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Abstract

We propose a multi-frequency algorithm for imaging the trajectory of a moving point
source from one and sparse far-field observation directions in the frequency domain. The
starting and terminal time points of the moving source are both supposed to be known. We
introduce the concept of observable directions (angles) in the far-field region and derive all
observable directions (angles) for straight and circular motions. At an observable direction,
it is verified that the smallest trip containing the trajectory and perpendicular to the direc-
tion can be imaged, provided the orbit function possesses a certain monotonical property.
Without the monotonicity one can only expect to recover a thinner strip. The far-field data
measured at sparse observable directions can be used to recover the Θ-convex domain of the
trajectory. Both two- and three-dimensional numerical examples are implemented to show
effectiveness and feasibility of the approach.

Keywords: inverse moving source problem, Helmholtz equation, multi-
frequency data, factorization method, uniqueness.

1 Introduction

1.1 Time-dependent model and Fourier transform

We suppose that the whole space Rd (d = 2, 3) is filled with a homogeneous and isotropic
medium with a unit mass density. Consider a moving point source along the trajectory function
a(t) : [tmin, tmax]→ Rd ∈ C1[tmin, tmax] with 0 < tmin < tmax. The source function S is supposed
to radiate wave signals at the beginning time tmin and stop radiating at the time point tmax, i.e.,
it is supported in the interval [tmin, tmax] with respect to the time variable t > 0. Hence, the
source function takes the form

S(x, t) = δ(x− a(t))χ(t), (1.1)
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where δ denotes the Dirac delta function and

χ(t) =

{
1, t ∈ [tmin, tmax],

0, t /∈ [tmin, tmax],

is the characteristic function over the interval [tmin, tmax]. Denote the trajectory by Γ := {x :

x = a(t), t ∈ [tmin, tmax]}. One can easily find Supp S(·, t) ⊂ Γ for all t ∈ [tmin, tmax]. The
propagation of the radiated wave fields U(x, t) is governed by the initial value problem

∂2U

∂t2
= ∆U + S(x, t), (x, t) ∈ Rd × R+,R+ := {t ∈ R : t > 0},

U(x, 0) = ∂tU(x, 0) = 0, x ∈ Rd.
(1.2)

The solution U can be written explicitly as the convolution of the fundamental solution
Gd(d = 2, 3) to the wave equation with the source term,

U(x, t) = Gd(x; t) ∗ S(x, t) :=

∫
R+

∫
Rd

Gd(x− y; t− τ)S(y, τ) dydτ (1.3)

where

Gd(x; t) =


H(t− |x|)

2π
√
t2 − |x|2

, if d = 2;

δ(t− |x|)
4π|x|

, if d = 3,

where H denotes the Heaviside function. In this paper the one-dimensional Fourier and inverse
Fourier transforms are defined by

(Fg)(k) =
1√
2π

∫
R
g(t)e−ikt dt, (F−1v)(t) =

1√
2π

∫
R
v(k)eikt dk,

respectively. The Fourier transform of S is thus given by

f(x, k) := (FS(x, ·))(k) =
1√
2π

∫
R
δ(x−a(t))χ(t)e−ikt dt =

1√
2π

∫ tmax

tmin

δ(x−a(t))e−ikt dt. (1.4)

It is obvious f(x, k) = 0 for all x /∈ Γ and k ∈ [kmin, kmax]. From the expression (1.3), one
deduces the Fourier transform of the wave fields U ,

w(x, k) = (FU)(x, k) =

∫
Rd

(FGd)(x− y; k)(FS)(y, k) dy

=

∫
Rd

Φd(x− y; k)f(y, k) dy.

(1.5)

Here, Φd(x− y; k) is the fundamental solution to the Helmholtz equation (∆ + k2)w = 0, given
by

Φd(x− y; k) =


i

4
H

(1)
0 (k|x− y|), d = 2,

eik|x−y|

4π|x− y|
, d = 3,

x 6= y, x, y ∈ Rd,
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and H(1)
0 is the Hankel function of the first kind of order zero. On the other hand, taking the

Fourier transform on the wave equation yields the inhomogeneous Helmholtz equations

∆w(x, k) + k2w(x, k) = −f(x, k), x ∈ Rd, k > 0. (1.6)

From (1.5) we observe that w satisfies the Sommerfeld radiation condition

lim
r→∞

r
d−1
2 (∂rw − ikw) = 0, r = |x|, (1.7)

which holds uniformly in all directions x̂ = x/r ∈ Sd−1 := {x ∈ Rd : |x| = 1}.

1.2 Formulation in the frequency domain and literature review

Denote by [kmin, kmax] an interval of wavenumbers/frequencies on the positive real axis. From
the time-domain setting we see

f(x, k) 6= 0, x ∈ Γ, f(x, k) = 0, x /∈ Γ

for all k ∈ [kmin, kmax], implying supp f(·, k) = Γ for all k ∈ [kmin, kmax]. For every k > 0, the
unique solution w ∈ H2

loc(Rd) to (1.6)-(1.7) is given by (1.5), i.e.,

w(x, k) =

∫
Rd

Φd(x− y; k)f(y, k)dy, x ∈ Rd. (1.8)

The Sommerfeld radiation condition leads to the asymptotic behavior of w at infinity:

w(x) = Cd
eik|x|

|x|
d−1
2

{w∞(x̂, k) +O(r−
d+1
2 )} as |x| → ∞, d = 2, 3, (1.9)

where C2 = eiπ/4/
√

8πk, C3 = 1/4π, and w∞(·, k) ∈ C∞(Sd−1) is known as the far-field pattern
(or scattering amplitude) of w. It is well known that the function x̂ 7→ w∞(x̂, k) is real-analytic
on Sd−1, where x̂ ∈ Sd−1 is usually referred as the observation direction. By (1.8), the far-field
pattern w∞ of w can be expressed as

w∞(x̂, k) =

∫
Rd

e−ikx̂·yf(y, k) dy =
1√
2π

∫ tmax

tmin

e−ik
(
a(t)·x̂+t

)
dt

for x̂ ∈ Sd−1 and k > 0. Noting that the time-dependent source S is real valued, we have
f(x,−k) = f(x, k) for all k > 0 and thus w∞(x,−k) = w∞(x, k).

In this paper we are interested in the following inverse problem (see Fig. 1):

(IP): Recovery the trajectory Γ from knowledge of the multi-frequency far-field patterns

{w∞(x̂j , k) : k ∈ [kmin, kmax], j = 1, 2, · · · ,M}.

where x̂j ∈ Sd−1 are sparse observation directions and [kmin, kmax] denotes a broad band
of wavenumbers/frequencies.
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In particular, we are interested the following question:

What kind information on Γ can be extracted from the the multi-frequency far-field patterns
{w∞(x̂, k) : k ∈ [kmin, kmax]} at a fixed observation direction x̂ ∈ Sd−1 ?

The above questions are of great importance in industrial, medical and military applications,
because the number the measurement positions is usually quite limited and multi-frequency
data are always available by Fourier transforming the time-dependent measurement data. Al-
though multi-frequency far-field patterns are taken as the measurement data within this paper,
the approach explored here carries over naturally to the near-field data case at least in three
dimensions.

|xj | → ∞, w∞(x̂j , k)

Γ

a(tmin)

a(tmax)

Figure 1: Imaging the trajectory Γ from knowledge of multi-frequency far-field patterns measured
at sparse observation directions x̂j := (cos(jπ/2), sin(jπ/2)), j = 0, 1, 2, 3.

To the best of the authors’ knowledge, there are quite few mathematical studies on direct
and inverse scattering theory for moving targets, in comparision with vast literatures devoted
to scattering by stationary objects (see the monograph [14]). Cooper & Strauss [4, 5] and
Stefanov [22] contribute rigorous mathematical theory to direct and inverse scattering from
moving obstacles. We also refer to [3] for a linearized imaging theory with applications to
various radar systems. Recently there have been growing research interests in detecting the
motion of moving point sources governed by inhomogeneous wave equations. Such kind of inverse
source problems can be regarded as a linearized inverse obstacles problem. Consequently, various
inversion algorithms have been proposed for recovering the orbit, profile and magnitude of a
moving point source, such as the algebraic method [20, 24, 21], the time-reversal method [7], the
method of fundamental solutions [2], matched-filter and correlation-based imaging scheme [6], the
iterative thresholding scheme [19] and the Bayesian inference [17, 25]. See also [18, 11, 12, 13, 15]
for uniqueness and stability results on inverse problems of identifying moving sources.

The purpose of this paper is to establish a factorization method for imaging Γ from sparse
far-field measurements at multiple frequencies. The Factorization method was firstly proposed
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by Kirsch in 1998 [16]. It has been successfully applied to various inverse scattering problems
with multi-static data at a fixed energy (or equivalently, the Dirichlet-to-Neumann map). Its
multi-frequency version was rigorously justified by Griesmaier and Schmiedecke [8] for inverse
wave-number-independent source problems. It was verified in [8] that the smallest strip contain-
ing the support of a stationary source and perpendicular to a single observation direction in the
far field can be imaged. With sparse far-field observations, the so-called Θ-convex polygon (that
is, a convex polygonal whose normals coincide with observation directions) of the support can
be recovered. If the dependance of the underlying source on the wavenumber takes the form of a
windowed Fourier transform, one can also establish the analogue of the multi-frequency factor-
ization method [9]. The approach of [9] also provides inspirations for dealing with other kinds
of wave-number-dependent sources (or equivalently, time-dependent sources). Although prelimi-
nary tests are implemented in [9] for imaging the trajectory of a moving source, a comprehensive
mathematical framework still needs to be built, which is the primary task of this work. Extensive
numerical tests are implemented in the frequency domain in this paper. The counterpart of our
inversion theory for wave equations using time-dependent near-field data deserves to be further
investigated, which will be reported in our subsequent publications.

Motivated by earlier studies on sampling-type methods to inverse source problems [8, 9, 1, 10],
one can at most expect to recover the smallest strip containing the trajectory and perpendicular
to the observation direction through the multi-frequency data measured at a single direction.
However, our studies show that imaging such a strip turns out to be impossible for inverse
moving source problems with a general orbit function. The recovery of the motion can be
achieved only if the observation direction is observable in the sense of Definition 3.6 and the
orbit function possesses a certain monotonicity property; see Theorem 4.3 (ii). In particular, the
monotonicity can be fulfilled if the velocity of the moving source is slower than the wave speed.
Otherwise, one can only get a thinner strip K

(x̂)
Γ (see (3.27) for the definition, whose width

is less than the aforementioned smallest strip) at an observable direction. For non-observable
directions, the choice of the test function cannot lie in the range of the data-to-pattern operator
(see Lemma 3.10). Hence, it is impossible to extract any information on the motion of a moving
source by our theory, although numerics still show partial information which however remains
unclear to us. Using sparse observable directions, we design an indicator function for imaging the
Θ-convex domain of the trajectory. The Θ-convex domain is a subset of the Θ-convex polygon
introduced in [8] and the Θ-convex scattering support in [23], because it is defined for observable
directions only. Some uniqueness results will be summarized in Theorem 4.3, as a byproduct of
the factorization scheme established in Theorems 4.1 and 4.2.

The remaining part is organized as follows. In Section 2, the multi-frequency far-field operator
F (x̂) for a fixed observation x̂ is factorized in terms of the data-to-pattern operator L(x̂), following
the spirit of [9]. A range identity is given to connect the ranges of F (x̂) and L(x̂). Section 3 is
devoted to the choice of test functions for characterizing the strip K(x̂)

Γ through analysis on the
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range of the data-to-pattern operator L(x̂). In Section 4 we define indicator functions using the
far-field data measured at one or several observable directions. 2D and 3D numerical tests will
be reported in the final Section 5.

2 Factorization of far-field operator

The aim of this section is to explore the factorization method for recovering the trajectory
Γ = Suppf(·, k) from the data measured at a single observation direction x̂ ∈ Sd−1. We shall
proceed with the lines of [9] to derive a factorization of the far-field operator F (x̂). Following the
spirit of [8], we introduce the central frequency κ and half of the bandwidth of the given data K
as

κ :=
kmin + kmax

2
, K :=

kmax − kmin

2
.

Define the far-field operator F (x̂) : L2(0,K)→ L2(0,K) by

(F (x̂)φ)(τ) :=

∫ K

0
w∞(x, κ+ τ − s)φ(s) ds, τ ∈ (0,K). (2.10)

Recall from (1.10) that w∞ is analytic in k ∈ R. Hence the far-field operator F (x̂) is linear and
bounded. Further, it holds that

(F (x̂)φ)(τ) =

∫ K

0

∫
Rd

e−i(κ+τ−s)x̂·yf(y, κ+ τ − s) dy φ(s) ds

=

∫ K

0

∫
Rd

e−i(κ+τ−s)x̂·y
(

1√
2π

∫ tmax

tmin

e−i(κ+τ−s)tδ(y − a(t)) dt

)
dy φ(s) ds

=
1√
2π

∫ K

0

∫ tmax

tmin

e−i(κ+τ−s)(t+x̂·a(t)) dt φ(s) ds

(2.11)

Below we shall prove a factorization of the above far-field operator.

Theorem 2.1. We have F (x̂) = LT L∗ where L = L(x̂) : L2(tmin, tmax)→ L2(0,K) is defined by

(Lψ)(τ) :=

∫ tmax

tmin

e−iτ(t+x̂·a(t))ψ(t) dt, τ ∈ (0,K) (2.12)

for all ψ ∈ L2(tmin, tmax). Here the middle operator T : L2(tmin, tmax) → L2(tmin, tmax) is a
multiplication operator defined by

(T ϕ)(t) :=
1√
2π
e−iκ(t+x̂·a(t))ϕ(t). (2.13)

Remark 2.2. In the remaining part of this paper the operator L will be referred to as the data-
to-pattern operator corresponding to the orbit function a(t). It is obvious that the far-field data
(1.10) can be expressed as w∞(x̂, k) = (L(x̂) 1)(k). We refer to [16] for the analogue of the
data-to-pattern operator for multi-static far-field operators at a fixed frequency.
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Proof. We first show that the adjoint operator L∗ : L2(0,K) → L2(tmin, tmax) of L can be
expressed by

(L∗φ)(t) :=

∫ K

0
eis(t+x̂·a(t))φ(s) ds, φ ∈ L2(0,K). (2.14)

Indeed, for ψ ∈ L2(tmin, tmax) and φ ∈ L2(0,K), it holds that

〈Lψ, φ〉L2(0,K) =

∫ K

0

(∫ tmax

tmin

e−iτ(t+x̂·a(t))ψ(t) dt

)
φ(τ) dτ

=

∫ tmax

tmin

ψ(t)

(∫ K

0
eiτ(t+x̂·a(t))φ(τ)dτ

)
dt

= 〈ψ,L∗φ〉L2(tmin,tmax).

which implies (2.14). By the definition of T , we have

(T L∗φ)(t) =
1√
2π
e−iκ(t+x̂·a(t))

∫ K

0
eis(t+x̂·a(t))φ(s) ds, φ ∈ L2(0,K).

Hence, using (1.4) and (2.11),

(LT L∗φ)(τ) =

∫ tmax

tmin

e−iτ(t+x̂·a(t))

(
1√
2π
e−iκ(t+x̂·a(t))

∫ K

0
eis(t+x̂·a(t))φ(s) ds

)
dt

=
1√
2π

∫ K

0

∫ tmax

tmin

e−i(κ+τ−s)(t+x̂·a(t)) dt φ(s) ds

= (F (x̂)φ)(τ).

This proves the factorization F (x̂) = LT L∗.

Denote by Range(L(x̂)) the range of the data-to-pattern operator L = L(x̂) (see (2.12)) acting
on L2(tmin, tmax).

Lemma 2.3. The operator L : L2(tmin, tmax)→ L2(0,K) is compact with dense range.

Proof. For any ψ ∈ L2(tmin, tmax), it holds that Lψ ∈ H1(0,K), which is compactly embedded
into L2(0,K). This proves the compactness of L. By (2.14), (L∗φ)(t) coincides with the inverse
Fourier transform of φ at the variable t+ x̂ ·a(t). Since the set {t+ x̂ ·a(t) : t ∈ [tmin, tmax]} forms
an interval of R, the relation (L∗φ)(t) = 0 implies φ = 0 in L2(0,K). Hence, L∗ is injective. The
denseness of Range(L(x̂)) in L2(0,K) follows from the injectivity of L∗.

Within the framework of Factorization method, it is essential to connect the ranges of F (x̂)

and L. We first recall that, for a bounded operator F : Y → Y in a Hilbert space Y the real and
imaginary parts of F are defined respectively by

ReF =
F + F ∗

2
, ImF =

F − F ∗

2i
,
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which are both self-adjoint operators. Furthermore, by spectral representation we define the
self-adjoint and positive operator |ReF | as

|ReF | =
∫
R
|λ| dEλ, if ReF =

∫
R
λ dEλ.

The selfadjoint and positive operator |ImF | can be defined analogously. Introduce a new operator

F# := |ReF |+ |ImF |.

Since F# is selfadjoint and positive, its square root F 1/2
# is defined as

F
1/2
# :=

∫
R+

√
λ dEλ, if F# =

∫
R+

λ dEλ.

In this paper we need the following result from functional analysis.

Theorem 2.4. ([9]) Let X and Y be Hilbert spaces and let F : Y → Y , L : X → Y , T : X → X

be linear bounded operators such that F = LTL∗. We make the following assumptions

(i) L is compact with dense range and thus L∗ is compact and one-to-one.

(ii) ReT and ImT are both one-to-one, and the operator T# = |ReT | + |ImT | : X → X is
coercive, i.e., there exists c > 0 with〈

T# ϕ,ϕ
〉
≥ c ||ϕ||2 for all ϕ ∈ X.

Then the operator F# is positive and the ranges of F 1/2
# : Y → Y and L : X → Y coincide.

To apply Theorem 2.4 to our inverse problem, we set

F = F (x̂), L = L, T = T , X = L2(tmin, tmax), Y = L2(0,K),

where T is the multiplication operator of (2.13). It is easy to see

[(Re T )ϕ] (t) =
1√
2π

cos[κ(t+ x̂ · a(t))]ϕ(t),

[(Im T )ϕ] (t) = − 1√
2π

sin[κ(t+ x̂ · a(t))]ϕ(t)

are both one-to-one operators from L2(tmin, tmax) onto L2(tmin, tmax). The coercivity assumption
of F (x̂) yields the coercivity of T#. As a consequence of Theorem 2.4, we obtain

Range [(F (x̂))
1/2
# ] = Range (L(x̂)) for any x̂ ∈ Sd−1. (2.15)

Let ϕ ∈ L2(0,K) be a test function. We want to characterize the range of L(x̂) through
the choice of ϕ. Denote by (λ

(x̂)
n , ψ

(x̂)
n ) an eigensystem of the positive and self-adjoint operator

8



(F (x̂))#, which is uniquely determined by the multi-frequency far-field patterns {w∞(x̂, k) : k ∈
(kmin, kmax)}. Applying Picard’s theorem and Theorem 2.4, we obtain

ϕ ∈ Range(L(x̂)) if and only if
∞∑
n=1

|〈ϕ,ψ(x̂)
n 〉|2

|λ(x̂)
n |

< +∞. (2.16)

To establish the factorization method, we now need to choose a proper class of test functions
which usually rely on a sample variable in Rd.

3 Range of L(x̂) and test functions

To characterize the range of L(x̂), we need to investigate monotonicity of the function h(t) :=

x̂·a(t)+t ∈ C1[tmin, tmax]. For this purpose we define the division points of a continuous function
over a closed interval.

Definition 3.1. Let f ∈ C[tmin, tmax]. The point t ∈ (tmin, tmax) is called a division point if
(1) f(t) = 0;
(2) There exist an ε0 > 0 such that either |f(t+ ε)| > 0 or |f(t− ε)| > 0 for all 0 < ε < ε0.

Obviously, the division points constitute a subset of the zero set of a continuous function.
However, a division point cannot be an interior point of the zero set. Since a(t) ∈ C1[tmin, tmax],
there are finitely many division points of the function h′, which we denote by t1 < t2 < · · · < tn−1.
The interval [tmin, tmax] is then divided into n sub-intervals [tj−1, tj ], j = 1, 2, · · · , n, where
tmin = t0 and tmax = tn. Let aj and hj be the restrictions of a and h to [tj−1, tj ], respectively.
Set

ξ
(x̂)
j,min := inf

t∈[tj−1,tj ]
{hj(t)}, ξ

(x̂)
j,max := sup

t∈[tj−1,tj ]
{hj(t)}, j = 1, 2, · · ·n.

In each subinterval (tj−1, tj), one of following cases must hold:

• h′j(t) > 0 for all t ∈ (tj−1, tj). There holds

ξ
(x̂)
j,min = tj−1 + x̂ · aj(tj−1), ξ

(x̂)
j,max = tj + x̂ · aj(tj);

• h′j(t) < 0 for all t ∈ (tj−1, tj). We have

ξ
(x̂)
j,min = tj + x̂ · aj(tj), ξ

(x̂)
j,max = tj−1 + x̂ · aj(tj−1);

• h′j(t) = 0 for all t ∈ (tj−1, tj). Consequently,

ξ
(x̂)
j,min = ξ

(x̂)
j,max = t+ x̂ · aj(t), t ∈ [tj−1, tj ].
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Define

ξ
(x̂)
min := min

j
ξ

(x̂)
j,min = inf

t∈[tmin,tmax]
{h(t)}, ξ(x̂)

max := max
j
ξ

(x̂)
j,max = sup

t∈[tmin,tmax]
{h(t)}, (3.17)

which denote the minimum and maximum of h over [tmin, tmax], respectively. If |h′j(t)| > 0, the
monotonicity of the function ξ = hj(t) for t ∈ [tj , tj−1] implies the inverse function t = h−1

j (ξ) ∈
C1[ξ

(x̂)
j,min, ξ

x̂)
j,max]. Set

J = {j ∈ N : 1 ≤ j ≤ n, h′j(t) ≡ 0, t ∈ (tj−1, tj)}.

and assume hj(t) ≡ cj ∈ R for j ∈ J . Note that it is possible that J = ∅.
With these notations we can rephrase the operator L(x̂) defined by (2.12) as

(L(x̂)ψ)(τ) =

n∑
j=1

∫ tj

tj−1

e−iτhj(t)ψ(t) dt

=
∑
j /∈J

∫ tj

tj−1

e−iτhj(t)ψ(t) dt+
∑
j∈J

e−iτcj
∫ tj

tj−1

ψ(t) dt.

(3.18)

For j ∈ J , using e−iτc =
√

2πFδ(t− c) we can rewrite each terms in the second sum as

e−iτcj
∫ tj

tj−1

ψ(t) dt =
√

2πFδ(t− cj)
∫ tj

tj−1

ψ(t) dt. (3.19)

For j /∈ J and h′j(t) > 0, the integral in the first summation on the right hand of (3.18) takes
the form ∫ tj

tj−1

e−iτhj(t)ψ(t) dt =

∫ ξ
(x̂)
j,max

ξ
(x̂)
j,min

e−iτξψ(h−1
j (ξ)) (h−1

j (ξ))′ dξ

=

∫ ξ
(x̂)
j,max

ξ
(x̂)
j,min

e−iτξψ(h−1
j (ξ))|(h−1

j (ξ))′| dξ.

Note that [h−1
j (ξ)]′ > 0, due to the relation h′j(t)[h

−1
j (ξ)]′ = 1. Analogously, if h′j(t) < 0 for

some j /∈ J , we have [h−1
j (ξ)]′ < 0 and thus

∫ tj

tj−1

e−iτhj(t)ψ(t) dt = −
∫ ξ

(x̂)
j,max

ξ
(x̂)
j,min

e−iτξψ(h−1
j (ξ))(h−1

j (ξ))′ dξ

=

∫ ξ
(x̂)
j,max

ξ
(x̂)
j,min

e−iτξψ(h−1
j (ξ))|(h−1

j (ξ))′| dξ.

Now, extending h−1
j by zero from (ξ

(x̂)
j,min, ξ

(x̂)
j,max) to R and extending ψ ∈ L2(tmin, tmax) by zero

to L2(R), we can write each term for j /∈ J as

10



∫ tj

tj−1

e−iτhj(t)ψ(t) dt =

∫
R
e−iτξψ(h−1

j (ξ))|(h−1
j (ξ))′| dξ. (3.20)

Combining (3.18), (3.19) and (3.20), we get

(L(x̂)ψ)(τ) =

∫
R
e−iτξg(ξ) dξ, (3.21)

with

g(ξ) =
∑
j /∈J

ψ(h−1
j (ξ)) |(h−1

j (ξ))′|+
∑
j∈J

δ(ξ − cj)
∫ tj

tj−1

ψ(t) dt.

Note that g is a generalized function if J 6= ∅ and that g coincides with the inverse Fourier
transform of L(x̂)ψ up to some constant. Since supp h−1

j ⊂ [ξ
(x̂)
min, ξ

(x̂)
max] for j /∈ J and cj ∈

[ξ
(x̂)
min, ξ

(x̂)
max], we may estimate that the support of g (equivalently, the inverse Fourier transform

of L(x̂)ψ) as follows:
supp(g(ξ)) ⊂ [ξ

(x̂)
min, ξ

(x̂)
max].

Summing up the above arguments we arrive at

Lemma 3.2. Let Γ = {y : y = a(t), t ∈ [tmin, tmax]} ⊂ Rd be a C1-smooth curve with tmax > tmin.
Then

(F−1L(x̂)ψ)(ξ) =
√

2π

∑
j /∈J

ψ(h−1
j (ξ)) |(h−1

j (ξ))′|+
∑
j∈J

δ(ξ − cj)
∫ tj

tj−1

ψ(t) dt

 . (3.22)

Moreover,
supp(F−1L(x̂)ψ) ⊂ [ξ

(x̂)
min, ξ

(x̂)
max].

Below we provide a sufficient condition to ensure trivial intersections of the ranges of two
data-to-pattern operators corresponding to different trajectories.

Lemma 3.3. Let Γa = {y : y = a(t), t ∈ [tmin, tmax]} ⊂ Rd and Γb = {y : y = b(t), t ∈
[tmin, tmax]} ⊂ Rd be C1-smooth curves such that(

inf
t∈[tmin,tmax]

(t+ x̂ · a(t)), sup
t∈[tmin,tmax]

(t+ x̂ · a(t))

)
⋂ (

inf
t∈[tmin,tmax]

(t+ x̂ · b(t)), sup
t∈[tmin,tmax]

(t+ x̂ · b(t))

)
= ∅. (3.23)

Let L(x̂)
a and L(x̂)

b be the data-to-pattern operators associated with Γa and Γb, respectively. Then
Range(L(x̂)

a ) ∩ Range(L(x̂)
b ) = {0}.

11



Proof. Let fa, fb ∈ L2(tmin, tmax) be such that (L(x̂)
a fa)(τ) = (L(x̂)

b fb)(τ) := Q(τ, x̂). We need to
prove Q(·, x̂) ≡ 0. By the definition of L (see (2.12)), the function

τ → Q(τ, x̂) =

∫ tmax

tmin

e−iτ(t+x̂·a(t))fa(t) dt =

∫ tmax

tmin

e−iτ(t+x̂·b(t))fb(t) dt

belongs to L2(0,K). Since Q(τ, x̂) is analytic in τ ∈ R, the previous relation is well defined
for any τ ∈ R. By Definition 3.1, we suppose that {tj}n−1

j=1 and {t̃j}m−1
j=1 are division points of

the functions ha(t) = t + x̂ · a(t) and hb(t) = t + x̂ · b(t), respectively. Analogously we define
hj,a(t) := t+x̂·aj(t), hj,b(t) := t+x̂·bj(t), and Ja := {j ∈ N : 1 ≤ j ≤ n, h′j,a(t) ≡ 0, t ∈ (tj−1, tj)},
Jb := {j ∈ N : 1 ≤ j ≤ m,h′j,b(t) ≡ 0, t ∈ (t̃j−1, t̃j)}. Denote hj,a(t) ≡ cj,a for j ∈ Ja and
hj,b(t) ≡ cj,b for j ∈ Jb. Using the formula (3.21), the function Q(·, x̂) can be rewritten as the
Fourier transforms:

Q(τ, x̂) =

∫
R
e−iτξga(ξ, x̂) dξ =

∫
R
e−iτξgb(ξ, x̂) dξ, (3.24)

with

ga(ξ, x̂) =
∑
j /∈Ja

fa(h
−1
j,a(ξ)) |(h−1

j,a(ξ))′|+
∑
j∈Ja

δ(ξ − cj,a)
∫ tj

tj−1

fa(t) dt,

gb(ξ, x̂) =
∑
j /∈Jb

fb(h
−1
j,b (ξ)) |(h−1

j,b (ξ))′|+
∑
j∈Jb

δ(ξ − cj,b)
∫ t̃j

t̃j−1

fb(t) dt.

This implies ga(ξ, x̂) = gb(ξ, x̂) for all ξ ∈ R. On the other hand, the support sets of ga and gb
satisfy

supp ga(·, x̂) ⊂

(
inf

t∈[tmin,tmax]
(t+ x̂ · a(t)), sup

t∈[tmin,tmax]
(t+ x̂ · a(t))

)
,

supp gb(·, x̂) ⊂

(
inf

t∈[tmin,tmax]
(t+ x̂ · b(t)), sup

t∈[tmin,tmax]
(t+ x̂ · b(t))

)
.

Hence, by the condition (3.23) we obtain ga(ξ, x̂) = gb(ξ, x̂) ≡ 0 for all ξ ∈ R . In view of (3.24),
we get Q(·, x̂) ≡ 0.

For any y ∈ Rd, define the parameter-dependent test functions φ(x̂)
y ∈ L2(0,K) by

φ(x̂)
y (k) =

1

|tmax − tmin|

∫ tmax

tmin

e−ik(x̂·y+t)dt, k ∈ (0,K). (3.25)

Here we stress that the test function φ(x̂)
y depends on both the observation direction x̂ ∈ Sd−1

and the space variable y ∈ Rd. The supporting information of the inverse Fourier transform of
the above test function is described as follows.

Lemma 3.4. We have

[F−1φ(x̂)
y ](τ) =

{ √
2π/|tmax − tmin| if τ ∈ [x̂ · y + tmin, x̂ · y + tmax],

0 if otherwise.
(3.26)
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Proof. Let τ = x̂ · y + t, we can rewrite the function φ(x̂)
y as

φ(x̂)
y (k) =

∫
R
e−ikτgy(τ, x̂) dτ,

where

gy(τ, x̂) :=


1

|tmax − tmin|
if τ ∈ [x̂ · y + tmin, x̂ · y + tmax],

0 if otherwise.

Therefore, [F−1φ
(x̂)
y ](τ) =

√
2πgy(τ, x̂).

In the following we present a necessary condition imposed on the observation direction x̂ and
radiating period T := tmax − tmin to ensure that the test function φ(x̂)

y lies in the range of the
data-to-pattern operator.

Lemma 3.5. If φ(x̂)
y ∈ Range(L(x̂)) for some y ∈ Rd, we have ξ(x̂)

max − ξ(x̂)
min ≥ T . Here ξ(x̂)

max and
ξ

(x̂)
min are defined by (3.17).

Proof. If φ(x̂)
y ∈ Range(L(x̂)), there exists a function ψ ∈ L2(tmin, tmax) such that φ(x̂)

y = L(x̂)ψ

in L2(0,K). Since both φ
(x̂)
y and L(x̂)ψ are analytic functions over R, it holds that φ(x̂)

y (k) =

(L(x̂)ψ)(k) for all k ∈ R. Then their support sets must be identical, i.e., supp(F−1φ
(x̂)
y ) =

supp(F−1L(x̂)φ) ⊂ [ξ
(x̂)
min, ξ

(x̂)
max], where we have used Lemma 3.2. Hence, the length of

supp(F−1φ
(x̂)
y ), which can be seen from Lemma 3.4, must be less than or equal to that of

[ξ
(x̂)
min, ξ

(x̂)
max], i.e.,

ξ(x̂)
max − ξ

(x̂)
min ≥ tmax − tmin = T.

From the above lemma we conclude that φ(x̂)
y /∈ Range(L(x̂)) for all y ∈ Rd, if ξ(x̂)

max−ξ(x̂)
min < T .

Inspired by this fact we introduce the concept of observable directions.

Definition 3.6. Let ξ(x̂)
min and ξ(x̂)

max be the maximum and minimum of the function h(t) = x̂ ·
a(t) + t ∈ C1[tmin, tmax] (see (3.17)). The unit vector x̂ ∈ Sd−1 is called an observable direction
if ξ(x̂)

max − ξ(x̂)
min ≥ T . The direction x̂ is called non-observable if ξ(x̂)

max − ξ(x̂)
min < T .

We remark that the set of observable directions is uniquely determined by the orbit function
a(t) together with the starting and terminal time points tmin and tmax. For non-observable
directions x̂, one cannot extract information on the orbit function by our approach, which will be
explained in the second assertion of Theorem 4.1 below. If x̂ is observable and h is monotonically
increasing, the smallest strip containing the trajectory and perpendicular to x̂ can be recovered.
If x̂ is observable and h is not monotonically increasing, another thinner strip perpendicular to x̂
can be imaged. Below we derive the observable directions for orbit functions given by a straight
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line (see Fig. 2) and a semi-circle (see Fig. 3) in two dimensions. We refer to Section 5 for
further discussions on piecewise linear curves in 2D and a straight line segment in 3D.

Example 1: A straight line segment in R2.
Suppose that an acoustic point source is moving along the straight line a(t) =

ct(cosα, sinα) ∈ R2 for t ∈ [tmin, tmax], where c > 0 denotes the velocity and α ∈ [0, 2π]

the angle between the trajectory and the x1-axis.

Lemma 3.7. (i) If c ≤ 2, the direction x̂ = (cos θ, sin θ) is observable if θ ∈ [α− π/2, α+ π/2].
(ii) If c > 2, the direction x̂ = (cos θ, sin θ) is observable if θ ∈ [α − π/2, α + π/2] ∪ [α +

arccos(−2/c)), α+ 2π − arccos(−2/c))].

Proof. From the expression of the orbit function a(t), we have

h(t) = t+ x̂ · a(t) = t+ t c (cos θ cosα+ sin θ sinα) = t(1 + c cos(θ − α)),

h′(t) = 1 + x̂ · a′(t) = 1 + c cos(θ − α).

Hence h′ is a constant depending on c, θ and α.
Case (i): If h′(t) > 0, then cos(θ − α) > −1/c. If x̂ is a non-observable direction, that is,

ξ
(x̂)
max − ξ(x̂)

min < T , then it holds

(tmax − tmin)(1 + c cos(θ − α)) < T.

Hence, in this case x̂ is a non-observable direction if −1/ c < cos(θ − α)) < 0.
Case (ii): If h′(t) = 0, one can deduce that each direction x̂ is non-observable. Note that

cos(θ − α) = −1/c in such a case.
Case (iii): If h′(t) < 0, then cos(θ−α) < −1/c. Consequently, x̂ is a non-observable direction

only if
(tmin − tmax)(1 + c cos(θ − α)) < tmax − tmin.

Therefore, the direction x̂ is non-observable for −2/ c < cos(θ − α)) < −1/c.
To sum up, we deduce that the non-observable angles should fulfill the relation

−2/c < cos(θ − α) < 0.

This implies that θ ∈ (α+ π/2, α+ 3π/2) for c ≤ 2 and θ ∈ (α− arccos(−2/c), α− π/2)∪ (α+

π/2, α+ arccos(−2/c)) for c > 2.

Example 2: An arc in R2.

We suppose that the point source is moving along a semi-circle centered at z = (z1, z2) ∈ R2.

Lemma 3.8. Set a(t) := (cos t+z1, sin t+z2), t ∈ [tmin, tmax] for some z ∈ R2. Suppose that T =

tmax−tmin < 2π. Then the direction x̂ = (cos θ, sin θ) is observable if θ ∈ [ tmax+tmin
2 , tmax+tmin

2 +π].

14



a(tmin)

a(tmax)

3π/4

−π/4

a(tmin)

a(tmax)
3π/4

−π/4

11π/12

19π/12

Figure 2: Illustration of observable (green arc) and non-observable (dotted arc) directions for
the trajectory a(t) = c

√
2/2(t, t) for t ∈ [1, 2] with c = 1 (left) and c = 4 (right).

Proof. We have
h(t) = t+ x̂ · a(t) = t+ cos(θ − t) + x̂ · z,

h′(t) = 1 + x̂ · a′(t) = 1 + sin(θ − t).

It is obvious that h′(t) > 0 for t ∈ [tmin, tmax] such that t 6= θ − π/2 + 2nπ, n ∈ Z. Hence,

ξ
(x̂)
min = tmin + cos(θ − tmin) + x̂ · z, ξ(x̂)

max = tmax + cos(θ − tmax) + x̂ · z.

For non-observable directions, we have

cos(θ − tmax)− cos(θ − tmin) < 0,

that is,
sin(θ − tmax + tmin

2
) sin

tmax − tmin

2
< 0.

Recalling from the assumption that 0 < T = tmax − tmin < 2π, one deduces that

θ ∈ (
tmax + tmin

2
+ π,

tmax + tmin

2
+ 2π).

Thus, x̂ ∈ S1 is an observable direction if θ ∈ [ tmax+tmin
2 , tmax+tmin

2 + π].

Given the trajectory Γ = {y : y = a(t), t ∈ [tmin, tmax]}, we define

x̂ · Γ := {τ ∈ R : τ = x̂ · y for some y ∈ Γ},

which is an interval of R. Obviously, the set {y ∈ Rd : x̂ · y ∈ x̂ · Γ} denotes the smallest
strip containing Γ and perpendicular to the direction x̂. One can at most expect to recover this
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a(tmin) a(tmax)

−π/2

π/2

Figure 3: Illustration of the observable (green arc) and non-observable (dotted arc) directions
for the trajectory a(t) = (cos t+ 1, sin t+ 2) with t ∈ [π, 2π].

strip from the multi-frequency data taken at a single observation direction. If x̂ is an observable
direction, we define the strip (see Fig. 4)

K
(x̂)
Γ := {y ∈ Rd : ξ

(x̂)
min − tmin ≤ x̂ · y ≤ ξ(x̂)

max − tmax} ⊂ Rd. (3.27)

If h′(t) > 0 for t ∈ (tmin, tmax), we have

K
(x̂)
Γ = {y ∈ Rd : x̂ · a(tmin) ≤ x̂ · y ≤ x̂ · a(tmax)}

which coincides with the strip {y ∈ Rd : x̂ · y ∈ x̂ · Γ};
If h′(t) < 0 for t ∈ (tmin, tmax), there holds

K
(x̂)
Γ = {y ∈ Rd : x̂ · a(tmax) + T ≤ x̂ · y ≤ x̂ · a(tmin)− T},

which is a subset of {y ∈ Rd : x̂ · y ∈ x̂ · Γ}; see Lemma 3.9 below.

Lemma 3.9. Let x̂ ∈ Sd−1 be an observable direction. We have

x̂ · y ∈ x̂ · Γ for all y ∈ K(x̂)
Γ .

Proof. Suppose that

ξ
(x̂)
min = x̂ · a(t1) + t1, ξ(x̂)

max = x̂ · a(t2) + t2, for some t1, t2 ∈ [tmin, tmax].

Therefore,

ξ
(x̂)
min − tmin = x̂ · a(t1) + t1 − tmin ≥ x̂ · a(t1) ≥ inf(x̂ · Γ),

ξ(x̂)
max − tmax = x̂ · a(t2) + t2 − tmax ≤ x̂ · a(t2) ≤ sup(x̂ · Γ).
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This implies that for y ∈ K(x̂)
Γ ,

x̂ · y ≥ ξ(x̂)
min − tmin ≥ inf(x̂ · Γ), x̂ · y ≤ ξ(x̂)

max − tmax ≥ sup(x̂ · Γ),

which proves x̂ · y ∈ [inf(x̂ · Γ), sup(x̂ · Γ)] = x̂ · Γ.

K
(x̂)
Γ

x1

x2

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

inf(x̂ · Γ)

sup(x̂ · Γ)

Γ

x̂ = (1, 0)

Figure 4: Illustration of the strip K
(x̂)
Γ (blue area) with x̂ = (1, 0). Here the curve a(t) =

2
√

2(cos t,− sin t), t ∈ [π/4, 3π/4] denotes the orbit (the red arc) of a point source moving from
right to left. There holds inf(x̂ · Γ) = −2, sup(x̂ · Γ) = 2, ξ

(x̂)
min = 3π/4− 2, ξ

(x̂)
max = π/4 + 2. In

this case the strip K(x̂)
Γ is a subset of {y ∈ R2 : x̂ · y ∈ x̂ · Γ}.

If x̂ ∈ Sd−1 is observable, we shall prove that the test function φ(x̂)
y lies in the range of L(x̂) if

and only if y ∈ K(x̂)
Γ . This together with (2.15) establishes a computational criterion for imaging

K
(x̂)
Γ from the multi-frequency far-field data u∞(x̂, k) with k ∈ [kmin, kmax]. We also need to

discuss non-observable directions.

Lemma 3.10. (i) If x̂ is non-observable, we have φ(x̂)
y /∈ Range(L(x̂)) for all y ∈ Rd.

(ii) If x̂ is an observable direction, we have φ(x̂)
y ∈ Range(L(x̂)) if and only if y ∈ K(x̂)

Γ .

Proof. (i) The first assertion follows directly from Lemma 3.5 and the Definition 3.6 for non-
observable directions.

(ii) If x̂ is an observable direction, we have ξ(x̂)
max − ξ(x̂)

min ≥ T . If φ(x̂)
y ∈ Range(L(x̂)), one

can find a function φ satisfying φ(x̂)
y = L(x̂)φ. Then their support sets must fulfill the relation

supp(F−1φ
(x̂)
y ) = supp(F−1L(x̂)φ) ⊂ [ξ

(x̂)
min, ξ

(x̂)
max] by Lemma 3.3. Using Lemma 3.4 yields

[x̂ · y + tmin, x̂ · y + tmax] ⊂ [ξ
(x̂)
min, ξ

(x̂)
max].

Hence, x̂ · y + tmin ≥ ξ(x̂)
min and x̂ · y + tmax ≤ ξ(x̂)

max, leading to

ξ
(x̂)
min − tmin ≤ x̂ · y ≤ ξ(x̂)

max − tmax.
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This proves y ∈ K(x̂)
Γ .

On the other hand, if y ∈ K(x̂)
Γ , we have

[x̂ · y + tmin, x̂ · y + tmax] ⊂ [ξ
(x̂)
min, ξ

(x̂)
max].

Setting

ψ(t) :=
eikx̂·(a(t)−y)

|tmax − tmin|
∈ L2(tmin, tmax),

we find φ(x̂)
y (k) = (L(x̂)ψ)(k). Therefore, φ(x̂)

y (k) ∈ Range(L(x̂)).

4 Indicator functions and uniqueness

If x̂ is an observable direction, we know from Lemma 3.10 that the test functions φ(x̂)
y can be

utilized to characterize K(x̂)
Γ through (2.15). Hence, we define the indicator function

W (x̂)(y) :=

 ∞∑
n=1

|〈φ(x̂)
y , ψ

(x̂)
n 〉|2L2(0,K)

|λ(x̂)
n |

−1

, y ∈ Rd. (4.28)

Combining Theorem 2.4, Lemma 3.10 and Picard theorem, we obtain.

Theorem 4.1. If x̂ is an observable direction, it holds that

W (x̂)(y) =

{
0 if y /∈ K(x̂)

Γ ,

finite positive number if y ∈ K(x̂)
Γ .

If x̂ is non-observable, we have W (x̂)(y) = 0 for all y ∈ Rd.

Hence, for observable directions the values ofW (x̂) in the stripK(x̂)
Γ should be relatively bigger

than those elsewhere. The values of W (x̂) vanished identically in Rd if x̂ is non-observable. In
the case of sparse observable directions {x̂j : j = 1, 2, · · · ,M}, we shall make use of the following
indicator function:

W (y) =

 M∑
j=1

1

W (x̂j)(y)

−1

=

 M∑
j=1

∞∑
n=1

|〈φ(x̂j)
y , ψ

(x̂j)
n 〉|2L2(0,K)

|λ(x̂j)
n |

−1

, y ∈ Rd. (4.29)

Define the Θ-convex domain of Γ associated with the observable directions {x̂j : j = 1, 2, · · · ,M}
as

ΘΓ :=
⋂

j=1,2,··· ,M
K

(x̂j)
Γ . (4.30)

We can reconstruct ΘΓ from the multi-frequency far-field data measured at sparse observable
directions.
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Theorem 4.2. It holds that 0 < W (y) < +∞ if y ∈ ΘΓ and W (y) = 0 if y /∈ ΘΓ.

Proof. If y ∈ ΘΓ, it means that y ∈ K(x̂j)
Γ for j = 1, 2, · · · ,M . By Theorem 4.1,

∞∑
n=1

|〈φ(x̂j)
y , ψ

(x̂j)
n 〉|2L2(0,K)

|λ(x̂j)
n |

< +∞ for all j = 1, 2, · · · ,M. (4.31)

Then the finite sum over the index j must fulfill the relation 0 < W (y) < +∞.
If y /∈ ΘΓ, we may suppose without loss of generality that y /∈ K(x̂1)

Γ . By Theorem 4.1,

[W (x̂1)(y)]−1 =

M∑
j=1

∞∑
n=1

|〈φ(x̂1)
y , ψ

(x̂j)
n 〉|2L2(0,K)

|λ(x̂1)
n |

=∞.

Together with the definition of W , this gives

W (y) <

 ∞∑
n=1

|〈φ(x̂1)
y , ψ

(x̂j)
n 〉|2L2(0,K)

|λ(x̂1)
n |

−1

= 0.

Consequently, we arrive at the following uniqueness results, which seem unknown in the
literature.

Theorem 4.3. Denote by Γ = {a(t) : t ∈ [tmin, tmax]} the trajectory of a moving point source
where a ∈ C1[tmin, tmax].

(i) The Θ-convex domain of Γ associated with all observable directions x̂ ∈ Sd−1 (see (4.30))
can be uniquely determined by the multi-frequency data {u∞(x̂, k) : x̂ ∈ Sd−1, k ∈ (kmin, kmax)}.

(ii) Let x̂ ∈ Sd−1 be an arbitrarily fixed observable direction. Then the strip K(x̂)
Γ (see (3.27))

can be uniquely determined by the multi-frequency data {u∞(x̂, k) : k ∈ (kmin, kmax)}. In par-
ticular, the strip {y ∈ Rd : x̂ · y ∈ x̂ · Γ} can be uniquely recovered if 1 + x̂ · a′(t) > 0 in
[tmin, tmax].

Remark 4.4. Physically, the condition 1 + x̂ · a′(t) > 0 in the second assertion of Theorem 4.3
means that the function h(t) = t + x̂ · a(t) is monotonically increasing in [tmin, tmax]. It can
be fulfilled if the velocity of the moving source is less than the propagating speed of waves, i.e.,
|a′(t)| < 1. Note that the acoustical speed in the background medium has been normalized to be
one.

The second assertion of Theorem 4.3 answers the question what kind of information can be
extracted from the multi-frequency data measured at a single observable direction. Unfortu-
nately, we do not know whether an observation direction is observable or not, if there is no a
priori information on the orbit function.
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5 Numerical experements in Rd (d = 2, 3)

In this section, we carry out a couple of numerical experiments to validate our algorithm in both
two and three dimensions. In practice, the time-domain data should be Fourier transformed to
the multi-frequency data and the near-field version of our algorithm should be implemented. To
simply the numerical procedures for simulating, we shall carry out computational tests in the
frequency domain only. Our aim is to get information of the trajectory of a moving point source
from multi-frequency far-field data taken at a single or multiple observation directions.

Suppose that the wave-number-dependent source term f(x, k) is given by (1.4). Then the
far-field pattern can be synthetized by (1.10), i.e.,

w∞(x̂, k) =

∫ tmax

tmin

e−ik(x̂·a(t)+t) dt, x̂ ∈ Rd (d = 2, 3), k ∈ (kmin, kmax). (5.32)

In all our numerical examples below, we set kmin = 0 for simplicity. The bandwidth can be
extended from (0, kmax) to (−kmax, kmax) by w∞(x̂,−k) = w∞(x̂, k). Then, one deduces from
these new measurement data with kmin = −kmax that κ = 0 and K = kmax. Thus, the far field
operator (2.10) becomes

(F (x̂)φ)(τ) =

∫ kmax

0
w∞(x̂, τ − s)φ(s) ds, τ ∈ (0, kmax). (5.33)

Discretize the frequency interval (0, kmax) with

kn = (n− 0.5)∆k, ∆k :=
kmax

N
, n = 1, 2, · · · , N.

We adopt 2N − 1 samples w∞(x̂, kn), n = 1, 2, · · · , N and w∞(x̂,−kn), n = 1, 2, · · · , N − 1, of
the far field and apply the midpoint rule to approximate the integral in (5.33). Then it follows
that

(F (x̂)φ)(τn) ≈
N∑
m=1

w∞(x̂, τn − sm)φ(sm)∆k, (5.34)

where τn := n∆k and sm := (m− 0.5)∆k, n,m = 1, 2, · · · , N . Consequently, a discrete approx-
imation of the far field operator F (x̂) is given by the Toeplitz matrix

F (x̂) :=



w∞(x̂, k1) w∞(x̂, k1) · · · w∞(x̂, kN−2) w∞(x̂, kN−1)

w∞(x̂, k2) w∞(x̂, k1) · · · w∞(x̂, kN−3) w∞(x̂, kN−2)
...

...
...

...
w∞(x̂, kN−1) w∞(x̂, kN−2) · · · w∞(x̂, k1) w∞(x̂, k1)

w∞(x̂, kN ) w∞(x̂, kN−1) · · · w∞(x̂, k2) w∞(x̂, k1)


∆k ∈ CN × CN(5.35)

where w∞(x̂, kn) = w∞(x̂,−kn), n = 1, · · · , N − 1.
Similarly, we discretize the test function φ(x̂)

y from (3.25) by the vector

φ(x̂)
y :=

(
i

T τ1
(e−iτ1tmax − e−iτ1tmin) e−iτ1x̂·y, · · · , i

T τn
(e−iτntmax − e−iτntmin) e−iτnx̂·y

)
∈ CN ,(5.36)
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where T = tmax − tmin. Denoting by
{

(λ̃
(x̂)
n , ψ

(x̂)
n ) : n = 1, 2, · · · , N

}
an eigen-system of the ma-

trix F (x̂) (5.35), then one deduces that an eigen-system of the matrix (F (x̂))# := |Re(F (x̂))| +
|Im(F (x̂))| is

{
(λ

(x̂)
n , ψ

(x̂)
n ) : n = 1, 2, · · · , N

}
, where λ(x̂)

n := |Re(λ̃(x̂)
n )| + |Im(λ̃

(x̂)
n )|. We ap-

proximate the indicator function W (x̂) of (4.28) by

W (x̂)(y) :=


N∑
n=1

∣∣∣∣φ(x̂)
y · ψ(x̂)

n

∣∣∣∣2
|λ(x̂)
n |


−1

, y ∈ Rd,

where · denotes the inner product in RN . Accordingly, a plot of W (x̂)(y), should yield a visual-
ization of the strip K(x̂)

Γ , which contains information on the source trajectory if x̂ ∈ Sd−1 is an
observable direction. In the following numerical examples, the frequency band is taken as (0, 3π)

with kmax = 3π, N = 18 and ∆k = π/6.
In the following figures, the exact trajectory of a moving source is plotted with yellow sold

lines. In two dimensions we shall image the trajectory of moving point sources represented by
a straight line, an arc or a piecewise linear curve, using the far-field data of one and sparse
observation directions. In three dimensions, the recovery of a straight line segment is examined
with the data measured at a single direction only.

5.1 A single observation direction

Example 1: A straight line segment in R2

We consider the same straight line segment from Example 1 in Section 3. The following two
cases are studied.

Case 1 c = 1, α = π/2 and t ∈ [1, 3].
In this case the trajectory of the moving source is a(t) = (0, t) for t ∈ [1, 3]. Choose the search

domain as a square of the form [−2, 2]× [0, 4]. By Lemma 3.7, the non-observable directions are
x̂ = (cos θ, sin θ) with θ ∈ (π, 2π) and the observable directions x̂ = (cos θ, sin θ) with θ ∈ [0, π].
Numerical results are presented in Figs. 5 and 6.

The observable angles are taken as θ = 0, π/6, π/3, π/2, 2π/3 and 5π/6 in Fig. 5. By Lemma
3.7, we know K

(x̂)
Γ = {y ∈ R2 : inf(x̂ ·Γ) ≤ x̂ ·y ≤ sup(x̂ ·Γ)} for all observable directions, because

h′(t) = 1 + cos(θ − π/2) > 0 with t ∈ [1, 3]. In Fig. 5, the trajectory of the moving source is
nicely located in the smallest strip K(x̂)

Γ perpendicular to the observation direction just as our
theoretical results predict. The numerical results match well with our theoretical analysis.

Observation directions at the angles θ = 9π/8, 10π/8, 11π/8, 13π/8, 14π/8 and 15π/8 are
non-observable. The numerical results in Fig.6 show that the indicator values are all much
smaller than 10−4, which are in good consistent with the results of Theorem 4.1. Hence, we
can not reconstruct the smallest strip containing the trajectory of the moving source. It is very
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interesting to conclude from Fig.6 that, even at a non-observable direction, partial information
on the trajectory can still be recovered by our indicator function: the maximum points of W (x̂)

are degenerated into a straight line perpendicular to x̂ and passing through the middle point of
the trajectory. However, this phenomenon needs to be further investigated.

(a) θ = 0 (b) θ = π/6 (c) θ = π/3

(d) θ = π/2 (e) θ = 2π/3 (f) θ = 5π/6

Figure 5: Reconstruction from a single observable direction x̂ = (cos θ, sin θ) with θ ∈ [0, π] for
a straight line segment a(t) = (0, t) with t ∈ [1, 3].

Case 2 c = 4, α = π/4 and t ∈ [1, 2].
In this case a(t) = (2

√
2t, 2
√

2t) represents a diagonal line segment. The search domain is
taken as [−2, 5] × [−2, 5]. The observable directions are x̂ with θ ∈ [0, 3π/4] ∪ [7π/4, 8π/4] ∪
[11π/12, 19π/12] and non-observable directions are x̂ with θ ∈ (3π/4, 11π/12) ∪ (19π/12, 7π/4).
By the proof of Lemma 3.7, h′(t) = 1 + 4 cos(θ − π/4) > 0 for observable angles θ ∈ [0, 3π/4] ∪
[7π/4, 2π) and h′(t) < 0 for θ ∈ [11π/12, 19π/12].

In Fig.7, we take different observable angles θ ∈ [0, 3π/4] ∪ [7π/4, 2π). Since h′(t) > 0, the
trajectory of the moving source can be completely covered by the smallest strip perpendicular the
observation direction. The numerical examples indeed show that K(x̂)

Γ = {y ∈ R2 : inf(x̂ · Γ) ≤
x̂ · y ≤ sup(x̂ · Γ)}.

In Fig.8, we measure the data at the observable angle θ ∈ [11π/12, 19π/12] so that h′(t) < 0.
Although these observation directions θ belong to the class of the observable set, the recovered
strips K(x̂)

Γ are thinner than the smallest strips containing the trajectory of the moving source,
because K(x̂)

Γ ⊂ {y ∈ R2 : inf(x̂ · Γ) ≤ x̂ · y ≤ sup(x̂ · Γ)} by Lemma 3.9.
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(a) θ = 9π/8 (b) θ = 10π/8 (c) θ = 11π/8

(d) θ = 13π/8 (e) θ = 14π/8 (f) θ = 15π/8

Figure 6: Reconstruction from a single non-observable direction x̂ = (cos θ, sin θ) with θ ∈ (π, 2π)

for a straight line segment a(t) = (0, t) with t ∈ [1, 3].

In Fig.9, we make use of non-observable angles. The numerical results illustrate that the
indicator values are indeed much smaller. Hence, one cannot expect to reconstruct the smallest
strip containing the trajectory of the moving source.

Example 2: An arc in R2

As shown in Example 2 of Section 3, we take a(t) = (cos(t), sin(t)) with t ∈ [0, π]. The
search domain is [−2, 2]2. From Lemma 3.8, we know that observable directions are x̂ with
θ ∈ [π/2, 3π/2] and non-observable directions are x̂ with θ ∈ (0, π/2) ∪ (3π/2, 2π). Fig.10 shows
the reconstructions using the data from observable directions, where the subfigures (c), (d) and
(e) nicely give us the the smallest strip K(x̂)

Γ containing the trajectory of the moving source that
is perpendicular to the observable direction. Note that K(x̂)

Γ = {y ∈ R2 : sup(x̂ · Γ) ≤ x̂ · y ≤
inf(x̂ · Γ)} for θ = 7π/8, 8π/8, and 9π/8, because h′(t) > 0 for all t ∈ [0, π] at these angles.
However, the strips K(x̂)

Γ in subfigures (a), (b) and (f) do not provide sufficient information on
the trajectory. This is due to the reason that h′(t) < 0 for θ = 5π/8, 6π/8, 10π/8 and t ∈ [0, π],
implying that K(x̂)

Γ ⊂ {y ∈ R2 : sup(x̂ · Γ) ≤ x̂ · y ≤ inf(x̂ · Γ)}. Reconstructions from non-
observable angles θ ∈ (0, π/2) ∪ (3π/2, 2π) are illustrated in Fig.11. The values are still very
small and can not reconstruct the strip {y ∈ R2 : sup(x̂ · Γ) ≤ x̂ · y ≤ inf(x̂ · Γ)}.

Example 3: A piecewise linear curve in R2
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(a) θ = 0π/8 (b) θ = 3π/8 (c) θ = 4π/8

(d) θ = 5π/8 (e) θ = 6π/8 (f) θ = 15π/8

Figure 7: Reconstruction from a single observable direction x̂ = (cos θ, sin θ) with θ ∈ [0, 3π/4]∪
[7π/4, 2π) for a straight line segment a(t) = (2

√
2t, 2
√

2t) with t ∈ [1, 2]. Since h′(t) > 0, the
strip K(x̂)

Γ coincides with {y ∈ R2 : x̂ · y ∈ x̂ · Γ}.

We first remark that the analysis performed in Sections 2-4 carry over to piecewisely C1-
smooth orbit functions. Complexity arises only from the definition of the division points made
in Def. 3.1, where the discontinuity points of h′(t) should be taken into account. Assume that
the trajectory of the moving source a(t) is given by

a(t) =

{
(−t+ 3,−t+ 3), t ∈ [0, 1],

(t+ 1,−t+ 3), t ∈ [1, 2].

Let x̂ = (cos θ, sin θ), θ ∈ [0, 2π) be the observation direction. We first calculate the observable
and non-observable directions. Note that T = 2. Evidently,

h(t) = t+ x̂ · a(t) =

{
t(1− cos θ − sin θ) + 3(cos θ + sin θ), t ∈ [0, 1],

t(1 + cos θ − sin θ) + cos θ + 3 sin θ, t ∈ [1, 2],

and thus

h′(t) = 1 + x̂ · a′(t) =

{
1− cos θ − sin θ, t ∈ (0, 1),

1 + cos θ − sin θ, t ∈ (1, 2).

Since h′(t) ≡ 0 in some interval when θ = 0, π/2 and π, we need to consider the following six
cases separately.
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(a) θ = 11π/12 (b) θ = 8π/8 (c) θ = 9π/8

(d) θ = 10π/8 (e) θ = 11π/8 (f) θ = 12π/8

Figure 8: Reconstruction from a single observable direction x̂ = (cos θ, sin θ) with θ ∈
[11π/12, 19π/12] for a straight line segment a(t) = (2

√
2t, 2
√

2t) with t ∈ [1, 2]. Since h′(t) < 0,
the strip K(x̂)

Γ is a subset of {y ∈ R2 : x̂ · y ∈ x̂ · Γ}.

(1) θ = 0. We have h′(t) = 0 for t ∈ (0, 1) and h′(t) > 0 for t ∈ (1, 2). This gives 3 ≤ h(t) ≤ 5

for t ∈ (0, 2), implying ξ(x̂)
max − ξ(x̂)

min = T . Thus, x̂ = (1, 0) is an observable direction.
(2) θ ∈ (0, π/2). We have h′(t) < 0 for t ∈ (0, 1) and h′(t) > 0 for t ∈ (1, 2). Therefore, for

ξ = h(t), t ∈ (0, 2) it holds that

ξ ∈ [1 + 2(cos θ + sin θ), 3(cos θ + sin θ)] ∪ [1 + 2(cos θ + sin θ), 2 + 3 cos θ − sin θ]

= [1 + 2(cos θ + sin θ),max{3(cos θ + sin θ), 2 + 3 cos θ − sin θ}].

Consequently, ξ(x̂)
max − ξ(x̂)

min = max{cos θ + sin θ − 1, 1 + cos θ − 3 sin θ} < T = 2. Thus, each x̂
with θ ∈ (0, π/2).is non-observable.

(3) θ = π/2. We have h′(t) = 0 for t ∈ (0, 1) and h′(t) = 0 for t ∈ (1, 2), implying that
h(t) ≡ 3. Hence, ξ(x̂)

max − ξ(x̂)
min = 0 < T . Thus, x̂ = (0, 1) is an non-observable.

(4) θ ∈ (π/2, π). We have h′(t) > 0 for t ∈ (0, 1) and h′(t) < 0 for t ∈ (1, 2). Hence, if
ξ = h(t) for some t ∈ (0, 2), then

ξ ∈ [3(cos θ + sin θ), 1 + 2(cos θ + sin θ)] ∪ [2 + 3 cos θ − sin θ, 1 + 2(cos θ + sin θ)]

= [min{3(cos θ + sin θ), 2 + 3 cos θ − sin θ}, 1 + 2(cos θ + sin θ)].

In this case, we get ξ(x̂)
max − ξ(x̂)

min = max{1 − cos θ − sin θ, 3 sin θ − cos θ − 1} < T . Thus, the
direction x̂ with θ ∈ (π/2, π) is non-observable.
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(a) θ = 19π/24 (b) θ = 20π/24 (c) θ = 21π/24

(d) θ = 39π/24 (e) θ = 40π/24 (f) θ = 41π/24

Figure 9: Reconstruction from a single non-observable direction x̂ = (cos θ, sin θ) with θ ∈
(3π/4, 11π/12) ∪ (19π/12, 7π/4) for a straight line segment a(t) = (2

√
2t, 2
√

2t) with t ∈ [1, 2].

(5) θ = π. We have h′(t) > 0 in (0, 1) and h′(t) = 0 in (1, 2), implying −3 ≤ h(t) ≤ −1 for
t ∈ (0, 2). Thus ξ(x̂)

max − ξ(x̂)
min = 2 and x̂ = (−1, 0) is an observable direction.

(6) θ ∈ (π, 2π). We have h′(t) > 0 for t ∈ (0, 1) and h′(t) > 0 for t ∈ (1, 2). For ξ = h(t) we
have

ξ ∈ [3(cos θ + sin θ), 1 + 2(cos θ + sin θ)] ∪ [1 + 2(cos θ + sin θ), 2 + 3 cos θ − sin θ]

= [3(cos θ + sin θ), 2 + 3 cos θ − sin θ],

implying that ξ(x̂)
max − ξ

(x̂)
min = 2 − 4 sin θ > 2. Therefore, each direction x̂ with θ ∈ (0, π) is

observable.
Summing up, we conclude that [π, 2π] consists of observable angles and (0, π) the non-

observable ones. In Fig.12, we plot the indicator functions for different observable angles
in [π, 2π]. In subfigures (b), (c), (d) and (e), the reconstructed strip K

(x̂)
Γ coincides with

{y ∈ R2 : sup(x̂ ·Γ) ≤ x̂ ·y ≤ inf(x̂ ·Γ)} for all t ∈ [0, 2] and θ = 5π/4, 3π/2, 5π/3 and 7π/4. The
strips K(x̂)

Γ in subfigures (a) and (f) are subsets of {y ∈ R2 : sup(x̂ · Γ) ≤ x̂ · y ≤ inf(x̂ · Γ)} for
all t ∈ [0, 2] and θ = 11π/10 and 15π/8. In Fig.13 we show reconstructions from non-observable
angles θ ∈ (0, π).

Example 4: A straight line segment in R3

Consider a straight line segment in R3 parameterized by a(t) = (0, 0, t), t ∈ [0, 1] and write
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(a) θ = 5π/8 (b) θ = 6π/8 (c) θ = 7π/8

(d) θ = 8π/8 (e) θ = 9π/8 (f) θ = 10π/8

Figure 10: Reconstruction from a single observable direction x̂ = (cos θ, sin θ) with θ ∈
[π/2, 3π/2] for an arc a(t) = (cos t, sin t) with t ∈ [0, π].

the observation direction as x̂ = (sin θ cosϕ, sin θ sinϕ, cos θ), θ ∈ [0, π], ϕ ∈ [0, 2π). Then,

h(t) = t+ x̂ · a(t) = t(1 + cos θ), h′(t) = 1 + x̂ · a′(t) = 1 + cos θ.

It follows that h′(t) > 0 for all t ∈ [tmin, tmax]. Hence x̂ is a non-observable direction only if
cos θ < 0, that is θ ∈ (π/2, π), and x̂ is an observable direction if θ ∈ [0, π/2]. In Fig.14, we
illustrate two planes perpendicular to the observable direction, between which the trajectory of
the moving source is located. Fig.15 presents slices of the smallest hyperspace at x1 = 0 and
x3 = −2 reconstructed from the data of different observable directions. We conclude that the
trajectory of the moving source lies perfectly between the two planes that are perpendicular to
the observation direction. It demonstrates effectiveness of our algorithm for imaging a straight
line segment in R3. In Fig.16, we plot the indicator functions with different non-observable
directions. The values of the indicator function are much smaller than 10−3.

Remark 5.1. Let us discuss the width l(x̂) of the strip K(x̂)
Γ . If x̂ is observable and h′(t) remains

positive, we know l(x̂) = sup(x̂ · Γ) − inf(x̂ · Γ); If x̂ is observable and h′(t) < 0 in (tmin, tmax),
then l(x̂) < sup(x̂ · Γ) − inf(x̂ · Γ); If the direction x̂ in the latter case is getting closer to some
non-observable direction, our numerical tests show that l(x̂) tends to be thinner and thinner.
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(a) θ = 1π/8 (b) θ = 2π/8 (c) θ = 3π/8

(d) θ = 13π/8 (e) θ = 15π/8 (f) θ = 16π/8

Figure 11: Reconstruction from a single non-observable direction x̂ = (cos θ, sin θ) with θ ∈
(0, π/2) ∪ (3π/2, 2π) for an arc a(t) = (cos t, sin t) with t ∈ [0, π].

5.2 Multiple observation directions

In this subsection, we continue the two dimensional Examples 1, 2 and 3 but with multi-frequency
far-field data measured at sparse directions. We should truncate the indicator function (4.29) by

W (y) :=


M∑
j=1

N∑
n=1

∣∣∣∣φ(x̂j)
y · ψ(x̂j)

n

∣∣∣∣2
|λ(x̂j)
n |


−1

, y ∈ R2. (5.37)

where M > 0 denotes the number of sparse observation directions equally lying on S1, the test
function φ(x̂j)

y is again given by (5.36) and
{

(λ
(x̂j)
n , ψ

(x̂j)
n ) : n = 1, · · · , N

}
denote an eigensystem

of the operator (F (x̂j))#. It is worthy noting that x̂j (j = 1, 2, · · · ,M) may contain both
observable and non-observable direction. We set a thresholdM ′ > 0 to remove the contributions
of the terms likes

w̃j =

N∑
n=1

∣∣∣∣φ(x̂j)
y · ψ(x̂)

n

∣∣∣∣2
|λ(x̂)
n |

, j = 1, 2, ...W

to the sum in (5.37). More precisely, if min(w̃j(y)) > M ′, the direction x̂j can be considered as
a non-observable direction by the second assertion of Theorem 4.1. In our numerical examples,
the threshold value is set as M = 3.5× 103.
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(a) θ = 11π/10 (b) θ = 5π/4 (c) θ = 3π/2

(d) θ = 5π/3 (e) θ = 7π/4 (f) θ = 15π/8

Figure 12: Reconstruction from a single observable direction x̂ = (cos θ, sin θ) with θ ∈ [π, 2π]

for a broken line segment a(t) = (−t + 3,−t + 3) with t ∈ [0, 1] and a(t) = (t + 1,−t + 3) with
t ∈ [1, 2] in R2.

We present in Fig.17 a visualization of the reconstructed trajectory for orbit functions a(t) =

(0, t) with t ∈ [1, 3] with multiple observation directions. For M = 2, 4, 8, there exists at one
direction perpendicular to the trajectory and one parallel to the trajectory, the intersections
of the strips K(x̂j)

Γ always reflect the trajectory of the moving source. Since h′(t) > 0 for all
observable directions in Example 1, the trajectory can be perfectly reconstructed from the data
taken on sparse observation directions.

However, in the case of the line segment in Example 3 or the arc in Example 4, we can only
get partial information on the trajectory. From Figs.18 and 19, one can only get the starting and
ending points of the trajectory, although the data of multiple directions are put into use. This
is due to the existence of x̂j satisfying K(x̂j)

Γ ⊂ {y ∈ R2 : sup(x̂ · Γ) ≤ x̂ · y ≤ inf(x̂ · Γ)}. For
such observation directions, the width of the reconstructed strip K(x̂j)

Γ is very small. Hence, the
intersection of K(x̂j)

Γ always appears like a line segment connecting the starting and the ending
points of the trajectory.

5.3 Reconstructions from noisy data

We test the sensitivity of the algorithm with respect to the noisy data. Consider the Case 1 in
Example 1 for recovering a line segment. The far-field data are polluted by Gaussian noise in
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(a) θ = π/7 (b) θ = 2π/7 (c) θ = 3π/7

(d) θ = 4π/7 (e) θ = 5π/7 (f) θ = 6π/7

Figure 13: Reconstruction from a single non-observable direction x̂ = (cos θ, sin θ) with θ ∈ (0, π)

for a piecewise linear curve a(t) = (−t+ 3,−t+ 3) with t ∈ [0, 1] and a(t) = (t+ 1,−t+ 3) with
t ∈ [1, 2] in R2.

the form of
w∞δ (x̂, k) := Re [w∞(x̂, k)]

(
1 + δ γ1

)
+ Im.[w∞(x̂, k)]

(
1 + δ γ2

)
where δ > 0 denotes the noise level and γj ∈ [−1, 1] (j = 1, 2) are Gaussian random variables.

We set δ = 1% and plot the indicator functions in Fig.20 using one and sparse observation
directions. It turns out that the proposed scheme is rather sensitive to noise. Even at the noise
level 1%, one can only get a rough location of the trajectory of the moving source using the
data measured at sparse directions. This shows that our inverse problems are severely ill-posed.
However, a quantitive characterization of the ill-posed nature remains unclear to us.
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(a) φ = π/6, θ = π/8 (b) φ = π/4, θ = π/6

Figure 14: Illustration of the hyperplanes perpendicular to the observable direction x̂ =

(sin θ cosφ, sin θ sinφ, cosφ). Here we take isosurface level = 0.02.
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(a) φ = π/4, θ = π/8 (b) φ = π/4, θ = 2π/8 (c) φ = π/4, θ = 3π/8

(d) φ = π/2, θ = π/8 (e) φ = π/2, θ = 2π/8 (f) φ = π/2, θ = 3π/8

(g) φ = π, θ = π/8 (h) φ = π, θ = 2π/8 (i) φ = π, θ = 3π/8

Figure 15: Reconstruction from a single observable direction x̂ = (sin θ cosϕ, sin θ sinϕ, cos θ)

with θ ∈ [0, π/2] and φ ∈ [0, 2π) for a straight line segment a(t) = (0, 0, t) with t ∈ [0, 1] in R3.
Here we take slices at x1 = 0 and x3 = −2.
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(a) φ = 5π/4, θ = 5π/8 (b) φ = 5π/4, θ = 6π/8 (c) φ = 5π/4, θ = 7π/8

(d) φ = 6π/4, θ = 5π/8 (e) φ = 6π/4, θ = 6π/8 (f) φ = 6π/4, θ = 7π/8

(g) φ = 7π/4, θ = 5π/8 (h) φ = 7π/4, θ = 6π/8 (i) φ = 7π/4, θ = 7π/8

Figure 16: Reconstruction from a single non-observable direction x̂ = (cos θ, sin θ) with θ ∈
(π/2, π) and φ ∈ [0, 2π) for a straight line segment a(t) = (0, 0, t) with t ∈ [0, 1] in R3. Here we
take take slices at x = 0 and z = −2.
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(a) M = 2 (b) M = 4 (c) M = 8

Figure 17: Reconstruction from multiple observation direction x̂ = (cos θ, sin θ) with θ ∈ [0, 2π)

for a straight line segment a(t) = (0, t) with t ∈ [1, 3]. Here M denotes the number of the
directions. (a) θ = 0, π/2; (b) and (c) θ = (j − 1) ∗ 2π/M , j = 1, · · · ,M .

(a) M = 2 (b) M = 4 (c) M = 6

(d) M = 8 (e) M = 10 (f) M = 12

Figure 18: Reconstruction from multiple observation directions x̂ = (cos θ, sin θ) with θ ∈ (0, 2π)

for an arc a(t) = (cos t, sin t) with t ∈ [0, π]. Here M is the number of the directions. θ =

(j − 1) ∗ 2π/M , j = 1, 2, ...M .

34



(a) M = 2 (b) M = 4 (c) M = 7

Figure 19: Reconstruction from multiple observation directions x̂ = (cos θ, sin θ) with θ ∈ [0, 2π)

for the piecewise linear curve a(t) = (−t + 3,−t + 3) with t ∈ [0, 1] and a(t) = (t + 1,−t + 3)

with t ∈ [1, 2] in R2. Here M is the number of observation directions. (a) θ = 5π/4, 7π/4; (b)
θ = (j − 1) ∗ 2π/M, j = 1, ...,M ; (c) θ = 2j ∗ 2π/15, j = 1, ...,M .
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(a) θ = 0 (b) θ = π/4

(c) θ = π/2 (d) M = 4

Figure 20: Reconstruction of a straight line segment a(t) = (0, t), t ∈ [1, 3] from noisy data
measured at a single observable direction x̂ = (cos θ, sin θ) in (a),(b) and (c). In (d), the polluted
far-field data from M = 4 directions are used. The noise level is set as δ = 1%.

36



Acknowledgements

G. Hu is partially supported by the National Natural Science Foundation of China (No. 12071236)
and the Fundamental Research Funds for Central Universities in China (No. 63213025).

References

[1] A. Alzaalig, G. Hu, X. Liu and J. Sun, Fast acoustic source imaging using multi-frequency
sparse data, Inverse Problems, 36 (2020): 025009.

[2] B. Chen, Y. Guo, F. Ma and Y. Sun, Numerical schemes to reconstruct three-dimensional
time-dependent point sources of acoustic waves, Inverse Problems, 36 (2020): 075009.

[3] M. Cheney and B. Borden, Imaging moving targets from scattered waves, Inverse Problems
24 (2008): 035005.

[4] J. Cooper, Scattering of plane waves by a moving obstacle. Arch. Ration. Mech. Anal. 71
(1979): 113-149.

[5] J. Cooper and W. Strauss, Scattering of waves by periodically moving bodies. J. Funct.
Anal. 47 (1982): 180-229.

[6] J. Fournier, J. Garnier, G. Papanicolaou and C. Tsogka, Matched-filter and correlation-
based imaging for fast moving objects using a sparse network of receivers, SIAM J. Imag.
Sci., 10 (2017): 2165-2216.

[7] J. Garnier and M. Fink, Super-resolution in time-reversal focusing on a moving source, Wave
Motion, 53 (2015): 80-93.

[8] R. Griesmaire and C. Schmiedecke, A Factorization method for multifrequency inverse source
problem with sparse far field measurements, SIAM J. Imag. Sci., 10 (2017): 2119-2139.

[9] R. Griesmarier, H. Guo, G. Hu, Inverse wave-number-dependent source problems for the
Helmholtz equation, in preparing.

[10] H. Guo, G. Hu and M. Zhao, Direct sampling method to inverse wave-number-
dependent source problems (part I): determination of the support of a stationary source,
arXiv:2212.04806.

[11] G. Hu, Y. Kian, P. Li and Y. Zhao, Inverse moving source problems in electrodynamics,
Inverse Problems, 35 (2019): 075001.

[12] G. Hu, Y. Kian and Y. Zhao, Uniqueness to some inverse source problems for the wave
equation in unbounded domains, Acta Mathematicae Applicatae Sinica, English Series, 36
(2020): 134-150.

37

http://arxiv.org/abs/2212.04806


[13] G. Hu, Y. Liu and M. Yamamoto, Inverse moving source problem for fractional diffusion(-
wave) equations: Determination of orbits, Inverse Problems and Related Topics ed J Cheng,
S Lu and M Yamamoto (Singapore: Springer) pp. 81-100, 2020.

[14] V. Isakov, Inverse Source Problems, AMS, Providence, RI, 1989.

[15] H. A. Jebawy, A. Elbadia and F. Triki, Inverse moving point source problem for the wave
equation, Inverse Problems, 38 (2022): 125003.

[16] A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford Uni-
versity Press, Oxford, UK, 2008.

[17] Y. Liu, Y. Guo, and J. Sun, A deterministic-statistical approach to reconstruct moving
sources using sparse partial data, Inverse Problems, 37 (2021): 065005.

[18] Y. Liu, G. Hu and M. Yamamoto, Inverse moving source problem for time-fractional evolu-
tion equations: determination of profiles, Inverse Problems, 37 (2021): 084001.

[19] Y. Liu, Numerical schemes for reconstructing profiles of moving sources in (time-fractional)
evolution equations, RIMS Kokyuroku 2174 (2021): 73-87.

[20] E. Nakaguchi, H. Inui and K. Ohnaka. An algebraic reconstruction of a moving point source
for a scalar wave equation, Inverse Problems, 28 (2012): 065018.

[21] T. Ohe, H. Inui and K. Ohnaka, Real-time reconstruction of time-varying point sources in
a three-dimensional scalar wave equation. Inverse Problems, 27 (2011): 115011.

[22] P. D. Stefanov, Inverse scattering problem for moving obstacles, Math. Z. 207 (1991): 461-
480.

[23] J. Sylvester and J. Kelly, A scattering support for broadband sparse far-field measurements,
Inverse Problems, 21 (2005): 759-771.

[24] O. Takashi. Real-time reconstruction of moving point/dipole wave sources from boundary
measurements, Inverse Probl. Sci. Eng., 28 (2020): 1057-1102.

[25] S. Wang, Mirza Karamehmedovic, Faouzi Triki, Localization of moving sources: uniqueness,
stability and Bayesian inference, arXiv:2204.04465.

38

http://arxiv.org/abs/2204.04465

	1 Introduction
	1.1 Time-dependent model and Fourier transform
	1.2 Formulation in the frequency domain and literature review

	2 Factorization of far-field operator
	3 Range of  L() and test functions
	4 Indicator functions and uniqueness
	5 Numerical experements in Rd (d=2,3)
	5.1 A single observation direction
	5.2 Multiple observation directions
	5.3 Reconstructions from noisy data


