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Perron-Frobenius operator filter for stochastic dynamical systems

Ningxin Liu∗ Lijian Jiang†

Abstract

The filtering problems are derived from a sequential minimization of a quadratic function
representing a compromise between model and data. In this paper, we use the Perron-
Frobenius operator in stochastic process to develop a Perron-Frobenius operator filter. The
proposed method belongs to Bayesian filtering and works for non-Gaussian distributions for
nonlinear stochastic dynamical systems. The recursion of the filtering can be characterized
by the composition of Perron-Frobenius operator and likelihood operator. This gives a
significant connection between the Perron-Frobenius operator and Bayesian filtering. We
numerically fulfil the recursion through approximating the Perron-Frobenius operator by
Ulam’s method. In this way, the posterior measure is represented by a convex combination
of the indicator functions in Ulam’s method. To get a low rank approximation for the
Perron-Frobenius operator filter, we take a spectral decomposition for the posterior measure
by using the eigenfunctions of the discretized Perron-Frobenius operator. A convergence
analysis is carried out and shows that the Perron-Frobenius operator filter achieves a higher
convergence rate than the particle filter, which uses Dirac measures for the posterior. The
proposed method is explored for the data assimilation of the stochastic dynamical systems.
A few numerical examples are presented to illustrate the advantage of the Perron-Frobenius
operator filter over particle filter and extend Kalman filter.

keywords: Perron-Frobenius operator, Bayesian filtering, stochastic dynamical systems,
particle filter

1 Introduction

In recent years, the operator-based approach has been extensively exploited to analyze dy-
namical systems. The two primary candidates of the approach are Perron-Frobenius operator
and its dual operator, Koopman operator. Many data-driven methods have been developed
for numerical approximation of these operators. The two operators are motivated to approxi-
mate the dynamical system’s behavior from different perspectives. The Koopman operator is
used to study the evolution of observations, while Perron-Frobenius operator (PFO) charac-
terizes the transition of densities. Therefore, the PFO deals with the system’s uncertainties
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in the form of probability density functions of the state. In practice, it determines an abso-
lutely continuous probability measure preserved by a given measurable transformation on a
measure space.

The Perron-Frobenius operator has been widely used to characterize the global asymp-
totic behavior of dynamical systems derived from many different domains such as fluid dy-
namics [1], molecular dynamics [2], meteorology and atmospheric sciences [3], and to estimate
invariant sets or metastable sets with a toolbox like in [4]. It is of great interest to study the
invariant density of Perron-Frobenius operator [5] and design efficient numerical approaches.
Then one can apply ergodic theorems to the statistical properties of deterministic dynamical
systems.

Since PFO is able to transport density of a Markov process, its approximation is necessary
for numerical model transition probability of the Markov process. Many different numerical
methods [6], such as Ulam’s method and Petrov-Galerkin method, are proposed for approx-
imation of the Perron-Frobenius operator. As the PFO operates on infinite-dimensional
spaces, it is natural to project it onto a finite-dimensional subspace spanned by suitable
basis functions. The projection is usually accomplished by Galerkin methods with weak ap-
proximation. It was originally proposed by Ulam [7], who suggested that one can study the
discrete Perron-Frobenius operator on the finite-dimensional subspace L1 of indicator func-
tions according to a finite partition of the region. Convergence analysis of Ulam’s method is
discussed in many literatures [8, 9].

The classical filtering problems in stochastic processes are investigated in [10, 11]. In the
paper, the models of filtering problems are considered with discrete-time and continuous-
time stochastic processes defined by the solutions of SDEs, which can model a majority of
stochastic dynamical systems in the real world. The filtering methods have been widely used
for geophysical applications, such as oceanography [12], oil recovery [13], atmospheric science,
and weather forecast [14]. Remarkably, as one of the filtering methods, Kalman filter [15] has
been well-known for low-dimensional engineering applications in linear Gaussian models, and
it has been also developed and utilized in many other fields [16–18]. For nonlinear problems,
the classical filters, such as 3DVAR [19], Extended Kalman filter [10] and Ensemble Kalman
filter [20], usually invoke a Gaussian ansatz. They are often used in the scenarios with
small noisy observation and high dimensional spaces. However, these extensions rely on the
invocations of Gaussian assumption. As a sequential Monte Carlo method, particle filter [21]
is able to work well for the nonlinear and non-Gaussian filtering problems. It can be proved
to estimate true posterior filtering problems in the limit of large number of particles.

Although the particle filter (PF) can treat the nonlinear and non-Gaussian filtering prob-
lems, it has some limitations in practice. First of all, particle filter handles well in low-
dimensional systems, but it may occur degeneracy [22] when the systems have very large
scale. It means that the maximum of the weights associated with the sample ensemble con-
verges to one as the system dimension tends to infinity. To avoid degeneracy, it requires
a great number of particles that scales exponentially with the system dimension. This is a
manifestation of the curse of dimensionality. Resampling, adding jitter and localisation are
introduced to circumvent this curse of dimensionality and get the accurate estimation of high-
dimensional probability density functions (PDFs). The particle filter also does not perform
well in geophysical applications of data assimilation, because the data in these application
have strongly constraints on particle location [23]. This impacts on the filtering performance.
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Besides, the prior knowledge of the transition probability density functions in particle filter
is necessary to be known, and the efficient sampling methods such as acceptance-rejection
method and Markov chain Monte Carlo, need to be used for complicated density functions.
The sampling is particularly a challenge in high dimensional spaces. To overcome these diffi-
culties, we propose a Perron-Frobenius operator filter (PFOF), which does not use particles
and any sampling methods. The information of prior probability density is not required in
the method, which needs data information instead. The method works well in nonlinear and
non-Gaussian models.

In this paper, we propose PFOF to treat nonlinear stochastic filtering problems. The
method transfer filtering distribution with the Perron-Frobenius operator. For filtering prob-
lems, the update of filtering distribution involves two steps: predication and analysis. In
prediction, the density is transported with a transition density function given by a Markov
chain of the underlying system. In analysis, the density is corrected by Bayes’ rule under
the likelihood function given by observations. Thus, the update of filtering distribution can
be expressed as a composition of PFO and likelihood functions. In the simulation process,
Ulam’ method is used to discretize the PFO and project it onto a finite-dimensional space
of indicator functions. Hence the filtering density is also projected onto the subspace and
is represented by a linear convex combination of the indicator functions. The recursion of
filtering distribution is then expressed by a linear map of weights vectors associated with
the basis functions via the PFO and likelihood function. For the high dimensional problems,
we propose a low-rank PFOF (lr-PFOF) using a spectral decomposition. To this end, we
first use the eigenfunctions of the discretized PFO to represent the spectral decomposition of
the density functions. Then we make a truncation of the decomposition and use the eigen-
functions corresponding to the first few dominant eigenvalues. This can improve the online
assimilation efficiency. The idea of PFO is extended to the continuous-time filtering prob-
lems. In these problems, Zakai equation characterizes the transition of filtering density. We
utilize the approximation of the Perron-Frobenius operator to compute the Zaikai equation
and obtain the posterior density functions of the continuous-time filtering problems.

We compare the proposed method with the particle filter. For PFOF, we give an error
estimate in the total-variance distance between the approximated posterior measure and the
truth posterior. The estimate implies that PFOF achieves a convergence rate O( 1

N
), which

is faster than particle filters with the same number N of basis functions. Our numerical
results show that PFOF also renders better accuracy than that of extended Kalman filter.

The rest of the paper is organized as follows. In Section 2, we express the Bayesian
filter in terms of the Perron-Frobenius operator. In Section 3, we present the recursion of
the filtering empirical measure with an approximated Perron-Frobenius operator. Then we
derive PFOF as well as lr-PFOF, and analyze an error estimate subsequently. PFOF is
also extended to the continuous-time filtering problems. A comprehensive comparison with
particle filter is give in Section 4. A few numerical results of stochastic filtering problems
are given in Section 5. Section 6 concludes the paper in a summary.

3



2 Preliminaries

We give a background review on Perron-Frobenius operator [24] (PFO) and Bayesian filter
in this section. The Perron-Frobenius operator transports the distributions over state space
and describes the stochastic behavior of the dynamical systems. The framework of Bayesian
filter is introduced and summarized as a recursive formula with PFO.

2.1 Perron-Frobenius operator

Let X be a metric space, B the Borel-σ-algebra on X , and Φ : X → X a nonsingular
transformation. Let M denote the space of all finite measures on (X, B) and µ is a finite
measure. The phase space is defined on a measure space (X, B, µ). The Perron-Frobenius
operator P : M → M is a linear and infinite-dimensional operator defined by

Pµ(A) = µ(Φ−1(A)), ∀A ∈ B. (2.1)

The PFO is a linear, positive and non-expansive operator, and hence a Markov operator.
We can also track the action on distributions in the function space. In the paper, we denote
L1(X) := L1(X,B, µ). Let f ∈ L1(X) be the probability density function (PDF) of a X-
valued random variable x. Since Φ is a nonsingular with respect to µ, there is a g ∈ L1(X)
satisfying

∫
Φ−1(A)

fdµ =
∫
A
gdµ for all A ∈ B. Then g is the function characterizing the

distribution of Φ(x). The mapping f 7→ g, defined uniquely by a linear operator P : L1(X) →
L1(X) : ∫

A

Pf dµ =

∫

Φ−1(A)

f dµ, ∀A ∈ B. (2.2)

The operator P is called the Perron-Frobenius operator. With the definition (2.1) and (2.2),
we make the connection between probability density function and the measure associated
with the PFO. When f is a probability density function with respect to an absolutely con-
tinuous probability measure µ ∈ M(X), g is another PDF with respect to the absolutely
continuous probability measure µ ◦Φ−1. In addition, the measure µ ∈ M(X) is an invariant
measure of P when Pµ = µ holds.

Let Ψ : R+ × X → X be a nonsingular flow map for a deterministic continuous-time
dynamical system. Then Ψτ : X → X is nonsingular for each τ ∈ R+. The transfer operator
Pτ : L1(X) → L1(X) is time-dependent and has an analogous definition to (2.2), such that

∫

A

Pτf dµ =

∫

Ψ−1
τ (A)

f dµ.

The {Pτ}τ≥0 forms a semigroup of the Perron-Frobenius operators. We note that {Pτ}τ≥0

has an infinitesimal generator APF by Hille-Yosida Theorem.
Let us consider the Perron-Frobenius operator in stochastic dynamic systems and the

infinitesimal generator of PFO associated to the stochastic solution semiflow induced by
a stochastic dynamical equation (SDE). Let b : X → X and σ : X → X be smooth
time-invariant functions. Suppose that a stochastic process xt is the solution to the time-
homogeneous stochastic differential equation:

dxt = b(xt)dt+ σ(xt)dWt, x(t0) ∼ ρ0, (2.3)
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where Wt is a standard Brownian motion. In this case, the distribution of the stochastic
process xt can be described by a semigroup of Perron-Frobenius operators {Pτ}τ>0 on L

1(X).
The generator of {Pτ}τ>0 is a second-order differential operator on X . The PDE defined by
the generator describes the evolution of the probability density of xt.

Suppose that Φ is the mapping of the stochastic dynamical system (2.3) and Φ(x) is an
X-valued random variable over the probability space (X, B, µ). Given a stochastic transition
function pτ : X × B → [0, 1] induced by Φ, we consider probability measure µ translated
with a linear operator defined in terms of the transition function pτ (x, ·). The stochastic
PFO [25] Pτ : M → M is defined by

Pτµ(A) =

∫

X

pτ (x,A) dµ(x), ∀A ∈ B. (2.4)

If pτ (x, ·) is absolutely continuous to µ for all x ∈ X , there exists a nonnegative transition
density function qτ : X ×X → R with qτ (x, ·) ∈ L1(X) and

P (xt+τ ∈ A|xt = x) =

∫

A

qτ (x, y)dµ(y), ∀A ∈ B.

The transition density function is the infinite-dimensional counterpart of the transition ma-
trix for a Markov chain. Now we define the stochastic PFO associated with transition density.
If f ∈ L1(X) is a probability density function, the Perron-Frobenius semigroup of operators
Pτ : L1(X) → L1(X), τ > 0, is defined by

Pτf(y) =

∫

X

qτ (x, y)f(x) dµ(x).

The PFO Pτ defined here translates the probability density function of xt with time. Let ρ
be a probability density. The infinitesimal generator APF of Pτ is given by

APFρ = −∇ · (bρ) + 1

2
∇ · ∇ · (σσTρ).

We assume that ρ̃ : [0,∞)×X → [0,∞) is the probability density function of the solution
xt in (2.3) and ρ0 is the density function of the initial condition x0. Then ρ̃ solves the
Fokker-Planck equation,





∂ρ̃

∂t
= −∇ · (bρ̃) + 1

2
∇ · ∇ · (σσT ρ̃), (t, x) ∈ (0,∞)×X,

ρ̃(0, x) = ρ0(x).

If the phase space X is compact and b ∈ C3(X,X), the equation has a unique solution,
which is given by

ρ̃(t, x) = Ptρ0(x).

2.2 Bayesian filter

In this section, we present the framework of Bayesian filter in discrete time from the per-
spective of Bayes’ rule. In filtering problems, a state model and an observation model
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are combined to estimate the posterior distribution, which is a conditional distribution
of the state given by observation. Let us consider the dynamical model governed by the
flow Ψ ∈ C(Rn,Rn) with noisy observations y = {yj}j∈Z+ depending on the function
h(x) : Rn → Rp: {

xj+1 = Ψ(xj) + ξj, j ∈ N, x0 ∼ ρ0,

yj+1 = h(xj+1) + ηj+1, j ∈ N,
(2.5)

where ξ := {ξj}j∈N is an i.i.d. sequence with ξj ∼ N(0,Σ) and η := {ηj}j∈Z+ is an i.i.d.

sequence with ηj ∼ N(0, R). Let Yj = {yl}jl=1 denote the data up to time tj. The filtering
problem aims to determine the posterior PDF p(xj |Yj) of the random variable xj |Yj and the
sequential updating of the PDF as the data increases. The Bayesian filtering involves two
steps: prediction and analysis. It provides a derivation of p(xj+1|Yj+1) from p(xj |Yj). The
prediction is concerned with the map p(xj |Yj) 7→ p(xj+1|Yj) and the analysis derives the map
p(xj+1|Yj) 7→ p(xj+1|Yj+1) by Bayes’s formula.

Prediction

p(xj+1|Yj) =
∫

Rn

p(xj+1|Yj, xj)p(xj |Yj)dxj

=

∫

Rn

p(xj+1|xj)p(xj|Yj)dxj .
(2.6)

Note that p(xj+1|Yj, xj) = p(xj+1|xj), because Yj provides indirect information about deter-
mining xj+1. Since p(xj+1|xj) is specified by the underlying model (2.5) and

p(xj+1|xj) ∝ exp(−1

2
|Σ− 1

2 (xj+1 −Ψ(xj))|2), (2.7)

the prediction provides the map from p(xj |Yj) to p(xj+1|Yj). Let µ̂jbe the prior probability
measure corresponding to the density p(xj |Yj−1) and µj be the posterior probability measure
on corresponding to the density p(xj |Yj). The stochastic process {xj, j ∈ N} of (2.5) is a
Markov chain with the transition kernel p(·, ·) determined by p(xj , xj+1) = p(xj+1|xj). Then
we can rewrite (2.6) as

µ̂j+1(·) = (Pµj)(·) :=
∫

Rn

p(xj , ·)µj(dxj) =

∫

Rn

p(xj , ·)dµ(xj)1. (2.8)

In particular, the operator P coincides with the Perron-Frobenius operator defined in (2.4).
Analysis

p(xj+1|Yj+1) = p(xj+1|Yj, yj+1)

=
p(yj+1|xj+1, Yj)p(xj+1|Yj)

p(yj+1|Yj)

=
p(yj+1|xj+1)p(xj+1|Yj)

p(yj+1|Yj)
.

(2.9)

Note that p(yj+1|xj+1, Yj) = p(yj+1|xj+1) and Bayes’s formula is used in the second equality.
The likelihood function p(yj+1|xj+1) is determined by the observation model: p(yj+1|xj+1) ∝

1Refer to [26], if the function f ∈ L1(X) on a measure space (X, B, µ) is said to be µ integrable, we have∫
fdµ =

∫
f(x)µ(dx) =

∫
f(x)dµ(x).
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exp(−1
2
|R− 1

2 (yj+1 − h(xj+1))|2). Let

gj(xj+1) := exp(−1

2
|R− 1

2 (yj+1 − h(xj+1))|2). (2.10)

The analysis provides a map from p(xj+1|Yj) to p(xj+1|Yj+1), so we can represent the update
of the measure µj+1(·) by

µj+1(·) = (Ljµ̂j+1)(·) :=
gj(xj+1)µ̂j+1(·)∫
Rn gj(xj+1)µ̂j+1(·)

, (2.11)

where the likelihood operator Lj is defined by

(Ljµ)(dx) =
gj(x)µ(dx)∫
Rn gj(x)µ(dx)

. (2.12)

In general, the prediction and analysis provide the mapping from µj to µj+1. The prediction
maps µj to µ̂j+1 through the Perron-Frobenius operator P, while the analysis maps µ̂j+1 to
µj+1 through the likelihood operator Lj . Then we represent the µj+1 using formulas (2.8)
and (2.11), and summarize Bayesian filtering as

µj+1 = LjPµj . (2.13)

The µ0 is assumed to be a known initial probability measure. We note that P does not
depend on j, because the prediction step is governed by the same Markov process at each
j. However, Lj depends on j because the different observations are used to compute the
likelihood at each j. In this way, the evolution of µj processes through a linear operator P
and a nonlinear operator Lj. The approximation of µj can be achieved by the numerical
iteration of (2.13).

3 Bayesian filter in terms of Perron-Frobenius opera-

tor

It is noted that the Perron-Frobenius operator translates a probability density function
with time according to the flow of the dynamics. We extend the idea to filtering problems
to represent the transition of the posterior probability density function, i.e., the filtering
distribution. Therefore, we propose a filtering method: Perron-Frobenius operator filter
(PFOF). In the proposed method, the density function is projected onto an approximation
subspace spanned by indicator functions. The fluctuation of the density function, which is
approximated by weights vector, is transferred by PFO and likelihood operator. Moreover,
we present a low-rank Perron-Frobenius operator filter (lr-PFOF), which is a modified version
of the PFOF.

3.1 Perron-Frobenius operator filter

The iteration (2.13) is helpful to design a filter method. According to definition (2.8), the
operator P in the iteration is Perron-Frobenius operator corresponding to the flow Ψ of the
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model (2.5). Based on the idea, we propose a Perron-Frobenius operator filter, which utilizes
Ulam’s method [7] to approximate operator P in the iteration. In PFOF, we simply use P
for Pτ because the discrete time steps of the state model keep the same. In this manner, the
iteration of filtering distribution of PFOF becomes

µN
j+1 = LjPNµN

j , µN
0 = µ0, (3.14)

where PN calculated by the Ulam’s method is an approximation of P. Ulam’s method is
a Galerkin projection method to discretize the Perron-Frobenius operator. We first give a
discretisation of the phase space. Let B = {B1, · · · ,BN} ⊂ B be a finite number of measure
boxes and a disjoint partition of phase space X . The indicator function is a piecewise
constant function and is defined by

1Bi
(x) =

{
1, if x ∈ Bi,

0, otherwise.
(3.15)

Ulam proposed to use the space of a family of indicator functions {1B1, · · · ,1BN
} as the

approximation space for the PFO. We define the projection space VN := span{1B1 , · · · ,1BN
}.

The VN ∈ L1(X) is regarded as an approximation subspace of L1(X). For each ρ ≥ 0 in
L1(X), we define the operator πN : L1(X) → VN by

πNρ =

N∑

i=1

ω(i)
1Bi

, where ω(i) :=

∫
Bi
ρ dµ

µ(Bi)
. (3.16)

Then πN is the projection onto VN . Due to the projection, we define the discretized PFO
PN as

PN = πN ◦ P.
We can represent the linear map PN |V 1

N
: V 1

N → V 1
N , where V

1
N :=

{
f ∈ VN :

∫
|f |dµ = 1

}
by

a matrix PN = (PN
ij ) ∈ RN×N whose entries PN

ij = 1
µ(Bi)

∫
Bi
P1Bj

dµ. The entries characterizes
the transition probability from the box Bi to box Bj under the flow map Ψ. We can show

PN
ij =

µ(Bi ∩Ψ−1(Bj))

µ(Bi)
. (3.17)

A Markov chain for Ψ arises as the discretization PN of the PFO, and the Markov chain has
transition matrix PN . So the Ulam’s method can be described either in terms of the operator
PN or the matrix PN . By the projection πN , the density ρ can be expressed as a vector
W = [ω(1), · · · , ω(N)], where ω(i) is the weight of the basis function 1Bi

. Since the entries PN
ij

represent the transition probability from Bi to Bj , they can be estimated by a Monte-Carlo
method, which gives a numerical realization of Ulam’s method [6]. We randomly choose a
large number of points {xli}nl=1 in each Bi and count the number of times Ψ(xli) contained in
box Bj . Then P

N
ij is calculated by

PN
ij ≈ PN

n,ij =
1

n

n∑

l=1

1Bj
(Ψ(xli)). (3.18)
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The Monte-Carlo method is used as an approximation to the integrals (3.17). The conver-
gence of the Ulam’s method depends on the choice of the partition of the region and the
number of points. Based on indicator basis functions, we denote the the empirical density
in the PFOF with respect to the measure µN

j as

ρNj (x) =
N∑

i=1

ω
(i)
j 1Bi

(x), (3.19)

where 1Bi
(·) is the indicator function defined by (3.15) and j represents the index of time

sequence. In this way, the density ρNj can be represented by the vector of the weights

Wj = [ω
(1)
j , · · · , ω(N)

j ]. Suppose that Wj = [ω
(1)
j , · · · , ω(N)

j ] and Wj+1 = [ω
(1)
j+1, · · · , ω(N)

j+1] are
separately the weights of πNρj and πNρj+1 := πNPρj . When the region is evenly divided,
the evolution of density functions becomes a Markov transition equation of the weights:

Wj+1 = WjP
N , (3.20)

where PN is the matrix form of discretized PFO. We consider the projection of the Pρj , i.e.,

πNPρj =
N∑

i=1

ω
(i)
j+11Bi

. (3.21)

In addition, note that

πNPρj = πNP
N∑

i=1

ω
(i)
j 1Bi

=
N∑

i=1

ω
(i)
j πN (P1Bi

).

We denote πN (P1Bi
) =

∑N
k=1 cik1Bk

, where

cik =

∫
X
P(1Bi

)1Bk
dx

µ(Bk)
=

∫
Bk

P(1Bi
)dx

µ(Bk)

=

∫
Ψ−1(Bk)

1Bi
dx

µ(Bk)
=
µ(Bi ∩Ψ−1(Bk))

µ(Bk)
.

Then we have

πNPρj =
N∑

i=1

ω
(i)
j

N∑

k=1

cik1Bk
=

N∑

k=1

N∑

i=1

ω
(i)
j cik1Bk

=

N∑

k=1

N∑

i=1

µ(Bi)

µ(Bk)
ω
(i)
j P

N
ik 1Bk

.

Comparing to (3.21), we get

ω
(k)
j+1 =

N∑

i=1

µ(Bi)

µ(Bk)
ω
(i)
j P

N
ik . (3.22)
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Thus, if we give a uniform partition of the X , i.e., µ(Bi) = µ(Bj), ∀i, j ∈ N , then we get
the result (3.20). With the expression, we design the following prediction step and analysis
step to approximate the posterior distribution p(xj+1|Yj+1).

Prediction In this step, we give a set of boxes {B1, · · · ,BN} ⊂ B, which is a uniform

partition of X , and denote the mass point of each box as x(i), i = 1, · · · , N . Define Ŵj =

[ω̂
(1)
j , · · · , ω̂(N)

j ] as the prior weight vector and Wj = [ω
(1)
j , · · · , ω(N)

j ] as the posterior weight
vector. In equation (2.8), we note that the prior density p(xj+1|Yj) is computed under the
linear operator P. To discretize the formula µ̂j+1 = Pµj, we build a map between the weights
of the density function,

Ŵj+1 = WjP
N .

The formula contains the prior information of the underlying system (2.5) because the PFO
in the formula is defined by the transition kernel p of the system. With the basis functions
1Bi

(·), the empirical prior measure is given by

µ̂N
j+1 =

N∑

i=1

ω̂
(i)
j+11Bi

(dx).

Analysis In this step, we derive the posterior measure µN
j+1. To achieve this, we apply

Bayes’s formula (2.9) on weights and update the weights by

ω
(i)
j+1 = ω̃

(i)
j+1/(

N∑

n=1

ω̃
(n)
j+1), ω̃

(i)
j+1 = gj(x

(i))ω̂
(i)
j+1, (3.23)

where gj(x) given by (2.10) denotes the likelihood function as before. Then the µN
j+1 approx-

imated by the indicator measure is given by

µN
j+1 =

N∑

i=1

ω
(i)
j+11Bi

(dx).

Note that we choose the mass point x(i) of each box Bi to calculate gj(x), i.e., the likelihood
function. It is a reasonable choice to approximate the likelihood function of the points in
the Bi. In both prediction step and analysis step, they only evolve weights {ω(i)

j }Ni=1 into

{ω(i)
j+1}Ni=1 via {ω̂(i)

j+1}Ni=1, and provide a transform from µN
j to µN

j+1. The complete procedure is
summarized in Algorithm 2, named Perron-Frobenius operator filter. The algorithm consists
of two phases: offline phase to compute PN by Ulam’s method, and online phase to update
the approximation of the posterior measure. Besides, the standard Ulam’s method becomes
inefficient in high-dimensional dynamical systems due to the curse of dimensionality. For
this case, we may use the sparse Ulam method [27] instead. It constructs an optimal ap-
proximation subspace and costs less computational effort than the standard Ulam’s method
when a certain accuracy is imposed.
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Algorithm 1 Perron-Frobenius operator filter

Offline:

Compute PN by Ulam’s method

Online:

1: Set j = 0 and µN
0 (dx0) = µ0(dx0), compute ω

(i)
0 =

∫
Bi

µ0dx0

µ(Bi)

2: Let Wj = [ω
(1)
j , · · · , ω(N)

j ], compute Ŵj+1 = WjP
N

3: Define µ̂N
j+1 =

∑N
i=1 ω̂

(i)
j+11Bi

(x)

4: Denote ω
(i)
j+1 by (3.23), define µN

j+1 =
∑N

i=1 ω
(i)
j+11Bi

(x)
5: j+1→ j
6: Go to step 2

3.2 Analysis of error estimate

We analyze the error estimate of the Perron-Frobenius operator filter in this section to
explore the factors, which determine convergence of the algorithm. Define a total-variation
distance d(·, ·) between two probability measures µ and ν as follows:

d(µ, ν) =
1

2
sup|f |∞≤1|Eµ(f)− E

ν(f)|,

where Eµ(f) =
∫
X
f(x)µ(dx) for f ∈ L1(X) and |f |∞ = supx|f(x)|. The distance d(·, ·) can

also be characterized by the L1 norm of the difference between the two PDFs ρ and ρ′, which
correspond to the measure µ and ν, respectively, i.e.,

d(µ, ν) =
1

2

∫

X

|ρ(x)− ρ′(x)|dx. (3.24)

The distance induces a metric. To estimate the error, we recall the iteration (3.14) and see
that the approximation error of the probability comes from the operator PN . To do this, we
need the following lemmas.

Lemma 3.1. (Theorem 4.8 in [23]) Suppose that P is the Perron-Frobenius operator defined
in (2.8). Let µ and ν be two arbitrary probability measures. Then

d(Pµ,Pν) ≤ d(µ, ν).

Lemma 3.2. (Lemma 4.9 in [23]) Let gj be the likelihood function defined by (2.10) and the
operator Lj defined by (2.12). Assume that there exists κ ∈ (0, 1] such that for all x ∈ X
and j ∈ N,

κ ≤ gj(x) ≤ κ−1. (3.25)

Then we have
d(Ljµ, Ljν) ≤ 2κ−2d(µ, ν).

Lemma 3.3. (Theorem 2.4.1 in [28]) Let Ca be discrete Lipschitz cone defined as

Ca = {φ :
φ(x)

φ(y)
≤ ea|x−y|, ∀x, y ∈ R}.

11



For each N > 0, the πN given by (3.16) denotes the projection of L1 onto VN . Then for any
function f ∈ Ca,

‖f − πNf‖L1 ≤ (ea/N − 1)‖f‖L1.

By the above three lemmas, we analyze total-variance distance between the approximate
measure µN

J and the true measure µJ and give the following theorem.

Theorem 3.4. If gj(x) satisfies the condition (3.25) and the probability density ρNj of the
measure µN

j satisfies PρNj ∈ Ca, ∀j ∈ N, then

d(µN
J , µJ) ≤

J∑

j=1

(2κ−2)j
ea − 1

2N
.

Proof. From the formula (2.13) and (3.14), we apply the triangle inequality to the distance
d(µN

j+1, µj+1) and get

d(µN
j+1, µj+1) = d(LjPNµN

j , LjPµj)

≤ d(LjPNµN
j , LjPµN

j ) + d(LjPµN
j , LjPµj).

According to Lemma 3.2 and Lemma 3.1, it follows that

d(µN
j+1, µj+1) ≤ 2k−2

[
d(PNµN

j ,PµN
j ) + d(PµN

j ,Pµj)
]

≤ 2k−2
[
d(PNµN

j ,PµN
j ) + d(µN

j , µj)
]
,

(3.26)

Let us consider d(PNµN
j ,PµN

j ). Suppose that ρ′j+1 is density function associated with the
measure PµN

j . Let ρNj and ρNj+1 be the density functions of µN
j and µN

j+1, respectively. By
the definition of total-variance distance in (3.24), we have

d(PNµN
j ,PµN

j ) =
1

2

∫

X

|ρNj+1(x)− ρ′j+1(x)|dx

=
1

2

∫

X

|PNρNj (x)−PρNj (x)|dx

=
1

2

∫

X

|πN ◦ PρNj (x)− PρNj (x)|dx,

where we have used the equation PN = πN ◦ P in the last equality. Since PρNj (x) ∈ Ca, we
use Lemma 3.3 and get

d(PNµN
j ,PµN

j ) ≤
1

2
(ea/N − 1)

≤ 1

2N
(ea − 1).

(3.27)

With the fact that µN
0 = µ0, we combine (3.27) with (3.26) and repeat the iterating to

complete the proof.

Theorem 3.4 estimates the online error of the PFOF algorithm. Since the Perron-
Frobenious operator is numerically approximated offline by the matrix form PN

n given by
(3.18), we will analyze the offline error generated by the approximation. Each coefficient of
PN
n is computed by the Monte-Carlo approximation of (3.17) using a set of the sampling

points {xli}nl=1. We show that the matrix PN
n converge to the matrix PN .

12



Proposition 3.5. If the matrix PN
n is defined by (3.18) and PN is defined by (3.17), then

the following convergence in distribution holds,

√
n((PN

n )ij − (PN)ij)
D−−−→

n→∞
N (0, σn,N

ij ), (3.28)

where

(σn,N
ij )2 =

∫

X

(1Ψ−1
τ (Bj)

· 1Bi
)2dµ− (

∫

X

1Ψ−1
τ (Bj)

· 1Bi
dµ)2, (3.29)

and N (0, σn,N
ij ) is the normal distribution with the mean 0 and standard deviation σn,N

i,j .

Proof. Note that the entries of PN
n are given by

PN
n,ij =

1

n

n∑

l=1

1Bj
(Ψτ (x

l
i)),

which is the Monte-Carlo approximation of

PN
ij =

∫
X
1Ψ−1

τ (Bj)
· 1Bi

dµ∫
X
1Bi

dµ
,

with sampling points xli drawn independently and uniformly from the box Bi. The denomi-
nator

∫
X
1Bi

dµ normalizes the entries PN
ij so that PN becomes a right stochastic matrix, with

each row summing to 1. The convergence result (3.28) follows directly from the convergence
of Monte-Carlo integration [29].

Proposition 3.5 indicates that there exits a constant CN(Ψτ , α) determined by the stan-
dard deviation σn,N

ij with a given confidence rate α ∈ [0, 1) such that for m large enough,
the following estimate holds with probability at least α:

‖ (PN
n )ij − (PN)ij ‖∞≤ CN(Ψτ , α)n

− 1
2 . (3.30)

The result shows that the convergence of PN
n to PN is in O(n− 1

2 ).

3.3 A low-rank Perron-Frobenius operator filter

In PFOF, we note that the number of blocks increases exponentially with respect to dimen-
sions, resulting in the number of basis functions growing rapidly. Therefore, we propose
a low-rank approximation, formed by eigenfunctions of the Perron-Frobenius operator, to
represent the density. This approach can effectively reduce the number of the required basis
functions. Let ρ still be a probability density function of the dynamical system governed by
Ψ. Then it can be written as a linear combination of the independent eigenfunctions ϕi of
P. So

ρ(x, t) =

∞∑

i=1

aiϕi(x), ai ∈ C.

13



Suppose that λi is the eigenvalue corresponding to the eigenfunction ϕi of P, then

Pρ(x, t) =
∞∑

i=1

λiaiϕi(x).

Actually, the eigenfunction of the discretized PFO can be determined by the following propo-
sition.

Proposition 3.6. Let B = {B1, · · · ,BN} ⊂ B be a uniform partition of the phase space
X. If ξ is the left eigenvector of PN corresponding to the eigenvalue λ, then λ is also the
eigenvalue of the restricted operator πNP with the eigenfunction ϕ , ξTU, where U =
[1B1(x), · · · ,1BN

(x)]T .

Proof. Let ϕ =
∑

i ξ
(i)
1Bi

. From Eq. (3.21) and Eq. (3.22),

πNPϕ =

N∑

j

N∑

i

ξ(i)PN
ij 1Bj

.

Since ξPN = λPN , i.e., λξ(j) =
∑

i ξ
(i)PN

ij , ∀j ∈ N, we get

πNPϕ =

N∑

j

λξ(j)1Bj
= λϕ.

Thus, λ is also an eigenvalue of the restricted operator πNP with eigenfunction ϕ.

In order to obtain the spectral expansion of the density function ρj := ρ(x, tj), we de-
fine the matrix ϕ = [ϕ1, · · · , ϕN ]

T , where {ϕi}Ni=1 are the eigenfunctions with respect to
eigenvalues {λi}Ni=1, with |λ1| = 1 ≥ |λ2| ≥ · · · ≥ |λN | ≥ 0. Let ρ0 = W0U and

Ξ =




ξT1
ξT2
...
ξTN


 .

Then the eigenfunction is denoted as ϕ = ΞU and the density function of ρ1 is given by

ρ1 = πNPρ0 = πNPW0U = πNPW0Ξ
−1
ϕ = ΛW0Ξ

−1
ϕ =

N∑

i=1

λiϕivi, (3.31)

where Λ is a diagonal eigenvalue matrix for πNP and vi is the column vector of the matrix
V = W0Ξ

−1. The first r major eigenvalues and their corresponding eigenfunctions are used
to approximate the density function. If the formula (3.31) is truncated by r < N , then the
low-rank model of ρ1 has the form of

ρ1 =

r∑

i=1

λiϕivi.
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In this way, the low-rank model of density functions at time tj is given by

ρj =

r∑

i=1

λjiϕivi, j ∈ N.

Let us denote the low-rank approximation of Perron-Frobenius operator as ρj = P̃ρj−1 ,∑r
i=1 λiϕivj−1,i, where vj−1,i is the column vector of the matrix Vj−1 = Wj−1Ξ

−1. We apply

P̃ in the Bayesian filter to obtain the low-rank Perron-Frobenius operator filter (lr-PFOF),
in which the probability measure satisfies the recursive formula

µN
j+1 = LjP̃µN

j , µN
0 = µ0.

To describe the following prediction and analysis steps, we first calculate the weak approxi-
mation PN and get the eigenvalues Λ and left eigenvectors Ξ of PN .

Prediction In this step, we give a model decomposition of the prior density p(xj+1|Yj).
First, the Wj satisfying p(xj |Yj) = WjU is obtained from the previous analysis step. Next,
compute the matrix Vj = WjΞ

−1 and

ρ̂j+1 = p(xj+1|Yj) =
r∑

i=1

λiϕivj,i.

Analysis In this step, we derive the posterior density p(xj+1|Yj+1) via Bayes’s formula.
Multiply p(xj+1|Yj) by likelihood function gj and have

ρj+1 = p(xj+1|Yj+1) ∝
r∑

i=1

λiϕivj,igj.

To normalize ρj+1, we rewrite the ρ̂j+1. Since ϕi = ξTi U =
∑N

k=1 ξ
(k)
i 1Bk

, we get

ρ̂j+1 =

r∑

i=1

λi

N∑

k=1

ξ
(k)
i 1Bk

vj,i =

N∑

k=1

( r∑

i=1

λiξ
(k)
i vj,i

)
1Bk

.

Then we multiply by gj(x) and make a normalization to the weights of 1Bk
, such that

ω
(k)
j+1 = ω̃

(k)
j+1/(

N∑

n=1

ω̃
(n)
j+1), ω̃

(k)
j+1 =

r∑

i=1

λiξ
(k)
i vj,igj(x

(k)), (3.32)

where x(k) is still the mass point of each box Bk. The posterior density becomes

ρj+1 =
N∑

k=1

ω
(k)
j+11Bk

= Wj+1U.

Remark 3.1. Note that the complex eigenvalues and eigenvectors may appear in the eigen-
decomposition of the matrix PN . When the stationary distribution π̃ of the system satisfies
detailed balance, a symmetrization method is designed in [30] to solve the problem. Since
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Algorithm 2 low-rank Perron-Frobenius operator filter

Offline:

Compute PN and its eigenvalue Λ and left eigenvector Ξ. Give the eigenfunction ϕ = ΞU.

Online:

1: Set j = 0 and ρ0 = W0U, compute ω
(i)
0 =

∫
Bi

µ0dx0

µ(Bi)

2: Denote Vj = WjΞ
−1, compute ρ̂j+1 =

∑r
i=1 λiϕivj,i

3: Define gj by (2.10), give ρj+1 ∝
∑r

i=1 λiϕivj,igj
4: Normalize weights by (3.32) and obtain Wj+1, let ρj+1 =

∑N
k=1 ω

(k)
j+11Bk

.
5: j+1→ j
6: Go to step 2

ρ0, ρ1, · · · can be seen as a Markov chain with transition matrix PN , we suppose that PN

satisfies detailed balance with respect to π̃, i.e.,

π̃iP
N
ij = π̃jP

N
ji , ∀i, j ∈ N.

Then PN can be symmetrized by a similarity transformation

S = Λ̃PN Λ̃−1, where Λ̃ =




√
π̃1 √

π̃2
. . . √

π̃N


 .

Here the S is a symmetric matrix and this can be easily checked by detailed balance equation.
It is known that S has a full set of real eigenvalues αj ∈ R and an orthogonal set of
eigenvectors wj. Therefore, P

N has the same eigenvalues αj and real left eigenvectors

ψj = Λ̃wj.

3.4 Extension to continuous-time filtering problems

In this subsection, we consider a continuous-time filtering problem, where the state model
and observation are by the following SDEs,

dx

dt
= f(x) +

√
Σc
dWt

dt
, x(t0) ∼ N (m0, C0), (3.33)

dz

dt
= h(x) +

√
Rc
dWt

dt
, z(0) = 0. (3.34)

Here Σc is the covariance of model error and Rc is the covariance of observation error. Sup-
pose that the posterior measure µt governed by the continuous-time problem has Lebesgue
density ρ(·, t) : Rn 7→ R+ for a fixed t. Let ρ(x, t) = r(x, t)/

∫
Rn r(x, t)dx, where r is the

unnormalized density. For a positive definite symmetric matrix A ∈ Rp×p, we define the
weighted inner product 〈·, ·〉A = 〈A− 1

2 ·, A− 1
2 ·〉 on the space L2([0, T ];Rp). The resulting
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norm | · |A = |A− 1
2 · |. In the continuous filtering problem, our interest is to find the dis-

tribution of the random variable x(t)|{z(s)}s∈[0,t] as the time t increases. Zakai stochastic
partial differential equation (SPDE) is a well-known equation whose solution characterizes
the unnormalized density of posterior distribution [35]. The Zaikai equation has the form of

∂r

∂t
= APF r + r

〈
h,
dz

dt

〉

Rc

. (3.35)

The partial differential operator APF generates a continuous Perron-Frobenius semigroup
{Pt, t ≥ 0}. Let {Qt

s, 0 ≤ s ≤ t} be the stochastic semigroup [31] associated with with the
following SDE

dr′

dt
= r′

〈
h,
dz

dt

〉

Rc

. (3.36)

Then the Zakai equation (3.35) can be approximated by the following Trotter-like product
formula

rj+1 = Q
tj+1

tj Pτrj, (3.37)

where τ = tj+1− tj , ∀j ∈ N. For the fixed τ , Pτ is still denoted by P. By the reference [31],

the Q
tj+1

tj describes the solution of the equation (3.36), i.e.,

Q
tj+1

tj r(x) = exp

(
〈h(x), zj+1 − zj〉Rc

− τ

2
|h(x)|2Rc

)
r(x).

With the discrete scheme (3.37), we utilize the Perron-Frobenius operator to solve Zakai
equation, rather than using Fokker-Planck operator APF . Thus, we discretize P by Ulam’s
method and project the density function onto VN . Let PN be the discretization of P. Let
Wj and Wj+1 be the weights vectors with respect to πNrj and πNrj+1. Denote gcj(x) =

exp
(
〈h(x), zj+1 − zj〉Rc

− τ
2
|h(x)|2Rc

)
and

Gj =




gcj(x
(1))

gcj(x
(2))
...

gcj(x
(N))


 ,

where x(i) is the mass point of Bi. Then the transition of density functions turns into a map
of the weights,

Wj+1 = Gj ⊙
(
WjP

N
)
.

Here ⊙ denotes Hadamard product. In this case, the PFO is extended to the continuous-time
filtering problem to estimate the posterior density function.

4 Comparison with particle filter

Particle filter (PF) [32, 33] is an important filtering method to sequentially approximate the
true posterior filtering distribution p(xj |Yj) in the limit of a large number of particles. In
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practice, we approximate the probability density by a combination of locations of particles
and weights associated with Dirac functions. Particle filter proceeds by varying the weights
and determining the particle Dirac measures. It is able to take care of non-Gaussian and non-
linear models. In this section, we will compare the computational accuracy and differences
between PFOF and PF.

Accordingly, we define µN
j as the posterior empirical measure on RN approximating truth

posterior probability measure µj and define µ̂N
j on RN as the approximation of the prior

probability measure µ̂j . Let

µj ≈ µN
j :=

N∑

n=1

ω
(n)
j δ

x
(n)
j

, µ̂j+1 ≈ µ̂N
j+1 :=

N∑

n=1

ω̂
(n)
j+1δx̂(n)

j+1
,

where x
(n)
j and x̂

(n)
j+1 are particle positions, and ω

(n)
j > 0, ω̂

(n)
j+1 > 0 are the associated

weights satisfying
∑N

n=1 ω
(n)
j = 1,

∑N
n=1 ω̂

(n)
j+1 = 1. The empirical distribution is completely

determined by particle positions and weights. The objective of particle filter is to calculate
the update {x(n)j , ω

(n)
j } → {x̂(n)j+1, ω̂

(n)
j+1} and {x̂(n)j+1, ω̂

(n)
j+1} → {x(n)j+1, ω

(n)
j+1}, which define the

prediction step and analysis step, respectively. Monte-Carlo sampling is used to determine
particle positions in the prediction and Bayesian rule is used to update of the weights in the
analysis.

Prediction In this step, the prediction phase is approximated by the Markov chain
{Ψ(xj)}j∈N with transition kernel p(xj , xj+1) = p(xj+1|xj). We draw x̂

(n)
j+1 from the kernel p

started from x
(n)
j , i.e., x̂

(n)
j+1 ∼ p(x

(n)
j , ·). We keep the weights unchanged so that ω̂

(n)
j+1 = ω

(n)
j ,

and obtain the prior probability measure

µ̂N
j+1 =

N∑

n=1

ω
(n)
j δ

x̂
(n)
j+1
.

Analysis In this step, we apply Bayes’s formula to approximate the posterior probability
measure. To do this, we fix the position of the particles and update the weights. With the
definition of gj(x) in (2.10), we have the empirical posterior distribution

µN
j+1 =

N∑

n=1

ω
(n)
j+1δx̂(n)

j+1
,

where

ω
(n)
j+1 = ω̃

(n)
j+1/(

N∑

n=1

ω̃
(n)
j+1), ω̃

(n)
j+1 = gj(x̂

(n)
j+1)ω

n
j . (4.38)

The first equation in (4.38) is a normalization. Sequential Importance Resampling (SIR)
particle filter is a basic particle filter and shown in Algorithm 1. A resampling step is
introduced in the algorithm. In this way, we can deal with the initial measure µ0 when it
is not a combination of Dirac functions. We can also deal with the case when some of the
particle weights are close to 1. The algorithm shows that each particle moves according
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to the underlying model and is reweighted according to the likelihood. By the iteration of
Bayesian filtering , we rewrite the particle filter approximated by the form

µN
j+1 = LjS

NPµN
j , µN

0 = µ0, (4.39)

where the operator SN is defined as follows:

(SNµ)(dx) =
1

N

N∑

n=1

δx(n)(dx), x(n) ∼ µ i.i.d..

Algorithm 3 Sequential Importance Resampling particle filter

1: Set j = 0 and µN
0 (dx0) = µ0(dx0)

2: Draw x
(n)
j ∼ µN

j , n = 1, · · · , N
3: Set ω

(n)
j = 1/N, n = 1, · · · , N , redefine µN

j :=
∑N

n=1 ω
(n)
j δ

x
(n)
j

4: Draw x̂
(n)
j+1 ∼ p(x

(n)
j , ·)

5: Define ω
(n)
j+1 by (3.23) and µN

j+1 =
∑N

n=1 ω
(n)
j+1δx̂(n)

j+1

6: j+1→ j
7: Go to step 2

By (4.39), we find that the randomness for the probability measure is caused by the sam-
pling operator SN and the convergence of particle filter depends on the number of particles.
The particle filter does recover the truth posterior distribution as the number of particles
tends to infinity [34]. The following theorem gives a convergence result for PF.

Theorem 4.1. (Theorem 4.5 in [23]) Let m be the number of particles and µm
j the approx-

imation measure in SIR particle filter. Assume that κ ∈ (0, 1] is the constant defined in
Lemma 3.2, then the total-variance distance between µm

J and µJ is estimated by

d(µm
J , µJ) ≤

J∑

j=1

(2κ−2)j
1√
m
. (4.40)

Let J be fixed in Theorem 3.4 and Theorem 4.1. We find that the convergence rate of
particle filter depends on the number of particles m. Similarly, the convergence of PFOF
is determined by the number of blocks N used in the Ulam’s method. When N = m, i.e.,
the same number of basis functions in the two methods, the rate of convergence is O( 1

N
)

in PFOF and O( 1√
m
) in SIR particle filter. The analysis shows that PFOF converges faster

than the particle filter.
Sampling from high-dimensional and complex transition kernels is difficult to realize in

PF. The PFOF avoids the sampling and uses a data-driven approximation instead, which
requires short-term path simulations rather than the form of transition density. Particle
degeneracy is also a significant issue. As the number of effective particles decreases gradually,
the efficiency of the particle filter becomes worse.

It is known that particle filter is inefficient for high-dimensional models because of degen-
eracy. So the accurate estimate of posterior PDF requires a great number of particles that
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scales exponentially with the size of the system. In addition to resampling, adding jitter and
localisation are effective modifications to solve the problem. The PFOF also has the “curse
of dimensionality” problem in high dimensions as the partition scale expansion. One solu-
tion to circumvent this problem is the sparse Ulam method. The low-rank Perron-Frobenius
operator filter can enhance the efficiency of filtering problems.

5 Numerical results

In this section, we present some numerical examples for filtering problems using the pro-
posed PFOF. The system dynamics is unknown and some observations are given in the
filtering problems. The PFOF and lr-PFOF are implemented to estimate posterior PDFs
of the stochastic filtering problems. In Section 5.1, we consider an Ornstein-Uhlenbeck (O-
U) process to identify the Gaussian PDF of the system and estimate its posterior PDFs
with observations known. In Section 5.2, we consider a nonlinear filtering problem gov-
erned by Benes̆ SDE, and estimate the non-Gaussian posterior PDFs. In Section 5.3, we
consider a continuous-time filtering problem, which is a classical chaotic system Lorenz’63
model with observations, to model posterior density of the state. We compare the proposed
PFOF/lr-PFOF with particle filter and Extended Kalmn filter (ExKF). Numerical results
show that PFOF achieves a better posterior PDF estimates than PF, and a more accurate
state estimates than ExKF.

5.1 O-U process

Let us consider an O-U process, which is a one-dimensional linear dynamical system,

dxt = −λxtdt+ dWt, x(t0) ∼ N (m0, C0),

where λ > 0 and Wt is a standard Brownian motion. We now consider a state-space model
formed by a discretization of the O-U process and the discrete observations of the state as
follows, {

x(tk+1) = exp(−λ∆tk)x(tk) + qk, qk ∼ N (0,Σk),

y(tk) = Hx(tk) + rk, rk ∼ N (0, R),
(5.41)

where Σk = exp(−2λ∆tk), H = I and R = σ2. The parameters are given by λ = 1/2,
m0 = 2, C0 = 0.1 and σ = 1. To apply PFOF, we compute Perron-Frobenius operator Pτ

using Ulam’s method with time step τ = 0.1 and obtain an approximation form PN
τ ∈ RN×N

of Pτ . We take the phase space of xt is [−6, 6] and divide it into N = 100 grids, and each
interval [zk, zk+1], k = 0, · · · , N − 1, defines a box Bk. We define an indicator function
1Bk

(x) on each Bk and randomly choose n = 100 sample points in the box to calculate PN
τ .

Given initial Gaussian distribution N (2, 0.1), we rewrite µ0 as a vector W0, which denotes
the coefficients of µN

0 . The P
N
τ acts on the weight vector to estimate probability value of xt

on each Bk, i.e., P(xt ∈ Bk), t = qτ, q = 0, 1, 2 · · · . Thus, we get the discrete probability
density function (PDF) of xt at t. The simulation PDFs at different times are shown in the
left column of Figure 5.1. By the figure, we see that the PDFs estimated by PFO are close
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Figure 5.1: The prior PDF estimated by PFO (left column), posterior PDF by PFOF (middle column)
and posterior PDF by particle filter (right column) at different times.

to the truth. By this way, the PDF is computed without solving Fokker-Planck equation
and the estimation of PDF is actually the prior density in the model (5.41).

Then we compute posterior probability density of the state-space model (5.41). We set
N = 500 and n = 100. The posterior probability density function is estimated by Algorithm
1 and the results are displayed in the middle column of Figure 5.1. From Figure 5.1, we find
that the empirical posterior PDFs estimated by PFOF are close to the Gaussian posterior
densities. To make comparison with PFOF, the particle filter is also used for the filtering
problem. In the particle filter, 500 particles are drawn randomly to generate Dirac measure
and construct empirical measure. Thus, the number of basis functions is equal to each other
in the two methods. Figure 5.1 clearly shows that the empirical PDF calculated by PFOF
is more accurate than that by PF. The numerical results support Theorem 3.4 and Theorem
4.1.

5.2 Benes̆-Daum filter

In this subsection, we apply PFOF to a nonlinear filtering problem, whose state-space model
is defined by the Benes̆ stochastic difference equation,

dxt = tanh(xt)dt+ dWt, (5.42)
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with initial condition x0 = 0. Refer to [36], the probability density function of the equation
(5.42) is given by

p(x(t)) =
1√
2πt

cosh(x(t))

cosh(x0)
exp

(
− t

2

)
exp

(
− 1

2t
(x(t)− x0)

)
.

We take the phase space [−15, 15] and uniformly divide it into 100 (N = 100) grids [zk, zk+1], k =
0, ..., N − 1, each of which corresponds to a box Bk. The Ulam’s method is used to approxi-
mate PFO. The time step is set as τ = 0.5 and the number of random sample pointsm = 400.
The predicted PDF of xt at t = 1, t = 2.5 and t = 5 are shown in Figure 5.2. The PDFs are
separately estimated by discretized PFO matrix PN ∈ R100×100 and low-rank approximation
of PFO with truncation r = 30. We see that PDFs at t = 2.5 and t = 5 have two modes and
the PFO can fairly approximate the two modes.
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Figure 5.2: The PDF estimated by PFO and low-rank model at different times.

First we want to calculate the truth posterior filtering distribution of the model (5.42)
subject to observation. In this example, the observation model satisfies

p(yk|x(tk)) = N (yk|x(tk), σ2). (5.43)

According to [36] (Chapter 10.5), the transition density of the Benes̆ SDE is given by

p(x(tk)|x(tk−1)) =
1√

2π∆tk−1

cosh(x(tk))

cosh(x(tk−1))
exp(−1

2
∆tk−1)×exp

(
− 1

2∆tk−1

(x(tk)−x(tk−1))
2

)
,

where ∆tk−1 = tk − tk−1. If we assume that the filtering solution at time tk−1 is of the form

p(x(tk−1)|y1:k−1) ∝ cosh(x(tk−1))exp

(
− 1

2Pk−1
(x(tk−1)−mk−1)

2

)

for given mk−1 and Pk−1. Then we use the Chapman-Kolmogorov equation and give the
prior density

p
(
x(tk)|y1:k−1

)
∝ cosh

(
x(tk)

)
exp

(
− 1

2P−
k

(x(tk)−m−
k )

2

)
,
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where
m−

k = mk−1,

P−
k = Pk−1 +∆tk−1.

The m−
k and P−

k are sufficient statistics representing prior density functions. By Bayes’
formula, the posterior density of x(tk) is given by

p
(
x(tk)|y1:k

)
∝ cosh

(
x(tk)

)
exp

(
− 1

2Pk

(
x(tk)−mk

)2
)
, (5.44)

where the equations of parameters mk and Pk in the posterior density satisfy

mk = m−
k +

(
P−
k

P−
k + σ2

)
(yk −m−

k ),

P−
k = Pk−1 +∆tk−1.

Thus, the reference posterior distribution is defined by (5.44).
To apply PFOF to the nonlinear filtering problem, we make a finer division of the phase

interval [−15, 15] to obtain 400 boxes. Besides, we choose enough sample points in Ulam’s
method to reduce error of Monte-Carlo as much as possible. The observations yk are arti-
ficially obtained by simulating the underlying model (5.42) and adding noise according to
(5.43), where σ = 1. The observable interval is [0, 5] with a time step ∆tk = 0.1. The
initial distribution for the filtering process is chosen to be m0 = 0, P0 = 2. Particularly, we
also use the particle filter as a comparison. In the prediction, we are not allowed to draw
sample points directly because of a complex transition probability density function. We use
Acceptance-Rejection method to resolve the issue. We first show the results of posterior
mean estimated by PFOF and lr-PFOF (r=40) in Figure 5.3, together with truth and ob-
servations. The mean is obtained by averaging the posterior distribution of PFOF/lr-PFOF
and it is close to the truth as the figure shows.

The posterior densities estimated by PFOF, lr-PFOF and particle filter are shown in
Figure 5.4 together with the truth. The truncation parameters in lr-PFOF are separately
set as r = 10, r = 20 and r = 40. The estimation accuracy of lr-PFOF gradually improves as
the number of truncation basis functions increases, and achieves almost the same as PFOF
when r = 40 < N = 400. Although the number of basis functions is the same in both
PFOF and particle filter, there exit clear difference between the two methods. The results
show that the accuracy of PFOF is higher than that of particle filter in the non-Gaussian
and nonlinear filtering problem. This further confirms the theoretical analysis in Section
3. As shown in Table 1, both PFOF and lr-PFOF use less CPU-time than SIR particle
filter does. Actually, the CPU-time in particle filter is mainly from Acceptance-Rejection
sampling. From the table, it can be seen that lr-PFOF can reduce online computation time
comparing to PFOF.
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Figure 5.4: The posterior PDF by lr-PFOF (left column), PFOF (middle column) and particle filter (right
column) at different times.

Table 1: CPU-time (seconds) for posterior PDF with different methods.

Methods PFOF lr-PFOF (r=10) lr-PFOF (r=20) lr-PFOF (r=40) particle filter

offline 0.1599 0.2536 0.2649 0.2689
6906.9486

online 0.0673 0.0150 0.0431 0.0641
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5.3 Lorenz’63 model

Lorenz developed a mathematical model for atmospheric convection in 1963. The Lorenz’63
model is the simplest continuous-time system to exhibit sensitivity to initial conditions and
chaos, and it is popular example used for data assimilation. For some parameters and initial
conditions, the system may perform a chaotic behaviour. The model consists of three coupled
nonlinear ordinary differential equations with the solution v = (v1, v2, v3) ∈ R3. We consider
the Lorenz’63 model with additive white noise,





dv1
dt

= a(v2 − v1) + σ1
dW1

dt
dv2
dt

= −av1 − v2 − v1v3 + σ2
dW2

dt
dv3
dt

= v1v2 − bv3 − b(r + a) + σ3
dW3

dt
v(0) ∼ N (m0, C0),

where Wj are Brownian motions assumed to be independent. We use the classical parameter
values (a, b, r) = (10, 8

3
, 28) and set σ1 = σ2 = σ3 = 2. The initial mean m0 is given by

(0, 0, 0) and covariance matrix is an identity matrix I3 ∈ R3×3. We give the continuous
observation z(t), which is governed by a SDE





dz

dt
= h(v) + γ

dWz

dt
z(0) = 0,

with γ = 0.2. The purpose of this example is to explore the performance of PFOF in
continuous-time filtering problems. We compare the assimilation results based on Perron-
Frobenius operator and continuous-time Extended Kalman filter. The posterior means es-
timated by the two methods are shown in Figure 5.5 and Figure 5.7. The two figures
are corresponding to different observations h(v) = Hv, where the former is determined by
H = [0, 1, 0] and the latter is determined by H = [0, 0, 1]. In particular, we find that the
choice of observations in Lorenz models is quite influential, especially for ExKF. The stability
of ExKF significantly depends on the observation. Because the insufficient observations may
keep the filter away from the truth and cause significant model error, and it may easily lead
to the numerical instability once the deviation occurs. However, the results of reconstruc-
tion by PFOF much less affected by observation model, so the method shows much better
robustness than ExKF.

Figure 5.6 shows the consequence of mean-square error with v2 or v3 as the different
observation. For ExKF, we find that there is a large error in estimating mean by ExKF
when the third component v3 is observed. To better visualize the results, we compare the
trajectories of mean obtained by PFOF and ExKF in Figure 5.8 together with truth. We
find the trajectory mean of PFOF agrees with the truth more than the the trajectory mean
of ExKF.

For v3 as an observation, the one-dimensional and two-dimensional marginal probability
distributions are displayed in Figure 5.9. The figure aims to intuitively describe distribution
of the single value and correlation of the different components. As shown in the figure,
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one-dimensional marginal distributions of the observed component are closer to Gaussian
distributions than the other two components. This phenomenon reflects that when a com-
ponent is used as an observation, its mean estimates will be more accurate than the other
unobserved components.

The results above show that PFOF has a higher accuracy for state estimates than ExKF
in this chaotic nonlinear system. The former can also give estimates of probability density
functions to gain more information of the state in the probabilistic sense.

6 Conclusions

A new filtering method was proposed to estimate filtering distribution of the state under
the framework of Perron-Frobenius operator. We formulated filtering problems for discrete
and continuous stochastic dynamical systems and applied the Perron-Frobenius operator to
propagation of the posterior probability density function. The finite-dimensional approxi-
mation of the PFO was realized by Ulam’s method, which provides a Galerkin projection
space spanned by indicator functions. With Ulam’s method, the posterior PDF was dis-
cretized and expressed by the weights of basis functions. Then the evolution of PDF became
the transition of the weights vectors, which were iterated by PFO and likelihood function.
This procedure was called Perron Frobenius operator filter. Thus, the empirical PDF was
determined by a convex combination of indicator functions. We gave an error estimate of
the proposed method and proved that its accuracy is higher than that of particle filters. Fur-
thermore, a low-rank Perron-Frobenius operator filter was presented to approximate density
functions via spectral decomposition. The decomposition was realized by eigendecomposi-
tion of discretized PFO. Finally, the proposed method was implemented for three stochastic
filtering problems, which included a linear discrete system, a nonlinear discrete system and
a nonlinear continuous chaotic system. The numerical results showed that the proposed
method has better accuracy and better robustness compared with particle filters and ExKF.
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