segment from s to the origin.
Lightness analysis. We show that ∥G∥ = O(ε−1/2). We have ∥L∥ = 1, and the length of the
vertical segment between s and the origin is ε−1/2. At level j of the binary tree, we construct
2j segments ℓ, each of length ∥ℓ∥ ≤ 2−j/ sin(2(j−k)/2) ≤ 2 · 2(k−3j)/2. Summation over all
levels yields

∑k
j=0 2j · 2 · 2(k−3j)/2 = 2k/2 · 2 ·

∑k
j=0 2−j/2 = O(2k/2) = O(ε−1/2).

Source-stretch analysis. We show that G contains an stq-path of length (1 + O(ε))∥stq∥ for
all q = 1, . . . , 2k+1. First note that ∥stq∥ ≥ |y(s) − y(tq)| = ε−1/2. For each interval [ta, tb]
in the binary tree, ℓa and ℓb have positive and negative slopes, respectively, and so they cross
above the interval [ta, tb]. Consequently, for every point tq, the union of the k + 1 segments
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corresponding to the intervals that contain tq must contain a y-monotonically increasing
path Pq from tq to s. The y-projection of this path has length ε−1/2. Consider one edge e of
Pq along a segment ℓ at level j, which has direction π

2 ± α = π
2 ± 2(j−k)/2. The difference

between the length of e and the y-projection of e is

∥e∥(1 − cos α) ≤ ∥ℓ∥(1 − cos α) ≤ 2−j 1 − cos α

sin α
≤ 2−j α2/2

α/2
= 2−jα = 2−j · 2(j−k)/2 = 2−(j+k)/2.

Since Pq contains at most one edge in each level, summation over all edges of Pq yields

k∑
j=0

2−(j+k)/2 = 2−k/2
k∑

j=0
2−j/2 = O(ε1/2) ≤ ∥stq∥ · O(ε).

Finally, for an arbitrary point t ∈ L, we have ∥st∥ ≥ |y(s) − y(t)| = ε−1/2, and G

contains an st-path that consists of an stq-path from s to the point tq closest to t, followed
by the horizontal segment tqt of weight ∥tqt∥ < 1/2k ≤ ε. The total weight of this path is
(1 + O(ε))∥st∥. After suitable scaling of the constant coefficients, G contains a path of weight
at most (1 + ε)∥st∥ for any t ∈ L, as required. ◀

Note that we have shown that the graph G contains an st-path Pst with ∥Pst∥ ≤
(1 + ε)ε−1/2 for every point t ∈ L; and combined this upper bound with the trivial lower
bound ε−1/2 = |y(s) − y(t)| ≤ ∥st∥. We are now ready to generalize Lemma 15 to staricases.

▶ Lemma 16. Let ε ∈ (0, 1], let s = (0, ε−1/2) be a point on the y-axis, and let L be an x-
and y-monotone increasing staircase path between the vertical lines x = ± 1

2 , such that the
right endpoint of L is ( 1

2 , 0) on the x-axis. Then there exists a geometric graph G comprised
of L and additional edges of weight O(ε−1/2) such that G contains, for every t ∈ L, an
st-path Pst with ∥Pst∥ ≤ (1 + O(ε)) |y(s) − y(t)| ≤ (1 + O(ε)) ∥st∥.

We can adjust the construction above as follows; refer to Fig. 7.

Proof. Assume w.l.o.g. that ε = 2−k for some k ∈ N. Let T = {ti : i = 1, . . . , 2k+1} be 2k+1

points in L on equally spaced vertical lines, with spacing 1/(2k+1 − 1) < ε. Consider the
standard binary partition of {1, . . . , 2k+1} into intervals as in the previous proof.

For every q ∈ {1, . . . , 2k+1}, we define a polygonal path γq with one endpoint at tq; see
Fig. 7. Let j ≥ 0 be the smallest level such that tq is an endpoint of some interval Iq at level
j. If tq is the right endpoint of Iq, then let γq be the line segment of direction π

2 + 2(j−k)/2

such that its x-projection is Tq. If tq is the left endpoint of Iq, then γq will be an x- and
y-monotone path whose x-projection is Tq, and its edges will be vertical segments along L

and segments of direction αq = π
2 − 2(j−k)/2. Specifically, γq starts from tq with a line of

direction αq. Whenever γq encounters a vertical edge of L, it follows it upward until its
upper endpoint, and then continues in direction αq.

Let G be the union of all paths γq for q = 1, . . . , 2k+1, as well as the path L, and the
vertical segment from s to the origin. This completes the construction of G.
Lightness analysis. We show that ∥G∥ = ∥L∥ + O(ε−1/2). The distance between s and L is
ε−1/2. For every q ∈ {1, . . . , 2k+1}, the path γq is composed of vertical segments along L,
and nonvertical segments whose total weight is the same as ∥ℓq∥ in the proof of Lemma 15,
where we have seen that

∑2k+1

q=1 ∥ℓq∥ = O(ε−1/2). Consequently, ∥G∥ = ∥L∥ + O(ε−1/2).
Source-stretch analysis. We show that G contains an stq-path of weight (1+O(ε))∥stq∥ for all
q = 1, . . . , 2k+1. Denoting y(tq) the y-coordinate of point tq, we have ∥stq∥ ≥ |y(s) − y(tq)| =
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Figure 7 The paths γq added to graph G at level j = 0, 1, 2 for m = 23 = 8 points. The intervals
[ta, tb] at level j are indicated below the staircase path L.

ε−1/2 + |y(tq)|. For each interval [ta, tb] in the binary tree, the paths γa and γb cross above the
portion of L between ta and tb. Consequently, for every point tq, the union of the k + 1 paths
γ corresponding to the intervals that contain tq must contain a y-monotonically increasing
path Pq from tq to s. The y-projection of this path has weight |y(s) − y(tq)|ε−1/2 + |y(tq)|.
Some of the edges of this path may be vertical. Consider the union of all nonvertical edges e

of Pq along a path γ at level j, which all have direction π
2 ± 2(j−k)/2. The difference between

the length of e and the y-projection of e is bounded by the same analysis as in the proof of
Lemma 15. Summation over all levels yields O(ε1/2) ≤ ∥stq∥ · O(ε).

Finally, for an arbitrary point t ∈ L, we have ∥st∥ ≥ |y(s) − y(t)| = ε−1/2 + |y(t)|, and G

contains an st-path Pst comprising an stq-path from s to the closest point tq to the right of
t, followed by an x- and y-monotone path along L in which the total length of the horizontal
edges is bounded by 1/2k ≤ ε (and the length of vertical segments might be arbitrary). The
vertical segments between tq and t do not contribute to the error term ∥st∥−|y(s)−y(t)|. The
analysis in the proof of Lemma 15 yields ∥Pst∥ − |y(s) − y(t)| ≤ O(

√
ε) ≤ O(ε) |y(s) − y(t)|.

Hence ∥Pst∥ ≤ (1 + O(ε)) |y(s) − y(t)| ≤ (1 + O(ε)) ∥st∥, as required. ◀

6.2 Shallow-Light Trees for y-Monotone Chains
We further generalize Lemma 16, and construct an SLT between a source s and a y-monotone
rectilinear path L at distance ε−1/2 from s.

▶ Lemma 17. Let ε ∈ (0, 1], let s = (0, ε−1/2) be a point on the y-axis, and let L be
a y-monotone rectilinear path such that the top endpoint of L is on the x-axis, the total
weight of the horizontal edges in L is at most 1, and L lies in the vertical strip between
the lines x = ± 1

2 . Then there exists a geometric graph G comprised of L and additional
edges of weight O(ε−1/2) such that G contains, for every t ∈ L, an st-path Pst with ∥Pst∥ ≤
(1 + O(ε)) |y(s) − y(t)| ≤ (1 + O(ε)) ∥st∥.



18 Euclidean Steiner Spanners: Light and Sparse

We reduce the case of y-monotone paths to staircase paths.

Proof. Let L = (u0, . . . , um) be a y-monotone increasing rectilinear path, where the total
weight of horizontal edges is at most 1; refer to Fig. 8. Let L′ = (v0, . . . , vm) be a corresponding
staircase path, which is both x- and y-monotone increasing, such that vm = um (i.e., their
top endpoints are the same) and for all i = 1, . . . , m, the edges ui−1ui and vi−1vi are parallel
and have the same length. (However, if ui−1ui is a horizontal and x-monotone decreasing,
then vi−1vi is x-monotone increasing.) Note that y(ui) = y(vi) for all i = 0, . . . , m.

t2
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t5

t4

t6
t7

t8

t1

s s′

L′

t3

t4
t5 t6

t7

t2

L

s

t1

t8

L

Figure 8 (a) The y-monotone rectilinear path L and a source s. (b) The staircase path L′, and a
single-source spanner G′ for s′ and L′. (c) A spanner G = ϱ(G′) for s = ϱ(s′) and L = ϱ(L′).

Let R and R′ be the minimal vertical strips that contain L and L′, respectively. We
define a map ϱ : R′ → R such that ϱ(L′) = L. For i = 1, . . . , m, let Ri be the vertical
strip bounded by the vertical lines passing through ui−1 and ui. Similarly, let R′

i be the
vertical strip bounded by the vertical lines passing through vi−1 and vi. Then R =

⋃m
i=1 Ri

and R′ =
⋃m

i=1 R′
i. For every i, there is a unique isometry ϱi : R′

i → Ri, composed of a
translation by −−→viui and a possible reflection in a vertical line, such that ϱ(ui−1) = vi−1 and
ϱ(ui) = vi. The isometries ϱ1, . . . , ϱm jointly define a map ϱ : R′ → R. Since ϱ : R′ → R is
surjective, there exists a point s′ ∈ R′ with ϱ(s′) = s.

Note that ϱ is a contraction, that is, ∥ϱ(a)ϱ(b)∥ ≤ ∥ab∥ for all a, b ∈ R′, as it maintains
the y-coordinates of a and b, but it may decease the difference between the x-coordinates.
Furthermore ϱ is piecewise linear and continuous: It maps every line segment ab ⊂ R′ to
a polygonal chain ϱ(ab), and an ab-path P ′ to an ϱ(a)ϱ(b)-path P . Since ϱ is piecewise
isometric, then ∥P∥ = ∥P ′∥.

By Lemma 16, there exists a geometric graph G′ comprised of L′ and additional edges of
weight O(ε−1/2) such that G′ contains, for every t′ ∈ L′, an s′t′-path Ps′t′ with ∥Ps′t′∥ ≤
(1 + O(ε)) |y(s′) − y(t′)| ≤ (1 + O(ε)) ∥s′t′∥.
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By construction, the graph G′ lies in R′. Let G = ϱ(G′), which is a geometric graph with
possible new Steiner points at the vertical lines passing through the vertices of L. Since ϱ is
piecewise isometric, then G is comprised of L = ϱ(L′) and additional edges of weight O(ε−1/2).
For every t ∈ L, there exists a point t′ ∈ L′ with ϱ(t′) = t. As G′ contain an s′t′-path Ps′t′

with ∥Ps′t′∥ ≤ (1 + O(ε)) |y(s′) − y(t′)|, then G contains the st-path Pst = ϱ(Ps′t′) with
∥Pst∥ ≤ ∥Ps′t′∥ ≤ (1 + O(ε)) |y(s′) − y(t′)| = (1 + O(ε)) |y(s) − y(t)| ≤ (1 + O(ε)) ∥st∥. ◀

6.3 Combination of Shallow-Light Trees

We end this section with an easy corollary of Lemma 17, and show that the combination of
two SLTs yields a light (1 + ε)-spanner between points on two staircases.

▶ Lemma 18. Let ε ∈ (0, 1], let R be an axis-parallel rectangle of width 1 and height 2ε−1/2;
and let L1 and L2 be y-monotone paths lying in the vertical strip spanned by R such that
they each contain horizontal edges of total weight at most 1, the bottom vertex of L1 is on
the top side of R, and the top vertex of L2 is on the bottom side of R; see Fig. 9. Then there
exists a geometric graph comprised of L1 ∪ L2 and additional edges of weight O(ε−1/2) that
contains an ab-path Pab with ∥Pab∥ ≤ (1 + O(ε)) ∥ab∥ for any a ∈ L1 and any b ∈ L2.

R R

L2

1

2ε
−
1
/
2

2ε
−
1
/
2

s s

(a) (b)
L1

b

a

Figure 9 (a) A combination of two SLTs between the two horizontal sides of R. (b) A combination
of two SLTs between two staircases above and below R, respectively.

Proof. Let s be the center of the rectangle R. Let G be the geometric graph formed
by the SLTs from the source s to L1 and L2, resp., using Lemma 17. By construction,
∥G∥ = ∥L1∥ + ∥L2∥ + O(ε−1/2). It remains to show that G has the desired spanning ratio.
Let a ∈ L1 and b ∈ L2. Let ha be the distance of a from bottom side of R, and hb the
distance of b from the top side of R. By Lemma 15, the two SLTs jointly contain an ab-path
Pab of length ∥Pab∥ ≤ (1 + O(ε)) (∥as∥ + ∥bs∥).

On the one hand, s is the center of R, and so ∥as∥ + ∥bs∥ ≤ diam(R) + ha + hb ≤
(1 + ε

8 )2ε−1/2 + ha + hb. On the other hand, ∥ab∥ ≥ height(R) + ha + hb = 2ε−1/2 + ha + hb.
Overall, ∥Pab∥ ≤ (1 + O(ε))(1 + ε

8 ) ∥ab∥ ≤ (1 + O(ε))∥ab∥. ◀
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7 Construction of Directional Spanners for Staircases

In this section, we handle the special case of a finite set S on a staircase path L. Our recursive
construction uses special regions that we define now. Let L be an x- and y-monotone increasin
staircase path, and let P = P (L) be the staircase polygon bounded by L above and left and
by the boundary of the bounding box of L from below and right. For λ > 0, we define the
λ-shadow of the vertical edges of L, denoted by λ-shadv(L), the set of points p ∈ P such
that there exists a ∈ L on some vertical edge of L such that slope(ap) ≥ λ; see Fig. 10(a).
Similarly we can define the λ-shadow of horizontal edges of L, λ-shadh(L), be the set of points
p ∈ P such that there exists b ∈ L on some horizontal edge of L such that slope(bp) ≥ λ.
The region λ-shadv(L) is not necessarily connected, each connected components is bounded
by a subpath of L and a single line segment of slope λ.
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Figure 10 (a) A staircase path L; the shadow of vertical edges of L is shaded light gray. (b) The
shadow of the horizontal edges of the polygons U, . . . , U4. (c) Recursive subproblems generated in
the proof of Lemma 19.

▶ Lemma 19. Let L be a staircase path and S ⊂ L a finite set. Then there exists a geometric
graph G comprised of L and additional edges of weight O(ε−1/2width(L)) such that G contains
a path Pab of weight ∥Pab∥ ≤ (1 + O(ε))∥ab∥ for any a, b ∈ S where slope(ab) ≥ ε−1/2 and
the line segment ab lies below L.

Proof. If a, b ∈ L and ab lies below L, then either both a and b are in the same edge of L

(hence L contains a straight-line path ab), or one point in {a, b} is on a vertical edge of L

and the other is on a horizontal edge of L. We may assume w.l.o.g. that a is on a vertical
edge and b is on a horizontal edge of L.

Let A = (ε−1/2)-shadv(L) be the (ε−1/2)-shadow of the vertical edges of L; see Fig. 10(a).
Let U be the set of connected components of A. Note that for every pair a, b ∈ L, if
slope(ab) ≥ ε−1/2 and ab lies below the path L, then ab lies in some polygon in U . For
each polygon U ∈ U , we construct a geometric graph G(U) of weight O(ε−1/2width(U))
such that G(U) ∪ L is a directional spanner for the point pairs in S ∩ U . Then L together
with

⋃
U∈U G(U) is a directional spanner for all possible ab pairs. Since the polygons in

U are adjacent to disjoint portions of L, we have
∑

U∈U width(U) ≤ width(L), and so∑
U∈U ∥G(U)∥ = O(ε−1/2 width(L)), as required.
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Recursive Construction. For every U ∈ U , we construct G(U) recursively as follows.
If |S ∩ U | ≥ 2, then let B(U) = ( 1

2 ε−1/2)-shadh(L ∩ U) be the ( 1
2 ε−1/2)-shadow of the

horizontal edges of L ∩ U ; see Fig. 10(b). Otherwise (if |S ∩ U | ≤ 1), let B(U) = ∅. Denote
by V the set of connected components of B(U) for all U ∈ U .

For every V ∈ V , let C(V ) = (ε−1/2)-shadv(L ∩ V ) be the (ε−1/2)-shadow of the vertical
edges of L ∩ V ; see Fig. 10(b). Denote by W the set of all connected components of C(V )
for all V ∈ V.

Since height(W )/width(W ) = ε−1/2 for all W ∈ W and height(V )/width(V ) = 1
2 ε−1/2

for all V ∈ V, we have∑
W ∈W

width(W ) =
√

ε ·
∑

W ∈W
height(W ) ≤

√
ε ·
∑
V ∈V

height(V )

= 1
2
∑
V ∈V

width(V ) ≤ 1
2
∑
U∈U

width(U). (5)

For every polygon V ∈ V , let sV be the bottom vertex of V . We construct a sequence of
shallow-light trees from source sV as follows. For every nonnegative integer i ≥ 0, let hi be
a horizontal line at distance height(V )/2i above sV . If there is any point in S between hi

and hi+1, then we construct an SLT from sV to the portion of L between hi and hi+1. By
Lemma 16, the total weight of these trees is O(ε−1/2width(V )). Over all V ∈ V, the weight
of these SLTs is

∑
V ∈V O(ε−1/2width(V )) = O(ε−1/2width(U)). For all V ∈ V, we also add

the boundary ∂V to our spanner, at a cost of
∑

V ∈V per(V ) =
∑

V ∈V O(ε−1/2width(V )) =
O(ε−1/2width(U)). This completes the description of one iteration. Recurse on all W ∈ W
that contain any point in S.
Lightness analysis. Each iteration of the algorithm, for every polygon U ∈ U , constructs SLTs
of total weight O(ε−1/2width(U)), and produces subproblems whose combined width is at
most 1

2 width(U) by Equation (5). Consequently, summation over all levels of the recursion
yields ∥G(U)∥ = O(ε−1/2width(U) ·

∑
i≥0 2−i) = O(ε−1/2width(U)), as required.

Stretch analysis. Now consider a point pair a, b ∈ S such that slope(ab) ≥ ε−1/2, a is in a
vertical edge of L, and b is in a horizontal edge of L. Assume that U is the smallest shadow
polygon in the recursion above that contains both a and b. Then b ∈ V for some V ∈ V,
and a is at or below vertex sV of V . Now we can find an ab-path Pab as follows: First
construct a y-monotonically increasing path from a to sV along vertical edges of L and along
edges of slope 1

2 ε−1/2 of polygons in V. Then an SLT contains a path from sV to b. All
edges of Pab from a to sV are vertical or have slope 1

2 ε−1/2, and so their directions differ
from vertical by at most arctan(2ε1/2) ≤ 3ε1/2, using the Taylor expansion of tan(x) near
0. By Lemma 3 the stretch factor of the asV -path and the path (a, sV , b) are each at most
1 + O(ε). By Lemma 19, the SLT contains a sV b-path of stretch factor 1 + O(ε). Overall,
∥Pab∥ ≤ (1 + O(ε))∥ab∥. ◀

In Section 8, we show that Lemma 19 continues to hold if we replace the horizontal edges
with x-monotone tame paths. Specifically, Lemma 26 below generalizes this result.

8 Directional Spanners for Tame Histograms

In this section we prove Lemma 10 for tame histograms. Given a tame histogram T and
a finite set of points S ⊂ ∂T , we construct a directional spanner for S with respect to the
interval D = [ π−

√
ε

2 , π+
√

ε
2 ] of nearly-vertical directions. In the discussion below, we typically
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use slope(ab), rather than dir(ab). Note that whenever a, b ∈ S and dir(ab) ∈ D, then
|slope(ab)| ≥ ε−1/2, due to the Taylor estimate tan(x) ≥ x + x3/3 for x = dir(ab) − π

2 near 0.
The next lemma (Lemma 21) establishes a key property of tame histograms: the weight

of a subpath between two points in the pq-path can be bounded in terms of the L1-distance
between the two endpoints and an error term dominated by the distance between their
x-coordinates.

▶ Lemma 20. Let H be an x-monotone histogram bounded by a horizontal segment pq and
a pq-path L. Let a, b ∈ L such that b is the bottom-most point in Lab. Then there exists a
staircase ab-path Pab comprised of segments in Lab and horizontal chords of Lab.

a

Pab

p

L

b

q

Lab

Figure 11 A tame histogram and the ab-path P ab constructed in the proof of Lemma 21.

Proof. Assume w.l.o.g. that x(a) ≤ x(b); refer to Fig. 11. We construct an ab-path P

incrementally as follows: Initially, we set P = (a) to be the one-vertex path, and then
incrementally append new edges until it reaches b. Let c denote the current endpoint of P .

While c ̸= b do as follows. If c is in a vertical edge e of Lab, but not the bottom endpoint
of e, then we extend P to the bottom endpoint of e. Else if c is in a horizontal edge e of
Lab, but not the right endpoint of e, then we extend P to the right endpoint of e. Else c

is the bottom point of a vertical edge ev and the right endpoint of a horizontal edge eh of
Lab, and then we extend P with a horizontal chord cd. Such a chord exists since b is the
bottommost point in Lab. The algorithm terminates with c = b, since in each iteration either
y(c) decreases, or y(c) does not change but x(c) increases. ◀

▶ Lemma 21. Let H be a tame histogram bounded by a horizontal segment pq and a
pq-path L. Let a, b ∈ L such that b is the bottom-most point in Lab. Then ∥Lab∥ ≤
2|x(a) − x(b)| + |y(a) − y(b)|.

Proof. By Lemma 20, there exists a staircase ab-path Pab that comprises portions of Lab

and horizontal chords of Lab. Since Pab is a staircase ab-path, the total weight of its vertical
edges is |y(a) − y(b)| and the total weight of its horizontal edges is |x(a) − x(b)|. If we replace
every horizontal chord cd along Pab with the corresponding subpath Lcd of L, the resulting
path is precisely Lab. As H is a tame histogram, each chord cd is replaced by a path of
length at most 2∥cd∥ = 2 |x(c) − x(d)|. As these chords are disjoint horizontal line segments
along Pab, the weight increase is bounded by ∥Lab∥ − ∥Pab∥ ≤ |x(a) − x(b)|. Consequently,

∥Lab∥ = (∥Lab∥ − ∥Pab∥) + ∥Pab∥ ≤ 2|x(a) − x(b)| + |y(a) − y(b)|,

as claimed. ◀

In Lemmas 22 and 23 below, we use SLTs to construct directional (1 + ε)-spanners in a
tame histogram (i) between the base and a portion of the path L within a square; and (ii)
between a source s and a portion of the path L from p to q.



S. Bhore and C. D. Tóth 23

R

1

s

L′

(a) (b)

h
=

2ε
−
1
/
2

R

1

Q L

a

b

L

p

q

h
=

2ε
−
1
/
2

s

aaa

t

t′

Figure 12 (a) The boundary of a tame histogram in a square Q above rectangle R. (b) An
adaptation of an SLT to tame histograms.

▶ Lemma 22. Let R be an axis-parallel rectangle of width 1 and height 2ε−1/2. Let Q be a
unit square adjacent to the top side of R, and let L be a tame path in Q; see Fig. 12(a). Then
there exists a graph G comprised of L and additional edges of weight O(ε−1/2) that contains
an ab-path Pab with ∥Pab∥ ≤ (1 + ε) ∥ab∥ for any a ∈ L and any point b in the bottom side
of R.

Proof. Let s be the center of the rectangle R. We construct a geometric graph G as follows.
Let G contain the bottom side of R, the path L, and the two SLTs from s to the bottom and
top sides of R, respectively. Let G also contain a subdivision of Q into rectangles of aspect
ratio ε−1/2; see Fig.12(a). Specifically, we subdivide Q into rectangles r of width(r) =

√
ε

and height(r) = 1. Finally, in each rectangle r ⊂ Q of this subdivision, if r intersects L, then
let G contain a vertical line segment from a bottom-most point in L ∩ r to the bottom side
of Q.
Lightness analysis. The weight of two SLTs is O(ε−1/2) by Lemma 15. Since width(Q) = 1,
the weight of the subdivision of Q is O(ε−1/2), and the weight of the vertical edge in
each rectangle r ⊂ Q is at most height(r) = height(Q) = 1. The overall weight of G is
∥L∥ + O(ε−1/2).
Stretch-factor analysis. Let a ∈ L and let b be a point in the bottom side of R. We may
assume that a ∈ r, for a rectangle r ⊂ Q in the subdivision of Q. We construct an ab-path
Pab as follows: Start from a, follow L to a bottom-most point in L∩r, and then use a vertical
line segment to reach the bottom side of r. Then use the two SLTs to reach b. For easy
reference, we label some of intermediate vertices along Pab: let v1 be the bottom-most point
in L ∩ r, and let v2 be the bottom endpoint of the vertical segment in r, where Pab reaches
the top side of R. Note that the y-coordinates of these points monotonically decrease, that is,
y(a) ≥ y(v1) ≥ y(v2) ≥ y(b). Clearly, we have ∥ab∥ ≥ y(a) − y(b) ≥ y(v2) − y(b) = 2ε−1/2.

We now estimate the weight of each portion of Pab between a, v1, v2, and b. By Lemma 21,
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we have

∥Pav1∥ ≤ 2 |x(a) − x(v1)| + |y(a) − y(v1)|
≤ 2 width(r) + |y(a) − y(v1)|
≤ 2

√
ε + (y(a) − y(v1)).

As v1v2 is a vertical line segment, then ∥Pv1v2∥ = y(v1) − y(v2). Lemma 18 yields ∥Pv2b∥ ≤
(1 + O(ε))(y(v2) − y(b)). Putting the pieces together, we obtain

∥Pab∥ = ∥Pav1∥ + ∥Pv1v2∥ + ∥Pv3b∥

≤ 2
√

ε + (1 + O(ε))
(

(y(a) − y(v1)) + (y(v1) − y(v2)) + (y(v2) − y(b))
)

≤ (1 + O(ε))(y(a) − y(b)) + 2
√

ε

≤ (1 + O(ε))∥ab∥,

as required. ◀

▶ Lemma 23. Let R be an axis-parallel rectangle of width 1 and height 2ε−1/2; and let p

be the upper-left corner of R, and let q be a point on vertical line passing through the right
side of R with y(p) ≤ y(q). Let L be a tame pq-path that lies above the line segment pq; see
Fig. 12(b). Then there exists a geometric graph G comprised of L and additional edges of
weight O(ε−1/2) that contains an st-path Pst with ∥Pst∥ ≤ (1 + O(ε)) ∥st∥ for any s in the
bottom side of R and any t ∈ L.

Proof. By Lemma 20, there exists a staircase qp-path Pqp comprised of segments of L and
horizontal chords of L. Traversing Pqp from p to q, we obtain a x- and y-monotone increasing
pq-path that we denote by L′. For each horizontal edge e of Ppq, let Qe be an axis-parallel
square of side length ∥e∥ above e. Since L is a tame path, each connected component of
L \ L′ lies in a square Qe for some horizontal edge e of L′; see Fig. 12(b).

We construct a geometric graph G as follows. Let G contain two SLTs from the center of
R to the bottom side of R and to L′, resp., described in Lemma 16. Let G also contain a
subdivision of each square Qe into rectangles of aspect ratio 2ε−1/2. Finally, in each rectangle
r ⊂ Q of this subdivision, if r intersects L, then G contains a vertical line segment from a
bottom-most point in L ∩ r to the bottom side of r. The weight of the SLT is O(ε−1/2) by
Lemma 16. Since the sum of the widths of all squares Qe is at most one 1, the total weight
of the grids in Qe is also O(ε−1/2), and the vertical edges in the rectangles in r ⊂ Q are
bounded above by the weight of the grid. The overall weight of G is ∥L∥ + O(ε−1/2).

Let S be a point in the bottom side of R, and t ∈ L. If t ∈ L′, then the two SLTs jointly
contain a path Pst with ∥Pst∥ ≤ (1 + O(ε))∥st∥ by Lemma 18. Otherwise, t ∈ L \ L′. Since
L is a tame path, t lies in a square Qe for some horizontal edge e of L′. We can construct a
path Pst as a path from t to a point t′ ∈ e similarly to the proof of Lemma 22, followed by a
path from t′ to s in the SLTs. ◀

We use Lemma 22 to construct a (1 + ε)-spanner between the base pq and pq-path in a
tame histogram.

▶ Lemma 24. Let H be a tame histogram bounded by a horizontal line pq and pq-path L,
and let S ⊂ ∂H be a finite point set. Then there exists a geometric graph G of weight
∥G∥ = O(ε−1/2 per(P )) such that G contains a ab-path Pab with ∥Pab∥ ≤ (1 + ε)∥ab∥ for all
a ∈ S ∩ L and b ∈ pq such that ab ⊂ H and |slope(ab)| ≥ ε−1/2.
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Proof. We construct a collection Q of squares such that for every square Q ∈ Q is adjacent
to a rectangle R(Q) as in the setting of Lemma 22; and for every point pair a, b ∈ S, with
a ∈ L and b ∈ pq, there is a square Q ∈ Q such that a, b ∈ Q ∪ R(Q). Let G(Q) be the
geometric graph in Lemma 22 for all Q ∈ Q, and let G =

⋃
Q∈Q G(Q). Then G has the

required stretch factor. It remains to construct the collection Q of squares, and show that
∥G∥ = O(ε−1/2 per(P )).
Construction of Squares. Refer to Fig. 13. Let H be a tame histogram bounded by a
horizontal line pq and pq-path L. We may assume w.l.o.g. that p is the origin and q is on
the positive x-axis, and h = height(H). Since H is tame, ∥L∥ ≤ 2∥pq∥, which implies that
h ≤ 1

2 ∥pq∥. For every nonnegative integer i ∈ N, let

ℓi : y = h
(
1 − 3 ·

√
ε
)i

.

We tile the horizontal strip between two consecutive lines, ℓi and ℓi+1, by squares in two
different ways, such that the midpoint of a square in one tiling is on the boundary of two
squares in the other tiling.

(a) (b)
p q

H

`0

`1

`2
`3
`4

h

Figure 13 (a) A tame histogram H and horizontal lines ℓi, i ∈ N, defined in the proof of
Lemma 24. (b) Tiling of the horizontal strips between consecutive lines ℓi and ℓi+1.

Let Q be the set of squares Q in the tilings defined above such that Q ∩ S ̸= ∅. For each
square Q ∈ Q, let R(Q) be the axis-aligned rectangle such that the top side of R(Q) equals
the bottom side of Q, and the bottom side of R(Q) is in the x-axis. Then the aspect ratio of
R(Q) is 1

3 ε−1/2. Indeed, if Q lies between ℓi and ℓi+1, then

height(R(Q))
width(R(Q)) = height(R(Q))

height(Q) = h (1 − 3
√

ε)i

h (1 − 3
√

ε)i − h (1 − 3
√

ε)i+1 = 1
1 − (1 − 3

√
ε)

= 1
3
√

ε
.

For every Q ∈ Q, Lemma 22 (invoked with 36 ε in place of ε) yields a geometric graph G(Q).
Let G =

⋃
Q∈Q G(Q).

Lightness Analysis. By Lemma 22, the graph G(Q) is comprised of L ∩ Q and additional
edges of weight O(ε−1/2width(Q)). For the desired bound ∥G∥ ≤ O(ε−1/2per(H)), it is
enough to prove that

∑
Q∈Q width(Q) ≤ O(per(H)).

We define a proximity graph Ĝ on the squares in Q. The vertex set is V (Ĝ) = Q, and
squares Q1, Q2 ∈ Q are adjacent if and only if dist(Q1, Q2) ≤ width(Q1) + width(Q2). Since
the squares in the horizontal strip between ℓi and ℓi+1 form two tilings, and the widths of
the squares in adjacent horizontal strips differ by a factor close to 1, the maximum degree in
Ĝ is O(1). Consequently, Ĝ is O(1)-degenerate, and we can partition its vertex set Q into
O(1) independent sets.

For every Q ∈ Q, let 2Q denote the square obtained by dilating Q from its center by
a factor of 2. Since L contains points in Q, but at least one of its endpoints is outside
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of 2Q, then L traverses the annulus 2Q \ Q, which implies ∥L ∩ 2Q∥ ≥ width(Q). For an
independent set I ⊂ Q, the squares {2Q : Q ∈ I} are pairwise disjoint. It follows that

∑
Q∈I

width(Q) ≤
∑
Q∈I

∥L ∩ 2Q∥ ≤

∥∥∥∥∥∥L ∩

⋃
Q∈I

2Q

∥∥∥∥∥∥ ≤ ∥L∥.

Summation over O(1) independent sets yields
∑

Q∈Q width(Q) ≤ ∥L∥ ≤ O(per(H)), as
required.
Stretch analysis. Now consider points a ∈ S∩L and b ∈ pq such that ab ⊂ H and |slope(ab)| ≥
ε−1/2. Assume w.l.o.g. that slope(ab) > 0. There exists a square Q ∈ Q such that a lies in
the right half of Q. We have x(b) − x(a) ≤ (y(a) − y(b))/slope(ab) ≤ ε1/2height(Q ∪ R(Q)) ≤
3
2 ε1/2height(R(Q)) ≤ 1

2 width(R(Q)). Consequently, b is on the bottom side of R(Q), and so
G(Q) contains an ab-path of weight (1 + O(ε))∥ab∥ by Lemma 22. ◀

In the remainder of this section, we construct a directional (1 + ε)-spanner for points
on the x-monotone path of a tame histogram. This is done by an adaptation of Lemma 19.
Even though the horizontal edges are replaced by tame paths, the weight analysis remains
essentially the same.

The crucial observation in the proof of Lemma 19 (cf. Equation (5)) was that if L is an
x- and y-monotone increasing staircase ab-path, then slope(ab) = height(L)/width(L). We
show that this equation holds approximately for any tame path L, where the width and
height of L are replaced by the total weight of horizontal and vertical edges of L, denoted
hper(L) and vper(L), respectively.

▶ Lemma 25. If L is a tame pq-path such that 1
2 ε−1/2 ≤ slope(pq) ≤ ε−1/2 for ε ∈ (0, 1

16 ],
then

slope(pq) ≤ vper(L)
hper(L) ≤ 3

2 slope(pq). (6)

Proof. Assume w.l.o.g. that x(p) < x(q) and y(p) < y(q). By Lemma 20, there exists a
staircase qp-path Pqp comprised of segments of L and horizontal chords of L. Traversing
Pqp from p to q, we obtain a x- and y-monotone increasing pq-path that we denote by L′;
For each horizontal chord ab of L, we have hper(Lab) = ∥ab∥ since L is x-monotone, and
vper(Lab) ≤ hper(ab) ≤ ∥ab∥ since L is tame. Consequently, we have hper(L′) = hper(L) =
width(pq) and, as L′ is a staircase path, then

vper(L) ≤vper(L′) + hper(L′) = height(pq) + width(pq)

≤
(

1 + 1
slope(pq)

)
height(pq) ≤ (1 + 2ε1/2)height(pq).

Overall, we obtain

slope(pq) = height(L′)
width(L′) ≤ vper(L)

hper(L) ≤ (1 + 2ε1/2)height(L′)
width(L′) ≤ 3

2 slope(pq),

where we used that 0 < ε ≤ 1
16 implies 1 + 2ε1/2 ≤ 3

2 . ◀

As noted above, the following lemma is an adaptation of Lemma 19 to tame paths. Due
to Lemma 25, the recursive weight analysis carries over to this case. For clarity, we present a
complete proof.
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(a) (b) (c)
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Figure 14 (a) A tame path L. The shadow of the ascending vertical edges of L is shaded light
gray. (b) The shadow of the horizontal edges and descending vertical edges is shaded dark gray. (c)
Recursive subproblems generated in the proof of Lemma 26.

▶ Lemma 26. Let L be a tame path, S ⊂ L a finite point set, and ε ∈ (0, 1]. Then there
exists a geometric graph G comprised of L and additional edges of weight O(ε−1/2hper(L))
such that G contains a path Pab of weight ∥Pab∥ ≤ (1 + O(ε))∥ab∥ for any a, b ∈ L such that
|slope(ab)| ≥ ε−1/2 and the line segment ab lies below L.

Proof. By Lemma 21, we have ∥Lab∥ ≤ 2|x(a) − x(b)| + |y(a) − y(b)| ≤ (1 +
√

2)∥ab∥, so
the claim holds for G = L if ε ∈ ( 1

16 , 1]. In the remainder of the proof, assume ε ∈ (0, 1
16 ].

We construct G as a union of two graphs, G+ and G−, where G+ is a spanner for {a, b}
pairs with slope(ab) > 0 and G− for slope(ab) < 0. We focus on G+, as the case of G− is
analogous.

Let a, b ∈ S such that slope(ab) ≥ ε−1/2 and ab lies below L. Without loss of generality,
we may assume y(a) < y(b). Since ab is below L, point a cannot be an interior of a horizontal
edge of L. Note that a is a point in an ascending vertical edge of L.

Let A = (ε−1/2)-shadv(L) be the (ε−1/2)-shadow of vertical edges of L; see Fig. 14(a).
Let U be the set of connected components of A. By construction every pair a, b ∈ L with
slope(ab) ≥ ε−1/2 and ab ⊂ H lies in some polygon in U . For each polygon U ∈ U , we
construct a geometric graph G+(U) of weight O(ε−1/2hper(U)) such that G+(U) ∪ L is a
directional (1+ε)-spanner for the points in S∩U . Then L together with

⋃
U∈U G+(U) is (1+ε)-

spanner for all possible ab pairs. Since the polygons in U are adjacent to disjoint portions
of L, we have

∑
U∈U hper(U) ≤ hper(L), and so

∑
U∈U ∥G+(U)∥ = O(ε−1/2hper(L)), as

required.
Recursive Construction. For each U ∈ U , we construct G+(U) recursively as follows. If
|S ∩ U | ≥ 2, then let B(U) = ( 1

2 ε−1/2)-shadh(L ∩ U) be the ( 1
2 ε−1/2)-shadow of horizontal

edges of L ∩ U ; see Fig. 14(b). |S ∩ U | ≥ 2, then let B(U) = ∅. Denote by V the set of
connected components of B(U) for all U ∈ U .

For every V ∈ V, let C(V ) = (ε−1/2)-shadv(L ∩ V ) be the (ε−1/2)-shadow of vertical
edges of L ∩ V ; see Fig. 14(b). Denote by W the set of all connected components of C(V )
for all V ∈ V.

We can apply Lemma 25 with slope ε−1/2 for all W ∈ W; and with slope 1
2 ε−1/2 for all

V ∈ V. Then∑
W ∈W

hper(W ) ≤ 3
2 ·

√
ε ·

∑
W ∈W

vper(W ) ≤ 3
2 ·

√
ε ·
∑
V ∈V

vper(V )

≤ 3
2 · 1

2
∑
V ∈V

hper(V ) ≤ 3
4
∑
U∈U

hper(U). (7)
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Consequently,
∑

W ∈W ∥G+(W )∥ is proportional to 3
4 · ε−1/2∑

U∈U hper(U).
For each polygon V ∈ V, let sV be the bottom vertex of V , let L(V ) = L ∩ V be the

portion of L on the boundary of V . We construct a sequence of SLTs from source sV as follows.
For every nonnegative integer i ≥ 0, let hi be a horizontal line at distance height(V )/2i

above sV . Let Li ⊂ L(V ) be a maximum portion of L(V ) such that the corresponding
staircase path L′

i is on or below hi and strictly above hi+1. By Lemma 23, we can construct
a SLT from sV to Li. The total weight of these SLTs is O(ε−1/2hper(V )). Then the overall
weight of these spanners is

∑
V ∈V O(ε−1/2hper(V )) = O(ε−1/2hper(U)). This completes the

description of one iteration. Recurse on all W ∈ W that contain any point in S.
Lightness analysis. Each recursive call of the algorithm, for a polygon U , adds edges of total
weight O(ε−1/2hper(U)) to G+(U) and produces subproblems whose combined horizontal
perimeter is at most 3

4 hper(U) by Equation (7). Consequently, summation over all subsequent
levels of the recursion yields ∥G+(U)∥ = O(ε−1/2hper(U) ·

∑
i≥0
( 3

4
)−i) = O(ε−1/2hper(U)),

as required.
Stretch analysis. Now consider point pair a, b ∈ S such that slope(ab) ≥ ε−1/2, a is in an
ascending vertical edge of L, and b is in a horizontal edge or a descending vertical edge of L.
Assume that U is the smallest polygon in the recursion above that contains both a and b.
Then b ∈ V for some V ∈ V, and a is at or below the bottom vertex sV of V . Now we can
find an ab-path Pab as follows: First construct a y-monotonically increasing path from a to
sV along vertical edges of L and along the edges of slope 1

2 ε1/2 of some polygons in V . Then
from sV to b, follow an SLT provided by Lemma 23. Specifically, let b′ be the orthogonal
projection of b to the staircase path L′. There exists an integer i ≥ 0 such that b′ lies between
the horizontal lines hi and hi+1, and we can use the SLT constructed between sV and Li.

All edges of Pab from a to sV are vertical or have slope 1
2 ε−1/2, and so their directions

differ from vertical by at most arctan(2ε1/2) ≤ 3ε1/2 from the Taylor expansion of tan(x)
near 0. By Lemma 3 the stretch factor of the asV -path and the path (a, sV , b) are each at
most 1 + O(ε). Lemma 23 provides a path from sV to b with stretch factor 1 + O(ε). Overall,
∥Pab∥ ≤ (1 + O(ε))∥ab∥. ◀

The combination of Lemmas 24 and 26 provides a directional (1 + ε)-spanner for all point
pairs on the boundary of a tame histogram.

▶ Corollary 27. Let H be a tame histogram and S ⊂ ∂H a finite point set. Then there exists
a geometric graph G of weight ∥G∥ = O(ε−1/2 hper(H)) such that G contains a ab-path Pab

with ∥Pab∥ ≤ (1 + O(ε))∥ab∥ for all a, b ∈ S whenever ab ⊂ H and |slope(ab)| ≥ ε−1/2.

9 Directional Spanners for Thin Histograms

We can now construct a directional (1 + ε)-spanner for a thin histogram.

▶ Lemma 28. Let F be a thin histogram and S ⊂ ∂F a finite point set. Then there exists
a geometric graph G of weight ∥G∥ = O(ε−1/2 hper(F )) such that G contains a ab-path Pab

with ∥Pab∥ ≤ (1 + ε)∥ab∥ for all a, b ∈ S if ab ⊂ F and dir(ab) ∈ D.

Proof. Let F be a thin histogram bounded by a vertical segment pq and a y-monotone
pq-path. By the definition of thin histograms, for all vertical chords ab with a, b ∈ L ∩ S, we
have ∥Lab∥ ≤ 1

2 ε1/2 ∥ab∥. We construct directional spanner in two steps.
Case 1: Directional spanners for chords ab, with a, b ∈ L. Similarly to the proof of
Lemma 17, let L′ be the unfolding of L into a staircase path; refer to Figs. 15(a)–(b). For
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every point p ∈ L, let p′ denote the corresponding point in L′. Denoting by R and R′ the
vertical strips spanned by L and L′, respectively, there is a continuous and piecewise isometric
function ϱ : R′ → R such that ϱ(L′) = L. Any chord ab of F with a, b, ∈ L corresponds to a
segment a′b′ with a′, b′ ∈ L′, where L′

a′b′ denotes the subpath of L′ between a′ and b′.

b1

(c)(a) (b)

q

p

L
q′

p′

L′

a′

b′

Lab

L′
a′b′

q = a4

p = a0

L
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a3 b2

b3

a

b

b0a1

a2 b1 L1

(d)

a1
b

a

`0

`1

`2
`3
`4

H1

c

c

b

Figure 15 (a) A thin histogram, and a chord ab with |slope(ab)| ≥ ε−1/2. (b) The y-monotone
path L is unfolded into a staircase path L′. (c) A pq path (a0, b0, a1, . . . , a4). (d) A covering of Li

with squares.

Let ab be a chord of F with a, b ∈ L and |slope(ab)| ≥ ε−1/2. Then height(ab) ≥
ε−1/2width(ab). Since F is a thin histogram, then

hper(Lab) ≤ width(ab) + ε1/2

2 height(ab)

≤
(

1
|slope(ab)| + ε1/2

2

)
height(ab)

≤ 2 ε1/2 vper(Lab).

Consequently,

|slope(a′b′)| ≥ vper(La′b′)
hper(La′b′) = vper(Lab)

hper(Lab) ≥ ε−1/2

2 . (8)

This in turn implies

∥a′b′∥ =
(

(width(a′b′))2 + (height(a′b′))2
)1/2

=
(

1 + 1
(slope(a′b′))2

)1/2
height(a′b′)

≤ (1 + 4ε)1/2 height(ab) ≤ (1 + O(ε)) ∥ab∥.

We are now ready to construct a spanner, using Lemma 19. Let S′ = {s′ ∈ L′ : s ∈ S ∩L}
be the set of points in L′ corresponding to the points in S ∩ L. Let S′′ be union of S′ and all
intersection points between L′ and the line segments spanned by S′. Applying Lemma 19
for L′ and the point set S′′ twice (both above and below L′), we obtain a geometric graph
G′ of weight O(ε−1/2 width(L′)) that contains, for all chords p′q′ of L′ with p′, q′ ∈ S′′ and
|slope(p′q′)| ≥ 2 ε−1/2, a path Pp′q′ of weight at most ∥Pp′q′∥ ≤ (1 + ε)∥p′q′∥.

Given a point pair
Lightness analysis in Case 1. Let G = ϱ(G′), which has the same weight as G′, that is,

∥G∥ = ∥G′∥ = O(ε−1/2 width(L′)) = O(ε−1/2 hper(L)) = O(ε−1/2 hper(F )).
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Stretch analysis in Case 1. Let ab be a chord of L with |slope(ab)| ≥ ε−1/2. Then
|slope(a′b′)| ≥ 1

2 ε−1/2 by Equation (8). The line segment a′b′ is not necessarily a chord of
L′. The staircase path L′ subdivides a′b′ into a chain (p′

0, . . . , p′
m) of collinear chords of L′.

For all i = 1, . . . , m, the spanner G′ contains a p′
i−1p′

i-path P ′
i of weight (1 + O(ε))∥p′

i−1p′
i∥.

The concatenation of these paths is an a′b′-path P ′
a′b′ of weight (1 + O(ε))∥a′b′∥. Finally,

G = ϱ(G′) contains the ab-path Pab = ϱ(P ′
a′b′) of weight

∥Pab∥ = ∥Pa′b′∥ ≤ (1 + O(ε))∥a′b′∥ ≤ (1 + O(ε))2∥ab∥ ≤ (1 + O(ε))∥ab∥,

as required.
Case 2: Directional spanner for chords between pq and L. Assume w.l.o.g. that pq

is the left edge of F , and p is the bottom vertex of pq. We describe a construction for chords
ab with slope(ab) ≥ ε−1/2; the construction is analogous for slope(ab) ≤ −ε−1/2, after a
reflection.

We subdivide F by a pq-path constructed recursively as follows; see Fig. 15(c). Initially, we
set i = 0 and a0 = p. While ai ≠ q, we construct point bi ∈ L such that slope(aibi) = ε−1/2;
and then construct ai+1 ∈ pq such that biai+1 is horizontal. Since P has finitely many
vertices, the algorithm terminates with r = aq for some integer m ≥ 1. For short, denote by
Li the subpath of L between bi−1 and bi, and let Hi be the y-monotone histogram bounded
by Li and the path (bi−1, ai, ai+1, bi).

For every i = 0, . . . , m − 1, we construct a geometric graph Gi as follows. Graph Gi

includes the boundary of Hi, that is, Li and the path (bi−1, ai, ai+1, bi). The segments
ai−1ai ∪ bi−1ai form a staircase path; by Lemma 19, there exists a geometric graph of weight
O(∥aiai+1∥) that is a directional (1 + ε)-spanner for chords of ai−1ai ∪ bi−1ai of slope ε−1/2

or more; we add this graph to Gi. Finally, similarly to the proof of Lemma 24, we cover Hi

with squares. Specifically, for every j ∈ N, let

ℓj : y = y(ai) + height(Hi)
(
1 − 3 ·

√
ε
)i

.

We tile the horizontal strip between two consecutive lines, ℓj and ℓj+1, by squares see
Fig. 15(d). For each square Q that intersects Li, Lemma 22 (invoked with 36 ε in place of ε)
yields a geometric graph of weight O(ε−1/2 width(Q)) = O(ε−1/2 hper(L ∩ Q)) that contains,
for every chord st of Hi with s ∈ bi−1ai and t ∈ Li ∩ Q, an st path of weight (1 + O(ε))∥st∥.
We add all these graphs to Gi.
Lightness analysis in Case 2. We have subdivided the edge pq into a path (a0, . . . , am), hence∑m

i=1 ∥ai−1ai∥ = ∥pq∥. Consequently,
∑m

i=1 ∥bi−1ai∥ =
∑m

i=1 ε1/2 ∥ai−1ai∥ = ε1/2∥pq∥. The
total weight of the spanners between ai−1ai and bi−1ai, for i = 1, . . . , m, is also bounded by∑m

i=1 O(∥ai−1ai∥) = O(∥pq∥). Finally, the path L is covered by squares, and for each square
Q with Q ∩ L ̸= ∅, we have added a graph of weight O(ε−1/2 hper(L ∩ Q)). Summation over
all squares yields∑

Q

O(ε−1/2 hper(L ∩ Q)) = O(ε−1/2 hper(L)) = O(ε−1/2 hper(F )).

As ∥pq∥ = O(ε−1/2 hper(F )) in a thin histogram, then the total weight of the spanner for F

is O(ε−1/2 hper(F )).
Stretch analysis in Case 2. Let a ∈ pq and b ∈ L such that |slope(ab)| ≥ ε−1/2. By symmetry,
we may assume slope(ab) ≥ ε−1/2. Since slope(aibi) = ε−1/2 for all i = 0, . . . , m − 1, then
ab cannot cross any of these segments, and so ab crosses at least one segment aibi−1. Let j

be the largest index such that ab crosses ajbj−1, and let c = ab ∩ ajbj−1; see Fig. 15(c). If
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a ∈ aj−1aj , then we find a path Pab as a concatenation of an ac-path Pac using the spanner
for the staircase path (aj−1, aj , bj−1), and a cb-path Pcb using the spanner in the histogram
Hj . Then

∥Pab∥ = ∥Pac∥ + ∥Pcb∥ ≤ (1 + O(ε))(∥ac∥ + ∥cb∥) = (1 + O(ε))∥ab∥.

If a is below point aj−1, then we construct an ab-path Pab as a concatenation of edge aaj−1,
followed by a path from aj−1 to b via c as in the previous case. The slope of every edge of
the path (a, aj−1, c, b) is more than ε−1/2, hence ∥aaj−1∥ + ∥aj−1c∥ + ∥cb∥ ≤ (1 + ε)∥ab∥
by Lemma 3. The spanner contains paths that approximate aj−1c and cb by a factors of
1 + O(ε). Overall, we have ∥Pab∥ ≤ (1 + O(ε))∥ab∥, as required. ◀

Corollary 27 and Lemma 28 jointly imply Lemma 10.

▶ Lemma 10. Let F be a tame or thin histogram, S ⊂ ∂F a finite point set, ε ∈ (0, 1], and
D = [ π−

√
ε

2 , π+
√

ε
2 ] an interval of nearly vertical directions. Then there exists a geometric

graph G of weight O(per(F ) + ε−1/2 hper(F )) such that for all a, b ∈ S, if ab is a chord of F

and dir(ab) ∈ D, then G contains an ab-path of weight at most (1 + O(ε))∥ab∥.

This completes all components needed for Theorem 12.

10 Conclusion and Outlook

We have studied Euclidean Steiner (1 + ε)-spanners under two optimization criteria, lightness
and sparsity, and obtained improved lower and upper bounds. In Euclidean d-space, the
same point sets (grids in two parallel hyperplanes) establish the lower bounds Ω(ε−d/2) for
lightness and Ω(ε(1−d)/2) for sparsity, for Steiner (1 + ε)-spanners (cf. Theorem 1). For
lightness, we obtained a matching lower bound of O(ε−1) in the plane (cf. Theorem 2).
However, in dimensions d ≥ 3, a Θ̃(ε−1/2)-factor gap remains between the current upper
bound Õ(ε−(d+1)/2) [37, Theorem 1.7] and the lower bound Θ(ε−d/2) of Theorem 1. Le and
Solomon [34, Theorem 1.3] constructed spanners with sparsity Õ(ε(1−d)/2), matching the
lower bound up to lower-order factors in every dimension d ∈ N.

Without Steiner points, the greedy-spanner achieves the worst-case lower bounds of
Ω(ε−d) and Ω(ε−d+1) for lightness and sparsity, resp., in every dimension d ≥ 2. When
Steiner points are allowed, however, it is unclear whether a (1 + ε)-spanner can meet both
optimization criteria. The current best constructions for sparsity ([34, Theorem 1.3]) and
lightness (Theorem 2 and [37, Theorem 1.7]) place Steiner points in d-space to optimize one
criterion, but not the other. We conjecture that a Euclidean Steiner (1 + ε)-spanner cannot
simultaneously attain both lower bounds (lightness and sparsity) of Theorem 1. Exploring
the trade-offs between lightness and sparsity in Euclidean d-space remains an open problem.

In the plane, in particular, we have proved a tight upper bound of O(ε−1) on the lightness
of Euclidean Steiner (1 + ε)-spanners (cf. Theorem 2). Our proof is constructive: For every
finite set S ⊂ R2, we describe a Euclidean Steiner (1+ε)-spanner of weight O(ε−1 ∥MST(S)∥).
However, we do not control the number of Steiner points. This immediately raises two
questions: What is the minimum number of Steiner points and what is the minimum sparsity
of a Euclidean Steiner (1 + ε)-spanner of lightness O(ε−1) that can be attained for all finite
point sets in the plane?

Planarity is an important aspect of any geometric network in R2. It is desirable to
construct Euclidean (1 + ε)-spanners that are plane, i.e., no two edges of the spanner cross.
Any Steiner spanner can be turned into a plane spanner (planarized), with the same weight
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and the same spanning ratio between the input points, by introducing Steiner points at all
edge crossings. However, planarization may substantially increase the number of Steiner
points. Bose and Smid [13, Sec. 4] note that Arikati et al. [2] constructed a Euclidean plane
(1 + ε)-spanner with O(ε−4n) Steiner points for n points in R2; see also [40]. Borradaile
and Eppstein [10] improved the bound to O(ε−3n log ε−1) in certain special cases where all
Delaunay faces of the point set are fat. It remains an open problem to find the optimum
dependence of ε for plane Steiner (1 + ε)-spanners; and for plane Steiner (1 + ε)-spanners of
lightness O(ε−1).
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