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Abstract

We analyse and quantify the amount of heat generated by a nanoparticle, injected in a background medium,
while excited by incident electromagnetic waves. These nanoparticles are dispersive with electric permittivity
following the Lorentz model. The purpose is to determine the quantity of heat generated extremely close to the
nanoparticle (at a distance proportional to the radius of the nanoparticle). This study extends our previous
results, derived in the 2D TM and TE regimes, to the full Maxwell system. We show that by exciting the
medium with incident frequencies close to the Plasmonic or Dielectric resonant frequencies, we can generate
any desired amount of heat close to the injected nanoparticle while the amount of heat decreases away from it.
These results offer a wide range of potential applications in the areas of photo-thermal therapy, drug delivery,
and material science, to cite a few.

To do so, we employ time-domain integral equations and asymptotic analysis techniques to study the cor-
responding mathematical model for heat generation. This model is given by the heat equation where the body
source term comes from the modulus of the electric field generated by the used incident electromagnetic field.
Therefore, we first analyse the dominant term of this electric field by studying the full Maxwell scattering
problem in the presence of Plasmonic or All-dielectric nanoparticles. As a second step, we analyse the prop-
agation of this dominant electric field in the estimation of the heat potential. For both the electromagnetic
and parabolic models, the presence of the nanoparticles is translated into the appearance of large scales in
the contrasts for the heat-conductivity (for the parabolic model) and the permittivity (for the full Maxwell
system) between the nanoparticle and its surrounding.

Key Words: Maxwell’s Equations, Parabolic Transmission Problem, Lorentzian Nanoparticle, Plasmonic and
Dielectric Resonances.

1 Introduction and statement of the results

1.1 Motivation

It is well known that an electric laser field stimulates surface plasmons at optical frequencies on metallic nanopar-
ticles. In turn, these plasmons produce heat from the absorbed energy that diffuses away from the nanoparticles
to raise the temperature of the surrounding medium. In addition to being helpful for analyzing the principles of
nanoscale heat transport, the ability to produce point-like heat sources has the potential for various significant
uses, including medical therapy, thermal lithography, heat-assisted magnetic recording, [4, 11, 13, 14]. Over the
years, this phenomenon has been well investigated for plasmonic nanoparticles within the framework of thermo-
plasmonics, which has few practical restrictions. All-dielectric resonant nanophotonics is a new discipline of
nanophotonics that uses optically generated dielectric resonances to get over those restrictions, [3, 15]. In the
current work, we consider both types of nanoparticles based on the Lorentz model and attempt to leverage the
optical characteristics of the nanoparticles to generate the desired amount of heat around a nanoparticle. Based
on the Lorentz model, the same nanoparticle can have different properties while excited with different regimes
of incident frequencies. Let us assume that the nanoparticle is nonmagnetic, meaning that its permeability is
non-dispersive and matches with the one of a vacuum, however, its permittivity εp is given by the Lorentz model
which can be described as follows

εp(ω) = ε∞
[

1 +
ω2
p

ω2
0 − ω2 − iζω

]

(1.1)
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Heat Generation and The Full Maxwell System

where ωp is the electric plasma frequency, ω0 is the undamped resonance frequency, ζ is the electric damping
parameter and ε∞ is the electric permittivity of the free space. With such a model, we have the following

characterization. If the used incident frequencies are in the band (ω0,
√

ω2
0 + ω2

p), then the nanoparticle behaves

as a Plasmonic one enjoying a proper sequence of Plasmonic resonant frequencies. But if it is excited with
incident frequencies in the band (0, ω0), then it behaves as Dielectric nanoparticle which enjoy a proper sequence
of Dielectric resonant frequencies. Such a characterization is shown in Section 1.3. In addition, with such choices

of the incident frequencies, we show that the the quality factor that we define as Q :=
ℜ(εp)
ℑ(εp)

has large values for

both the plasmonic and dielectric nanoparticles. This Q-factor is proportional to the ratio between the oscillation
period of the light and its life time. This indicates how absorbing/diffusing the nanoparticle is. In the sequel, we
will choose the incident frequencies so that this Q-factor is large but not too large so that it allows the nanoparticle
to resonate at certain particular frequencies. Therefore, with such choices of incident frequencies, the nanoparticle
will enhance the exciting incident field in a similar way being it plasmonic or dielectric. As a consequence, the
nanoparticle will generate any desired amount of heat in its vicinity. Our goal is to justify these principles and
quantify the amount of heat generated by the presence of the nanoparticles in terms of their (tunable) properties.

A first attempt to study this phenomenon goes back to [1] where the model is stated in the 2D-TE regime.
The authors estimated the heat on the surface of the nanoparticle using semi-formal arguments based on the
Laplace transform. In [17], we have reconsidered this problem using time-domain techniques and derived the heat
generated by both plasmonic and dielectric nanoparticles (in the spirit discussed above). The present work aims
to extend the conclusions of [17] by considering the full Maxwell system instead of the 2D-TM or TE regimes. The
outcome is that, indeed, using plasmonic or dielectric nanoparticle, we can estimate the heat generated very close
to it, i.e. at distances of the order of radius of the nanoparticle. The amplitude of the generated heat is given in
terms of the properties of the used nanoparticle, which can in turn be tuned to reach any desired heat potential
around it. At the mathematical analysis level, we follow the approach used in [17] using time-domain integral
equation methods coupled with asymptotic analysis techniques. Compared to [17], the challenging difficulty rises
in dealing with the full-Maxwell system.

1.2 The heat generation model using nanoparticles

In this section, we provide with the necessary mathematical framework formulations and the detailed obtained
results are stated. For a bounded domain Ω ⊆ R3 of class C2, the heat generation process using nanoparticles is
governed by the following parabolic transmission problem [1, 2]







ρc∂u
∂t

−∇. γ∇u = ω
2πℑ(ε)|E|2 in (R3 \ ∂Ω)× (0,T),

D
−
0 u−D

+
0 u = 0 on ∂Ω,

γpD
−
ν u− γmD

+
ν u = 0 on ∂Ω,

u(x, 0) = 0 for x ∈ R3,

(1.2)

where ρ = ρpχΩ+ρmχR3\Ω is the mass density; c = cpχΩ+cmχR3\Ω is the thermal capacity; γ = γpχΩ+γmχR3\Ω
is the thermal conductivity and we recall that ε = εpχΩ + εmχR3\Ω is the electric permittivity respectively. Here,

T ∈ R is the final time of measurement. Given that the host medium is non dispersive, we define εm = ε∞ε′m as
the relative permittivity of the host medium, which is considered to be constant and independent of the incident
wave’s frequency ω. But its permittivity εp is given by the Lorentz model described in (1.1). Moreover, Dν

denotes the Neumann trace and we use the notation D
±
ν indicating D

±
ν u(x, t) = limh→0 ∇u(x±hνx, t) · νx, where

ν being the outward normal vector to ∂Ω. Analogously, we indicate D±
0 as the interior and exterior Dirichlet trace.

The source term E is the time-harmonic electric field solution to the problem

{

Curl E = iωµH in R3

Curl H = −iωεE in R
3.

(1.3)

where H is the related magnetic field. Moreover, we consider the magnetic permeability of the form µ =
µpχΩ + µmχR2\Ω. We denote by µm = µ∞µ′

m to be the relative permeability of the host medium, which is
assumed to be constant and independent of the frequency ω of the incident wave and µ∞ is the magnetic perme-
ability of the free space. Next, we assume the nanoparticle to be nonmagnetic, i.e. µp = µ∞µ′

m.

By dividing the first equation by µ and taking curl, we may also remove the magnetic field from the (1.3), yielding
the modified equation shown below

Curl
1

µ
Curl E− ω2εE = 0 in R

3 (1.4)
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Moreover, for ω ∈ R+, we say (E,H) is radiating if it satisfies the well-known Silver-Müller radiation condition:

lim
|x|→+∞

|x| ·
(
H× x̂−

√
ε

µ
E
)
= 0.

We also consider (Ein,Hin) to be the incident plane wave satisfying

Ein = Ein

0 e
ik ϑ·x and Hin = ϑ× Ein

0 e
ik ϑ·x,

where the direction of wave propagation ϑ ∈ S (unit sphere in R3), Ein
0 ∈ S is the polarization vector satisfying

ϑ · Ein
0 = 0 and k = ω

√
εµ is the wave number with the incidence frequency ω.

Moreover, it is also assumed that the coefficients ρp, ρm, cp, cm, γp, γm to be piece-wise constants with one constant
outside of Ω. We also note that ℑ(ε) = 0 in (R3 \ Ω).

Furthermore, with T0 fixed and u = 0 for t < 0, we have U = u on R3 × (−∞, T0), thus to analyze u ∈ (0,T0), it
suffices to investigate the following governing transmissions heat equations as follows:







ρpcp
γp

∂Ui

∂t
−∆Ui =

ω
2πγp

ℑ(εp)|E|2χ(0,T0) in Ω× R

ρmcm
γm

∂Ue

∂t
−∆Ue = 0 in R3 \ Ω× R

D
−
0 Ui − D

+
0 Ue = 0 on ∂Ω× R,

γpD
−
ν Ui − γmD

+
ν Ue = 0 on ∂Ω× R

(1.5)

where Ue(x, t) is assumed to be uniformly bounded in both variables, [12].

We set Φ(x, t; y, τ) equal to fundamental solution to the heat operator α∂t − ∆ in three dimensional spatial
variables as follows:

Φ(x, t; y, τ) :=







(
α

4π(t−τ)

) 3
2

exp
(
− α|x−y|2

4(t−τ)

)
, t > τ

0, otherwise
. (1.6)

The fundamental solutions for the interior and exterior heat equation (1.5) are Φi(x, t; y, τ) and Φe(x, t; y, τ) re-
spectively, which depend on the variables αp :=

ρpcp
γp

and αm := ρmcm
γm

.

1.3 The related regimes

To describe correctly the scales needed in the mathematical analysis, we consider the nanoparticle to be of the
form Ω = δB+ z, where δ defines the size of the nanoparticle, B is centered at origin and z specifies the position
of the nanoparticle and |B| ∼ 1. We also assume that the nanoparticle has the following scales regarding the
heat-related coefficients

γp = γp δ
−2, ρpcp ∼ 1, and αm ∼ 1, δ ≪ 1. (1.7)

The next important step is to identify suitable Hilbert spaces, which in particular incorporate the Lippmann-
Schwinger equation corresponding to (1.4) and allows us to do the needed analysis. For this, we introduce the
following function spaces:







H(div,Ω) :=
{

u ∈
(
L2(Ω)

)3
: div u ∈ L2(Ω)

}

and

H(curl,Ω) :=
{

u ∈
(
L2(Ω)

)3
: curl u ∈

(
L2(Ω)

)3
} (1.8)

and recall the decomposition

(
L
2(Ω)

)3
= H0(div, 0)⊕H0(curl, 0)⊕∇Harm, (1.9)

where






H0(div, 0) =
{

u ∈ H(div,Ω) : div u = 0 in Ω and u · ν = 0 on ∂Ω
}

,

H0(curl, 0) =
{

u ∈ H(curl,Ω) : curl u = 0 in Ω and u× ν = 0 on ∂Ω
}

, and

∇Harm =
{

u ∈
(
L2(Ω)

)3
: ∃ ϕ s.t. u = ∇ϕ, ϕ ∈ H1(Ω) and ∆ϕ = 0

}

.

(1.10)
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Let us also recall the fundamental solution of the Helmholtz propagator ∆+k2 satisfying the outgoing Sommerfeld
radiation condition at infinity G(k)(·, k), which is defined as

G
(k)(x, y, k) :=

eik|x−y|

4π|x− y| , x 6= y. (1.11)

The Magnetization operator M(k) from ∇Harm to ∇Harm and the Newtonian operator from L
2(Ω) to H

2(Ω), are
therefore defined as follows

M
(k)
Ω

[
u](x) := ∇

∫

Ω

∇G
(k)(x, y) · u(y)dy and N

(k)
Ω

[
u
]
(x) :=

∫

Ω

G
(k)(x, y)u(y)dy, respectively. (1.12)

In particular, we indicate M
(0)
Ω and N

(0)
Ω as the respective operators when k = 0.

Furthermore, we recall the Lippmann-Schwinger equation satisfied by the solution of (1.4)

E(x) + ς∇
∫

Ω

∇G
(k)(x, y) · E(y)dy− ω2µmς

∫

Ω

G
(k)(x, y)E(y)dy = Ein(x), x ∈ Ω, (1.13)

where ς := εp(ω)− εm is the contrast parameter and k = ω
√
µmǫm is the wave number.

Assume now that the nanoparticle is of the form Ω = δB + z ⊆ R3 which is of class C2. Then (1.13) becomes

Ẽ(x̃) + ς∇
∫

B

∇G
(kδ)(x̃, ỹ) · Ẽ(ỹ)dỹ − ω2µmςδ

2

∫

B

G
(kδ)(x̃, ỹ)Ẽ(ỹ)dỹ = Ẽin(x̃), x̃ ∈ B, (1.14)

where x̃ := x−z
δ

, Ẽ := E(x−z
δ

) and Ẽin := Ein(x−z
δ

). In short, we write (1.14) as

Ẽ + ςM
(kδ)
B Ẽ− ω2µmςδ

2
N

(kδ)
B Ẽ = Ẽin. (1.15)

We are interested in the quasi-static regimes where kδ ≪ 1 as compared to the size of B. Recall that N
(0)
B and

M
(0)
B are positive on the spaces H0(div, 0) and ∇Harm respectively. In addition, on their respective subspace,

they generate sequences of eigen-elements that we denote by (λ
(1)
n , e

(1
n ) and (λ

(3)
n , e

(3)
n ). 1

We observe that

1. If ℜ(ς) < 0, then we can excite the eigenvalues of the Magnetization operator M
(0)
B while the ones of the

Newtonian operator N
(0)
B are avoided (due to the presence of ςδ2, ςδ2 ≪ 1).

2. If ℜ(ς) > 0 and ℜ(ς) ∼ δ−2, then we can excite the eigenvalues of the Newtonian operator while the

eigenvalues of the Magnetization operator M
(0)
B are avoided (due to positivity).

In both cases, the electric field will be enhanced. As the permittivity εp(ω) follows the Lorentz-model stated in
(1.1), below, we show that we can choose the incident frequency ω and the damping frequency ζ so that ς behaves
as in one of the situations described above. In the first case, we say that the nanoparticle behaves as a plasmonic
one while in the second, it behaves as a Dielectric one.

1. If we choose the incidence frequency ω and the damping frequency ζ such that

ω2 = ω2
0 +

ω2
pλ

(3)
n0 ε∞

λ
(3)
n0 (εm − ε∞)− 1

+O(δh) and ζω ∼ δh, (1.16)

then ℜ(ς) < 0. In addition, we have the following properties

ℑ(εp) ∼ δh and |1 + ςλ(3)n0
| ∼ δh, where, λ(3)n0

is the eigen-value corresponding to e(3)n0
and h > 0. (1.17)

2. If the frequency of the incidence wave ω is chosen close to the undamped resonance frequency ω0 and the
damping frequency ζ such that

ω2
0 − ω2 ∼ δ2

(
λ
(1)

n0
µmω

2
0

)[
1 +O(δh)

]
and ζω ∼ δ2−h

(
λ
(ℓ)

n0
µmω

2
0

)2
, (1.18)

then then ℜ(ς) > 0 with ℜ(ς) ∼ δ−2
(
λ
(1)

n0
µmω

2
0

)−1
and ℑ(ς) ∼ δh−2

(
λ
(1)

n0
µmω

2
0

)−1
, where h > 0. Conse-

quently, we have

|1− ω2µmςδ
2λ(1)n0

| ∼ δh, where, λ(1)n0
is the eigen-value corresponding to e(1)n0

and h > 0. (1.19)

Since H0(div, 0) = curl

(

H0(curl) ∩H(div, 0)
)

, we have e
(1)
n0 = curl(ϕn0

) with ν × ϕn0
= 0

and div(ϕn0
) = 0.

1The operator N
(0)
B

also generates a sequence of eigen-elements on H0(curl, 0) that we denote (λ
(2)
n , e

(2)
n ).
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1.4 The results

Now, we state the first result of this work.

Theorem 1.1. Let a nanoparticle occupy a domain Ω = δB+ z ⊆ R3 which is of class C2.

1. Plasmonic Case. If we choose the incidence frequency ω and the undamped frequency ζ satisfying (1.16),
and hence (1.17), we have the following approximation of the electric field with E as the solution to (1.4),
as δ → 0,

∫

Ω

|E|2(y)dy =
1

|1 + ςλ
(3)
n0 |2

δ3
∣
∣
∣Ein(z) ·

∫

B

ẽ(3)n0
(x)dx

∣
∣
∣

2

+







O
(
δ4−2h

)
for h ∈ (0, 32 ).

O
(
δ7−4h

)
for h ∈ (32 , 2).

(1.20)

2. Dielectric Case. If we choose the incidence frequency ω and the undamped frequency ζ satisfying (1.18),
and hence (1.19), we have the following approximation of the electric field with E as the solution to (1.4),
as δ → 0,

∫

Ω

|E|2(y)dy =
ω2µ2

m

|1− ω2µmςδ2λ
(1)
n0 |2

δ5
∣
∣
∣Hin(z) ·

∫

B

ϕ̃n0
(x)dx

∣
∣
∣

2

+







O
(
δ5
)

for h ∈ (0, 1).

O
(
δ9−4h

)
for h ∈ (1, 2).

(1.21)

We now state the main result of this work.

Theorem 1.2. Let a nanoparticle, occupy a domain Ω = z + δB ⊆ R3 which is of class C2, be such that its
heat coefficients (ρp, cp, γp) satisfy the conditions (1.7) and γm <

√
γp ρpcp, δ ≪ 1. Let ξ ∈ R3 \ Ω such that

dist(ξ,Ω) ∼ δp
(
|ξ − z| ∼ δp + δ

)
, where p ∈ [0, 1).

1. Under the assumption of Theorem 1.1(1), then for r < 1
2 , if 2p(1 − r) < 1, the heat generated by the

plasmonic nanoparticle, as a solution to (1.5), is given by, as δ → 0,

Ue(ξ, t) =
ω ·ℑ(εp)

8π2γm|ξ − z|δ
3−2h

∣
∣
∣Ein(z) ·

∫

B

ẽ(3)n0
(x)dx

∣
∣
∣

2

+







O(δ4−h−p) +O
(

δ4−h−p(3−2r)

√

K(T0)
r

)

.

O(δ7−3h−p) +O
(

δ4−h−p(3−2r)

√

K(T0)
r

)

.

2. Under the assumption of Theorem 1.1(2) and ℑ(εp) ∼ δh−2, δ ≪ 1., then for r < 1
2 , if 2p(1 − r) < h, the

heat generated by the dielectric nanoparticle, as a solution to (1.5), is given by, as δ → 0,

Ue(ξ, t) =
ω3µ2

m ·ℑ(εp)

8π2γm|ξ − z| δ
5−2h

∣
∣
∣Hin(z) ·

∫

B

ϕ̃n0
(x)dx

∣
∣
∣

2

+







O(δ3+h−p) +O
(

δ3−p(3−2r)

√

K(T0)
r

)

.

O(δ7−3h−p) +O
(

δ3−p(3−2r)

√

K(T0)
r

)

.

where, K(T0)
r := sup

t∈(0,T0)

∫ T0

0

1

(t− τ)2r
dτ and it makes sense if r < 1

2 .

We end this section with a few comments regarding the results presented in the previous theorems.

1. The expressions
∣
∣
∣Ein(z) ·

∫

B

ẽ(3)n0
(x)dx

∣
∣
∣

2

and
∣
∣
∣Hin(z) ·

∫

B

ϕ̃n0
(x)dx

∣
∣
∣

2

should be understood as
∑

m

∣
∣
∣Ein(z) ·

∫

B

ẽ(3)n0,m
(x)dx

∣
∣
∣

2

and
∑

m

∣
∣
∣Hin(z) ·

∫

B

ϕ̃(3)
n0,m(x)dx

∣
∣
∣

2

where, for the fixed index n0, ẽ
(3)
n0,m and ẽ

(1)
m , with ẽ

(1)
n0,m :=

curl(ϕn0,m), span the eigen-space corresponding to the eigenvalues λ
(3)
n0 and λ

(1)
n0 respectively. Observe that

the approximate expansions provided in the two theorems above make sense only if the terms
∣
∣
∣Ein(z) ·

∫

B

ẽ(3)n0
(x)dx

∣
∣
∣

2

and
∣
∣
∣Hin(z) ·

∫

B

ϕ̃n0
(x)dx

∣
∣
∣

2

are not vanishing. In [8], it is shown that for a sphere-shaped B,

we have
∣
∣
∣Ein(z) ·

∫

B

ẽ(3)n0
(x)dx

∣
∣
∣

2

= Ct
∣
∣
∣Ein(z)

∣
∣
∣

2

with a positive constant Ct. Therefore it is not vanishing.

2. The leading order terms in Theorem 1.2 are given by
ω·ℑ(εp)

8π2γm|ξ−z|δ
3−2h and

ω3µ2
m·ℑ(εp)

8π2γm|ξ−z| δ
5−2h respectively.

Therefore, by selecting h close 2, the generated heat can be increased to any desired amount at a distance
of the order δ from the nanoparticle while it decreases away from it. We further highlight that to adjust
the dominant terms to any desired temperature, one requires knowledge of both the surrounding medium
and optical properties of the nanoparticle. Such features are useful for the purpose of therapy using heat.
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The remaining parts of the work are structured as follows. In Sec. 2.1 and Sec. 2.2, the proofs of Theorem 1.1(1)
and Theorem 1.1(2), which deal with the asymptotic expansions of the Electric field, used to create plasmonic as
well as dielectric resonances, are provided. In Sec 3, we give the proof of Theorem 1.2, which is the main finding
of this work i.e. to provide an asymptotic expansion of the generated heat. In Sec. 4, we provide the justifications
for some claimed a priori estimates. Finally, in Appendix 5, we present a few technical estimates used in the prior
sections.

Unless specified, in this paper, we indicate ′ ≤′ with its right-hand side multiplied by a general positive constant
by the notation ′ .′.

2 Proof of Theorem 1.1

The proof is based on the Lippmann-Schwinger system of equations. First, we note that the Lippmann-Schwinger
equation stated in (1.13) consists of Newtonian and Magnetization operators. Second, as we are using Lorentzian
nanoparticles, plasmonic and dielectric resonant frequencies enable us to perform the approximations. We show
that the field corresponding to the Magnetization operator is the dominant one in equation (1.20) when we choose
the incidence frequency close to plasmonic frequency and the field corresponding to the Newtonian operator is the
dominant one in equation (1.21) when we choose the incidence frequency close to dielectric resonance. In order
to avoid confusion, we separated the proofs into Theorem 1.1(1) and Theorem 1.1(2).

2.1 Proof of Theorem 1.1(1)

In this section, we describe the asymptotic analysis of the solution to (1.4) as δ → 0 when a plasmonic nanoparticle
occupy the domain Ω = δB+ z.

We begin by stating the Lippmann-Schwinger equation, given below as the solution to the electromagnetic scat-
tering problem, (1.4)

E(x)− (εp − εm)

∫

Ω

Υ(k)(x, y) · E(y)dy = Ein(x), x ∈ Ω, (2.1)

where, Υ(k)(x, y) := Hess
x

G(k)(x, y)+ω2µmG
(k)(x, y)I is the corresponding dyadic Green’s function and G(k)(x, y)

is the Green’s function for the Helmholtz Operator. Let us also denote ς := εp − εm.

From the definition of dyadic Green’s function, we rewrite integral equations representation

E(x) + ς M(k)
[
E
]
(x)− ω2µmς N

(k)
[
E
]
(x) = Ein(x), (2.2)

where, we recall the magnetization operator and the Newtonian operator

M
(k)
[
E
]
(x) = ∇

∫

Ω

∇G
(k)(x, y) · E(y)dy and N

(k)
[
E
]
(x) =

∫

Ω

G
(k)(x, y)E(y)dy. (2.3)

Then, the magnetization as well as Newtonian potentials can be decomposed as follows

M
(k)
[
E
]
(x) = M

(0)
[
E
]
(x) +

ω2µm

2
N

(0)
[
E
]
(x)− iω3µ2

m

12π

∫

Ω

E(y)dy +
ω2µm

2

∫

Ω

G
(0)(x, y)

A(x, y) · E(y)
‖x− y‖2 dy

− 1

4π

∑

j≥3

(iωµ
1
2
m)j+1

(j + 1)!
Hess

x
(‖x− y‖j), (2.4)

where A(x, y) := (x− y)⊗ (x− y) and

N
(k)
[
E
]
(x) = N

(0)
[
E
]
(x) +

iωµ
1
2
m

4π

∫

Ω

E(y)dy +
1

4π

∑

j≥1

(iωµ
1
2
m)j+1

(j + 1)!

∫

Ω

‖x− y‖jE(y)dy. (2.5)

Let us recall the following decomposition of the space
(
L2(Ω)

)3
into the following three sub-spaces as a direct

sum as follows:
(
L
2(Ω)

)3
= H0(div, 0)⊕H0(curl, 0)⊕∇Harm, (2.6)

where we define these three sub-spaces as follows:






H0(div, 0) =
{

u ∈ H(div,Ω) : div u = 0 in Ω and u · ν = 0 on ∂Ω
}

,

H0(curl, 0) =
{

u ∈ H(curl,Ω) : curl u = 0 in Ω and u× ν = 0 on ∂Ω
}

, and

∇Harm =
{

u ∈
(
L2(Ω)

)3
: ∃ ϕ s.t. u = ∇ϕ, ϕ ∈ H1(Ω) and ∆ϕ = 0

}

.

(2.7)
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We also know that the Magnetization operator is self-adjoint and bounded, which satisfies the followings

M
(0)
∣
∣
∣
H0(div,0)

= 0, and M
(0)
∣
∣
∣
H0(curl,0)

= I. (2.8)

From the decomposition (2.6), we define
1

P,
2

P and
3

P to be the natural projectors as follows

1

P := L
2 → H0(div, 0),

2

P := L
2 → H0(curl, 0), and

3

P := L
2 → ∇Harm. (2.9)

We also know that the Magnetization operator M(0) : ∇Harm → ∇Harm induces a complete orthonormal ba-

sis namely
(
λ
(3)
n , e

(3)
n

)

n∈N
. Also N

∣
∣
∣
H0(div,0)

and N

∣
∣
∣
H0(curl,0)

generate complete orthonormal bases
(
λ
(1)
n , e

(1)
n

)

n∈N

and
(
λ
(2)
n , e

(2)
n

)

n∈N
of H0(div, 0) and H0(curl, 0) respectively. Due to the scale-invariance of the magnetization

operator, we rewrite the integral representation given above in the scaled domain B to obtain

Ẽ(ξ) + ς M
(kδ)
B

[
Ẽ
]
(ξ)− ω2µmςδ

2
N

(kδ)
B

[
Ẽ
]
(ξ) = Ẽin(ξ). (2.10)

The aforementioned equation will be considered in each of the sub-spaces indicated in (2.7). We start with
H0(div, 0).

1. We consider the inner-product with respect to e
(1)
n to obtain

〈
Ẽ; ẽ(1)n

〉
+ ς
〈
M

(kδ)
B

[
Ẽ
]
; ẽ(1)n

〉
=
〈
Ẽin; ẽ(1)n

〉
+ ω2µmςδ

2
〈
N

(kδ)
B

[
Ẽ
]
; ẽ(1)n

〉

As M
(kδ)
B has vanishing property in H0(div, 0) we obtain

〈
Ẽ; ẽ(1)n

〉
=
〈
Ẽin; ẽ(1)n

〉
+ ω2µmςδ

2
〈
N

(kδ)
B

[
Ẽ
]
; ẽ(1)n

〉
.

Consequently, we derive

∥
∥
1

P(Ẽ)
∥
∥
2

L2(B)
=
∑

n

∣
∣
〈
Ẽin; ẽ(1)n

〉∣
∣
2
+ (ω2µm)

2ς2δ4
∑

n

∣
∣
〈
N

(kδ)
B

[
Ẽ
]
; ẽ(1)n

〉∣
∣
2

(2.11)

2. Next, we consider the sub-space H0(curl, 0) and we take the inner-product with respect to e
(2)
n to obtain

〈
Ẽ; ẽ(2)n

〉
+ ς
〈
M

(0)
B

[
Ẽ
]
; ẽ(2)n

〉
=
〈
Ẽin; ẽ(2)n

〉
+ ω2µmςδ

2
〈
N

(kδ)
B

[
Ẽ
]
; ẽ(2)n

〉
+ ς
〈(

M
(kδ)
B −M

(0)
B

)[
Ẽ
]
; ẽ(2)n

〉

As M
(0)
B

∣
∣
∣
H0(curl,0)

= I, we derive

(1 + ς)
〈
Ẽ; ẽ(2)n

〉
=
〈
Ẽin; ẽ(2)n

〉
+ ω2µmςδ

2
〈
N

(kδ)
B

[
Ẽ
]
; ẽ(2)n

〉
+ ς
〈(

M
(kδ)
B −M

(0)
B

)[
Ẽ
]
; ẽ(2)n

〉

.

Moreover, we express the above equation as follows

∥
∥
2

P(Ẽ)
∥
∥
2

L2(B)
=

1

|1 + ς |2
∑

n

∣
∣
〈
Ẽin; ẽ(2)n

〉∣
∣
2
+

(ω2µm)
2ς2δ4

|1 + ς |2
∑

n

∣
∣
〈
N

(kδ)
B

[
Ẽ
]
; ẽ(2)n

〉∣
∣
2
+
∑

n

ς2

|1 + ς |2
∣
∣err.(2)n

∣
∣
2
,

(2.12)

where we denote by err.
(2)
n :=

〈(
M

(kδ)
B −M

(0)
B

)[
Ẽ
]
; ẽ

(2)
n

〉

.

3. As a last step, we consider the sub-space ∇Harm and we take the inner-product with respect to e
(3)
n . We

then derive
〈
Ẽ; ẽ(3)n

〉
+ ς
〈
M

(0)
B

[
Ẽ
]
; ẽ(3)n

〉
=
〈
Ẽin; ẽ(3)n

〉
+ ω2µmςδ

2
〈
N

(kδ)
B

[
Ẽ
]
; ẽ(3)n

〉
+ ς
〈(
M

(kδ)
B −M

(0)
B

)[
Ẽ
]
; ẽ(3)n

〉

Then with the self-adjointness of the magnetic operator, we deduce

(1 + ςλ(3)n

〈
Ẽ; ẽ(3)n

〉
=
〈
Ẽin; ẽ(3)n

〉
+ ω2µmςδ

2
〈
N

(kδ)
B

[
Ẽ
]
; ẽ(3)n

〉
+ ς
〈(
M

(kδ)
B −M

(0)
B

)[
Ẽ
]
; ẽ(3)n

〉
.

Consequently,

∥
∥
3

P(Ẽ)
∥
∥
2

L2(B)
=
∑

n

1

|1 + ςλ
(3)
n |2

∣
∣
〈
Ẽin; ẽ(3)n

〉∣
∣
2
+
∑

n

(ω2µm)
2ς2δ4

|1 + ςλ
(3)
n |2

∣
∣
〈
N

(kδ)
B

[
Ẽ
]
; ẽ(3)n

〉∣
∣
2
+
∑

n

ς2

|1 + ςλ
(3)
n |2

∣
∣err.(3)n

∣
∣
2
,

(2.13)

where we denote by err.
(3)
n :=

〈(
M

(kδ)
B −M

(0)
B

)[
Ẽ
]
; ẽ

(3)
n

〉

.
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Now, we use Parseval’s identity to estimate E, i.e. we write

∥
∥Ẽ
∥
∥
2

L2(B)
=

3∑

j=1

∥
∥

j

P(Ẽ)
∥
∥
2

L2(B)

.
∑

n

∣
∣
〈
Ẽin; ẽ(1)n

〉∣
∣
2
+

1

|1 + ς |2
∑

n

∣
∣
〈
Ẽin; ẽ(2)n

〉∣
∣
2
+
∑

n

1

|1 + ςλ
(3)
n |2

∣
∣
〈
Ẽin; ẽ(3)n

〉∣
∣
2

+
∑

n

ς2

|1 + ςλ
(3)
n |2

∣
∣err.(3)n

∣
∣
2
+
∑

n

ς2

|1 + ς |2
∣
∣err.(2)n

∣
∣
2
+

(ω2µm)
2ς2δ4

|1 + ςλ
(3)
n0 |2

∥
∥N

(kδ)
B

[
Ẽ
]∥
∥
2

L2(B)
(2.14)

Furthermore, from the choice of the incident frequency, based on the Lorentz model, we have the following
properties (1.17), with h > 0,

∣
∣1 + ςλ(3)n

∣
∣ ∼

{

δh n = n0

1 n 6= n0.
(2.15)

Next, we estimate the following term

err.(3)n :=
〈(

M
(kδ)
B −M

(0)
B

)[
Ẽ
]
; ẽ(3)n

〉

=
ω2µmδ

2

2

〈
N

(0)
B

[
Ẽ
]
; ẽ(3)n

〉
− iω3µ2

mδ
3

12π

〈
∫

B

Ẽ(η)dη; ẽ(3)n

〉

+
ω2µmδ

2

2

〈
∫

B

G
(0)(ξ, η)

A(ξ, η) · Ẽ(η)
‖ξ − η‖2 dη; ẽ(3)n

〉
− 1

4π

∑

j≥3

(iωµ
1
2
mδ)

j+1
〈∫

B

Hess
ξ

(‖ξ − η‖j)

(j + 1)!
· Ẽ(η)dη; ẽ(3)n

〉

(2.16)

Using the continuity of the Newtonian operator, squaring the preceding expression, taking the series with respect
to n on both sides, we obtain

∑

n

ς2

|1 + ςλ
(3)
n |2

∣
∣err.(3)n

∣
∣
2
. δ−2h

[ (ωµ
1
2
mδ)4

4
‖Ẽ‖2

L2(B) +
(ωµ

1
2
mδ)6

(12π)2
‖Ẽ‖2

L2(B) +
(ωµ

1
2
mδ)4

4
‖Ẽ‖2

L2(B)

+
(ωµ

1
2
mδ)8

(4π)2
‖Ẽ‖2

L2(B)

∑

j≥3

∫

B

∫

B

(
Hess

x
(‖x− y‖j)

(j + 1)!

)2

dydx

︸ ︷︷ ︸
<+∞

]

(2.17)

A similar analysis follows for the term
∑

n

ς2

|1 + ς |2
∣
∣err.(2)n

∣
∣
2
. Consequently, after simplification, we reach the

following conclusions from (2.14)

∥
∥Ẽ
∥
∥
2

L2(B)
=

3∑

j=1

∥
∥

j

P(Ẽ)
∥
∥
2

L2(B)

.
∑

n

1

|1 + ςλ
(3)
n |2

∥
∥Ẽin

∥
∥
2

L2(B)
+
∑

n

(ω2µm)
2ς2δ4

|1 + ςλ
(3)
n |2

∥
∥N

(kδ)
B

[
Ẽ
]∥
∥
2

L2(B)
+

(ω2µm)
2ς2δ4

|1 + ςλ
(3)
n0 |2

‖Ẽ‖2
L2(B)

and then

(

1− (ω2µm)
2ς2δ4

|1 + ςλ
(3)
n0 |2

)∥
∥Ẽ
∥
∥
2

L2(B)
.

1

|1 + ςλ
(3)
n0 |2

∥
∥Ẽin

∥
∥
2

L2(B)
+
∑

n 6=n0

1

|1 + ςλ
(3)
n |2

∥
∥Ẽin

∥
∥
2

L2(B)
. (2.18)

Thus, we deduce an a priori estimate using the identity (2.15)

∥
∥E
∥
∥
L2(Ω)

∼ δ
3
2
−h for h < 2. (2.19)

Next, we use the above derived a priori estimate to clarify the exact dominant term of the formulation (2.14).

We know that the following mean vanishing integral properties are satisfied by the eigenfunctions e
(j)
n for j = 1, 2:

∫

B

e(j)n (x)dx = 0. (2.20)

8



Arpan Mukherjee and Mourad Sini

Thereafter, we do the following estimate using Taylor’s expansion

∥
∥

j

P(Ẽin)
∥
∥
2

L2(B)
=
∑

n

∣
∣
〈
Ẽin; ẽ(j)n

〉∣
∣
2

=
∑

n

∣
∣
∣

∫

B

Ẽin(x) · ẽ(j)n (x)dx
∣
∣
∣

2

=
∑

n

∣
∣
∣Ẽin(z) ·

∫

B

e(j)n (x)dx

︸ ︷︷ ︸

= 0, (2.20)

∣
∣
∣

2

+O(δ2). (2.21)

Therefore, we have shown that
∥
∥

j

P(Ẽin)
∥
∥
L2(B)

∼ δ for j = 1, 2. Then, based on the a priori estimate (2.19), we

deduce that

∑

n

ς2

|1 + ςλ
(3)
n |2

∣
∣err.(3)n

∣
∣
2 ∼ δ4−4h. (2.22)

In a similar way, we can show that

∑

n

ς2

|1 + ς |2
∣
∣err.(2)n

∣
∣
2 ∼ δ4−4h. (2.23)

Moreover, we rewrite the expression (2.14) using (2.21), (2.22), (2.23) as follows:
∫

B

|Ẽ|2(η)dη =
1

|1 + ςλ
(3)
n0 |2

∣
∣
〈
Ẽin; ẽ(3)n0

〉∣
∣
2
+
∑

n 6=n0

1

|1 + ςλ
(3)
n |2

∣
∣
〈
Ẽin; ẽ(3)n

〉∣
∣
2
+
∑

n

1

|1 + ς |2
∣
∣
〈
Ẽin; ẽ(2)n

〉∣
∣
2
+O(δ4−4h).

(2.24)

Now, as
∑

n 6=n0

1

|1 + ςλ
(3)
n |2

∣
∣
〈
Ẽin; ẽ(3)n

〉∣
∣
2 ∼ 1 and

〈
Ẽin; ẽ(3)n0

〉

L2(B)
= uin(z) ·

∫

B

ẽ(3)n0
(x)dx +O(δ), we deduce that

∫

Ω

|E|2(y)dy =
1

|1 + ςλ
(3)
n0 |2

δ3
∣
∣
∣Ein(z) ·

∫

B

ẽ(3)n0
(x)dx

∣
∣
∣

2

+







O
(
δ4−2h

)
for h ∈ (0, 32 ).

O
(
δ7−4h

)
for h ∈ (32 , 2).

The proof of Theorem 1.1(1) is completed.

2.2 Proof of Theorem 1.1(2)

In a similar way as for to the plasmonic case, we show the asymptotic analysis of the solution to (1.4) as δ → 0
when a dielectric nanoparticle occupy the domain Ω = δB+ z.

We begin by recalling that for dielectric nanoparticle the contrast parameter ς := εp − εm behaves as δ−2, δ ≪ 1.
Then, we start from Lippmann-Schwinger system of equation in the scaled domain B

Ẽ(ξ) + ς M
(kδ)
B

[
Ẽ
]
(ξ)− ω2µmςδ

2
N

(kδ)
B

[
Ẽ
]
(ξ) = Ẽin(ξ). (2.25)

Similarly to the plasmonic situation, we project the scaled equation (2.25) with respect to the eigen-functions e
(j)
n

for j = 1, 2, 3, in each of the sub-spaces mentioned in (2.7).

1. As, M
(k)
B is vanishing in H0(div, 0) and N

(0)
B induces an eigen-system

(
λ̃
(1)
n , ẽ

(1)
n

)

n∈N
, we rewrite (2.25) after

taking an inner product with respect to e
(1)
n as follows:

(1− ω2µmςδ
2λ̃(1)n )〈Ẽ; ẽ(1)n

〉
=
〈
Ẽin; ẽ(1)n

〉
+ ω2µmςδ

2
〈
N

(kδ)
B − N

(0)
B

[
Ẽ
]
; ẽ(1)n

〉
. (2.26)

Then, using the expression (2.5) in (2.26), we deduce the following after taking a modulus

|〈Ẽ; ẽ(1)n

〉
| = 1

∣
∣1− ω2µmςδ2λ̃

(1)
n

∣
∣

[

∣
∣
〈
Ẽin; ẽ(1)n

〉∣
∣+ ω2µmςδ

2 iωµ
1
2
mδ

4π

∣
∣

〈 ∫

B

Ẽ(η)dη; ẽ(1)n

〉∣
∣

+
ω2µmςδ

2

4π

∑

j≥1

(iωµ
1
2
mδ)j+1

(j + 1)!

∣
∣

〈 ∫

B

‖ · −η‖jẼ(η)dη; ẽ(1)n

〉∣
∣

]

.

(2.27)

9



Heat Generation and The Full Maxwell System

Moreover, we know that ∇Harm is orthogonal to each of the subspace H0(div, 0) and H0(curl, 0). Addi-

tionally, we have

∫

B

ẽ(1)n (x)dx = 0 as the identity matrix I ∈ ∇Harm. Consequently, we obtain

∥
∥
1

P(Ẽ)
∥
∥
2

L2(B)
=
∑

n

∣
∣
〈
Ẽ; ẽ(1)n

〉∣
∣
2

.
∑

n

1
∣
∣1− ω2µmςδ2λ̃

(1)
n

∣
∣
2

∣
∣
〈
Ẽin; ẽ(1)n

〉∣
∣
2
+ δ4−2h

∑

n

∣
∣
∣

∑

j≥1

1

4π(j + 1)!

〈∫

B

‖ · −η‖jẼ(η)dη; ẽ(1)n

〉∣
∣
∣

2

.
∑

n

1
∣
∣1− ω2µmςδ2λ̃

(1)
n

∣
∣
2

∣
∣
〈
Ẽin; ẽ(1)n

〉∣
∣
2
+ δ4−2h

∥
∥Ẽ
∥
∥
2

L2(B)
. (2.28)

2. Next, we consider the equation (2.25) in H0(curl, 0) and we take inner product with respect to ẽ
(2)
n in the

scaled domain B to obtain

〈
Ẽ; ẽ(2)n

〉
+ ς
〈
M

(kδ)
B

[
Ẽ
]
; ẽ(2)n

〉
− ω2µmςδ

2
〈
N

(kδ)
B

[
Ẽ
]
; ẽ(2)n

〉
=
〈
Ẽin; ẽ(2)n

〉
. (2.29)

The adjoint operators of the Magnetization and Newtonian potentials are then taken into account, and they

are M
(−kδ)
B and N

(−kδ)
B respectively. We then pass the adjoint operator with respect to ẽ

(2)
n to derive

〈
Ẽ; ẽ(2)n

〉
+ ς
〈
Ẽ;M

(−kδ)
B

(
ẽ(2)n

)〉
− ω2µmςδ

2
〈
Ẽ;N

(−kδ)
B

(
ẽ(2)n

)〉
=
〈
Ẽin; ẽ(2)n

〉
. (2.30)

First, we note that M
(−kδ)
B

(
ẽ
(2)
n

)
= −∇∇ ·N(−kδ)

B

(
ẽ
(2)
n

)
. Then from the identity ∇∇ · u = (∆+ curl curl )u

and as e
(2)
n ∈ H0(curl, 0), we have M

(−kδ)
B

(
ẽ
(2)
n

)
= ω2µmδ

2N
(−kδ)
B

(
ẽ
(2)
n

)
+ ẽ

(2)
n . Consequently, (2.30) becomes

〈
Ẽ; ẽ(2)n

〉
=

1

1 + ς

〈
Ẽin; ẽ(2)n

〉
.

As, Ẽin ∈ H0(div) which is equal to H0(div, 0)
⊕∇Harm, orthogonal to H0(curl, 0), we deduce

∥
∥
2

P(Ẽ)
∥
∥
2

L2(B)
=
∑

n

∣
∣
〈
Ẽ; ẽ(2)n

〉∣
∣
2
= 0. (2.31)

3. We then consider the sub-space ∇Harm and we take the inner-product with respect to e
(3)
n to write the

equation (2.25) as follows

〈
Ẽ; ẽ(3)n

〉
+ ς
〈
M

(0)
B

[
Ẽ
]
; ẽ(3)n

〉
=
〈
Ẽin; ẽ(3)n

〉
+ ω2µmςδ

2
〈
N

(kδ)
B

[
Ẽ
]
; ẽ(3)n

〉
+ ς
〈(

M
(kδ)
B −M

(0)
B

)[
Ẽ
]
; ẽ(3)n

〉

.

We know that the magnetization potential is self-adjoint and induces an eigen-system
(
λ
(3)
n , e

(3)
n

)

n∈N
in

∇Harm., we deduce from the previous expression

(1 + ςλ(3)n

〈
Ẽ; ẽ(3)n

〉
=
〈
Ẽin; ẽ(3)n

〉
+ ω2µmςδ

2
〈
N

(kδ)
B

[
Ẽ
]
; ẽ(3)n

〉
+ ς
〈(

M
(kδ)
B −M

(0)
B

)[
Ẽ
]
; ẽ(3)n

〉

. (2.32)

Furthermore, using the expression for N
(k)
B in (2.21), we deduce

∥
∥
3

P(Ẽ)
∥
∥
2

L2(B)
=
∑

n

1

|1 + ςλ
(3)
n |2

∣
∣
〈
Ẽin; ẽ(3)n

〉∣
∣
2
+
∑

n

(ω2µm)
2ς2δ4

|1 + ςλ
(3)
n |2

∣
∣Error(2)n

∣
∣
2
+
∑

n

ς2

|1 + ςλ
(3)
n |2

∣
∣Error(3)n

∣
∣
2
,

(2.33)

where we denote by Error(2)n :=
〈
N

(kδ)
B

[
Ẽ
]
; ẽ

(3)
n

〉
and Error(3)n :=

〈(
M

(kδ)
B −M

(0)
B

)[
Ẽ
]
; ẽ

(3)
n

〉

.

In a similar way as (2.17), we obtain that

∑

n

ς2

|1 + ςλ
(3)
n |2

∣
∣Error(3)n

∣
∣
2
.

(ωµ
1
2
mδ)4

4
‖Ẽ‖2

L2(B) +
(ωµ

1
2
mδ)6

(12π)2
‖Ẽ‖2

L2(B) +
(ωµ

1
2
mδ)4

4
‖Ẽ‖2

L2(B)

+
(ωµ

1
2
mδ)8

(4π)2
‖Ẽ‖2

L2(B)

∑

j≥3

∫

B

∫

B

(
Hess

x
(‖x− y‖j)

(j + 1)!

)2

dydx

︸ ︷︷ ︸
<+∞

. (2.34)

10
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Now, we estimate Error(2)n as follows

Error(2)n

:=
〈
N

(kδ)
B

[
Ẽ
]
; ẽ(3)n

〉

=
ω2µmδ

2

2

〈
N

(0)
B

[
Ẽ
]
; ẽ(3)n

〉
− iω3µ2

mδ
3

12π

〈
∫

B

Ẽ(η)dη; ẽ(3)n

〉
+

1

4π

∑

j≥1

(iωµ
1
2
mδ)j+1

(j + 1)!

∣
∣

〈 ∫

B

‖ · −η‖jẼ(η)dη; ẽ(3)n

〉∣
∣.

We then use the Continuity of the Newtonian operator to obtain the following

∑

n

(ω2µm)
2ς2δ4

|1 + ςλ
(3)
n |2

∣
∣Error(2)n

∣
∣
2
.

(ωµ
1
2
mδ)4

4
‖Ẽ‖2

L2(B) +
(ωµ

1
2
mδ)6

(12π)2
‖Ẽ‖2

L2(B)

+
(ωµ

1
2
mδ)8

(4π)2
‖Ẽ‖2

L2(B)

∑

j≥1

∫

B

∫

B

(

(‖x− y‖j)
(j + 1)!

)2

dydx

︸ ︷︷ ︸
<+∞

(2.35)

Consequently, inserting (2.34) and (2.35) in (2.33), we deduce

∥
∥
3

P(Ẽ)
∥
∥
2

L2(B)
= δ4

∥
∥
3

P(Ẽin)
∥
∥
2

L2(B)
+ δ4‖Ẽ‖2

L2(B). (2.36)

Thus, using (2.28), (2.31) and (2.36) into the following Parseval’s identity, we deduce

∥
∥Ẽ
∥
∥
2

L2(B)
=

3∑

j=1

∥
∥

j

P(Ẽ)
∥
∥
2

L2(B)

=
1

∣
∣1− ω2µmςδ2λ̃

(1)
n0

∣
∣
2

∣
∣
〈
Ẽin; ẽ(1)n0

〉∣
∣
2
+
∑

n 6=n0

1
∣
∣1− ω2µmςδ2λ̃

(1)
n

∣
∣
2

∣
∣
〈
Ẽin; ẽ(1)n

〉∣
∣
2
+ (ω2µm)

2δ4−2h
∥
∥Ẽ
∥
∥
2

L2(B)

+ δ4
∥
∥
3

P(Ẽin)
∥
∥
2

L2(B)
(2.37)

or

(
1− (ω2µm)

2δ4−2h
)∥
∥Ẽ
∥
∥
2

L2(B)
.

1
∣
∣1− ω2µmςδ2λ̃

(1)
n0

∣
∣
2

∣
∣
〈
Ẽin; ẽ(1)n0

〉∣
∣
2
+
∑

n 6=n0

1
∣
∣1− ω2µmςδ2λ̃

(1)
n

∣
∣
2

∣
∣
〈
Ẽin; ẽ(1)n

〉∣
∣
2
. (2.38)

We also have

〈
Ẽin; ẽ(1)n0

〉
=
〈
Ẽin; curl(ϕ̃n0

)
〉
=
〈
curl(Ẽin);ϕn0

〉
= iωµmδ

〈
H̃in;ϕn0

〉
, (2.39)

where, we write ẽ
(1)
n0 = curl(ϕ̃n0

) as ẽ
(1)
n0 ∈ H0(div, 0) = curl

(

H0(curl) ∩H(div, 0)
)

.

Thus, we have the following a priori estimate for the electric field E when a dielectric nanoparticle occupy the
domain Ω = δB+ z, δ ≪ 1

∥
∥Ẽ
∥
∥
2

L2(B)
∼ δ2−2h for h < 2. (2.40)

Thus, utilizing the estimate (2.40) and the identity (2.39) we deduce from (2.37)

∫

Ω

|E|2(y)dy =
ω2µ2

m

|1− ω2µmςδ2λ
(1)
n0 |2

δ5
∣
∣
∣Hin(z) ·

∫

B

ϕ̃n0
(x)dx

∣
∣
∣

2

+







O
(
δ5
)

for h ∈ (0, 1).

O
(
δ9−4h

)
for h ∈ (1, 2).

The proof of Theorem 1.1(2) is completed.

3 Proof of Theorem 1.2

This section describes the asymptotic analysis of the solution to (1.5) as δ → 0 when a Lorentzian nanoparticle
occupy a bounded domain Ω = z + δB.
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Heat Generation and The Full Maxwell System

3.1 Mathematical Preliminaries

We start this section by recalling the following classical singular estimates for the fundamental solution Φ(x, t; y, τ) :







∣
∣Φ(x, t; y, τ)

∣
∣ . αr

(t−τ)r
1

|x−y|3−2r , r < 3
2 ,

∣
∣∂xi

Φ(x, t; y, τ)
∣
∣ . αr

(t−τ)r
1

|x−y|4−2r , r < 5
2 , i = 1, 2,

∣
∣DνΦ(x, t; y, τ)

∣
∣ . αr

(t−τ)r
1

|x−y|3−2r , r < 5
2 , for x, y ∈ ∂Ω,

∣
∣∂tΦ(x, t; y, τ)

∣
∣ . α1−r

(t−τ)r
1

|x−y|5−2r , r < 5
2 ,

∣
∣∂

1
2

t Φ(x, t; y, τ)
∣
∣ . αr

(t−τ)r
1

|x−y|4−2r , r < 5
2 ,

(3.1)

for 0 ≤ τ ≤ t ≤ T and x, y ∈ R3 with x 6= y. It will be important to work in the environment of the anisotropic
Sobolev spaces for our problem. We use H

1
2
, 1
4 to denote the Hilbert space

H
1
2
, 1
4 := L2

(
R; H

1
2 (R3)

)
∩ H

1
4

(
R; L2(R3)

)
,

with the associated norm
∥
∥u
∥
∥
2

H
1
2
, 1
4
:=
∥
∥u
∥
∥
2

L2

(
R;H

1
2 (R3)

) +
∥
∥u
∥
∥
2

H
1
4

(
R;L2(R3)

).

Analogously, we define, for ∂Ω ⊆ R3, the following norm

∥
∥u
∥
∥
2

H
1
2
, 1
4

(
∂Ω×R

) =

∫

R

‖u(·, t)‖2
H

1
2 (∂Ω)

dt +

∫

R

∫

R

‖u(·, t)− u(·, τ)‖2L2(∂Ω)

|t− τ | 32
dtdτ, (3.2)

where

‖u‖2
H

1
2 (∂Ω)

:= ‖u‖2L2(∂Ω) +

∫

∂Ω

∫

∂Ω

|u(x)− u(y)|2
|x− y|3 dσxdσy.

We also recall some known properties of the boundary layers operators, volume and initial potentials for the heat
operator. We refer to [5, 6, 12, 17, 16, 18] for more details.

Lemma 3.1. Let us consider Ω to be a bounded, open subset of R3 with a C2-boundary. Then

1. The single layer heat operator S
[
u
]
(x, t) := 1

α

∫

R

∫

∂Ω

Φ(x, t; y, τ) u(y, τ)dσydτ, maps H− 1
2
,− 1

4

(
∂Ω × R

)
→

H
1
2
, 1
4

(
∂Ω× R

)
isomorphically.

2. The following operators

1

2
I +K : H

1
2
, 1
4

(
∂Ω× R

)
→ H

1
2
, 1
4

(
∂Ω× R

)
and

1

2
I +K∗ : H− 1

2
,− 1

4

(
∂Ω× R

)
→ H− 1

2
,− 1

4

(
∂Ω× R

)

are invertible, where K and K∗ are the double layer and adjoint double layer operator, which are defined as
follows:

K
[
u
]
(x, t) := 1

α

∫

R

∫

∂Ω

Dνy
Φ(x, t; y, τ) u(y, τ)dσydτ ; K∗[u

]
(x, t) := 1

α

∫

R

∫

∂Ω

Dνx
Φ(x, t; y, τ) u(y, τ)dσydτ,

respectively.

3. Furthermore, we refer to the Newtonian heat potential associated with the source term f ∈ L2(Ω× R) as

V
[
f
]
(x, t) :=

∫ t

−∞

∫

Ω

Φ(x, t; y, τ)f(y, τ)dydτ.

(a) The Operator D
−
0 V : L2(Ω × R) → H

1
2
, 1
4

(
∂Ω × R

)
defines a linear and bounded operator, where V is

the Newtonian heat potential.

(b) The Operator D
−
ν V : L2(Ω × R) → H− 1

2
,− 1

4

(
∂Ω × R

)
defines a linear and bounded operator, where V

is the Newtonian heat potential.

4. Also, let us define the initial heat potential for f ∈ L2
(
Ω
)

as follows

I[f ](x, t) =

∫

Ω

Φ(x, t; y)f(y)dy, (3.3)

12
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(a) The initial heat operator I : L2(Ω) → H1, 1
2

(
Ω× R

)
defines a linear and bounded operator.

In the following, we describe the integral operators’ and the Sobolev spaces’ essential scaling properties. The
proofs of these properties can be obtained in a similar manner, with no essential difference, to those described in
[17, Section 7.5] where they are performed in the 2-dimensional case.

We consider a nanoparticle that is located within Ω = δB+z ⊆ R3, where B is centered at the origin and |B| ∼ 1.
Let us define the functions ϕ and ψ on ∂Ω× R and ∂B× R, respectively, using the notation below

ϕ̂(η, τ̃ ) = ϕΛ(η, τ̃ ) := ϕ(δη + z, αδ2τ̃ ), ψ̌(x, t) = ψ∨(x, t) := ψ
(x− z

δ
,
t

αδ2

)

for (x, t) ∈ ∂Ω× R and (η, τ̃ ) ∈ ∂B × R respectively. Suppose 0 < δ ≤ 1 and t := αδ2 t̃. Then, we assert the next
two lemmas, which, respectively, correspond to the used function spaces and integral operators.

Lemma 3.2. 1. for ϕ ∈ H
1
2
, 1
4

(
∂Ω× R

)
and ψ ∈ H− 1

2
,− 1

4

(
∂Ω× R

)
, we have the following scales







α
1
2 δ2
∥
∥ϕ̂
∥
∥
H

1
2
, 1
4

(
∂B×R

) ≤
∥
∥ϕ
∥
∥
H

1
2
, 1
4

(
∂Ω×R

) ≤ α
1
4 δ

3
2

∥
∥ϕ̂
∥
∥
H

1
2
, 1
4

(
∂B×R

)

α
3
4 δ

5
2

∥
∥ψ̂
∥
∥
H− 1

2
,− 1

4

(
∂B×R

) ≤
∥
∥ϕ
∥
∥
H− 1

2
,− 1

4

(
∂Ω×R

) ≤ α
1
2 δ2
∥
∥ψ̂
∥
∥
H− 1

2
,− 1

4

(
∂B×R

).
(3.4)

2. for ∂tϕ ∈ H− 1
2
,− 1

4

(
∂Ω× R

)
we have the following scales

α− 1
4 δ

1
2

∥
∥∂t̃ϕ̂

∥
∥
H− 1

2
,− 1

4

(
∂B×R

) ≤
∥
∥∂tϕ

∥
∥
H− 1

2
,− 1

4

(
∂Ω×R

) ≤ α− 1
2

∥
∥∂t̃ϕ̂

∥
∥
H− 1

2
,− 1

4

(
∂B×R

). (3.5)

3. for ϕ ∈ H1, 1
2

(
Ω× R+

)
and ψ ∈ H−1,− 1

2

(
Ω× R+

)
we have the following scales







α
1
2 δ

5
2

∥
∥ϕ̂
∥
∥
H1, 1

2

(
B×R+

) ≤
∥
∥ϕ
∥
∥
H1, 1

2

(
Ω×R+

) ≤ δ
3
2

∥
∥ϕ̂
∥
∥
H1, 1

2

(
B×R+

)

αδ
7
2

∥
∥ψ̂
∥
∥
H

−1,− 1
2

(
B×R+

) ≤
∥
∥ψ
∥
∥
H

−1,− 1
2

(
Ω×R+

) ≤ α
1
2 δ

5
2

∥
∥ψ̂
∥
∥
H

−1,− 1
2

(
B×R+

).
(3.6)

Lemma 3.3. 1. for ϕ ∈ H
1
2
, 1
4

(
∂Ω× R

)
and ψ ∈ H− 1

2
,− 1

4

(
∂Ω× R

)
, we have the following estimate

S∂Ω×R

[
ψ
]
(x, t) = δ

(
S̃∂B×R

[
ψ̂
])∨

and S−1
∂Ω×R

[
ϕ
]
(x, t) = δ−1

(
S̃−1
∂B×R

[
ϕ̂
])∨

. (3.7)

The following estimate is produced using the aforementioned estimates.

∥
∥S−1

∂Ω×R

∥
∥
L
(
H

1
2
, 1
4

(
∂Ω×R

)
,H− 1

2
,− 1

4

(
∂Ω×R

)) ≤ δ−1
∥
∥S̃−1

∂B×R

∥
∥
L
(
H

1
2
, 1
4

(
∂B×R

)
,H− 1

2
,− 1

4

(
∂B×R

)), (3.8)

where, S̃ represents the single layer operator corresponding to the fundamental solution with α := 1.

2. for ψ ∈ H− 1
2
,− 1

4

(
∂Ω× R

)
we have

α
1
2 δ3
∥
∥S̃
[
ψ̂
]∥
∥
H

1
2
, 1
4

(
∂B×R

) ≤
∥
∥S
[
ψ
]∥
∥
H

1
2
, 1
4

(
∂Ω×R

) ≤ α
1
4 δ

5
2

∥
∥S̃
[
ψ̂
]∥
∥
H

1
2
, 1
4

(
∂B×R

). (3.9)

3. for ψ ∈ L2
(
Ω× R

)
we have the following identities

{
VΩ×R

[
ψ
]
(x, t) = δ2

(
ṼB×R

[
ψ̂
])∨

α
1
2 δ4
∥
∥Ṽ
[
ψ̂
]∥
∥
H

1
2
, 1
4

(
∂B×R

) ≤
∥
∥V
[
ψ
]∥
∥
H

1
2
, 1
4

(
∂Ω×R

) ≤ α
1
4 δ

7
2

∥
∥Ṽ
[
ψ̂
]∥
∥
H

1
2
, 1
4

(
∂B×R

).
(3.10)

4. for ψ ∈ L2
(
Ω× R

)
we have the following







Dν,xVΩ×R

[
ψ
]
(x, t) = δ

(
Dν,ξṼB×R

[
ψ̂
])∨

α
3
4 δ

7
2

∥
∥Dν,ξṼ

[
ψ̂
]∥
∥
H− 1

2
,− 1

4

(
∂B×R

) ≤
∥
∥Dν,xV

[
ψ
]∥
∥
H− 1

2
,− 1

4

(
∂Ω×R

) ≤ α
1
2 δ3
∥
∥Dν,ξṼ

[
ψ̂
]∥
∥
H− 1

2
,− 1

4

(
∂B×R

).

(3.11)

5. for ψ ∈ L2
(
Ω
)

we have the following

α
1
2 δ

5
2

∥
∥Ĩ
[
ψ̂
]∥
∥
H1, 1

2

(
B×R+

) ≤
∥
∥I
[
ψ
]∥
∥
H1, 1

2

(
Ω×R+

) ≤ α
1
2 δ

3
2

∥
∥Ĩ
[
ψ̂
]∥
∥
H1, 1

2

(
B×R+

). (3.12)
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3.2 A Priori Estimate

We begin this section by recalling the following boundary integral equations on ∂Ω as a solution to (1.5), that
are derived in [17, Section 2]

[ (
1
2Id −K∗

αp

)[
D

−
ν Ui

]
(x, t) = Hαp

[
D0Ui

]
(x, t) +D

−
ν V
[
f
]
(x, t)

D
−
0 Ui(x, t) = − γm

γp

(
1
2Id +Kαp

)−1Sαp
Aext

[
D

−
0 Ui

]
(x, t) +

(
1
2Id +Kαp

)−1
D

−
0 V
[
f
]
(x, t)

]

, (3.13)

associated with the source term f :=
ω·ℑ(εp)
2πγp

|E|2χ(0,T0) and we denote H as the hyper-singular heat operator

and the Steklov-Poincaré operator by Aext. Then, using the analysis described in [17, Section 4.1], we arrive at
the following proposition, making the needed adjustments for the scaling properties indicated in Lemma 3.2 and
Lemma 3.3.

Proposition 1. The a priori estimate for the solution of boundary integral equations (3.13) is as follows:

∥
∥D

−
0 Ui

∥
∥
H

1
2
, 1
4

(
∂Ω×R

) .
ω ·ℑ(εp)

2πγp
α

1
4
p δ

2
∥
∥|E|2

∥
∥
L2

(
Ω
). (3.14)

and

∥
∥D

−
ν Ui

∥
∥
H− 1

2
,− 1

4

(
∂Ω×R

) .
ω ·ℑ(εp)

2πγp

(
α

1
4
p δ + α

1
2
p δ

3
2

)∥
∥|E|2

∥
∥
L2

(
Ω
). (3.15)

3.3 Estimation of the Heat Potential’s Dominating Term

We begin by stating the integral representation formula for the exterior heat problem in (1.5), see [17]. For
(ξ, t) ∈ R3 \ Ω× (0,T0)

Ue(ξ, t) = − γp

γm

1

αm

∫ t

0

∫

∂Ω

Φe(ξ, t; y, τ)D+
ν Ue(y, τ)dσydτ +

1

αm

∫ t

0

∫

∂Ω

D
+
νy
Φe(ξ, t; y, τ)D+

0 Ue(y, τ)dσydτ

= − γp

γm

1

αm

∫ t

0

∫

∂Ω

Φe(ξ, t; z, τ)D−
ν Ui(y, τ)dσydτ +

1

αm

∫ t

0

∫

∂Ω

D
−
νy
Φe(ξ, t; y, τ)D−

0 Ui(y, τ)dσydτ

− γp

γm

1

αm

∫ t

0

∫

∂Ω

[
Φe(ξ, t; z, τ)− Φe(ξ, t; y, τ)

]
D

−
ν Ui(y, τ)dσydτ.

Then, we recall the following approximation for Ue(ξ, t) obtained in [17, Eq. 4.54]. For (ξ, t) ∈ (R3 \ Ω)T0
and

z ∈ Ω the required formulation of the heat potential around the inserted Lorentzian nanoparticle is as follows

Ue(ξ, t) =
γp

γm

1

αm

[
ω ·ℑ(εp)

2πγp

∫ t

0

Φe(ξ, t; z, τ)dτ

∫

Ω

|E|2(y)dy + err(1) + err(2) + err(3) + err(4) + err(5)
]

, (3.16)

where,







err(1) = O
(

δ2
∥
∥D

−
ν Ui

∥
∥
H− 1

2
,− 1

4

(
∂Ω×R

)
∥
∥∇Φe(ξ, t; z, ·)

∥
∥

1
2

L2(0,t)

∥
∥∇Φe(ξ, t; z, ·)

∥
∥

1
2

H1, 1
2 (0,t)

)

err(2) := O
(

γm

γp

∥
∥D

−
0 Ui

∥
∥
H

1
2
, 1
4

(
∂Ω×R

)
∥
∥DνΦ

e(ξ, t; y, ·)
∥
∥
L2

(
∂Ω×(0,t)

)

)

,

err(3) := O
(

ω·ℑ(εp)
2πγp

α
1
2
p δ

3
2

∥
∥Φe(ξ, t; z, ·)

∥
∥
L2(0,T0)

∥
∥|E|2

∥
∥
L2

(
Ω
)

)

err(4) := O
(

α
1
4
p δ

9
4

∥
∥D

−
ν Ui

∥
∥
H− 1

2
,− 1

4

(
∂Ω×R

)
∥
∥Φe(ξ, t; z, ·)

∥
∥

1
2

H1, 1
2

(
∂Ω×R

)

√
∫ T0

0

∥
∥∂sΦe(ξ, t; z, ·)

∥
∥
L2(0,T0)

dt

)

.

err(5) := O
(

δ2
∥
∥D

−
0 Ui

∥
∥
H

1
2
, 1
4

(
∂Ω×R

)
∥
∥∂tΦ

e(ξ, t; z, ·)
∥
∥
L2(0,T0)

)

.

(3.17)

Next, to estimate the dominant term and the error terms we modify appropriately the proofs given in [17] for the
2D case. The following lemma is the 3D version of [17, Lemma 4.1]. We state it here and defer its proof until the
appendix.

Lemma 3.4. We set ϕ(v, y, t, τ) as follows:

ϕ(v, y, t, τ) :=

∫ τ

0

( αp

4π(s− τ)

) 3
2 2π|y− v|2

(s− τ)
exp

(
− αp|y − v|2

4(s− τ)

)
Φe(ξ, t; z, s)ds. (3.18)

14
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Then we have

ϕ(v, y, t, τ) − Φe(ξ, t; z, τ) = O
(
√
αp|y − v| ‖∂sΦe(ξ, t; z, ·)‖

H− 1
4 (0,t)

)

, (3.19)

for x, y such that |v − y| ≪ t and t ∈ (0,T] uniformly with respect to Ω.

Instead of using [17, Lemma 4.2], we utilize its 3D version, see Lemma 3.5 below, to derive the term err(4). The
justification of Lemma 3.5 can be found in [19, Theorem 4.1].

Lemma 3.5. Let Γ be the boundary of a bounded Lipschitz domain and Σ = ∂Ω × (0,T). For ϕ, ψ ∈ H
1
2
, 1
4 (Σ)

there holds the integration by parts formula

〈
Hϕ, ψ

〉

Σ
= α2

〈
curlΣψ,S

[
curlΣϕ

]〉

Σ
+ αb(ϕ, ψ). (3.20)

Here, the single layer boundary integral operator S is applied component-wise to the surface curl curlΣϕ := n×∇ϕ
and the bi-linear form b(·, ·) : H 1

2
, 1
4 (Σ)×H

1
2
, 1
4 (Σ) → R is defined by

b(ϕ, ψ) :=
( ∂

∂t
(D−

0 )∗
(

S[ϕn] · n
))[

ψ̃
]
:= −

〈
S[ϕn], ∂

∂t
ψn
〉

Σ
, (3.21)

for ϕ ∈ H
1
2
, 1
4 (Σ), ψ ∈ D

−
0

(

C∞
c (R2 × (0,T)

)

and ψ̃ ∈ C∞
c (R2 × (0,T) such that ψ = ψ̃Σ, and as its continuous

extension for general ψ ∈ H
1
2
, 1
4 (Σ). (D−

0 )∗ is the adjoint of the Dirichlet trace operator D
−
0 , which needs to be

understood in a distributional sense.

Using classical singularities listed in (3.1), we first note that

∥
∥∂tΦ

e(ξ, t; z, ·)
∥
∥
2

L2(0,T0)
=

∫ T0

0

|∂tΦe(ξ, t; z, τ)|2dτ

.
α2r
m

|ξ − z|10−4r

∫ T0

0

1

(t− τ)2r
dτ. (3.22)

Let us now denote K
(T0)
r := supt∈(0,T0)

∫ T0

0

1

(t− τ)2r
dt, which only make sense for r <

1

2
. Consequently, we

obtain from (3.22) and using Proposition 1 that

err(5) ∼ ω ·ℑ(εp)

2πγp
αr
mα

1
4
p δ

4
∥
∥|E|2

∥
∥
L2

(
Ω
)

1

|ξ − z|5−2r

√

K
(T0)
r . (3.23)

Again, based on the estimates (3.1), we deduce that
∥
∥Φe(ξ, t; z, ·)

∥
∥

1
2

H1, 1
2

(
∂Ω×R

) . α
r
2
m

|ξ−z|2−r

4

√

K
(T0)
r and

√
∫ T0

0

∥
∥∂sΦe(ξ, t; z, ·)

∥
∥
L2(0,T0)

dt .
α

r
2
m

|ξ − z| 52−r

4

√

S
(T0)
r , where S(T0)

r := sup
t∈(0,T0)

∫ T0

0

∫ T0

0

1

(t− τ)2r
dtdτ,

which only makes sense for r < 1. (3.24)

Therefore, we obtain that

err(4) ∼ ω ·ℑ(εp)

2πγp
αr
mα

1
4
p δ

9
4

∥
∥|E|2

∥
∥
L2

(
Ω
)

1

|ξ − z| 92−2r

4

√

K
(T0)
r S

(T0)
r . (3.25)

In a similar way, we can show that

err(3) ∼ ω ·ℑ(εp)

2πγp
αr
mα

1
2
p δ

3
2

∥
∥|E|2

∥
∥
L2

(
Ω
)

1

|ξ − z|3−2r

√

K
(T0)
r , (3.26)

err(2) ∼ ω ·ℑ(εp)

2πγp

γm

γp
αr
mα

1
4
p δ

3
∥
∥|E|2

∥
∥
L2

(
Ω
)

1

|ξ − ·|3−2r

√

K
(T0)
r , (3.27)

and

err(1) ∼ ω ·ℑ(εp)

2πγp
αr
mα

1
4
p δ

3
∥
∥|E|2

∥
∥
L2

(
Ω
)

1

|ξ − z|4−2r

√

K
(T0)
r . (3.28)
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Now, we recall that we are in regimes where

γp = γp δ
−2, ρpcp ∼ 1, and αm ∼ 1, δ ≪ 1. (3.29)

Therefore, assuming (3.29), we insert (3.23), (3.25), (3.26), (3.27), and (3.28) in (3.16) to obtain the desired
approximation for Ue(ξ, t) with ξ ∈ R3 \ Ω and z ∈ Ω such that dist(ξ,Ω) ∼ δp and therefore |ξ − z| ∼ δp + δ),
where p ∈ [0, 1)

Ue(ξ, t) =
ω ·ℑ(εp)

2παm

∫ t

0

Φe(ξ, t; z, τ)dτ

∫

Ω

|E|2(y)dy +O
(

ℑ(εp)δ
5
2
−p(3−2r)

∥
∥|E|2

∥
∥
L2

(
Ω
)

√

K
(T0)
r

)

. (3.30)

Proposition 2. We have the following a priori estimations of the electric fields.







∥
∥|E|2

∥
∥
L2(Ω)

= O
(
δ

3
2
−2h
)

for the plasmonic case,

∥
∥|E|2

∥
∥
L2(Ω)

= O
(
δ

5
2
−h
)
, for the dielectric case,

(3.31)

with h < 2.

Proof. See Section 4 for the proof.

As a result, using this a priori knowledge, we infer the followings from (3.30) considering the two scenarios:

1. Plasmonic case.

Ue(ξ, t) =
ω ·ℑ(εp)

2παm

∫ t

0

Φe(ξ, t; z, τ)dτ

∫

Ω

|E|2(y)dy +O
(

ℑ(εp)δ
4−2h−p(3−2r)

√

K
(T0)
r

)

. (3.32)

2. Dielectric case.

Ue(ξ, t) =
ω ·ℑ(εp)

2παm

∫ t

0

Φe(ξ, t; z, τ)dτ

∫

Ω

|E|2(y)dy +O
(

ℑ(εp)δ
5−h−p(3−2r)

√

K
(T0)
r

)

. (3.33)

Next, we recall the fundamental solution of the heat operator αm
∂
∂t −∆ for the three dimensional spatial space

Φe(x, t; y, τ) :=







(
αm

4π(t−τ)

) 3
2

exp
(
− αm|x−y|2

4(t−τ)

)
, t > τ

0, otherwise
(3.34)

Let us consider the following integral

J :=

∫ t

0

Φe(ξ, t; z, τ)dτ

=

∫ t

0

( αm

4π(t− τ)

) 3
2

exp
(
− αm|x− y|2

4(t− τ)

)
dτ

If we apply the change of variable m := 1
2
√
t−τ

, then it is evident that dτ = t− 1
4m2 and then dτ = 1

2m
−3dm. We

also have m3 =
(

1
4(t−τ)

) 3
2 . Consequently,

=

∫ ∞

1

2
√

t

e−αm|ξ−z|m2 × 1

2
m−3 ×

(αm

π

) 3
2

m3dm

=
1

2

(αm

π

) 3
2

∫ ∞

a

e−b m2

dm,

where we define by b := αm|ξ − z|2 and a := 1
2
√
t
. Now, we can derive that

∫ ∞

a

e−b m2

dm =

√
π

2
√
b
−

√
π

2
√
b
erf(

√
ba), (3.35)
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where, for |ξ−z| ≪ t, we have error function’s Maclaurin series as: erf(
√
ba) = 2√

π

∞∑

j=0

(−1)j(
√
ba)2j+1

j!(2j + 1)
. Therefore,

we obtain

J :=

∫ t

0

Φe(ξ, t; z, τ)dτ

=
1

2

(αm

π

) 3
2

[ √
π

2
√
b
−

√
π

2
√
b
erf(

√
ba)

]

=
αm

4π|ξ − z| −
αm

4π|ξ − z| ×
2√
π

∞∑

j=0

(−1)j(
√
ba)2j+1

j!(2j + 1)

=
αm

4π|ξ − z| +O(1). (3.36)

We consider the next two scenarios in order to justify the final asymptotic expansion described in Theorem 1.2:

1. Plasmonic Case. For the plasmonic nanoparticle, we have ℑ(εp) ∼ δh, h < 2. Then, considering the

approximation formula for

∫

Ω

|E|2(y)dy, derived in Theorem 1.1(1) and using (3.36) with the condition

r < 1
2 and 2p(1− r) < 1 we obtain the following from (3.32):

Ue(ξ, t) =
ω ·ℑ(εp)

8π2γm|ξ − z|δ
3−2h

∣
∣
∣Ein(z) ·

∫

B

ẽ(3)n0
(x)dx

∣
∣
∣

2

+







O(δ4−h−p) +O
(

δ4−h−p(3−2r)

√

K(T0)
r

)

.

O(δ7−3h−p) +O
(

δ4−h−p(3−2r)

√

K(T0)
r

)

.

2. Dielectric Case. We assume that ℑ(εp) ∼ δh−2, δ ≪ 1 and h < 2. Considering the derived approximation

formula for

∫

Ω

|E|2(y)dy in Theorem 1.1(2), estimate in (3.36), with the condition r < 1
2 and 2p(1− r) < h,

we obtain from (3.33) the following:

Ue(ξ, t) =
ω3µ2

m ·ℑ(εp)

8π2γm|ξ − z| δ
5−2h

∣
∣
∣Hin(z) ·

∫

B

ϕ̃n0
(x)dx

∣
∣
∣

2

+







O(δ3+h−p) +O
(

δ3−p(3−2r)

√

K(T0)
r

)

.

O(δ7−3h−p) +O
(

δ3−p(3−2r)

√

K(T0)
r

)

.

Therefore it completes the proof of Theorem 1.2.

4 Proof of Proposition 2

In this section, we provide an a priori estimate for
∥
∥|E|2

∥
∥
L2(Ω)

when we consider the plasmonic nanoparticle or

the dielectric nanoparticle as the source of heat. This requires that we should have the L2(R3)-regularity of the
given source term ω

2πγp
ℑ(εp)|E|2. As ℑ(ε) = 0 in R

3 \Ω, we only require the L
4(Ω)-regularity of the electric field

E. We refer to [7, Section 3.4] for more information regarding this needed regularity condition. We then consider
the two cases related to the plasmonic and dielectric nanoparticles respectively.

4.1 Plasmonic Case

To begin, let us recall the following Lippmann-Schwinger equation with the contrast parameter ς := εp(ω)− εm

E(x) + ς M(k)
[
E
]
(x)− ω2µmς N

(k)
[
E
]
(x) = Ein(x).

Now, with integration by parts and as ∇ ·E = 0, we show that M(k)
[
E
]
= ∇S(k)

[
ν ·E

]
. Consequently, we obtain

that

E(x) + ς ∇S(k)
[
ν · E

]
(x)− ω2µmς N

(k)
[
E
]
(x) = Ein(x).

By scaling the prior equation to the domain B, we arrive at the following expression:

Ẽ + ς ∇S(k)
B

[
ν · Ẽ

]
− ω2µmςδ

2
N

(k)
B

[
Ẽ
]
= Ẽin. (4.1)
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To write the closed system of equations, we need to take the Dirichlet trace of the above equations in B and use
the jump relation of the single-layer operator to get

[(
1 +

ς

2

)
I− ςK∗

B

]

(ν · Ẽ) = ω2µmςδ
2 ν · N(k)

B

[
Ẽ
]
+ ν · Ẽin

⇒
(
1 +

ς

2

)
ν · Ẽ = ςK∗

B(ν · Ẽ) + ω2µmςδ
2 ν · N(k)

B

[
Ẽ
]
+ ν · Ẽin. (4.2)

Afterward, we obtain by taking into account the H
1
2 -norm on both sides of the aforementioned equation

⇒
(
1 +

ς

2

)
∥
∥
∥ν · Ẽ

∥
∥
∥
H

1
2 (∂B)

= ς
∥
∥
∥K∗

B(ν · Ẽ)
∥
∥
∥
H

1
2 (∂B)

+ ω2µmςδ
2
∥
∥
∥ν · N(k)

B

[
Ẽ
]
∥
∥
∥
H

1
2 (∂B)

+
∥
∥
∥ν · Ẽin

∥
∥
∥
H

1
2 (∂B)

. (4.3)

Then, from the continuity of the operator K∗
B : H− 1

2 (∂B) → H
1
2 (∂B) we obtain

⇒
∥
∥
∥ν · Ẽ

∥
∥
∥
H

1
2 (∂B)

.
∣
∣

ς

1 + ς
2

∣
∣

∥
∥
∥ν · Ẽ

∥
∥
∥
H

− 1
2 (∂B)

+
ω2µmςδ

2

∣
∣1 + ς

2

∣
∣

∥
∥
∥ν · N(k)

B

[
Ẽ
]
∥
∥
∥
H

1
2 (∂B)

+
1

∣
∣1 + ς

2

∣
∣

∥
∥
∥ν · Ẽin

∥
∥
∥
H

1
2 (∂B)

. (4.4)

Now, from (4.1), we estimate the following using the estimate (2.19)

∥
∥curl E

∥
∥
L2(B)

. ω2µmςδ
2
∥
∥curl N

(k)
B

[
Ẽ
]∥
∥
L2(B)

+
∥
∥curl Ẽin

∥
∥
L2(B)

. ω2µmςδ
2
∥
∥Ẽ
∥
∥
L2(B)

+
∥
∥Ẽin

∥
∥
L2(B)

= O
(
ω2µmςδ

2−h
)
+O(1) ∼ 1. (4.5)

Therefore, we obtain the following estimate
∥
∥ν · Ẽ

∥
∥
H

− 1
2 (∂B)

.
∥
∥Ẽ
∥
∥
Hcurl(B)

.
(∥
∥Ẽ
∥
∥
2

L2(B)
+
∥
∥curl Ẽ

∥
∥
2

L2(B)

) 1
2 ∼ δ−h. (4.6)

Furthermore, inserting the estimates (4.5) and (4.6) in (4.4), taking into account (1.1), the fact that λ
(3)
n

2 is
different from 1

2 , and due to the smoothness of the Newtonian operator, we obtain

⇒
∥
∥ν · Ẽ

∥
∥
H

1
2 (∂B)

.
∣
∣

ς

1 + ς
2

∣
∣δ−h +

ω2µmςδ
2

∣
∣1 + ς

2

∣
∣

∥
∥Ẽ
∥
∥
L2(B)

+
1

∣
∣1 + ς

2

∣
∣

∥
∥Ẽin

∥
∥
L2(B)

.
∣
∣

ς

1 + ς
2

∣
∣δ−h +

ω2µmςδ
2−h

∣
∣1 + ς

2

∣
∣

+
1

∣
∣1 + ς

2

∣
∣
∼ δ−h.

Then, based on the Calderón Zygmund inequalities and the traces properties, we deduce
∥
∥Ẽ
∥
∥
H1(B)

.
∥
∥Ẽ
∥
∥
L2(B)

︸ ︷︷ ︸

∼ δ−h

+
∥
∥curl E

∥
∥
L2(B)

︸ ︷︷ ︸
∼ 1

+
∥
∥div E

∥
∥
L2(B)

︸ ︷︷ ︸
= 0

+
∥
∥ν · Ẽ

∥
∥
H

1
2 (∂B)

∼ δ−h. (4.7)

We have the following estimate based on Gagliardo-Nirenberg inequality, estimate (2.19) and using (4.7)

∥
∥Ẽ
∥
∥
L4(B)

.
∥
∥Ẽ
∥
∥

1
2

L2(B)

∥
∥Ẽ
∥
∥

1
2

H1(B)

. δ−
h
2 · δ− h

2 ∼ δ−h. (4.8)

So, using the aforementioned estimate and scaling it back to Ω, we arrive at
∥
∥E
∥
∥
L4(Ω)

∼ δ
3
4
−h.

Consequently, we derive the desired a priori estimate
∥
∥
∥|E|2

∥
∥
∥
L2(Ω)

∼ δ
3
2
−2h. (4.9)

4.2 Dielectric Case

Similar to the plasmonic situation, we consider the same equation as was derived in (4.4), recalling the fact that
for dielectric nanoparticle, we have ς ∼ δ−2, δ ≪ 1

∥
∥
∥ν · Ẽ

∥
∥
∥
H

1
2 (∂B)

.
∣
∣

ς

1 + ς
2

∣
∣

∥
∥
∥ν · Ẽ

∥
∥
∥
H

− 1
2 (∂B)

+
ω2µmςδ

2

∣
∣1 + ς

2

∣
∣

∥
∥
∥ν · N(k)

B

[
Ẽ
]
∥
∥
∥
H

1
2 (∂B)

+
1

∣
∣1 + ς

2

∣
∣

∥
∥
∥ν · Ẽin

∥
∥
∥
H

1
2 (∂B)

. (4.10)

2These eigenvalues have 1
2

as an accumulation point but they are different from it.
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Following that, we first estimate
∥
∥
∥ν · Ẽ

∥
∥
∥
H

− 1
2 (∂B)

. To accomplish that, we perform the following estimates utilizing

the estimate (2.40) and the continuity of the Newtonian potential. First, we do
∥
∥curl E

∥
∥
L2(B)

. ω2µmςδ
2
∥
∥curl N

(k)
B

[
Ẽ
]∥
∥
L2(B)

+
∥
∥curl Ẽin

∥
∥
L2(B)

. ω2µmςδ
2
∥
∥Ẽ
∥
∥
L2(B)

+
∥
∥Ẽin

∥
∥
L2(B)

= O(ω2µmδ
1−h) +O(1) ∼ 1. (4.11)

Consequently, using a priori estimate (2.40), we derive
∥
∥ν · Ẽ

∥
∥
H

− 1
2 (∂B)

.
∥
∥Ẽ
∥
∥
Hcurl(B)

.
(∥
∥Ẽ
∥
∥
2

L2(B)
+
∥
∥curl Ẽ

∥
∥
2

L2(B)

) 1
2 ∼ 1. (4.12)

Moreover, we use the estimate (4.12) and continuity of the Newtonian operator in the equation (4.10) to obtain

⇒
∥
∥ν · Ẽ

∥
∥
H

1
2 (∂B)

.
∣
∣

ς

1 + ς
2

∣
∣+

ω2µmςδ
2

∣
∣1 + ς

2

∣
∣

∥
∥Ẽ
∥
∥
L2(B)

+
1

∣
∣1 + ς

2

∣
∣

∥
∥Ẽin

∥
∥
L2(B)

.
∣
∣

ς

1 + ς
2

∣
∣+

ω2µmδ
1−h

∣
∣1 + ς

2

∣
∣

+
1

∣
∣1 + ς

2

∣
∣
∼ 1.

We then arrive to the following estimate using Calderón Zygmund inequalities and the traces properties
∥
∥Ẽ
∥
∥
H1(B)

.
∥
∥Ẽ
∥
∥
L2(B)

︸ ︷︷ ︸

∼ δ1−h

+
∥
∥curl E

∥
∥
L2(B)

︸ ︷︷ ︸

∼ 1

+
∥
∥div E

∥
∥
L2(B)

︸ ︷︷ ︸

= 0

+
∥
∥ν · Ẽ

∥
∥
H

1
2 (∂B)

︸ ︷︷ ︸
∼ 1

∼ 1.

We have the following estimate based on Gagliardo-Nirenberg inequality, estimate (2.40) and using (4.13)

∥
∥Ẽ
∥
∥
L4(B)

.
∥
∥Ẽ
∥
∥

1
2

L2(B)

∥
∥Ẽ
∥
∥

1
2

H1(B)

. δ
1
2
− h

2 · 1 ∼ δ
1
2
− h

2 . (4.13)

Thus, after scaling back to Ω, we derive from the aforementioned estimate
∥
∥E
∥
∥
L4(Ω)

∼ δ
5
4
− h

2

and hence
∥
∥
∥|E|2

∥
∥
∥
L2(Ω)

∼ δ
5
2
−h. (4.14)

5 Appendix

5.1 Proof of Lemma 3.4

Let us start with defining the Double layer heat operator K corresponding to the density Φe(ξ, t; z, ·) by

K
[
Φe(ξ, t; z, ·)

]
(y, τ)

=
1

α

∫ t

0

∫

∂Ω

α(v − y) · νy
2(τ − s)

( α

4π(τ − s)

) 3
2

exp
(α|v − y|2
4(τ − s)

)
Φe(ξ, t; z, s)dσvds

=

∫

∂Ω

(y − v) · νy
4π

1

|y− v|3
[∫ τ

0

( α

4π(τ − s)

) 3
2 2π|v − y|3

(τ − s)
exp

(
− α|v − y|2

4(τ − s)

)
Φe(ξ, t; z, s)ds

]

dσv, (5.1)

where α := αp =
ρpCp

γp
and we set

ϕ(v, y, t, τ) :=

∫ τ

0

( α

4π(τ − s)

) 3
2 2π|v− y|3

(τ − s)
exp

(
− α|v − y|2

4(τ − s)

)
Φe(ξ, t; z, s)ds. (5.2)

We then use the change of variable m :=
√
α|y−v|
2
√
τ−s

, then it follows that s = τ− α|y−v|2
4m2 and then ds = 1

2α|y−v|2m−3.

Therefore, we deduce

ϕ(v, y, t, τ) =

∫ ∞

√
α|y−v|
2
√

τ

exp(−m2)Φe
(
ξ, t; z, τ − α|y − v|2

4m2

) 2π

(τ − s)
m3 1

2
α|y − v|2m−3dm

=
4√
π

∫ ∞

√
α|y−v|
2
√

τ

exp(−m2)Φe
(
ξ, t; z, τ − α|y − v|2

4m2

)α|y − v|2
4(τ − s)

dm

=
4√
π

∫ ∞

√
α|y−v|
2
√

τ

m2exp(−m2)Φe
(
ξ, t; z, τ − α|y − v|2

4m2

)
dm.
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Now, we can show that

∫ ∞

0

m2exp(−m2)dm =

√
π

4
. Therefore, with this result, we rewrite the above equation

as follows:

ϕ(v, y, t, τ) − Φe(ξ, t; z, τ) =

∫ ∞

√
α|y−v|
2
√

τ

m2exp(−m2)

[

Φe
(
ξ, t; z, τ − α|y − v|2

4m2

)
− Φe

(
ξ, t; z, τ

)
]

dm

− 4√
π
Φe(ξ, t; z, τ)

∫
√

α|y−v|
2
√

τ

0

m2exp(−m2)dm. (5.3)

We also have

Φe(ξ, t; z, τ) =

∫ τ

t

∂sΦ
e(ξ, t; z, s)ds . ‖1‖

H
1
4 (t,τ)

‖∂sΦe(ξ, t; z, ·)‖
H− 1

4 (t,τ)

. τ
1
2 ‖∂sΦe(ξ, t; z, ·)‖

H− 1
4 (0,τ)

. (5.4)

In a similar way as before, we write the following expression

Φe
(
ξ, t; z, τ − α|y − v|2

4m2

)
− Φe

(
ξ, t; z, τ

)
=

∫ τ−α|y−v|2
4m2

τ

∂sΦ
e
(
ξ, t; z, s

)
ds.

We observe that m ≥
√
α|y−v|
2
√
τ

which implies τ − α|y−v|2
4m2 ≥ 0. Hence we get

Φe
(
ξ, t; z, τ − α|y − v|2

4m2

)
− Φe

(
ξ, t; z, τ

)
= O

(
√
α|y − v|
2m

‖∂sΦe(ξ, t; z, ·)‖
H− 1

4 (0,τ)

)
. (5.5)

Then, inserting (5.4) and (5.5) in (5.3), we obtain

ϕ(v, y, t, τ) − Φe(ξ, t; z, τ) = O
(

4√
π

∫ ∞

√
α|y−v|
2
√

τ

me
−m2

dm

√
α|y − v|

2
‖∂sΦe(ξ, t; z, ·)‖

H− 1
4 (0,τ)

)

+O
(

4√
π

∫
√

α|y−v|
2
√

τ

0

m2
e
−m2

dm τ
1
2 ‖∂sΦe(ξ, t; z, ·)‖

H− 1
4 (0,τ)

)

. (5.6)

We also have

∫ ∞

√
α|y−v|
2
√

τ

me
−m2

dm =
1

2
e
−α|y−v|2

4τ and

∫
√

α|y−v|
2
√

τ

0

m2
e
−m2

dm =

√
π

4
erf(

√
α|y − v|
2
√
τ

) − 1

2

√
α|y − v|
2
√
τ

e
−α|y−v|2

4τ , where ”erf” is the error function. Conse-

quently, with this integral identities, we derive from (5.6)

ϕ(v, y, t, τ) − Φe(ξ, t; z, τ)

= O
(

1√
π

√
α|y− v|e−

α|y−v|2
4τ ‖∂sΦe(ξ, t; z, ·)‖

H− 1
4 (0,τ)

)

+O
(

τ
1
2 erf

(
√
α|y − v|
2
√
τ

)
‖∂sΦe(ξ, t; z, ·)‖

H− 1
4 (0,τ)

)

−O
(

1√
π

√
α|y − v|e−

α|y−v|2
4τ ‖∂sΦe(ξ, t; z, ·)‖

H− 1
4 (0,τ)

)

. (5.7)

Therefore, we obtain

ϕ(v, y, t, τ) − Φe(ξ, t; z, τ) = O
(

τ
1
2 erf

(
√
α|y − v|
2
√
τ

)
‖∂sΦe(ξ, t; z, ·)‖

H− 1
4 (0,τ)

)

. (5.8)

Furthermore, considering the regime |y − v| ≪ t, and as we have error function’s Maclaurin series as: erf(a) =

2√
π

∞∑

j=0

(−1)ja2j+1

j!(2j + 1)
, we deduce

ϕ(v, y, t, τ) − Φe(ξ, t; z, τ) = O
(√
α|y − v|

)
‖∂sΦe(ξ, t; z, ·)‖

H− 1
4 (0,τ)

)
. (5.9)

The proof of Lemma 3.4 is completed.
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