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AN AUGMENTED MATRIX-BASED CJ-FEAST SVDSOLVER FOR

COMPUTING A PARTIAL SINGULAR VALUE DECOMPOSITION

WITH THE SINGULAR VALUES IN A GIVEN INTERVAL∗

ZHONGXIAO JIA† AND KAILIANG ZHANG‡

Abstract. The cross-product matrix-based CJ-FEAST SVDsolver proposed previously by the
authors is shown to compute the left singular vector possibly much less accurately than the right
singular vector and may be numerically backward unstable when a desired singular value is small. In
this paper, an alternative augmented matrix-based CJ-FEAST SVDsolver is considered to compute
the singular triplets of a large matrix A with the singular values in an interval [a, b] contained in the
singular spectrum. The new CJ-FEAST SVDsolver is a subspace iteration applied to an approximate
spectral projector of the augmented matrix [0, AT ;A, 0] associated with the eigenvalues in [a, b], and
constructs approximate left and right singular subspaces with the desired singular values indepen-
dently, onto which A is projected to obtain the Ritz approximations to the desired singular triplets.
Compact estimates are given for the accuracy of the approximate spectral projector, and a number
of convergence results are established. The new solver is proved to be always numerically backward
stable. A convergence comparison of the cross-product and augmented matrix-based CJ-FEAST
SVDsolvers is made, and a general-purpose choice strategy between the two solvers is proposed for
the robustness and overall efficiency. Numerical experiments confirm all the results.
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1. Introduction. The singular value decomposition (SVD) of A is

(1.1) A = U

(

Σ
0

)

V T

with the diagonals σ of the diagonal matrix Σ being the singular values and the
columns u and v of the orthogonal matrices U ∈ R

m×m and V ∈ R
n×n being the

corresponding left and right singular vectors of A; see, e.g., [5]. In this paper, we
consider such an SVD problem: Given a large matrix A ∈ R

m×n with m ≥ n ≫ 1
and a real interval [a, b] with a > 0, determine the nsv singular triplets (σ, u, v) with
the singular values σ ∈ [a, b] counting multiplicities, where











Av = σu,

ATu = σv,

‖u‖ = ‖v‖ = 1.

Write the cross-product matrix SC = ATA. Then the eigendecomposition of
SC = ATA is SC = V Σ2V T . The SVD of A is also intimately related to the eigende-
composition of the augmented matrix

(1.2) SA =

[

0 AT

A 0

]

.
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2 Z. JIA AND K. ZHANG

In the SVD (1.1) of A, write

(1.3) U = [Un
n
| Û
m−n

],

and define the orthogonal matrix Q ∈ R
(m+n)×(m+n) by

(1.4) Q =
1√
2

[

V V 0

Un −Un

√
2Û

]

.

Then the eigendecomposition of SA in (1.2) is

(1.5) QTSAQ = diag(Σ,−Σ, 0, ..., 0
m−n

).

We will also write the eigenvalues ±σ and zeros of SA as λi, i = 1, 2, . . . ,m + n for
later use, whose labeling order is postponed to Section 5.

The authors in [13] have proposed an SC-based Chebshev–Jackson series FEAST
(CJ-FEAST) SVDsolver, an adaptation of the FEAST eigensolver [16] to the concern-
ing SVD problem. The FEAST eigensolver was introduced by Polizzi [16] in 2009
and has been developed in [4, 6, 14, 17, 23], and it performs on subspaces of a fixed
dimension p, and uses subspace iteration [5, 19, 21] on an approximate spectral pro-
jector associated with the eigenvalues in a given region to generate a sequence of
subspaces, onto which the Rayleigh–Ritz projection of the original matrix or matrix
pair is realized. However, in the SC -based CJ-FEAST SVDsolver, rather than us-
ing a numerical quadrature based rational approximation of the contour integral of
representing the spectral projector associated with the eigenvalues σ2 ∈ [a2, b2], we
exploit the Chebyshev–Jackson polynomial series to construct an approximate spec-
tral projector, and avoid solving several shifted linear system at each iteration as
needed in the original FEAST solver. Moreover, we can reliably estimate the num-
ber nsv of desired singular triplets, and apply subspace iteration to the approximate
spectral projector to generate an approximate right singular subspace. The SC -based
CJ-FEAST SVDsolver then constructs the corresponding approximate left singular
space by premultiplying the right one with A, realize the Rayleigh–Ritz projection
of A onto the left and right subspaces constructed, and compute the Rayleigh–Ritz
approximations to the desired singular triplets. We have numerically observed in [13]
that the SC -based CJ-FEAST SVDsolver is often a few to tens times more efficient
than the contour integral-based IFEAST [4] adapted to the SVD problem when the
interval [a, b] is inside the singular spectrum and it is competitive with the latter
when the desired singular values are extreme ones. We have theoretically argued and
numerically confirmed in [13] that the CJ-FEAST SVDsolver is more robust than
contour integral based SVDsolvers.

However, as we will show, the SC -based CJ-FEAST SVDsolver may be numer-
ically backward unstable when a desired singular value is small. This is because
the left searching subspaces are formed by premultiplying the right ones with A and
severely filter their information on the left singular vectors associated with small sin-
gular values. As a consequence, the solver may compute left singular vectors much
less accurately than the right ones, and thus may not converge for a reasonably pre-
scribed stopping tolerance in finite precision arithmetic, that is, the algorithm may
be numerically backward unstable.

To overcome the above robustness deficiency of the SC -based CJ-FEAST SVD-
solver, we will exploit SA to propose a new effective CJ-FEAST SVDsolver in this pa-
per. In order to distinguish the two solvers, we abbreviate the SC -based CJ–FEAST
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SVDsolver in [13] and the SA-based CJ–FEAST SVDsolver to be proposed in this
paper as the CJ-FEAST SVDsolverC and the CJ-FEAST SVDsolverA, respectively.
Unlike the CJ-FEAST SVDsolverC, we will construct an approximation P to the spec-
tral projector PSA

of SA associated with the eigenvalues σ ∈ [a, b] by the Chebyshev–
Jackson series expansion. We apply subspace iteration to such a P , and generate a
sequence of approximate left and right singular subspaces corresponding to σ ∈ [a, b].
Precisely, we take the upper and lower parts of iterates to independently form approx-
imate right and left singular subspaces, onto which A is projected to compute the
Ritz approximations to the desired singular triplets. This is a crucial difference from
the CJ-FEAST SVDsolverC, where the iterates themselves only generate approximate
right singular subspaces and one is only able to construct the approximate left sin-
gular subspaces by premultiplying the right ones with A. Different constructions of
subspaces lead to different convergence properties of the two CJ-FEAST SVDsolvers.

As for similarities, the two CJ-FEAST SVDsolvers construct approximate spec-
tral projectors using the Chebyshev–Jackson series. We will prove that they share
some similar properties. For instance, the approximate spectral projector construc-
ted is unconditionally symmetric positive semi-definite (SPSD), its eigenvalues always
lies in the interval [0, 1], and the strategies on degree choices of Chebyshev–Jackson
polynomial series developed in [13] can be directly adapted to the CJ-FEAST SVD-
solverA. We can estimate nsv by this approximate spectral projector and Monte–Carlo
methods [1, 2], as done in [13]. However, this estimation is more costly than that in
[13] as the same approximation accuracy of P for SA needs higher degree Chebyshev–
Jackson series than for SC . This suggests us to estimate nsv using the approximate
spectral projector in the CJ-FEAST SVDsolverC; see [13] for details and numerical
justifications.

As for dissimilarities, a convergence analysis of the CJ-FEAST SVDsolverA is
more involved than and quite different from that of the CJ-FEAST SVDsolverC. For
instance, suppose that two subspaces with equal dimension are conformally parti-
tioned as the lower and upper parts whose dimensions are the same as those of the
given subspaces. As a necessary step, an important problem that we must solve is:
How to bound the distance between the two upper subspaces and that between the
two lower subspaces by the distance between the original two subspaces. We estab-
lish compact bounds on the above distances, which extend those results in [7, 8, 12]
from the vector case, i.e., the subspace dimension equal to one, to the general sub-
space case. These bounds should have their own significance and may find some
other applications. We will prove that the CJ-FEAST SVDsolverA always constructs
the approximate left and right singular subspaces with similar accuracy, so that it
computes the left and right singular vectors with similar accuracy. Therefore, the ap-
proximate left singular vectors are (much) more accurate than those obtained by the
CJ-FEAST SVDsolverC when desired singular values are small, which is particularly
the case that A is ill conditioned and some left-most singular triplets are required.
We will prove that the CJ-FFAST SVDsolverA is always numerically backward stable
and thus fixes the potential robustness deficiency of the CJ-FEAST SVDsolverC.

We will theoretically compare the accuracy of the two approximate spectral pro-
jectors constructed in the two CJ-FEAST SVDsolvers, and quantitatively show how
the convergence rates of these two SVDsolvers are closely related. The results indicate
that the CJ-FEAST SVDsolverA converges slower than the CJ-FEAST SVDsolverC
for the same series degree d and the subspace dimension p, but it always enables us to
compute small singular triplets accurately and achieve any reasonably prescribed stop-
ping tolerance in finite precision arithmetic. Combining the convergence results with
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the computational cost and ultimately attainable accuracy of the two SVDsolvers, we
will propose a robust choice strategy between them in practical computations, which
guarantees that the chosen solver converges for a reasonably stopping tolerance in
finite precision arithmetic and, meanwhile, maximizes overall efficiency.

In Section 2, we review the CJ-FEAST SVDsolverC, and make an analysis on its
robustness deficiency and numerical backward stability. In Section 3, we introduce
an algorithmic framework of the CJ-FEAST SVDsolverA. In Section 4, we review the
pointwise convergence results on the Chebyshev–Jackson series expansion, which are
used later. Then we detail the CJ-FEAST SVDsolverA in Section 5 for computing
the desired nsv singular triplets of A, and establish the accuracy estimates for the
approximate spectral projector P and for its eigenvalues. In Section 6, we prove
a number of convergence results on the CJ-FEAST SVDsolverA. In Section 7 we
make a theoretical comparison of the two SVDsolvers, and propose a robust choice
strategy between them in finite precision arithmetic. In Section 8, we report numerical
experiments to confirm our results and to illustrate the robustness of the CJ-FEAST
SVDsolverA. Finally, we conclude the paper in Section 9.

Throughout the paper, denote by ‖ · ‖ the 2-norm of a vector or matrix, by In
the identity matrix of order n with n dropped whenever it is clear from the context,
by ei column i of In, and by σmax(X) and σmin(X) the largest and smallest singular
values of a matrix X , respectively. All the algorithms and results apply to a complex
A with the transpose of a vector or matrix replaced by its conjugate transpose.

2. The CJ-FEAST SVDsolverC and an analysis on its convergence re-

sults. Given an interval [a, b] ⊂ [σmin, ‖A‖] with σmin = σmin(A) and a > 0, suppose
that we are interested in the singular triplets (σ, u, v) of A with all σ ∈ [a, b].

For an approximate singular triplet (σ̃, ũ, ṽ) of A, its residual is

(2.1) r = r(σ̃, ũ, ṽ) :=

[

Aṽ − σ̃ũ
AT ũ− σ̃ṽ

]

.

Keep in mind that a numerically backward stable algorithm means that it can make
‖r‖/‖A‖ = O(ǫmach) with ǫmach being the machine precision and the constant in the
big O(·) being generic, typically 10 ∼ 100.

In what follows we show that the residual norm ‖r‖ in (2.1) may never achieve
the level ‖A‖O(ǫmach) in finite precision arithmetic when a desired singular value
σ ∈ [a, b] is small, indicating that the solver is not numerically backward stable and
may fail for a reasonably prescribed stopping tolerance.

The convergence results on the CJ-FEAST SVDsolverC (cf. Theorems 5.1–5.2 in
[13]): Let V̂(k) and Û (k) = AV̂(k) be the approximate right and left subspaces with
the dimension p ≥ nsv at iteration k, Pk be the orthogonal projector onto V̂(k), γ1 ≥
γ2 ≥ · · · ≥ γp > γp+1 ≥ · · · ≥ γn be the eigenvalues of the approximate spectral
projector of SC , and label the singular values of A in the one-one correspondence (cf.
(4.4) and Theorem 4.1 of [13]), where γ1, . . . , γp correspond to the singular values

σ1, . . . , σp. Write the subspace distance ǫk = dist(V̂(k), span{Vp}), where the columns
of Vp are the right singular vectors of A associated with the singular values σ1, . . . , σp.
Assume that each desired singular value σi, i = 1, 2, . . . , nsv of A is simple. Let

(σ̂
(k)
i , û

(k)
i , v̂

(k)
i ) be the Ritz approximations to (σi, ui, vi), i = 1, 2, . . . , nsv, and define

βk = ‖PkSC(I − Pk)‖ and δ
(k)
i = minj 6=i |σ2

i − (σ̂
(k)
j )2| with (σ̂

(k)
i )2, i = 1, 2, . . . , p

being the Ritz values of SC with respect to V̂(k). Then for i = 1, 2, . . . , nsv it holds
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that

sin∠(vi, v̂
(k)
i ) ≤

√

1 +
β2
k

(δ
(k)
i )2

sin∠(vi, V̂(k)),(2.2)

sin∠(ui, û
(k)
i ) ≤ ‖A‖

σ̂
(k)
i

sin∠(vi, v̂i),(2.3)

|(σ̂(k)
i )2 − σ2

i | ≤ ‖A‖2(3ǫ2k + ǫ4k),(2.4)

sin∠(vi, V̂(k)) = O
((

γp+1

γi

)k)

, ǫk = O
((

γp+1

γp

)k)

.(2.5)

In finite precision arithmetic, (2.5) means that we ultimately have sin∠(vi, V̂(k)) =
O(ǫmach), i = 1, 2, . . . , nsv and ǫk = O(ǫmach). Keep in mind these crucial points and
βk ≤ ‖SC‖ = ‖A‖2. In what follows we make an analysis on the smallest attainable
size of the residual defined by (2.1) in finite precision arithmetic.

A detailed analysis on [11, Theorem 1.1] can be easily adapted to (2.4), which
shows that

(2.6) |σ̂(k)
i − σi| ≤

√
2‖A‖ǫk

√

ǫ2k + 3 = ‖A‖O(ǫmach).

Therefore, the CJ-FEAST SVDsolverC always computes a desired σi to the working
precision, independently of its size.

Denote by V̂ (k) the right Ritz vector matrix and Σ̂(k) the Ritz value matrix.

We have (V̂ (k))TSC V̂
(k) = (Σ̂(k))2. Since the residual matrix r

(k)
C of the Ritz block

((Σ̂(k))2, V̂ (k)) as an approximation to the eigenblock (Σ2
p, Vp) of SC = ATA satisfies

(V̂ (k))T r
(k)
C = (V̂ (k))T (SC V̂

(k) − V̂ (k)(Σ̂(k))2) = 0,

we obtain

(2.7) ‖r(k)C ‖ = ‖V̂
(k)
⊥ (V̂

(k)
⊥ )T r

(k)
C ‖ = ‖V̂

(k)
⊥ (V̂

(k)
⊥ )TSC V̂

(k)‖ = ‖(V̂ (k)
⊥ )TSC V̂

(k)‖.

Decompose V̂ (k) and V̂
(k)
⊥ into the orthogonal direct sums of Vp and Vp,⊥, respectively:

(2.8) V̂ (k) = VpY1 + Vp,⊥Y2, V̂
(k)
⊥ = VpZ1 + Vp,⊥Z2.

Then ‖Y2‖ = ‖Z1‖ = ǫk. Substituting this relation and (2.8) into (2.7) yields

‖r(k)C ‖ = ‖(VpZ1 + Vp,⊥Z2)
TSC(VpY1 + Vp,⊥Y2)‖

= ‖ZT
1 Σ

2
pY1 + ZT

2 Σ
′2
p Y2‖ ≤ 2‖SC‖ǫk.(2.9)

Let r
(k)
i,C be column i of r

(k)
C , i = 1, 2, . . . , p. Since Av̂

(k)
i = σ̂

(k)
i û

(k)
i in the CJ-FEAST

SVDsolverC, from (2.9), the ultimate SVD relative residual norm induced by (2.1) is

(2.10)
‖r(σ̂(k)

i , û
(k)
i , v̂

(k)
i )‖

‖A‖ =
‖r(k)i,C‖
σ̂
(k)
i ‖A‖

≤ ‖r(k)C ‖
σ̂
(k)
i ‖A‖

≤ 2‖A‖
σ̂
(k)
i

ǫk ∼
‖A‖
σi
O(ǫmach)

by noticing that σ̂
(k)
i → σi and ǫk ultimately attains O(ǫmach).
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Since the ‖r(k)i,C‖ decrease at different linear factors for i = 1, 2, . . . , p and they may
differ considerably, the right-hand sides of (2.10) may be substantial overestimates

for ‖r(k)i,C‖ with i smaller. However, it is not this case in finite precision arithmetic.
Insightfully, we will show that the right-hand side of (2.10) is in fact the ultimately

attainable relative residual norm of (σ̂
(k)
i , û

(k)
i , v̂

(k)
i ), and a considerably smaller one

generally cannot be expected in finite precision arithmetic, as shown below.
By the perturbation theory and residual analysis on eigenvectors (cf. [22, p. 250]),

for the residual r
(k)
i,C of the approximate eigenpair ((σ̂

(k)
i )2, v̂

(k)
i ) of SC = ATA, we have

(2.11) sin∠(vi, v̂
(k)
i ) ≤

‖r(k)i,C‖
gap

(k)
i

with gap
(k)
i = minj 6=i |(σ̂(k)

i )2 − σ2
j |.

We investigate the relationship between (2.2) and (2.11). By (2.6), and the defi-

nitions of δ
(k)
i and gap

(k)
i , we ultimately have

δ
(k)
i → min

j 6=i,j=1,2,...,p
|(σ̂(k)

i )2 − σ2
j | ≥ gap

(k)
i ,

which, together with βk ≤ ‖A‖2, leads to
√

1 +
β2
k

(δ
(k)
i )2

∼ ‖A‖
2

gap
(k)
i

> 1.

Therefore, in finite precision arithmetic, (2.2) means that we ultimately obtain

(2.12) sin∠(vi, v̂
(k)
i ) ≤

√

1 +
β2
k

(δ
(k)
i )2

O(ǫmach) =
‖A‖2O(ǫmach)

gap
(k)
i

.

Combining (2.12) with (2.11), we ultimately have

‖r(k)i,C‖ ≤ ‖A‖2O(ǫmach),

showing that the ultimately attainable relative SVD residual norm

‖r(σ̂(k)
i , û

(k)
i , v̂

(k)
i )‖

‖A‖ =
‖r(k)i,C‖
σ̂
(k)
i ‖A‖

≤ ‖A‖
σi
O(ǫmach),

which indicates that whether or not the CJ-FEAST SVDsolverC is numerically back-
ward stable for computing (σi, ui, vi) critically depends on the size of ‖A‖/σi. If the
size of ‖A‖/σi is generic, the solver is numerically backward stable; if σi is small
relative to ‖A‖, the solver may not be numerically backward stable.

As a matter of fact, the possible numerical backward instability of the CJ-FEAST

SVDsolverC is due to the possible poor accuracy of left Ritz vector û
(k)
i . It is known

from (2.3) that

sin∠(ui, û
(k)
i ) ≤ ‖A‖

σ̂
(k)
i

sin∠(ui, û
(k)
i )→ ‖A‖

σi
sin∠(vi, v̂

(k)
i ).

Therefore, compared with the approximation accuracy of v̂(k), the error of û(k) may be
amplified by the multiple ‖A‖/σi, exactly the factor in (2.10). The ultimate attainable



AN AUGMENTED MATRIX-BASED CJ-FEAST SVDSOLVER 7

accuracy of û
(k)
i critically depends on the size of ‖A‖/σi and û

(k)
i may be substantially

inaccurate once ‖A‖/σi is large, leading to the possibly numerically backward unstable
of CJ-FEAST SVDsolverC.

Actually, the possible ultimate poor accuracy of û
(k)
i is expected because of

the possible poor left subspace Û (k): Exploiting Û (k) = AV̂(k) and the ultimate
sin∠(vi, V̂(k)) = O(ǫmach), it is easily justified that

(2.13) sin∠(ui, Û (k)) ≤ ‖A‖
σi

sin∠(vi, V̂(k)) =
‖A‖
σi
O(ǫmach),

which shows that Û (k) is generally much less accurate than V̂(k) when ‖A‖/σi is large.
In summary, we come to conclude that the CJ-FEAST SVDsolverC may fail to

converge when requiring that ‖r(σ̂(k)
i , û

(k)
i , v̂

(k)
i )‖/‖A‖ ≤ tol when

(2.14) O(ǫmach) ≤ tol <
‖A‖
σi
O(ǫmach)

with the same generic constant, say 10, in the two big O(·). Therefore, for A ill
conditioned, the CJ-FEAST SVDsolverC may not work well. This may occur if the
left end a of [a, b] is small and there is a σi ∈ [a, b] close to a. Numerical experiments
in Section 8 will confirm this assertion.

The above assertion also holds for other SC -based FEAST-type or SS-type meth-
ods, e.g., [9], where they construct approximate right and left singular subspaces V
and U = AV . Since (2.10) and (2.13) also hold for these methods, the solvers may
fail to converge for a stopping tolerance tol satisfying (2.14).

3. The framework of the CJ-FEAST SVDsolverA. Define

(3.1) PSA
= QinQ

T
in +

1

2
QabQ

T
ab,

where Qin consists of the columns of Q defined by (1.4) corresponding to the singular
values σ ∈ (a, b) and Qab consists of the columns of Q corresponding to σ equal to
a or b. PSA

is a generalized spectral projector of SA associated with the eigenvalues
λ ∈ [a, b], and is simply called the spectral projector associated with λ ∈ [a, b].

Algorithm 3.1 is a framework of our CJ-FEAST SVDsolverA to be considered
and developed in Section 5 and Section 6, where P is an approximation to PSA

. It
is a subspace iteration on P that generates the p-dimensional approximate left and
right subspaces U (k) ⊂ R

m and V(k) ⊂ R
n, which are formed by the lower and upper

parts of the current approximate eigenspace Q(k) ⊂ R
m+n of P associated with its p

dominant eigenvalues, and projects A onto the left and right subspaces to compute
the nsv desired singular triplets of A.

If P = PSA
defined by (3.1) and the subspace dimension p = nsv, then pro-

vided that no vector in the initial subspace Q(0) is orthogonal to span{Qin, Qab},
Algorithm 3.1 finds the nsv desired singular triplets in one iteration since Q(1) =
span{Qin, Qab} and U (1), V(1) are the exact left and right singular subspaces of A
associated with the singular values σ ∈ [a, b].

4. The Chebyshev–Jackson series expansion of a specific step function.

We review the pointwise convergence results on the Chebyshev–Jackson series expan-
sion established in [13], which are needed to analyze the accuracy of an approximate
spectral projector P to be constructed and the convergence of the solver. For the
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Algorithm 3.1 Subspace iteration on the approximate spectral projector P for com-
puting a partial SVD of A with σ ∈ [a, b].

Input: The interval [a, b], the approximate spectral projector P , a p-dimensional
subspace Q(0) with the dimension p ≥ nsv, and k = 1.

Output: The nsv converged Ritz triplets (σ̃(k), ũ(k), ṽ(k)) with σ̃(k) ∈ [a, b].
1: while not converged do

2: Form the projection subspace: Q(k) = PQ(k−1), and construct the approxi-
mate right singular subspace V(k) = [In,0]Q(k) and approximate left singular
subspace U (k) = [0, Im]Q(k).

3: The Rayleigh–Ritz projection: find p unit-length ũ(k) ∈ U (k), ṽ(k) ∈ V(k) and p
scalars σ̃(k) ≥ 0 that satisfy Aṽ(k) − σ̃(k)ũ(k) ⊥ U (k), AT ũ(k) − σ̃(k)ṽ(k) ⊥ V(k).

4: Compute the residual norms of the Ritz triplets (σ̃(k), ũ(k), ṽ(k)) for all the
σ̃(k) ∈ [a, b]. Set k ← k + 1.

5: end while

interval [a, b] ⊂ [−1, 1], define the step function

(4.1) h(x) =











1, x ∈ (a, b),
1
2 , x ∈ {a, b},
0, x ∈ [−1, 1] \ [a, b],

where h(a) = h(b) = 1
2 equal the means of respective left and right limits:

h(a− 0) + h(a+ 0)

2
=

h(b − 0) + h(b+ 0)

2
=

1

2
.

Suppose that h(x) is approximately expanded as the Chebyshev–Jackson polyno-
mial series of degree d [10, 18]:

(4.2) h(x) ≈ φd(x) =
d
∑

j=0

ρj,dcjTj(x),

where Tj(x) is the j-degree Chebyshev polynomial of the first kind [15]:

T0(x) = 1, T1(x) = x, Tj+1(x) = 2xTj(x)− Tj−1(x), j ≥ 1,

the Fourier coefficients cj , j = 0, 1, . . . , d, are

cj =

{

1
π (arccos(a)− arccos(b)), j = 0,
2
π

( sin(j arccos(a))−sin(j arccos(b))
j

)

, j > 0,

and the Jackson damping factors ρj,d, j = 0, . . . , d are

ρj,d =
(d+ 2− j) sin( π

d+2 ) cos(
jπ
d+2) + cos( π

d+2 ) sin(
jπ
d+2 )

(d+ 2) sin π
d+2

.

For x = cos θ ∈ [−1, 1], by (4.2), define the 2π-periodic functions

g(θ) = h(cos θ) = h(x),(4.3)
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qd(θ) = φd(cos θ) = φd(x) =
d
∑

j=0

ρj,dcj cos(jθ).(4.4)

The following two theorems are from [13, Lemma 3.2, Theorem 3.3, Theorem 3.4].

Theorem 4.1. φd(x) ∈ [0, 1] holds for x ∈ [−1, 1].
Theorem 4.2. Let α = arccos(a) > β = arccos(b). For θ ∈ [0, π], define ∆θ =

min{|θ − α|, |θ − β|}. Then the following pointwise error estimates hold for d ≥ 2:

|qd(θ)− g(θ)| ≤ π6

2(d+ 2)3∆4
θ

for θ 6= α, β,

|qd(α)− g(α)| ≤ π6

2(d+ 2)3
max{ 1

(2π − 2α)4
,

1

(α− β)4
},

|qd(β)− g(β)| ≤ π6

2(d+ 2)3
max{ 1

(2β)4
,

1

(α− β)4
}.

By (4.3) and (4.4), this theorem shows that φd(x) → h(x) pointwise as d → ∞
for any x ∈ [−1, 1] and the convergence rate is at least 1/(d+2)3. Numerical tests in
[13] have illustrated that the predicted convergence rate is the sharpest.

5. A detailed CJ-FEAST SVDsolverA.

5.1. Approximate spectral projector and its accuracy. We use the linear
transformation l(x) = x/‖A‖ to map the spectrum interval [−‖A‖, ‖A‖] of SA to
[−1, 1]. In applications, a rough estimate for ‖A‖ suffices. One may run the Golub–
Kahan–Lanczos bidiagonalization method on A several steps, say 20 ∼ 30, to estimate
‖A‖ [5, 12]. For a given [a, b] ⊂ [σmin, ‖A‖], the function h(x) in (4.1) becomes

h(x) =











1, x ∈ (l(a), l(b)),
1
2 , x ∈ {l(a), l(b)},
0, x ∈ [−1, 1] \ [l(a), l(b)].

Define the composite function f(x) = h(l(x)). Then

(5.1) f(x) =











1, x ∈ (a, b),
1
2 , x ∈ {a, b},
0, x ∈ [−‖A‖, ‖A‖] \ [a, b].

It follows from the above and (1.5) that the matrix function

(5.2) f(SA) = Qf(diag(Σ,−Σ, 0, ..., 0
m−n

))QT = PSA
,

the spectral projector defined by (3.1). Therefore, the eigenvalues of PSA
precisely

correspond to the step function f(x), and PSA
itself is the matrix function f(SA).

This way does not represent the spectral projector PSA
by a contour integral as in,

e.g., [4, 14, 16, 20, 23].
Theorem 4.2 proves that φd(l(x)) pointwise converges to f(x) for x ∈ [−‖A‖, ‖A‖]

as d increases. Naturally, we construct an approximate spectral projector as

(5.3) P = φd(l(SA)) =

d
∑

j=0

ρj,dcjTj(l(SA)),
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whose eigenvector matrix is Q and eigenvalues are φd(l(±σi)), i = 1, 2, . . . , n and
φd(l(0)) with multiplicity m− n. Remarkably, it is known from Theorem 4.1 that P
is SPSD as all of its eigenvalues lie in [0, 1].

Next we analyze ‖PSA
−P‖, and estimate φd(l(±σi)), i = 1, 2, . . . , n and φd(l(0)).

Theorem 5.1. Given the interval [a, b] ⊂ [σmin, ‖A‖], define

α = arccos(l(a)), β = arccos(l(b)),

∆il = | arccos(l(σil))− α|, ∆ir = | arccos(l(σir))− β|,
∆ol = | arccos(l(σol))− α|, ∆or = | arccos(l(σor))− β|,

where σil, σir and σol, σor are the singular values of A that are the closest to a and
b from the inside and outside of [a, b], respectively, and let

∆min = min{∆il,∆ir,∆ol,∆or}.

Then

(5.4) ‖PSA
− P‖ ≤ π6

2(d+ 2)3∆4
min

.

Denote by L = {±σ1, . . . ,±σn, 0, ..., 0
m−n

} the spectrum of SA, suppose σ1, σ2, . . . , σnsv
∈

[a, b] with σ1, . . . , σr ∈ (a, b) and the nsv − r ones σr+1, . . . , σnsv
equal to a or b, and

label γi := φd(l(σi)), i = 1, 2, . . . , nsv in decreasing order. Write the complementary
set Lcnsv

= L\{σ1, . . . , σnsv
}, and label the eigenvalues γ = φd(l(λ)) of P for λ ∈ Lcnsv

as γnsv+1 ≥ γnsv+2 ≥ · · · ≥ γm+n. Then if

(5.5) d >
3
√
2π2

∆
4/3
min

− 2,

it holds that

‖PSA
− P‖ < 1

4
,(5.6)

1 ≥ γ1 ≥ · · · ≥ γr >
3

4
> γr+1 ≥ · · · ≥ γnsv

>
1

4
> γnsv+1 ≥ · · · ≥ γm+n ≥ 0.(5.7)

Proof. Note that the eigenvalues of PSA
are











f(σi) = h(l(σi)) = 1, σi ∈ (a, b),

f(σi) = h(l(σi)) =
1
2 , σi ∈ {a, b},

f(λ) = h(l(λ)) = 0, λ ∈ Lcnsv
.

Then we obtain

‖PSA
− P‖ = ‖f(SA)− φd(l(SA))‖

= max{ max
i=1,2,...,nsv

|h(l(σi))− φd(l(σi))|, max
λ∈Lc

nsv

|φd(l(λ))|}

= max{ max
i=1,2,...,nsv

|h(cos(θi))− φd(cos(θi))|,max
θ
|φd(l(θ))|},

where θi = arccos(l(σi)), i = 1, 2, . . . , nsv and θ = arccos(l(λ)) for λ ∈ Lcnsv
. Since

∆min ≤ min{2π − 2α, α− β, 2β},
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it follows from Theorem 4.2 that (5.4) holds. It is straightforward from (5.4) that if
d satisfies (5.5) then (5.6) holds.

Since all γi ∈ [0, 1], i = 1, 2, . . . ,m+ n, we have

‖PSA
− P‖ = max

{

max
σi∈(a,b)

1− γi, max
σi∈{a,b}

∣

∣

∣

∣

1

2
− γi

∣

∣

∣

∣

, γnsv+1

}

.

which, together with (5.6), shows that

0 ≤ 1− γi <
1

4
, σi ∈ (a, b),

∣

∣

∣

∣

1

2
− γi

∣

∣

∣

∣

<
1

4
, σi ∈ {a, b},

0 ≤ γnsv+1 <
1

4
.

With the labeling order of γi, i = 1, 2, . . . ,m+ n, the above proves (5.7).

Remark 5.2. If neither of a and b are singular values of A, the dominant eigenval-
ues γ1, . . . , γnsv

of PSA
correspond to the desired σ1, . . . , σnsv

, provided ‖PSA
−P‖ <

1/2.

5.2. The detailed CJ-FEAST SVDsolverA. Suppose that we have deter-
mined the approximate spectral projector P by (5.3) and the subspace dimension
p ≥ nsv by the estimation approach in [13]. We apply Algorithm 3.1 to P , form an
approximate eigenspace of P associated with its p dominant eigenvalues, and com-
pute its orthogonal basis at each iteration. We then take upper and lower parts of the
basis to form the right and left searching subspaces V(k) and U (k), compute their or-
thonormal base by the thin QR decompositions, and project A onto them to compute

the Ritz approximations (σ̃
(k)
i , ũ

(k)
i , ṽ

(k)
i ) to the desired singular triplets (σi, ui, vi),

i = 1, 2, . . . , nsv. We describe the procedure as Algorithm 5.1.

Algorithm 5.1 The CJ-FEAST SVDsolverA

Input: The interval [a, b], cj , ρj,d, j = 0, . . . , d, η, p, and an (m+n)-by-p orthonormal

Q̃(0) ∈ R
(m+n)×p with p ≥ nsv.

Output: The nsv converged Ritz triplets (σ̃
(k)
i , ũ

(k)
i , ṽ

(k)
i ) with σ̃

(k)
i ∈ [a, b].

1: for k = 1, 2, . . . , do
2: Subspace iteration: S(k) = PQ̃(k−1) =

∑d
j=0 ρj,dcjTj(l(SA))Q̃

(k−1).

3: Compute the QR decomposition: S(k) = Q̃(k)R(k), and set Y (k) = [In, 0]Q̃
(k)

and Z(k) = [0, Im]Q̃(k).

4: Compute the QR decompositions: Y (k) = Q
(k)
1 R

(k)
1 and Z(k) = Q

(k)
2 R

(k)
2 , and

take V(k) = span{Q(k)
1 } and U (k) = span{Q(k)

2 }.
5: Compute the projection matrix: Ā(k) = (Q

(k)
2 )TAQ

(k)
1 .

6: Compute the SVD: Ā(k) = Ū (k)Σ̃(k)(V̄ (k))T with Σ̃(k) = diag(σ̃
(k)
1 , . . . , σ̃

(k)
p ).

7: Form Ũ (k) = Q
(k)
2 Ū (k) and Ṽ (k) = Q

(k)
1 V̄ (k).

8: Select those σ̃
(k)
i ∈ [a, b], compute the residual norms of the Ritz approximations

(σ̃
(k)
i , ũ

(k)
i , ṽ

(k)
i ) with ũ

(k)
i = Ũ (k)ei and ṽ

(k)
i = Ṽ (k)ei, and test convergence.

9: end for

Next we briefly count the computational cost of one iteration of Algorithm 5.1.
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Keep in mind that the computation of Ax or AT y is one matrix-vector product,
abbreviated as MV, for given vectors x and y.

The matrix-vector product SAz costs two MVs for a given vector z:
[

0 AT

A 0

] [

x
y

]

=

[

AT y
Ax

]

.

Exploiting the three-term recurrence of Chebyshev polynomials shows that comput-
ing T1(l(SA))z requires two MVs and m + n flops and computing Tj(l(SA))z needs
two MVs and 2(m + n) flops for j = 2, . . . , d. Suppose that the QR decompositions
at steps 3–4 are computed by the Gram–Schmidt procedure with reorthogonaliza-
tion, and the Matlab built-in function svd, is used to compute the SVD in step 6
of Algorithm 5.1. We can routinely count the cost of other steps. The cost of one
iteration of Algorithm 5.1 and that of the CJ-FEAST SVDsolverC are displayed in
Table 1, which indicates that, for the same subspace dimension p and the series de-
gree d, the MVs consumed by Algorithm 5.1 are approximately equal to those by the
CJ-FEAST SVDsolverC and Algorithm 5.1 consumes more flops than the CJ-FEAST
SVDsolverC.

Solvers MVs Flops
CJ-FEAST SVDsolverA (2d+ 3)p 4(m+ n)pd+ (8m+ 6n)p2 + 21p3 + 2(m+ n)p
CJ-FEAST SVDsolverC 2(d+ 1)p 4npd+ 4(m+ n)p2 + 21p3 + 2np

Table 1

Computational cost of one iteration of the two SVDsolvers.

6. The convergence of the CJ-FEAST SVDsolverA. Suppose that p ≥
nsv and the series degree d is large enough so that (5.6) and (5.7) holds. Since
Algorithm 5.1 generates the subspaces

span{Q̃(k)} = span{S(k)} = P span{Q̃(k−1)},

we inductively obtain

(6.1) span{Q̃(k)} = P kspan{Q̃(0)}.

Recall from Theorem 5.1 that the eigenvalues of P are γi = φd(l(σi)), i =
1, 2, . . . , nsv and γi = φd(l(λi)), i = nsv+1, . . . ,m+n and they are labeled in decreas-
ing order. Suppose that d is large enough for which λnsv+1, . . . , λp are positive, that
is, λnsv+1, . . . , λp are the singular values σnsv+1, . . . , σp of A. Let qi be column i of the
eigenvector matrix Q of P with the eigenvalues γi, i = 1, 2, . . . ,m+ n. Then the ma-
trix [q1, q2, . . . , qm+n] permutes the columns of Q in (1.4), in which its first p columns
are some p ones of the first n columns of Q in (1.4) but the latter m+ n− p columns
do not have the corresponding structure in (1.4) and the corresponding eigenvalues
are λp+1, . . . λm+n ∈ L \ {σ1, . . . , σp}.

Now we set up the following notation:

Qp = [q1, . . . , qp], Qp,⊥ = [qp+1, . . . , qm+n],

Γp = diag(γ1, . . . , γp), Γ′
p = diag(γp+1, . . . , γm+n),

Σp = diag(σ1, . . . , σp), Σ′
p = diag(λp+1, . . . , λm+n),

Vp = [v1, . . . , vp], Up = [u1, . . . , up],
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V = [Vp, Vp,⊥], U = [Up, Up,⊥].

To establish the convergence of Algorithm 5.1, we need the following two lemmas.

Lemma 6.1. Suppose that W = [W1
p
|W2
N−p

] and Z = [Z1
p
| Z2
N−p

] are N×N orthogonal

matrices. Let S1 = span{W1} and S2 = span{Z1}. Then the distance dist(S1,S2)
between S1 and S2 (cf. [5, section 2.5.3]) satisfies

(6.2) dist(S1,S2) = min
X∈Rp×p

‖W1 − Z1X‖.

Proof. We have

min
X∈Rp×p

‖W1 − Z1X‖ = min
X∈Rp×p

∥

∥ZT (W1 − Z1X)
∥

∥

= min
X∈Rp×p

∥

∥

∥

∥

[

ZT
1 W1 −X
ZT
2 W1

]∥

∥

∥

∥

= ‖ZT
2 W1‖ = dist(S1,S2).

Lemma 6.2. Suppose that Ỹ , Y ∈ R
n×p and Z̃, Z ∈ R

m×p with m,n > p are of
full column rank, and [Ỹ T , Z̃T ]T and [Y T , ZT ]T are column orthonormal. Then

dist(span{Ỹ }, span{Y }) ≤

√

1 + σ2
max({Ỹ , Z̃}) dist(span{

[

Ỹ

Z̃

]

}, span{

[

Y

Z

]

}),(6.3)

dist(span{Z̃}, span{Z}) ≤

√

1 + σ2
max({Z̃, Ỹ }) dist(span{

[

Ỹ

Z̃

]

}, span{

[

Y

Z

]

}),(6.4)

where σmax({Ỹ , Z̃}) is the largest generalized singular value of the matrix pair {Ỹ , Z̃}.
Proof. Under the assumption, both [Ỹ T , Z̃T ]T and [Y T , ZT ]T have rank p. There-

fore, they span two subspaces with equal dimension. According to [5, Theorem 6.1.1],
by the assumption on Ỹ and Z̃, the compact generalized singular value decomposition
of the matrix pair {Ỹ , Z̃} is as follows: There exist two column orthonormal matrices
W ∈ R

m×p, G ∈ R
n×p, a nonsingular matrix X ∈ R

p×p, and two diagonal matrices
C = diag{α1, . . . , αp} and S = diag{β1, . . . , βp} such that

Z̃ = WCX−1, Ỹ = GSX−1, C2 + S2 = Ip,

1 > α1 ≥ α2 ≥ · · · ≥ αp > 0, 0 < β1 ≤ β2 ≤ · · · ≤ βp < 1.

Therefore, we have

(6.5) span{
[

Ỹ

Z̃

]

} = span{
[

GS
WC

]

}.

Since

[

GS
WC

]

is column orthonormal, in terms of (6.2) and (6.5), we have

dist(span{
[

GS
WC

]

}, span{
[

Y
Z

]

}) = min
E∈Rp×p

∥

∥

∥

∥

[

GS
WC

]

−
[

Y
Z

]

E

∥

∥

∥

∥

= min
E∈Rp×p

∥

∥

∥

∥

[

GS − Y E
WC − ZE

]∥

∥

∥

∥

≥ min
E∈Rp×p

‖GS − Y E‖
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= min
E∈Rp×p

∥

∥G− Y ES−1
∥

∥σmin(S).

Let Y = FR be the QR decomposition of Y . Then

dist(span{
[

GS
WC

]

}, span{
[

Y
Z

]

}) ≥ min
E∈Rp×p

∥

∥G− FRES−1
∥

∥σmin(S)

= min
E∈Rp×p

‖G− FE‖ σmin(S)

= dist(span{G}, span{F})β1,

= dist(span{Ỹ }, span{Y })β1.

Since
√

1 + σ2
max({Ỹ , Z̃}) =

√

1 + (α1

β1
)2 = 1

β1
, the last relation proves (6.3). The

proof of (6.4) is analogous.

Remark 6.3. Exchange the positions of Ỹ and Y and those of Z̃ and Z. The sub-
space distances in (6.3) and (6.4) remain the same, and we can obtain similar bounds,
where σmax({Z̃, Ỹ }) and σmax({Ỹ , Z̃}) become σmax({Z, Y }) and σmax({Y, Z}), re-
spectively. Therefore, we can replace the multiples in the two bounds by

√

1 + min{σ2
max({Ỹ , Z̃}), σ2

max({Y, Z})},
√

1 + min{σ2
max({Z̃, Ỹ }), σ2

max({Z, Y })}.

This lemma generalizes [12, Theorem 2.3], [8, Lemma 2.3] and [7, Lemma 3.1] from
the one dimensional case to the general subspace case.

Next we establish the convergence results on the approximate left and right sin-

gular subspaces U (k), V(k) and the Ritz values σ̃
(k)
i obtained by Algorithm 5.1.

Theorem 6.4. Suppose that γp > γp+1 and QT
p Q̃

(0) is invertible. Then the sub-
spaces (6.1) generated by Algorithm 5.1 are

(6.6) Q̃(k) = (Qp +Qp,⊥E
(k))(M (k))−

1
2U (k)

with

E(k) = Γ′k
p QT

p,⊥Q̃
(0)(QT

p Q̃
(0))−1Γ−k

p ,(6.7)

M (k) = I + (E(k))TE(k)(6.8)

and U (k) being an orthogonal matrix; furthermore,

(6.9) ‖E(k)‖ ≤
(

γp+1

γp

)k

‖E(0)‖

and the distance ǫ(k) = dist(span{Q̃(k)}, span{Qp}) satisfies

(6.10) ǫ(k) =
‖E(k)‖

√

1 + ‖E(k)‖2
≤
(

γp+1

γp

)k

‖E(0)‖.

Assume that R
(k)
1 and R

(k)
2 in Step 4 of Algorithm 5.1 are nonsingular. Then the

subspace distances

ǫ
(k)
1 := dist(span{Vp}, span{Q(k)

1 }) ≤
√
2ǫ(k),(6.11)
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ǫ
(k)
2 := dist(span{Up}, span{Q(k)

2 }) ≤
√
2ǫ(k).(6.12)

Let (σ̃
(k)
i , ũ

(k)
i , ṽ

(k)
i ) be the p Ritz approximations with σ̃

(k)
1 , σ̃

(k)
2 , . . . , σ̃

(k)
p labeled in the

same order as σ1, σ2, . . . , σp. Then

(6.13) |σ̃(k)
i − σi| ≤ ‖A‖(6(ǫ(k))2 + 4(ǫ(k))4), i = 1, 2, ..., p.

Proof. Expand Q̃(0) as the orthogonal direct sum of Qp and Qp,⊥:

Q̃(0) = QpQ
T
p Q̃

(0) +Qp,⊥Q
T
p,⊥Q̃

(0) = (Qp +Qp,⊥Q
T
p,⊥Q̃

(0)(QT
p Q̃

(0))−1)QT
p Q̃

(0).

Define

(6.14) E(0) = QT
p,⊥Q̃

(0)(QT
p Q̃

(0))−1.

Then
Q̃(0)(QT

p Q̃
(0))−1 = Qp +Qp,⊥E

(0).

From PQp = QpΓp and PQp,⊥ = Qp,⊥Γ′
p, we obtain

P kQ̃(0)(QT
p Q̃

(0))−1Γ−k
p = Qp + P kQp,⊥E

(0)Γ−k
p = Qp +Qp,⊥Γ

′k
p E(0)Γ−k

p .

Write E(k) = Γ′k
p E(0)Γ−k

p . Then it follows from (6.14) that E(k) is the one defined by
(6.7). Therefore,

‖E(k)‖ ≤
(

γp+1

γp

)k

‖E(0)‖ → 0,

which proves (6.9). Since

span{Q̃(k)} = P kspan{Q̃(0)} = span{Qp +Qp,⊥E
(k)},

the column orthonormal

Q̃(k) = (Qp +Qp,⊥E
(k))(M (k))−

1
2U (k),

where
M (k) = (Qp +Qp,⊥E

(k))T (Qp +Qp,⊥E
(k)) = Ip + (E(k))TE(k)

and U (k) is some orthogonal matrix, which proves (6.6) and (6.8).
By the distance definition of two same dimensional subspaces, from (6.9) we have

ǫ(k) = ‖QT
p,⊥Q̃

(k)‖ = ‖E(k)(M (k))−1/2U (k)‖ = ‖E(k)‖
√

1 + ‖E(k)‖2
≤
(

γp+1

γp

)k

‖E(0)‖,

which proves (6.10). Therefore, under the assumption that R
(k)
1 and R

(k)
2 in Step 4 of

Algorithm 5.1 are nonsingular, since σmax({Up, Vp}) = σmax({Vp, Up}) = 1, applying

Lemma 6.2 to [Y T , ZT ]T = Q̃(k), Ỹ := Vp and Z̃ := Up yields

dist(span{Vp}, span{Q(k)
1 }) ≤

√
2 dist(span{Qp}, span{Q̃(k)}),

dist(span{Up}, span{Q(k)
2 }) ≤

√
2 dist(span{Qp}, span{Q̃(k)}),

which proves (6.11) and (6.12).
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Write the orthogonal direct sum decompositions of Q
(k)
1 and Q

(k)
2 as

Q
(k)
1 = (Vp + Vp,⊥E

(k)
1 )(M

(k)
1 )−

1
2U

(k)
1 ,(6.15)

Q
(k)
2 = (Up + Up,⊥E

(k)
2 )(M

(k)
2 )−

1
2U

(k)
2 ,(6.16)

where M
(k)
i = I + (E

(k)
i )TE

(k)
i , i = 1, 2, U

(k)
i , i = 1, 2 are some p × p orthogonal

matrices, and

(6.17) ǫ
(k)
i =

‖E(k)
i ‖

√

1 + ‖E(k)
i ‖2

, i = 1, 2.

By definition, we have

ATUp = VpΣp, AVp = UpΣp.

Therefore,

‖U (k)
2 (Q

(k)
2 )TAQ

(k)
1 (U

(k)
1 )T − Σp‖

= ‖(M (k)
2 )−

1
2 (Up + Up,⊥E

(k)
2 )TA(Vp + Vp,⊥E

(k)
1 )(M

(k)
1 )−

1
2 − Σp‖

= ‖(M (k)
2 )−

1
2 (Up + Up,⊥E

(k)
2 )T (UpΣp +AVp,⊥E

(k)
1 )(M

(k)
1 )−

1
2 − Σp‖

= ‖(M (k)
2 )−

1
2 (Σp + (Up,⊥E

(k)
2 )TAVp,⊥E

(k)
1 )(M

(k)
1 )−

1
2 − Σp‖

≤ ‖(M (k)
2 )−

1
2Σp(M

(k)
1 )−

1
2 − Σp‖+ ‖(M (k)

2 )−
1
2 (Up,⊥E

(k)
2 )TAVp,⊥E

(k)
1 (M

(k)
1 )−

1
2 ‖.

By (6.17) and (6.11), (6.12), we have

(6.18) ‖(M (k)
2 )−

1
2 (Up,⊥E

(k)
2 )TAVp,⊥E

(k)
1 (M

(k)
1 )−

1
2 ‖ ≤ ‖A‖ǫ(k)1 ǫ

(k)
2 ≤ 2‖A‖(ǫ(k))2.

Let F
(k)
i = I − (M

(k)
i )−

1
2 , i = 1, 2. Then

‖F (k)
i ‖ = ‖I − (M

(k)
i )−

1
2 ‖ = 1− 1

√

1 + ‖E(k)
i ‖2

≤ ‖E(k)
i ‖2

1 + ‖E(k)
i ‖2

= (ǫ
(k)
i )2, i = 1, 2.

Therefore,

‖(M (k)
2 )−

1
2Σp(M

(k)
1 )−

1
2 − Σp‖ = ‖(I − F

(k)
2 )Σp(I − F

(k)
1 )− Σp‖

= ‖ − F
(k)
2 Σp − ΣpF

(k)
1 + F

(k)
2 ΣpF

(k)
1 ‖

≤ ‖A‖((ǫ(k)1 )2 + (ǫ
(k)
2 )2 + (ǫ

(k)
1 )2(ǫ

(k)
2 )2)

≤ ‖A‖(4(ǫ(k))2 + 4(ǫ(k))4),

which, together with (6.18), gives

‖U (k)
2 (Q

(k)
2 )TAQ

(k)
1 (U

(k)
1 )T − Σp‖ ≤ ‖A‖(6(ǫ(k))2 + 4(ǫ(k))4).

According to a standard perturbation result [21, Theorem 3.3, Chapter 3], the above
relation and (6.10) establish (6.13).
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Remark 6.5. Bounds (6.11) and (6.12) indicate that the approximate right and

left singular subspaces span{Q(k)
1 } and span{Q(k)

2 } have similar accuracy. Therefore,

it is expected that the right and left Ritz vectors ṽ
(k)
i , ũ

(k)
i extracted from them have

similar accuracy too.

Next we prove that the attainable accuracy of the left and right Ritz vectors ũ
(k)
i ,

ṽ
(k)
i is independent of the size of σi, which is opposed to the left Ritz vectors obtained
by the CJ-FEAST SVDsolverC. As a matter of fact, the right Ritz vectors obtained
by the two SVDsolvers ultimately have similar accuracy, but the left Ritz vectors
by the CJ-FEAST SVDsolverA are much better than the ones by the CJ-FEAST
SVDsolverC for small singular values. As a consequence, the CJ-FEAST SVDsolverA
is expected to be numerically backward stable, independently of the size of a desired
σi.

Define the subspace

(6.19) W(k) = span

{[

Q
(k)
1 0

0 Q
(k)
2

]}

, k = 1, . . . .

It is straightforward to justify that

(6.20)

(

σ̃
(k)
i ,

1√
2

[

ṽ
(k)
i

ũ
(k)
i

])

,

(

−σ̃(k)
i ,

1√
2

[

ṽ
(k)
i

−ũ(k)
i

])

, i = 1, 2, . . . , p,

are the Ritz pairs of SA with respect to W(k). The following theorem establishes

convergence results on the left and right Ritz vectors ũ
(k)
i , ṽ

(k)
i as well as new and a

better convergence result on the Ritz value σ̃
(k)
i .

Theorem 6.6. Let α(k) = ‖P (k)SA(I − P (k))‖, where P (k) is the orthogonal pro-
jector onto W(k). Suppose that each singular value σi ∈ [a, b] is simple, and define

η
(k)
i = min

j 6=i
|σi − σ̃

(k)
j |, i = 1, 2, ..., nsv.

Then for i = 1, 2, ..., nsv it holds that

sin2 ∠(ui, ũ
(k)
i ) + sin2 ∠(vi, ṽ

(k)
i ) ≤ 2

(

1 +
(α(k))2

(η
(k)
i )2

)(

γp+1

γi

)2k

‖E(0)‖2,(6.21)

|σi − σ̃
(k)
i | ≤ 2‖A‖

(

1 +
(α(k))2

(η
(k)
i )2

)(

γp+1

γi

)2k

‖E(0)‖2.(6.22)

Proof. Note that (σ̃
(k)
i , 1√

2

[

ṽ
(k)
i

ũ
(k)
i

]

), i = 1, 2, . . . , nsv, are the Ritz pairs of SA with

respect to W(k). An application of [19, Theorem 4.6, Proposition 4.5] yields

sin∠(qi,

[

ṽ
(k)
i

ũ
(k)
i

]

) ≤
√

1 +
(α(k))2

(η
(k)
i )2

sin∠(qi,W(k)),(6.23)

|σi − σ̃
(k)
i | ≤ ‖SA − σiI‖ sin2 ∠(qi,

[

ṽ
(k)
i

ũ
(k)
i

]

) ≤ 2‖A‖ sin2 ∠(qi,
[

ṽ
(k)
i

ũ
(k)
i

]

).(6.24)
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Since span{Q̃(k)} ⊂ W(k), we have

sin∠(qi,W(k)) ≤ sin∠(qi, span{Q̃(k)})
= sin∠(qi, span{Qp +Qp,⊥E

(k)}) by (6.6)

≤ sin∠(qi, qi +Qp,⊥E
(k)ei)

≤ ‖E(k)ei‖ = ‖Γ′k
p E

(0)Γ−k
p ei‖ = ‖Γ′k

p E(0)γ−k
i ei‖

≤
(

γp+1

γi

)k

‖E(0)‖.

Substituting the last inequality into (6.23) gives

(6.25) sin∠(qi,

[

ṽ
(k)
i

ũ
(k)
i

]

) ≤
√

1 +
(α(k))2

(η
(k)
i )2

(

γp+1

γi

)k

‖E(0)‖.

Combining (6.25) and (6.24) proves (6.22). From [12, Theorem 2.3], we have

(6.26) sin2 ∠(ui, ũ
(k)
i ) + sin2 ∠(vi, ṽ

(k)
i ) ≤ 2 sin2 ∠(qi,

[

ṽ
(k)
i

ũ
(k)
i

]

),

which, together with (6.25), leads to (6.21).

Relations (6.21) and (6.11), (6.12) show that ũ
(k)
i and ṽ

(k)
i by the CJ-FEAST

SVDsolverA have similar accuracy and each of them converges at least with the

linear factor γp+1/γi. On the other hand, each σ̃
(k)
i converges at the linear factor

(γp+1/γi)
2, i = 1, 2, . . . , nsv, meaning that the error of σ̃

(k)
i is roughly the error

squares of ũ
(k)
i and ṽ

(k)
i until |σ̃(k)

i − σi| ≤ ‖A‖O(ǫmach) in finite precision arithmetic.
We next prove that the CJ-FEAST SVDsolverA is numerically backward stable

independently of size of σi. Merge (6.20) for i = 1, 2, . . . , p, and recall the notation in
Steps 6–7 of Algorithm 5.1. We have

1√
2

[

Ṽ (k) Ṽ (k)

Ũ (k) −Ũ (k)

]T

SA
1√
2

[

Ṽ (k) Ṽ (k)

Ũ (k) −Ũ (k)

]

=

[

Σ̃(k)

−Σ̃(k)

]

.

Then using the proof approach to estimating ‖r(k)C ‖ in Section 2, we can prove that

the residual r
(k)
A of the Ritz block

([

Σ̃(k)

−Σ̃(k)

]

,
1√
2

[

Ṽ (k) Ṽ (k)

Ũ (k) −Ũ (k)

])

as an approximation to the eigenblock
([

Σp

−Σp

]

,
1√
2

[

Vp Vp

Up −Up

])

of SA satisfies

(6.27) ‖r(k)A ‖ ≤ 2‖SA‖dist(span{
[

Ṽ (k) Ṽ (k)

Ũ(k) −Ũ(k)

]

}, span{
[ Vp Vp

Up −Up

]

}).

On the other hand, we obtain

dist(span{
[

Ṽ (k) Ṽ (k)

Ũ(k) −Ũ(k)

]

}, span{
[ Vp Vp

Up −Up

]

})
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= dist(span{
[

Ṽ (k)

Ũ(k)

]

}, span{
[ Vp

Up

]

})
= max{dist(span{Ṽ (k)}, span{Vp}), dist(span{Ũ (k)}, span{Up})}
≤
√
2ǫ(k),

where the last inequality follows from (6.11) and (6.12). Let r
(k)
i,A be the column i of

r
(k)
A , i = 1, 2, . . . , p. Therefore, it follows from (2.1), (6.27) and ‖SA‖ = ‖A‖ that the
SVD residual norm

‖r(σ̃(k)
i , ũ

(k)
i , ṽ

(k)
i )‖ =

√
2‖r(k)i,A‖ ≤

√
2‖r(k)A ‖ ≤ 4‖A‖ǫ(k),

indicating that the CJ-FEAST SVDsolverA is always numerically backward stable for
computing any singular triplet of A as ǫ(k) = O(ǫmach) ultimately.

7. A comparison of the CJ-FEAST SVDsolverA and SVDsolverC. We
have shown in Section 2 that the CJ-FEAST SVDsolverC cannot compute the left
singular vectors as accurately as the right singular vectors when associated singular
values are small. As a consequence, the solver may be numerically backward unstable,
that is, it may fail to converge for a reasonable stopping tolerance in finite precision
arithmetic. In the last section, we have shown that the CJ-FEAST SVDsolverA can
fix this deficiency perfectly. In this section, we compare the CJ-FEAST SVDsolverA
with the CJ-FEAST SVDsolverC in some detail, and get insight into their efficiency.
Based on the results obtained, we propose a general-purpose choice strategy between
the two solvers for the robustness and overall efficiency in practical computations.

A core in the two CJ-FEAST SVDsolvers is the construction of two different
approximate spectral projectors. We focus on the issue of how to choose the series
degrees d’s, so that the two different approximate spectral projectors have the approx-
imately same approximation accuracy and the two solvers converge at approximately
the same rate. Then based on the costs of one iterations of the two solvers, for a given
stopping tolerance and the interval [a, b] of interest, we will propose a choice strategy.

In the following, we use the notations hat and tilde to distinguish the two different
functions l(x), f(x) and φd(l(x)), etc., involved in the CJ-FEAST SVDsolverC and
the CJ-FEAST SVDsolverA, respectively. Concretely, denote by

l̂(x) =
2x− η2 − η2−

η2 − η2−
for x ∈ [σ2

min, ‖A‖2] and l̃(x) =
x

η
for x ∈ [−‖A‖, ‖A‖]

that are used in the CJ-FEAST SVDsolverC and the CJ-FEAST SVDsolverA, where
η and η− equal ‖A‖ and σmin or their estimates, respectively.

For each singular value σ of A, define

∆̂σ,a = | arccos(l̂(σ2))− arccos(l̂(a2))|, ∆̂σ,b = | arccos(l̂(σ2))− arccos(l̂(b2))|,
∆̃σ,a = | arccos(l̃(σ)) − arccos(l̃(a))|, ∆̃σ,b = | arccos(l̃(σ)) − arccos(l̃(b))|.

It is then seen from Theorem 4.2 that the errors |f̂(σ2)−φ̂d(l̂(σ
2))| and |f̃(σ)−φ̃d(l̃(σ))|

are inversely proportional to ∆̂4
σ,a, ∆̂

4
σ,b and ∆̃4

σ,a, ∆̃
4
σ,b, respectively.

Theorem 7.1. It hold that ∆̂σ,a ≥ 2∆̃σ,a and ∆̂σ,b ≥ 2∆̃σ,b.

Proof. Since d arccos(x)
dx = −1√

1−x2
, we have

d arccos(l̂(x2))

dx
=
−l̂′(x2)2x
√

1− l̂2(x2)
=

−4x

(η2 − η2−)
√

1− l̂2(x2)



20 Z. JIA AND K. ZHANG

=
−4x

√

(η2 − η2−)
2 − (2x2 − η2 − η2−)

2
=

−2x
√

(x2 − η2−)(η
2 − x2)

and
d arccos(l̃(x))

dx
=

−l̃′(x)
√

1− l̃2(x)
=

−1

η

√

1− l̃2(x)
=

−1
√

η2 − x2
.

For x ∈ (σmin, ‖A‖), since

−2x
√

(x2 − η2−)(η
2 − x2)

< 2
−1

√

η2 − x2
< 0,

we obtain

| arccos(l̂(σ2))− arccos(l̂(a2))| =

∣

∣

∣

∣

∣

∣

∫ σ

a

−2x
√

(x2 − η2−)(η
2 − x2)

dx

∣

∣

∣

∣

∣

∣

≥
∣

∣

∣

∣

∣

∫ σ

a

2
−1

√

η2 − x2
dx

∣

∣

∣

∣

∣

= 2| arccos(l̃(σ)) − arccos(l̃(a))|.

Similarly, we obtain

| arccos(l̂(σ2)) − arccos(l̂(b2))| ≥ 2| arccos(l̃(σ)) − arccos(l̃(b))|.

Thus the assertions are proved.

Remark 7.2. From Theorem 6.4, Theorem 6.6 and Theorems 5.1–5.2 of [13], in
order to make the CJ-FEAST SVDsolverA and SVDsolverC converge and use ap-
proximately the same iterations for a given stopping tolerance, we should choose the
series degree d’s to make the errors of φ̂d(l̂(σ

2)) and φ̃d(l̃(σ)) and the accuracy of
the corresponding approximate spectral projectors are approximately equal. With
such a choice, the approximate right singular subspaces of the two SVDsolvers con-
verge roughly at the same speed. To this end, we make the bound in (5.4) and the
counterpart in the CJ-FEAST SVDsolverC equal. As a result, for the series degree
d = da in the CJ-FEAST SVDsolverA and the series degree d = dc in the CJ-FEAST
SVDsolverC, we obtain

π6

2(dc + 2)3 min{∆̃4
σ,a, ∆̃

4
σ,b}

=
π6

2(da + 2)3 min{∆̃4
σ,a, ∆̃

4
σ,b}

,

which, by exploiting Theorem 7.1, shows that da and dc satisfy

(7.1) da ≥ 2
3
√
2(dc + 2)− 2 ≈ 2.52dc + 3.

Remark 7.3. Recall from Table 1 that for the same p and d, the computational
cost of one iteration of the CJ–FEAST SVDsolverA is more than that of the CJ–
FEAST SVDsolverC. Therefore, Remark 7.2 means that the CJ-FEAST SVDsolverC
is at least 2 3

√
2 times as efficient as the CJ-FEAST SVDsolverC when they converge

for the same stopping tolerance.
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Next we return to the attainable residual norms by the CJ-FEAST SVDsolverC
in finite precision arithmetic. Based on the results in Section 2, to make a Ritz
approximation by the CJ-FEAST SVDsolverC converge for a prescribed tolerance
tol:

‖r‖ ≤ ‖A‖ · tol,
relation (2.14) shows that a general-purpose smallest tol should satisfy

(7.2) tol ≥ ‖A‖
σ
O(ǫmach).

Notice that in large SVD computations, one commonly uses tol ∈ [ǫ
3/4
mach, ǫ

1/2
mach], i.e.,

approximately, tol ∈ [10−12, 10−8] with ǫmach = 2.22× 10−16. Therefore, to make the
CJ-FEAST SVDsolverC converge with such a tol, the desired σ should meet

‖A‖
σ
≤ O(ǫ−1/4

mach) ∼ O(ǫ
−1/2
mach);

otherwise, the CJ-FEAST SVDsolverC may fail to converge in finite precision.
Summarizing the above, we propose a robust choice strategy: Given [a, b], sup-

pose that there is a σ close to a and η is an estimate of ‖A‖ and that we choose a

stopping tolerance tol ∈ [ǫ
3/4
mach, ǫ

1/2
mach]. Then if η

a ≥ ǫ
−1/4
mach, the more robust CJ-FEAST

SVDsolverA is used; if not, the more efficient CJ-FEAST SVDsolverC in [13] is used.

8. Numerical experiments. We report numerical experiments to confirm our
theory and illustrate the performance of the CJ-FEAST SVDsolverA and the CJ-
FEAST SVDsolverC. Our test problems are from The SuiteSparse Matrix Collection
[3]. We list some of their basic properties and the interval [a, b] of interest in Table 2.
The exact singular values of A are from [3]. Since bounding the singular spectrum
of A and estimating the number nsv are not the purpose of this paper, we will use
the known η = ‖A‖, η− = σmin(A) and the exact nsv. All the numerical experiments
were performed on an Intel Core i7-9700, CPU 3.0GHz, 8GB RAM using MATLAB
R2022b with ǫmach = 2.22e − 16 under the Microsoft Windows 10 64-bit system.
An approximate singular triplet (σ̃, ũ, ṽ) is claimed to have converged if its relative
residual norm attains the level of ǫmach:

(8.1) ‖r(σ̃, ũ, ṽ)‖ ≤ η · tol = η · 1e− 14.

Matrix A m n nnz(A) ‖A‖ σmin(A) [a, b] nsv

rel8 345688 12347 821839 18.3 0 [13, 14] 13
GL7d12 8899 1019 37519 14.4 0 [11, 12] 17
flower 5 4 5226 14721 43942 5.53 3.70e− 1 [4.1, 4.3] 137
barth5 15606 15606 61484 4.23 7.22e− 11 [1e− 8, 1e− 1] 819
3elt dual 9000 9000 26556 3.00 6.31e− 13 [1e− 11, 1e− 1] 171
big dual 30269 30269 89858 3.00 0 [1e− 14, 1e− 1] 432

Table 2

Properties of test matrices, where nnz(A) is the number of nonzero entries in A, and ‖A‖,
σmin(A) and nsv are from [3].

For a practical choice of the series degree d, the results and analysis on the
strategies for the CJ-FEAST SVDsolverC in [13] is straightforwardly adaptable to
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the CJ-FEAST SVDsolverA. Precisely, we will choose

(8.2) d =

⌈

Dπ2

(α − β)4/3

⌉

− 2

with D ∈ [1, 4]. Keep in mind that da and dc denote the series degrees in the CJ-
FEAST SVDsolverA and SVDsolverC, respectively. With the same D, by (7.1), we
take da = ⌈2 3

√
2dc⌉ throughout the experiments. For the subspace dimension p, we

will take p = ⌈µnsv⌉ with µ ∈ [1.1, 1.5].

8.1. Computing singular triplets with not small singular values. We ap-
ply Algorithm 5.1 and the CJ-FEAST SVDsolverC to GL7d12, whose desired singular
values σ are not small: ‖A‖/σ = O(1). In terms of (7.1) and (8.2), we take D = 4 to
obtain the polynomial degree da = 698 and dc = 276, and take p = ⌈1.2×17⌉ = 21. It
is observed that the two solvers converged at roughly the same iteration steps ka = 6
and kc = 7, respectively. Then we take D = 2 to obtain da = 348 and dc = 137, and
take p = ⌈1.5× 17⌉ = 26. They are found to have converged at roughly the same iter-
ation steps ka = 7 and kc = 9, respectively. We have also taken some other da and dc
with the same D, and the same p > nsv, and observed that the two solvers used almost
the same iterations to achieve tol = 1e − 14. In Figure 1, we draw the convergence
processes of the two solvers for the singular triplet with σ = 11.844206301985537.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Iterations

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2
GL7d12, CJFEAST SVDsolverA

relative residual norms
errors of Ritz values
errors of left Ritz vectors
errors of right Ritz vectors

(a) CJ-FEAST SVDsolverA, d = 698, p = 21.

1 2 3 4 5 6 7

Iterations

10-15

10-10

10-5

100
GL7d12, CJFEAST SVDsolverC

relative residual norms
errors of Ritz values
errors of left Ritz vectors
errors of right Ritz vectors

(b) CJ-FEAST SVDsolverC, d = 276, p = 21.

1 2 3 4 5 6 7

Iterations

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2
GL7d12, CJFEAST SVDsolverA

relative residual norms
errors of Ritz values
errors of left Ritz vectors
errors of right Ritz vectors

(c) CJ-FEAST SVDsolverA, d = 348, p = 26.

1 2 3 4 5 6 7 8 9

Iterations

10-15

10-10

10-5

100
GL7d12, CJFEAST SVDsolverC

relative residual norms
errors of Ritz values
errors of left Ritz vectors
errors of right Ritz vectors

(d) CJ-FEAST SVDsolverC, d = 137, p = 26.

Fig. 1. Convergence processes of approximate singular triplets of GL7d12.

For flower 5 4, we take D = 2 to obtain da = 928 and dc = 365, and take
p = ⌈1.2 × 137⌉ = 165. The two SVDsolvers converged at iteration steps ka = 8
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and kc = 11. For rel8, we take D = 2 to obtain da = 561 and dc = 222, and
p = ⌈1.1 × 13⌉ = 15. The two SVDsolvers converged at iteration steps ka = 17 and
kc = 20 separately, roughly the same. In Figure 2, we depict the convergence processes
of the two solvers for computing the singular triplet with σ = 4.299030932949072 of
flower 5 4 and σ = 13.984665903216351 of rel8.

1 2 3 4 5 6 7 8
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10-15
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10-5

100
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(a) flower 5 4, CJ-FEAST SVDsolverA
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Fig. 2. Convergence processes of approximate singular triplets for not small singular values.

These experiments justify that the choice strategy (8.2) of the series degree d
works well and, meanwhile, they confirm Remark 7.2. Clearly, we see from Figure 1
and Figure 2 that the convergence processes of the two solvers are very similar and
the Ritz value and the corresponding left and right Ritz vectors have very compara-
ble accuracy at each iteration. These confirm that the CJ-FEAST SVDsolverC and
SVDsolverA can compute the singular triplets accurately when the desired singular
values are not small but the former more efficient than the latter. We can also find
that the errors of Ritz values are approximately squares of those of the left and right
Ritz vectors as well as residual norms until the Ritz values have converged with the
full accuracy ‖A‖O(ǫmach), as the results in Section 2 and Theorem 6.6 indicate.

8.2. Computing singular triplets with small singular values. We apply
Algorithm 5.1 and the CJ-FEAST SVDsolverC to barth5, 3elt dual and big dual. For
each problem, at least one of the desired singular values is small.

For barth5, one of the desired singular values is σ = 1.1050e− 8. We take D = 1
to obtain da = 1453 and dc = 576, and the subspace dimension p = ⌈1.2× 819⌉ = 983.
We run 10 iterations, and draw their convergence processes in Figure 3 (a) and (b).



24 Z. JIA AND K. ZHANG

For 3elt dual, one of the desired singular values is σ = 6.8890e − 11. We take
D = 1 to obtain da = 918 and dc = 364, and p = ⌈1.1 × 171⌉ = 189. We run 15
iterations, and draw their convergence processes in Figure 3 (c) and (d).

For big dual, one of the desired singular values is σ = 8.7726e − 13. We take
D = 1 in (8.2) to obtain da = 918 and dc = 591, and p = ⌈1.2× 432⌉ = 519. We run
10 iterations, and draw their convergence processes in Figure 3 (e) and (f).
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(e) big dual, CJ-FEAST SVDsolverA

1 2 3 4 5 6 7 8 9 10

Iterations

10-20

10-15

10-10

10-5

100
big_dual, CJFEAST SVDsolverC

relative residual norms
errors of Ritz values
errors of left Ritz vectors
errors of right Ritz vectors

(f) big dual, CJ-FEAST SVDsolverC

Fig. 3. Convergence processes of approximate singular triplets for small singular values.

Several comments are made on Figure 3. First, for each problem, the left and
right Ritz vectors by the CJ-FEAST SVDsolverA always have similar accuracy at
the same iteration. Second, the right Ritz vectors computed by the two SVDsolvers
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have similar accuracy, but the errors of the left Ritz vectors computed by the CJ-
FEAST SVDsolverC are a few orders larger than those computed by the CJ-FEAST
SVDsolverA. Third, as expected, the relative residual norms of the Ritz approximation
by the CJ-FEAST SVDsolverA decrease to O(ǫmach), but those by the CJ-FEAST
SVDsolverC stagnate before achievingO(ǫmach) due to the much less accurate left Ritz
vectors. In fact, for barth5, 3elt dual and big dual, the ultimately relative residual
norms are approximately 1e − 7, 1e − 5 and 1e − 3, respectively, which are precisely
‖A‖/σ times larger than O(ǫmach). These facts justify our results and analysis in
Section 2 and Section 7, and demonstrate that the CJ-FEAST SVDsolverC fails to
converge in finite precision arithmetic when (2.14) is violated. Fourth, the final errors
of the Ritz values by the two solvers are ‖A‖O(ǫmach), meaning that they compute
the singular values σ to working precision, independently of the size of σ.

In summary, the numerical experiments have illustrated that the CJ-FEAST SVD-
solverC may not compute left singular vectors as accurately as the right ones and may
not make the residual norm drop below a reasonable tol when at least one desired
singular value is small. It is conditionally numerically backward stable, but the CJ-
FEAST SVDsolverA is always unconditionally numerically backward stable.

9. Conclusions. Based on the convergence results on the CJ-FEAST SVD-
solverC, we have made an in-depth analysis of the numerical backward stability of the
solver and proved that it may be numerically backward unstable in finite precision
arithmetic when computing small singular triplets. The reason is that it may com-
pute the associated left singular vector much less accurately than the right singular
vector. Consequently, the residual norms of Ritz approximations may not decrease
to a reasonably prescribed tolerance and the solver may thus fail in finite precision
arithmetic when ‖A‖/σ is large.

As an alternative, we have proposed an augmented matrix SA based CJ-FEAST
SVDsolverA. It first constructs an approximate spectral projector P of SA associ-
ated with all the eigenvalues σ ∈ [a, b] by exploiting the Chebyshev–Jackson series
expansion, then performs subspace iteration on P to construct left and right searching
subspaces independently, and finally computes the Ritz approximations of the desired
singular triplets with respect to the left and right subspaces.

We have derived estimates for the eigenvalues of P and the approximation error
‖PSA

−P‖ in terms of the series degree d. We have established convergence results on
the approximate left and right singular subspaces and the Ritz approximations, and
shown that the left and right Ritz vectors computed by the CJ-FEAST SVDsolverA
always have similar accuracy, no matter how small the desired singular values are.
We have proved that the ultimate relative residual norms of Ritz approximations can
always attain O(ǫmach), meaning that the solver is numerically backward stable in
finite precision arithmetic. Therefore, the CJ-FEAST SVDsolverA is more robust
than the CJ-FEAST SVDsolverC when ‖A‖/σ is large. We have made a theoretical
comparison of the CJ-FEAST SVDsolverA and SVDsolverC, showing that the latter
is at least 2 3

√
2 times as efficient as the former if they both converge for the same

tolerance tol. Therefore, the CJ-FEAST SVDsolverC and SVDsolverA have their
own merits. For the purpose of robustness and overall efficiency, we have proposed a
practical choice strategy between the two CJ-FEAST SVDsolvers.

Illuminating numerical experiments have justified all of our results.
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