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Abstract

We consider the asymptotic limits where certain parameters in the definitions of the

Laguerre and Jacobi ensembles diverge. In these limits, Dette, Imhof, and Nagel proved

that up to a linear transformation, the joint probability distributions of the ensembles

become more and more concentrated around the zeros of the Laguerre and Jacobi

polynomials, respectively. In this paper, we improve the concentration bounds. Our

proofs are similar to those in the original references, but the error analysis is improved

and arguably simpler. For the first and second moments of the Jacobi ensemble, we

further improve the concentration bounds implied by our aforementioned results.

Preprint number: MIT-CTP/5469

1 Introduction

The Gaussian, Wishart, and Jacobi ensembles are three classical ensembles in random matrix
theory. They find numerous applications in physics, statistics, and other branches of applied
science. The Gaussian (Wishart) ensemble is also known as the Hermite (Laguerre) ensemble
due to its relationship with the Hermite (Laguerre) polynomial.

Of particular interest are the asymptotic limits where certain parameters in the definitions
of the ensembles diverge. In these limits, Dette, Imhof, and Nagel [1, 2] proved that up to
a linear transformation, the joint probability distributions of the Hermite, Laguerre, and
Jacobi ensembles become more and more concentrated around the zeros of the Hermite,
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Laguerre, and Jacobi polynomials, respectively. These results allow us to transfer knowledge
on the zeros of orthogonal polynomials to the corresponding ensembles.

In this paper, we improve the concentration bounds for the Laguerre and Jacobi probabil-
ity distributions around the zeros of the Laguerre and Jacobi polynomials, respectively. Our
proofs are similar to those in the original references [1, 2], but the error analysis is improved
and arguably simpler. We also prove the concentration of the first and second moments of
the Jacobi ensemble. The last result has found applications in quantum statistical mechanics
[3].

The rest of this paper is organized as follows. Section 2 presents our main results, which
are compared with previous results in the literature. Proofs are given in Section 3.

2 Results

In the literature, there is more than one definition of the Laguerre probability distribution.
These definitions differ only by a linear transformation and are thus essentially equivalent.
In this paper, we stick to one definition. When citing a result from the literature, we perform
a linear transformation such that the result is presented for the definition we stick to. The
same applies to the Jacobi case.

Let n be the number of random variables in an ensemble. Let β be the Dyson index,
which can be an arbitrary positive number.

2.1 Laguerre ensemble

We draw λ1 ≤ λ2 ≤ · · · ≤ λn from the Laguerre ensemble.

Definition 1 (Laguerre ensemble). The probability density function of the β-Laguerre en-
semble with parameters

α > (n− 1)
β

2
(1)

is

fLag(λ1, λ2, . . . , λn) ∝
∏

1≤i<j≤n

|λi − λj |β
n
∏

i=1

λ
α− (n−1)β

2
−1

i e−λi/2, λi > 0. (2)

For certain values of β, the Laguerre ensemble arises as the probability density function
of the eigenvalues of a Wishart matrix V V ∗, where V is an n × 2α

β
matrix with real (β =

1), complex (β = 2), or quaternionic (β = 4) entries. In each case the entries of V are
independent standard Gaussian random variables and V ∗ denotes the conjugate transpose
of V .

Let

L(p)
n (x) :=

n
∑

i=0

(

n+ p

n− i

)

(−x)i

i!
, p > −1 (3)

be the Laguerre polynomial, whose zeros are all in the interval with endpoints [4]

2n+ p− 2±
√

1 + 4(n− 1)(n+ p− 1) cos2
π

n+ 1
. (4)
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Let x1 < x2 < · · · < xn be the zeros of the Laguerre polynomial L
(2α/β−n)
n (x/β).

We are interested in the limit α → ∞ but do not assume that n → ∞. Note that if β is
a constant, then n → ∞ implies that α → ∞; see (1).

Theorem 1 (Theorem 2.1 in Ref. [1]). For any 0 < ǫ < 1,

Pr

(

1

2α
max
1≤i≤n

|λi − xi| > ǫ

)

≤ 4n(1 + ǫ2/25)αe−αǫ2/25. (5)

This theorem can be restated as

Corollary 1. There exist positive constants C1, C2 such that for any 0 < ǫ < 1,

Pr

(

1

2α
max
1≤i≤n

|λi − xi| > ǫ

)

≤ C1ne
−C2αǫ4 . (6)

Theorem 2 (Theorem 2.4 in Ref. [1]). Let κ ≥ 1 be a parameter. If

n− 1 + 1/β ≤ 2α/β ≤ n− 1 + κ and 2κβ/α < ǫ < 1, (7)

then there exist positive constants C1, C2, C3 such that

Pr

(

1

2α
max
1≤i≤n

|λi − xi| > ǫ

)

≤ C1n(e
−C2αǫ2/κ + eC3κ2β−C2αǫ2). (8)

The original upper bound on Pr
(

1
2α

max1≤i≤n |λi − xi| > ǫ
)

in Theorem 2.4 of Ref. [1]
is a complicated expression without implicit constants. The right-hand side of (8) is its
simplification using implicit constants.

If condition (7) is satisfied, (8) may be an improvement of (6). In particular, for a
constant β, the right-hand side of (8) becomes C ′

1ne
−C′

2αǫ
2
(C ′

1, C
′
2 are positive constants) if

and only if κ is upper bounded by a constant.
As the main result of this subsection, Theorem 3 is an improvement of Corollary 1 and

Theorem 2.

Theorem 3. There exist positive constants C1, C2 such that for any ǫ > 0,

Pr

(

1

2α
max
1≤i≤n

|λi − xi| > ǫ

)

≤ C1ne
−C2αǫmin{ǫ,1}. (9)

Let n ≤ s be two positive integers and V be an n×s matrix whose elements are indepen-
dent standard real Gaussian random variables. Then, V V T is a real Wishart matrix, whose
joint eigenvalue distribution is given by (2) with β = 1 and α = s/2. Theorem 3 implies
that

Corollary 2. Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of V V T and x1 < x2 < · · · < xn

be the zeros of the Laguerre polynomial L
(s−n)
n (x). There exist positive constants C1, C2 such

that for any ǫ > 0,

Pr

(

1

s
max
1≤i≤n

|λi − xi| > ǫ

)

≤ C1ne
−C2sǫmin{ǫ,1}. (10)
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Analogues of Corollary 2 for complex (β = 2) and quaternionic (β = 4) Wishart matrices
also follow directly from Theorem 3.

Let

ML
1 :=

1

n

n
∑

i=1

λi (11)

be the first moment of the Laguerre ensemble. The distribution of ML
1 has a particularly

simple form.

Fact 1. ML
1 is distributed as 1

n
χ2
2αn, where χ2

k denotes the chi-square distribution with k
degrees of freedom.

Thus, the concentration ofML
1 follows directly from the tail bound [5, 6] for the chi-square

distribution.
The distribution of the second moment of the Laguerre ensemble does not have a simple

form. Furthermore, it is complicated to obtain concentration bounds for the distribution, so
we omit this analysis here.

2.2 Jacobi ensemble

We draw µ1 ≤ µ2 ≤ · · · ≤ µn from the Jacobi ensemble.

Definition 2 (Jacobi ensemble). The probability density function of the β-Jacobi ensemble
with parameters a, b > 0 is

fJac(µ1, µ2, . . . , µn) ∝
∏

1≤i<j≤n

|µi − µj|β
n
∏

i=1

(1− µi)
a−1(1 + µi)

b−1, −1 ≤ µi ≤ 1. (12)

The Jacobi ensemble can be interpreted as the probability density function of the eigen-
values of a random matrix ensemble. In the complex (β = 2) case, let Q1 and Q2 be
uniformly random projectors in C2n+a+b−2 with ranks n and n + b − 1, respectively. Then,
1+µ1

2
, 1+µ2

2
, . . . , 1+µn

2
are the non-zero eigenvalues of Q1Q2Q1 [7]. Equivalently, they are the

squared singular values of an n× (n+b−1) rectangular block within a Haar-random unitary
matrix of dimension 2n + a + b − 2. A random matrix interpretation for general β is given
in Ref. [8], but it has less of a natural connection to applications.

The Jacobi polynomial is defined as

P p,q
n (y) :=

Γ(n+ p+ 1)

Γ(n+ p + q + 1)

n
∑

i=0

Γ(n+ p+ q + i+ 1)

i!(n− i)!Γ(p+ i+ 1)

(

y − 1

2

)i

, (13)

where Γ is the gamma function. It is well known that all zeros of the Jacobi polynomial
are in the interval (−1, 1). Let y1 < y2 < · · · < yn be the zeros of the Jacobi polynomial

P
2a/β−1,2b/β−1
n (y).
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2.2.1 Pointwise approximation

In this subsubsection, we are interested in the limit a + b → ∞ but do not assume that
min{a, b} → ∞.

Theorem 4 (Theorem 2.1 in Ref. [2]). For any 0 < ǫ ≤ 1/2,

Pr

(

max
1≤i≤n

|µi − yi| > ǫ

)

≤ 4(2n− 1)

(

1 +
ǫ2

162 + 2ǫ2

)a+b

e
− (a+b)ǫ2

162+2ǫ2 . (14)

This theorem can be restated as

Corollary 3. There exist positive constants C1, C2 such that for any 0 < ǫ ≤ 1/2,

Pr

(

max
1≤i≤n

|µi − yi| > ǫ

)

≤ C1ne
−C2(a+b)ǫ4 . (15)

As the main result of this subsubsection, Theorem 5 is an improvement of Corollary 3.

Theorem 5. There exist positive constants C1, C2 such that for any ǫ > 0,

Pr

(

max
1≤i≤n

|µi − yi| > ǫ

)

≤ C1ne
−C2(a+b)ǫ2 . (16)

Section 3 of Ref. [2] presents several applications of Theorem 4. Most of them can be
improved by using Theorem 5. We discuss one of them in detail.

Let β be a positive constant. Consider the limit n → ∞ with

a = ω(n), a = Θ(b). (17)

Let δ(·) be the Dirac delta. The semicircle law with radius r is a probability distribution on
the interval [−r, r] with density function

fSC(µ) ∝
√

r2 − µ2. (18)

Corollary 4. The empirical distribution

f(µ) :=
1

n

n
∑

i=1

δ

(

µ−
√

a+ b

2abnβ

(

(a + b)µi + a− b
)

)

(19)

of linearly transformed µi converges weakly to the semicircle law with radius 2 almost surely.

For ω(n) = a = o(n2/ lnn), Corollary 4 was proved in Example 3.4 of Ref. [2] using
Theorem 4. Using Theorem 5 instead, the same proof becomes valid for any a = ω(n).

Corollary 4 is very similar to Theorem 2.1 in Ref. [9].
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2.2.2 Moments

Theorem 5 implies the concentration of any smooth multivariate function of µ1, µ2, . . . , µn.
The main result of this subsubsection is tighter concentration bounds (than those implied
by Theorem 5) for the first and second moments of the Jacobi ensemble.

Let
N := a+ b+ β(n− 1). (20)

Suppose that β = Θ(1) is a positive constant and that a+ b = Ω(1). In this subsubsection,
we are interested in the limit N → ∞. This means that a+ b → ∞ or n → ∞ or both.

Let

MJ
1 :=

1

n

n
∑

i=1

µi, MJ
2 :=

1

n

n
∑

i=1

(µi − EMJ
1 )

2 (21)

be the first and shifted second moments of the Jacobi ensemble. Equation (B.7) of Ref. [10]
implies that

EMJ
1 =

b− a

N
, EMJ

2 =
βn(2a+ βn)(2b+ βn)

2N3
+O(1/N). (22)

Indeed, EMJ
2 can be calculated exactly in closed form. The expression is lengthy and

simplifies to the above using the Big-O notation.

Theorem 6 (concentration of moments). For any ǫ > 0,

Pr
(

|MJ
1 − EMJ

1 | > ǫ
)

= O(e−Ω(Nnǫ2)), Pr
(

|MJ
2 − EMJ

2 | > ǫ
)

= O(e−Ω(Nǫ)min{Nǫ,n}). (23)

Let

Y1 :=
1

n

n
∑

i=1

yi, Y2 :=
1

n

n
∑

i=1

(yi − Y1)
2 (24)

be the mean and variance of the zeros of the Jacobi polynomial. From direct calculation
(Appendix A) we find that

Y1 =
b− a

N
, Y2 =

β(n− 1)
(

2a+ β(n− 1)
)(

2b+ β(n− 1)
)

N2(2N − β)
. (25)

Hence,
EMJ

1 = Y1, EMJ
2 = Y2 +O(1/N). (26)

Corollary 5. For any ǫ > 0,

Pr
(

|MJ
1 − Y1| > ǫ

)

= O(e−Ω(Nnǫ2)), Pr
(

|MJ
2 − Y2| > ǫ

)

= O(e−Ω(Nǫ)min{Nǫ,n}). (27)

3 Proofs

The proofs of Theorems 3 and 5 are similar to those of Theorems 1 and 4 in Refs. [1, 2],
respectively, but the error analysis is improved and arguably simpler.

The following lemma will be used multiple times.
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Lemma 1. Let m be an integer and pi, qi be numbers such that |pi−qi| ≤ δ for i = 1, 2, . . . , m.
Then,

∣

∣

∣

∣

∣

m
∏

i=1

pi −
m
∏

i=1

qi

∣

∣

∣

∣

∣

≤ δ
m−1
∑

k=0

m−k−1
∏

i=1

|pi|
m
∏

j=m+1−k

|qj|. (28)

Proof.
∣

∣

∣

∣

∣

m
∏

i=1

pi −
m
∏

i=1

qi

∣

∣

∣

∣

∣

≤
m−1
∑

k=0

∣

∣

∣

∣

∣

m−k
∏

i=1

pi

m
∏

j=m+1−k

qj −
m−k−1
∏

i=1

pi

m
∏

j=m−k

qj

∣

∣

∣

∣

∣

≤ δ
m−1
∑

k=0

m−k−1
∏

i=1

|pi|
m
∏

j=m+1−k

|qj|.

(29)

Let C be a positive constant. For notational simplicity, we will reuse C in that its value
may be different in different expressions or equations.

3.1 Laguerre ensemble: Proofs of Theorem 3 and Fact 1

For Theorem 3, it suffices to prove

Theorem 7. For any ǫ > 0,

Pr

(

1

2α
max
1≤i≤n

|λi − xi| > 4ǫ

)

≤ 4ne−α(
√
1+ǫ−1)2 . (30)

Proof of Theorem 7. LetX2α, X2α−β, X2α−2β , . . . , X2α−(n−1)β , Yβ, Y2β, . . . , Y(n−1)β be indepen-
dent non-negative random variables with X2

k ∼ χ2
k and Y 2

l ∼ χ2
l . Note that

E(X2
k) = k, Var(X2

k) = 2k. (31)

Lemma A.1 in Ref. [1] gives the tail bound (δ here and in all probability bounds below is
positive)

Pr
(

|Xk −
√
k| > δ

)

≤ 2(1 + δ/
√
k)ke−δ

√
k−δ2/2 ≤ 2e−δ2/2. (32)

Let Li,j be the element in the ith row and jth column of a real symmetric n×n tridiagonal
random matrix L. “Tridiagonal” means that Li,j = 0 if |i − j| > 1. The diagonal and
subdiagonal matrix elements are, respectively,

L1,1 = X2
2α, (33)

Li,i = X2
2α−(i−1)β + Y 2

(n+1−i)β, i = 2, 3, . . . , n, (34)

Li+1,i = X2α−(i−1)βY(n−i)β, i = 1, 2, . . . , n− 1. (35)

The joint eigenvalue distribution of L is given by [11] the Laguerre ensemble (Definition 1).
Let L′ be a real symmetric n×n tridiagonal deterministic matrix, whose matrix elements

are obtained by replacing X2
k , Y

2
l in Eqs. (33), (34) by their expectation values and replacing

XkYl in Eq. (35) by
√

E(X2
k)E(Y

2
l ), i.e.,

L′
1,1 = 2α, (36)

L′
i,i = 2α + (n+ 2− 2i)β, i = 2, 3, . . . , n, (37)

L′
i+1,i =

√

(

2α− (i− 1)β
)

(n− i)β, i = 1, 2, . . . , n− 1. (38)
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The eigenvalues of L′ are the zeros of the Laguerre polynomial L
(2a/β−n)
n (x/β) [1].

Let ‖ · ‖ denote the operator norm. Let L1,0 = L′
1,0 = Ln+1,n = L′

n+1,n := 0. Let

δ =
√
2α(

√
1 + ǫ− 1). Since

max
1≤i≤n

|λi − xi| ≤ ‖L− L′‖ ≤ max
1≤i≤n

{|Li,i−1 − L′
i,i−1|+ |Li,i − L′

i,i|+ |Li+1,i − L′
i+1,i|}, (39)

it suffices to show that

|Li,i − L′
i,i| ≤ 4αǫ, |Li+1,i − L′

i+1,i| ≤ 2αǫ, ∀i (40)

under the assumptions that

|Xk −
√
k| ≤ δ, |Yl −

√
l| ≤ δ, ∀k, l. (41)

Indeed, (41) and Lemma 1 with m = 2 imply that for any k, l ≤ 2α,

|X2
k − k| ≤ δ(2

√
k + δ) ≤ δ(2

√
2α + δ), (42)

|XkYl −
√
kl| ≤ δ(

√
k +

√
l + δ) ≤ δ(2

√
2α + δ) = 2αǫ. (43)

Proof of Fact 1. Using the matrix model (33), (34), (35) from Ref. [11], we find that

ML
1 ∼ 1

n

n
∑

i=1

Li,i =
1

n

n
∑

i=1

X2
2α−(i−1)β +

1

n

n
∑

i=2

Y 2
(n+1−i)β ∼ 1

n
χ2
2αn. (44)

3.2 Jacobi ensemble

For k, l > 0, let Z ∼ B(k, l) denote a beta-distributed random variable on the interval [−1, 1]
with probability density function

fbeta(z) ∝ (1− z)k−1(1 + z)l−1 (45)

so that

EZ =
l − k

k + l
. (46)

Assume without loss of generality that k ≥ l. Theorem 8 in Ref. [12] gives the tail bound

Pr(Z > EZ + δ) ≤ 2e
−C min

{

k2δ2

l
,kδ

}

, Pr(Z < EZ − δ) ≤ 2e−
Ck2δ2

l . (47)

Note that Pr(Z > EZ + δ) = 0 for δ ≥ 1−EZ. In this case, the first inequality above holds
trivially. The tail bound (47) implies that

Pr(|Z − EZ| > δ) ≤ 4e−Ckδ2, (48)

Pr
(

Z > EZ + 2δ
√
1 + EZ + δ2

)

≤ 2e−Ckδ2 , ∀δ > 0. (49)

8



Furthermore, for 0 < δ <
√
1 + EZ,

Pr
(

Z < EZ − 2δ
√
1 + EZ + δ2

)

≤ 2e−Ckδ2. (50)

(49) and (50) imply that

Pr
(

|
√
1 + Z −

√
1 + EZ| > δ

)

≤ 4e−Ckδ2 . (51)

Similarly,

Pr
(

|
√
1− Z −

√
1− EZ| > δ

)

≤ 4e−Ckδ2 . (52)

3.2.1 Pointwise approximation: Proof of Theorem 5

Let Z2, Z3, Z4, . . . , Z2n be independent random variables with distribution

Zi ∼
{

B
(

a + (2n− i)β/4, b+ (2n− i)β/4
)

, even i

B
(

a + b+ (2n− 1− i)β/4, (2n+ 1− i)β/4
)

, odd i
(53)

so that

EZi =
1

a + b+ (n− i/2)β
×
{

b− a, even i

β/2− a− b, odd i
. (54)

Let Z1 := −1.
Let Ji,j be the element in the ith row and jth column of a real symmetric n×n tridiagonal

random matrix J. The diagonal and subdiagonal matrix elements are, respectively,

Ji,i = (1− Z2i−1)Z2i − (1 + Z2i−1)Z2i−2, Ji+1,i =
√

(1− Z2i−1)(1− Z2
2i)(1 + Z2i+1). (55)

The joint eigenvalue distribution of J/2 is given by [8] the Jacobi ensemble (Definition 2).
Let J′ be a real symmetric n×n tridiagonal deterministic matrix, whose matrix elements

are obtained by replacing every random variable Zi in (55) by EZi, i.e.,

J′
i,i = (1− EZ2i−1)EZ2i − (1 + EZ2i−1)EZ2i−2, (56)

J′
i+1,i =

√

(1− EZ2i−1)
(

1− (EZ2i)2
)

(1 + EZ2i+1). (57)

The eigenvalues of J′/2 are the zeros of the Jacobi polynomial P
2a/β−1,2b/β−1
n (x) [2].

Let J1,0 = J′
1,0 = Jn+1,n = J′

n+1,n := 0. Using (48), (51), (52) and since

max
1≤i≤n

|µi − yi| ≤ ‖J− J′‖/2 ≤ max
1≤i≤n

{|Ji,i−1 − J′
i,i−1|+ |Ji,i − J′

i,i|+ |Ji+1,i − J′
i+1,i|}/2, (58)

it suffices to show that

|Ji,i − J′
i,i| ≤ Cǫ, ∀i, (59)

|Ji+1,i − J′
i+1,i| ≤ Cǫ, ∀i (60)

under the assumptions that

|Zi − EZi| ≤ ǫ, ∀i, (61)

|
√

1 + Zi −
√

1 + EZi| ≤ ǫ, |
√

1− Zi −
√

1− EZi| ≤ ǫ, ∀i. (62)

(59) follows from (61) and Lemma 1 with m = 2. (60) follows from (62) and Lemma 1 with
m = 4.
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3.2.2 Moments: Proof of Theorem 6

Since N = O(max{a+ b, n}), it suffices to prove that

Pr
(

|MJ
1 − EMJ

1 | > ǫ
)

= O(e−Ω(a+b)nǫ2), (63)

Pr
(

|MJ
1 − EMJ

1 | > ǫ
)

= O(e−Ω(n2ǫ2)), (64)

Pr
(

|MJ
2 − EMJ

2 | > ǫ
)

= O(e−Ω(a+b)ǫmin{Nǫ,n}), (65)

Pr
(

|MJ
2 − EMJ

2 | > ǫ
)

= O(e−Ω(n2ǫ2)). (66)

We follow the proof of Theorem 5 and use the same notation. We have proved that

Pr
(

|Ji,i − J′
i,i| > δ

)

= O(e−Ω(a+b)δ2), ∀i, (67)

Pr
(

|Ji+1,i − J′
i+1,i| > δ

)

= O(e−Ω(a+b)δ2), ∀i. (68)

Let In be the identity matrix of order n. A straightforward calculation using (55) yields

MJ
1 =

1

n
tr

J

2
=

1

2n

n
∑

i=1

Ji,i =
1

2n

(

Z2n −
2n
∑

i=2

Zi−1Zi

)

, (69)

MJ
2 =

1

n
tr
(

(J/2− Y1In)
2
)

=
1

n

n
∑

i=1

(Ji,i/2− Y1)
2 +

1

2n

n−1
∑

i=1

J2
i+1,i (70)

= Y 2
1 − 2Y1M

J
1 +

1

2
+

2Z2n−1(1− Z2
2n) + Z2

2 + Z2
2n

4n
+M ′, (71)

where

M ′ :=
1

4n

2n
∑

i=3

(

2Zi−2(Z
2
i−1 − 1)Zi + Z2

i−1Z
2
i

)

. (72)

We will use the Chernoff bound multiple times.

Lemma 2. Let W1,W2, . . . ,Wn be independent real-valued random variables such that

EWi = 0, Pr(|Wi| > x) = O

(

e
−min

{

x
r
,x

2

s2

}

)

, ∀i (73)

for some r, s > 0. Then,

Pr

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

Wi

∣

∣

∣

∣

∣

> δ

)

= O

(

e
−Ω(n)min

{

δ
r
, δ2

r2+s2

}

)

. (74)

Each Wi is a subexponential random variable in that its probability distribution satisfies
(73). Thus, Lemma 2 is the Chernoff bound for subexponential random variables. For
r = 0+, Wi becomes a sub-Gaussian random variable, and Lemma 2 reduces to the Chernoff
bound for sub-Gaussian random variables.

10



Proof of Lemma 2. The tail bound (73) implies that for any j > 0,

E(|Wi|j) =
∫ ∞

0

Pr
(

|Wi|j > x
)

dx =

∫ ∞

0

jxj−1 Pr(|Wi| > x) dx

=

∫ ∞

0

jxj−1O(e−x/r + e−x2/s2) dx = O
(

rjΓ(j + 1) + sjΓ(j/2 + 1)
)

. (75)

Let t be such that 0 < t ≤ 1/(2r). Since EWi = 0,

E etWi = 1 +

∞
∑

j=2

tj E(W j
i )

j!
= 1 +

∞
∑

j=2

O

(

(rt)j +
(st)jΓ(j/2 + 1)

j!

)

. (76)

Using (st)j ≤ (st)j−1 + (st)j+1 for odd j,

E etWi = 1 +
O(rt)2

1− rt
+

∞
∑

j=1

(st)2jO

(

Γ(j + 1/2)

(2j − 1)!
+

j!

(2j)!
+

Γ(j + 3/2)

(2j + 1)!

)

= 1 +O(rt)2 +O(1)
∞
∑

j=1

(st)2j

j!
≤ ec(r

2+s2)t2 , (77)

where c > 0 is a constant. Recall the standard Chernoff argument:

Pr

(

1

n

n
∑

i=1

Wi > δ

)

= Pr
(

et
∑n

i=1 Wi > entδ
)

≤ e−ntδ
E et

∑n
i=1 Wi =

n
∏

i=1

E etWi−tδ. (78)

If δ ≤ c(r2 + s2)/r, we choose t = δ
2c(r2+s2)

so that

E etWi−tδ ≤ e
− δ2

4c(r2+s2) . (79)

If δ > c(r2 + s2)/r, we choose t = 1/(2r) so that

E etWi−tδ ≤ e
c(r2+s2)

4r2
− δ

2r ≤ e−
δ
4r . (80)

We complete the proof by combining these two cases.

Lemma 3. Let W1,W2, . . . ,Wn be independent random variables on the interval [−1, 1] such
that

EWi = 0, Pr(|Wi| > x) = O

(

e
−min

{

(r+is)x, (r+is)3x2

r2

}
)

, ∀i (81)

for some r, s = Ω(1). Then,

Pr

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

Wi

∣

∣

∣

∣

∣

> δ

)

= O(e−Ω(n2δ2)). (82)
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Proof. For i ≥ (2t− r)/s, by replacing (73) with (81), (77) implies that

E etWi = e
O(t2)

(r+is)2
+

O(r2t2)

(r+is)3 . (83)

Since |Wi| ≤ 1, we trivially have
E etWi ≤ et. (84)

The Chernoff argument (78) implies that

Pr

(

1

n

n
∑

i=1

Wi > δ

)

≤ e−ntδ
n
∏

i=1

E etWi ≤ e−ntδ
∏

1≤i< 2t−r
s

et ×
∏

max{ 2t−r
s

,1}≤i≤n

e
O(t2)

(r+is)2
+

O(r2t2)

(r+is)3

≤ e
−ntδ+O(t2)+

∑

∞

i=1
O(t2)

(r+is)2
+

O(r2t2)

(r+is)3 = eO(t2)−ntδ. (85)

We complete the proof by choosing t = c′nδ for a sufficiently small constant c′ > 0.

Proof of Eq. (63). Using Eq. (67) and Lemma 2 with r = 0+,

Pr

(∣

∣

∣

∣

∣

1

n

∑

even i

(Ji,i − J′
i,i)

∣

∣

∣

∣

∣

> ǫ

)

= O(e−Ω(a+b)nǫ2), (86)

Pr

(∣

∣

∣

∣

∣

1

n

∑

odd i

(Ji,i − J′
i,i)

∣

∣

∣

∣

∣

> ǫ

)

= O(e−Ω(a+b)nǫ2). (87)

Then, Eq. (63) follows from Eq. (69) and the union bound.

Proof of Eq. (64). The tail bound (48) implies that

Pr(|Zi − EZi| > δ) = O(e−Ω(a+b+(n−i/2)β)δ2) (88)

so that

Pr(|Zi−1Zi − EZi−1 · EZi| > δ) = O

(

e
−Ω(a+b+(n−i/2)β)δ min

{

(a+b+(n−i/2)β)2δ

(a+b)2
,1

}
)

. (89)

Using Lemma 3,

Pr

(∣

∣

∣

∣

∣

1

n

∑

even i

(Zi−1Zi − EZi−1 · EZi)

∣

∣

∣

∣

∣

> ǫ

)

= O(e−Ω(n2ǫ2)), (90)

Pr

(∣

∣

∣

∣

∣

1

n

∑

odd i

(Zi−1Zi − EZi−1 · EZi)

∣

∣

∣

∣

∣

> ǫ

)

= O(e−Ω(n2ǫ2)). (91)

Then, Eq. (64) follows from Eq. (69) and the union bound.
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Proof of Eq. (65). Equations (54), (55), (56), (57) imply that

|J′
i,i/2− Y1| = O(n/N), |J′

i+1,i| = O(
√

n/N), ∀i, (92)

|E((Ji,i/2− Y1)
2)− (J′

i,i/2− Y1)
2| = O(1)

a+ b
, |E(J2

i+1,i)− J′2
i+1,i| =

O(n)

(a+ b)N
, ∀i. (93)

Equations (67), (68), (92) imply that

Pr
(

|(Ji,i/2− Y1)
2 − (J′

i,i/2− Y1)
2| > δ

)

= O(e−Ω(a+b)δmin{N2δ/n2,1}), ∀i, (94)

Pr
(

|J2
i+1,i − J′2

i+1,i| > δ
)

= O(e−Ω(a+b)δmin{Nδ/n,1}), ∀i. (95)

Using Eq. (93),

Pr
(

|(Ji,i/2− Y1)
2 − E((Ji,i/2− Y1)

2)| > δ
)

= O(e−Ω(a+b)δmin{N2δ/n2,1}), ∀i, (96)

Pr
(

|J2
i+1,i − E(J2

i+1,i)| > δ
)

= O(e−Ω(a+b)δmin{Nδ/n,1}), ∀i. (97)

Using Lemma 2,

Pr

(∣

∣

∣

∣

∣

1

n

∑

even i

(

(Ji,i/2− Y1)
2 − E((Ji,i/2− Y1)

2)
)

∣

∣

∣

∣

∣

> ǫ

)

= O(e−Ω(a+b)ǫmin{Nǫ,n}), (98)

Pr

(∣

∣

∣

∣

∣

1

n

∑

odd i

(

(Ji,i/2− Y1)
2 − E((Ji,i/2− Y1)

2)
)

∣

∣

∣

∣

∣

> ǫ

)

= O(e−Ω(a+b)ǫmin{Nǫ,n}), (99)

Pr

(∣

∣

∣

∣

∣

1

n

∑

even i

(

J2
i+1,i − E(J2

i+1,i)
)

∣

∣

∣

∣

∣

> ǫ

)

= O(e−Ω(a+b)ǫmin{Nǫ,n}), (100)

Pr

(∣

∣

∣

∣

∣

1

n

∑

odd i

(

J2
i+1,i − E(J2

i+1,i)
)

∣

∣

∣

∣

∣

> ǫ

)

= O(e−Ω(a+b)ǫmin{Nǫ,n}). (101)

Then, Eq. (65) follows from Eq. (70) and the union bound.

Proof of Eq. (66). The tail bound (88) implies that

Pr
(

|2Zi−2(Z
2
i−1 − 1)Zi + Z2

i−1Z
2
i − E(2Zi−2(Z

2
i−1 − 1)Zi + Z2

i−1Z
2
i )| > δ

)

= O

(

e
−Ω(a+b+(n−i/2)β)δ min

{

(a+b+(n−i/2)β)2δ

(a+b)2
,1

}
)

. (102)

Recall the definition (72) of M ′. It can be proved in the same way as Eq. (64) that

Pr(|M ′ − EM ′| > ǫ) = O(e−Ω(n2ǫ2)). (103)

Equation (66) follows from Eqs. (64), (71), (103) and the union bound.
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A Proof of Eq. (25)

We write the Jacobi polynomial (13) as

P p,q
n (y) =

Γ(p+ q + 2n+ 1)

2nn!Γ(p+ q + n+ 1)

(

yn +
n−1
∑

j=0

cjy
j

)

. (104)

Let p = 2a/β − 1 and q = 2b/β − 1. From direct calculation we find that

cn−1 =
2n(p + n)

p+ q + 2n
− n =

n(a− b)

N
, (105)

cn−2 = n(n− 1)

(

1

2
− 2(p+ n)

p+ q + 2n
+

2(p+ n)(p+ n− 1)

(p + q + 2n)(p+ q + 2n− 1)

)

=
n(n− 1)

(

2(a− b)2 − βN
)

2N(2N − β)
. (106)

Hence,

Y1 = −cn−1/n = (b− a)/N, (107)

Y2 = −Y 2
1 +

1

n

n
∑

j=1

y2j =
1

n

(

n
∑

j=1

yj

)2

− Y 2
1 − 1

n

∑

j 6=k

yjyk = (n− 1)Y 2
1 − 2cL−2

n

= β(n− 1)(1− Y 2
1 )/(2N − β). (108)

B Moments of the Hermite ensemble

Fact 1 and Theorem 6 concern the moments of the Laguerre and Jacobi ensembles, respec-
tively. For the Hermite ensemble, it is simple to calculate the distributions of the first and
second moments exactly. The results are presented here for completeness.

Definition 3 (Hermite ensemble). The probability density function of the β-Hermite en-
semble is

fHerm(ν1, ν2, . . . , νn) ∝
∏

1≤i<j≤n

|νi − νj |β
n
∏

i=1

e−ν2i /2. (109)

For β = 1, 2, 4, the Hermite ensemble gives the probability density function of the eigen-
values of an n×n self-adjoint matrix whose entries are real, complex, or quaternionic Gaus-
sian random variables.
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Let

MH
1 :=

1

n

n
∑

i=1

νi, MH
2 :=

1

n

n
∑

i=1

(νi − EMH
1 )

2 =
1

n

n
∑

i=1

ν2
i (110)

be the first and second moments of the Hermite ensemble, where we used the fact that
EMH

1 = 0.

Fact 2. MH
1 is distributed as N (0, 1/n), where N (0, σ2) denotes the normal distribution with

mean 0 and variance σ2. MH
2 is distributed as 1

n
χ2
n+βn(n−1)/2.

Proof. Let g1, g2, . . . , gn, Xβ, X2β, . . . , X(n−1)β be independent random variables with

gi ∼ N (0, 1), X2
k ∼ χ2

k, Xk ≥ 0. (111)

The eigenvalues of the real symmetric n× n tridiagonal random matrix

H =
1√
2



















√
2g1 Xβ

Xβ

√
2g2 X2β

X2β

√
2g3 X4β

. . .
. . .

. . .

X(n−2)β

√
2gn−1 X(n−1)β

X(n−1)β

√
2gn



















(112)

are distributed according to fHerm [11] so that

MH
1 ∼ 1

n
trH =

1

n

n
∑

i=1

gi ∼ N (0, 1/n), (113)

MH
2 ∼ 1

n
tr
(

H2
)

=
1

n

n
∑

i=1

g2i +
1

n

n−1
∑

i=1

X2
iβ ∼ 1

n
χ2
n+βn(n−1)/2. (114)
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