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Abstract

We analyse and quantify the amount of heat generated by a nanoparticle, injected in a background medium,
while excited by incident electromagnetic waves. These nanoparticles are dispersive with electric permittivity
following the Lorentz model. The purpose is to determine the quantity of heat generated extremely close to the
nanoparticle (at a distance proportional to the radius of the nanoparticle). This study extends our previous
results, derived in the 2D TM and TE regimes, to the full Maxwell system. We show that by exciting the
medium with incident frequencies close to the Plasmonic or Dielectric resonant frequencies, we can generate
any desired amount of heat close to the injected nanoparticle while the amount of heat decreases away from it.
These results offer a wide range of potential applications in the areas of photo-thermal therapy, drug delivery,
and material science, to cite a few.

To do so, we employ time-domain integral equations and asymptotic analysis techniques to study the cor-
responding mathematical model for heat generation. This model is given by the heat equation where the body
source term comes from the modulus of the electric field generated by the used incident electromagnetic field.
Therefore, we first analyse the dominant term of this electric field by studying the full Maxwell scattering
problem in the presence of Plasmonic or All-dielectric nanoparticles. As a second step, we analyse the prop-
agation of this dominant electric field in the estimation of the heat potential. For both the electromagnetic
and parabolic models, the presence of the nanoparticles is translated into the appearance of large scales in
the contrasts for the heat-conductivity (for the parabolic model) and the permittivity (for the full Maxwell
system) between the nanoparticle and its surrounding.

Key Words: Maxwell’s Equations, Parabolic Transmission Problem, Lorentzian Nanoparticle, Plasmonic and
Dielectric Resonances.

1 Introduction and statement of the results

1.1 Motivation

It is well known that an electric laser field stimulates surface plasmons at optical frequencies on metallic nanopar-
ticles. In turn, these plasmons produce heat from the absorbed energy that diffuses away from the nanoparticles
to raise the temperature of the surrounding medium. In addition to being helpful for analyzing the principles of
nanoscale heat transport, the ability to produce point-like heat sources has the potential for various significant
uses, including medical therapy, thermal lithography, heat-assisted magnetic recording, [4, 11, 13, 14]. Over the
years, this phenomenon has been well investigated for plasmonic nanoparticles within the framework of thermo-
plasmonics, which has few practical restrictions. All-dielectric resonant nanophotonics is a new discipline of
nanophotonics that uses optically generated dielectric resonances to get over those restrictions, [3, 15]. In the
current work, we consider both types of nanoparticles based on the Lorentz model and attempt to leverage the
optical characteristics of the nanoparticles to generate the desired amount of heat around a nanoparticle. Based
on the Lorentz model, the same nanoparticle can have different properties while excited with different regimes
of incident frequencies. Let us assume that the nanoparticle is nonmagnetic, meaning that its permeability is
non-dispersive and matches with the one of a vacuum, however, its permittivity ¢, is given by the Lorentz model
which can be described as follows

2
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where wy, is the electric plasma frequency, wp is the undamped resonance frequency, ¢ is the electric damping
parameter and £, is the electric permittivity of the free space. With such a model, we have the following

characterization. If the used incident frequencies are in the band (wo, y/w2 + w2), then the nanoparticle behaves

as a Plasmonic one enjoying a proper sequence of Plasmonic resonant frequencies. But if it is excited with
incident frequencies in the band (0,wp), then it behaves as Dielectric nanoparticle which enjoy a proper sequence
of Dielectric resonant frequencies. Such a characterization is shown in Section 1.3. In addition, with such choices
of the incident frequencies, we show that the the quality factor that we define as @ := 2%;‘3
both the plasmonic and dielectric nanoparticles. This QQ-factor is proportional to the ratio between the oscillation
period of the light and its life time. This indicates how absorbing/diffusing the nanoparticle is. In the sequel, we
will choose the incident frequencies so that this Q-factor is large but not too large so that it allows the nanoparticle
to resonate at certain particular frequencies. Therefore, with such choices of incident frequencies, the nanoparticle
will enhance the exciting incident field in a similar way being it plasmonic or dielectric. As a consequence, the
nanoparticle will generate any desired amount of heat in its vicinity. Our goal is to justify these principles and
quantify the amount of heat generated by the presence of the nanoparticles in terms of their (tunable) properties.

has large values for

A first attempt to study this phenomenon goes back to [1] where the model is stated in the 2D-TE regime.
The authors estimated the heat on the surface of the nanoparticle using semi-formal arguments based on the
Laplace transform. In [17], we have reconsidered this problem using time-domain techniques and derived the heat
generated by both plasmonic and dielectric nanoparticles (in the spirit discussed above). The present work aims
to extend the conclusions of [17] by considering the full Maxwell system instead of the 2D-TM or TE regimes. The
outcome is that, indeed, using plasmonic or dielectric nanoparticle, we can estimate the heat generated very close
to it, i.e. at distances of the order of radius of the nanoparticle. The amplitude of the generated heat is given in
terms of the properties of the used nanoparticle, which can in turn be tuned to reach any desired heat potential
around it. At the mathematical analysis level, we follow the approach used in [17] using time-domain integral
equation methods coupled with asymptotic analysis techniques. Compared to [17], the challenging difficulty rises
in dealing with the full-Maxwell system.

1.2 The heat generation model using nanoparticles

In this section, we provide with the necessary mathematical framework formulations and the detailed obtained
results are stated. For a bounded domain Q C R? of class C?, the heat generation process using nanoparticles is
governed by the following parabolic transmission problem [1, 2]

pcdt — V. 4Vu = £3(e)|E[* in (R*\ Q) x (0,T),

DgufDE)'_u:() on 012, (1.2)
YD, U — yuDFu =0 on 012, '
u(x,0) =0 for x € R3,

where p = ppXq +meR3\§ is the mass density; ¢ = cpXq +cmXR3\§ is the thermal capacity; v = v, Xq +’meR3\§
is the thermal conductivity and we recall that e = e, Xq + EmXRg\ﬁ is the electric permittivity respectively. Here,
T € R is the final time of measurement. Given that the host medium is non dispersive, we define ey, = €0}, as
the relative permittivity of the host medium, which is considered to be constant and independent of the incident
wave’s frequency w. But its permittivity e, is given by the Lorentz model described in (1.1). Moreover, D,
denotes the Neumann trace and we use the notation D7 indicating D u(x, t) = limy,_o Vu(x & hry, t) - v, where
v being the outward normal vector to 2. Analogously, we indicate Doi as the interior and exterior Dirichlet trace.

The source term E is the time-harmonic electric field solution to the problem

{Curl E=iwpH inR3 (1.3)

Curl H = —iweE  in R3.

where H is the related magnetic field. Moreover, we consider the magnetic permeability of the form p =
fpXQ + pmXp2\g- We denote by pim = poeofi, to be the relative permeability of the host medium, which is
assumed to be constant and independent of the frequency w of the incident wave and ., is the magnetic perme-
ability of the free space. Next, we assume the nanoparticle to be nonmagnetic, i.e. fip = fioofil, .

By dividing the first equation by p and taking curl, we may also remove the magnetic field from the (1.3), yielding
the modified equation shown below

1
Curl —CurlE - w?*E=0 inR® (1.4)
w
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Moreover, for w € RT, we say (E, H) is radiating if it satisfies the well-known Silver-Miiller radiation condition:

lim [x|- (Hx%—,/=E) =0.
x| =00 H
We also consider (Ei*, H®) to be the incident plane wave satisfying
Ein — Eioneik Y-x and Hin -9 % Eioneik 19~x7

where the direction of wave propagation ¥ € S (unit sphere in R?), Ei* € § is the polarization vector satisfying
J-Ef? =0 and k = w,/ep is the wave number with the incidence frequency w.

Moreover, it is also assumed that the coeflicients p, s Pms Cps Cms Vp, Ym 10 be piece-wise constants with one constant
outside of 2. We also note that I(e) =0 in (R?\ Q).

Furthermore, with T fixed and u = 0 for ¢ < 0, we have U = u on R3 x (—o0, Tp), thus to analyze u € (0, Ty), it
suffices to investigate the following governing transmissions heat equations as follows:

%% — AU = 27;u—yp%(5p)|E|2X(o,To) in QxR
PmCm OUs _ e =

ym Ot A+Ue 0 inR*\ QxR L5
Dy Ui — DgUe =0 on 90 x R,

D, Ui — YmD}F U, =0 on 00 x R
where Uq(x,t) is assumed to be uniformly bounded in both variables, [12].

We set ®(x,t;y,7) equal to fundamental solution to the heat operator ad; — A in three dimensional spatial
variables as follows:

3

o 2 _ 0¢|X_Y‘2
(b(X, t,y’/r) = (47\'(t*7‘)) eXp( 4(t77-) )a t >T

0, otherwise

(1.6)

The fundamental solutions for the interior and exterior heat equation (1.5) are ®!(x,t;y,7) and ®°(x,t;y, T) re-

spectively, which depend on the variables ay, := 2 fyc" and oy, = L2,
» ™

1.3 The related regimes

To describe correctly the scales needed in the mathematical analysis, we consider the nanoparticle to be of the
form 2 = 6B + z, where § defines the size of the nanoparticle, B is centered at origin and z specifies the position
of the nanoparticle and |B| ~ 1. We also assume that the nanoparticle has the following scales regarding the
heat-related coefficients

Yo =Tp 672 ppcp~1, and ap~1, §<1. (1.7)

The next important step is to identify suitable Hilbert spaces, which in particular incorporate the Lippmann-
Schwinger equation corresponding to (1.4) and allows us to do the needed analysis. For this, we introduce the
following function spaces:

H(div, Q) := {u e (L2(Q)*: divue L2(Q)} and

3 3 1.8
H(curl, Q) := {u € (L*(Q))” : curlu € (L*(Q)) } (18)

and recall the decomposition
(L2(€))° = Ho(div, 0) & Hy(curl, 0) & VHpm, (1.9)

where

Hy(div,0) = {u € H(div, ) :divu=0in Qand u-v =0 on GQ},
Ho(curl, 0) = {u € H(curl,Q) :curlu =0in Q and u x v =0 on 89}, and (1.10)
VHarm = {u € (L)) : F g st u= Vo, o € H(Q) and Ap = 0}.
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Let us also recall the fundamental solution of the Helmholtz propagator A+k? satisfying the outgoing Sommerfeld
radiation condition at infinity G(®)(-, k), which is defined as

ciklx—yl

G(k)(x,y,k) : . (1.11)

Tarx—y "

The Magnetization operator M® from VHarm t0 VHapm and the Newtonian operator from L2(Q) to H?(Q), are
therefore defined as follows

Mg() [u](x) = V/

VGM (x,y) - u(y)dy and NS() [u] (x) == / G (x,y)u(y)dy, respectively. (1.12)
Q

Q

In particular, we indicate Mg) ) and Ng) ) as the respective operators when k = 0.
Furthermore, we recall the Lippmann-Schwinger equation satisfied by the solution of (1.4)
B+ | VEW () B3y —wPiims [ G0 nE(y)dy = ER(x), x € 9 (113)
where ¢ := £,,(w) — e is the contrast parameter and k = w,/lim €, is the wave number.
Assume now that the nanoparticle is of the form Q = 6B + z C R? which is of class C2. Then (1.13) becomes

E(%) + ¢V / VGH)(%,§) - B(§)d§ — @’ pimsd” / GU(%,7)E(¥)dy = E™(%), % € B, (1.14)
B B

where Z := *3%, E:= E(*35%) and E" = E™"(%52). In short, we write (1.14) as

E+ gMg(&)E — w2um§62Ng{6)E = Rin, (1.15)

We are interested in the quasi-static regimes where ké < 1 as compared to the size of B. Recall that Ng) and

M](30 ) are positive on the spaces Hy(div,0) and VHaym respectively. In addition, on their respective subspace,

they generate sequences of eigen-elements that we denote by ()\%1), eS}) and (/\513), ef]3)). L

We observe that

(0)
B

1. If R(s) < 0, then we can excite the eigenvalues of the Magnetization operator My’ while the ones of the

Newtonian operator N](30 ) are avoided (due to the presence of ¢§%, 6% < 1).

2. If R(s) > 0 and R(s) ~ d~2, then we can excite the eigenvalues of the Newtonian operator while the

eigenvalues of the Magnetization operator M](BO ) are avoided (due to positivity).

In both cases, the electric field will be enhanced. As the permittivity e,(w) follows the Lorentz-model stated in
(1.1), below, we show that we can choose the incident frequency w and the damping frequency ¢ so that ¢ behaves
as in one of the situations described above. In the first case, we say that the nanoparticle behaves as a plasmonic
one while in the second, it behaves as a Dielectric one.

1. If we choose the incidence frequency w and the damping frequency ¢ such that

24(3)
5 (,up/\mU €00

w? =wi + NG +O(6") and ¢w ~ §", (1.16)

(em —€00) — 1
then R(s) < 0. In addition, we have the following properties
I(ep) ~ 6" and |1 + g)\gi)| ~ o where, )\SE’)) is the eigen-value corresponding to eflgo) andh >0. (1.17)

2. If the frequency of the incidence wave w is chosen close to the undamped resonance frequency wg and the
damping frequency ¢ such that

wi —w? ~ 62 (Xn?,umwg) 1+ O(éh)} and Cw ~ 6270 (Xiﬁ)umwg)Q, (1.18)

)

then then R(s) > 0 with R(¢) ~ 672 (Xfi) ,umwQ)_1 and S(s) ~ 6h2 (Xfllo)umwg)_l, where h > 0. Conse-

quently, we have
11— w2um§52)\£10)| ~ 0" where, )\5110) is the eigen-value corresponding to eg? and h > 0. (1.19)

Since Hy(div,0) = curl (Ho(curl) N H(div, 0)), we have eg{,) = curl(py,) with v x p,, =0
and div(py,) = 0.

IThe operator Ng) also generates a sequence of eigen-elements on Hg(curl, 0) that we denote ()\[(,2) , e[(,Q)).
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1.4 The results

Now, we state the first result of this work.
Theorem 1.1. Let a nanoparticle occupy a domain Q = §B +z C R3 which is of class C2.

1. Plasmonic Case. If we choose the incidence frequency w and the undamped frequency ¢ satisfying (1.16),
and hence (1.17), we have the following approximation of the electric field with E as the solution to (1.4),
as § — 0,

1

By = 5
IRTERSYGIE

+ (1.20)

‘2 O(6*2)  for he (0,2).
O(6™*)  for he(3,2).

e ’Ei"(z) : / & (x)dx
B

2. Dielectric Case. If we choose the incidence frequency w and the undamped frequency ¢ satisfying (1.18),
and hence (1.19), we have the following approximation of the electric field with E as the solution to (1.4),
as § — 0,

W22, i i 5 0(6%) for he(0,1).
/|E| s ‘Hm(z)./ %U(X)dx‘ + (1.21)
- w2 B O™ for he(1,2).

We now state the main result of this work.

Theorem 1.2. Let a nanoparticle, occupy a domain Q = z + 6B C R? which is of class C?, be such that its
heat coefficients (pp,cp,Vp) satisfy the conditions (1.7) and vy < /7, ppCp, 0 K 1. Let § € R3\ Q such that
dist(£, Q) ~ 6P (| — z| ~ 6P +6), where p € [0,1).

1. Under the assumption of Theorem 1.1(1), then for r < %, if 2p(1 —r) < 1, the heat generated by the
plasmonic nanoparticle, as a solution to (1.5), is given by, as 6 — 0,

0(547}171;)) + O §4—h—p(B-2) KlgTo) )

. & . 2

Ue(E’t) = 8&;&63_21]‘}3""(2) . / él(]?))(x)dx‘ -+ ( )
T Ym§ — 2| B 0(57—3h—p) + 0(54—h—p(3—2r) ICETU))-

2. Under the assumption of Theorem 1.1(2) and (ep) ~ 6"72, § < 1., then forr < 1 , if 2p(1 — 1) < h, the
heat generated by the dielectric nanoparticle, as a solution to (1.5), is given by, as 5 — 0,

3+h—p 3—p(3—2r) (To)
w :U’m' (Ep) 5—2h |11in ~ 2 0(5 )+ 0(5 K )
Uel6:t) = Gramre oy O M HRG) - [ G|+

2 _
STl 7] O(37-909) + 0 (577620 c[T0).

To 1
where, ICST") = sup / ——-d7 and it makes sense if r < %
te0,10)Jo  (E—T)

We end this section with a few comments regarding the results presented in the previous theorems.

) 2 ) 2 .
1. The expressions ‘E‘“(z) . / 65130) (x)dx‘ and ’H‘“(z) . / Png (x)dx’ should be understood as Z ’Em(z)
B B

2
/ eg’))m dx‘ and Z ‘Hm / @Sli)m( )dx‘ where, for the fixed index ny, éflgo),m and &4, with eg{,)m =

curl(pn, m), span the eigen-space corresponding to the eigenvalues /\51?;) and /\5110) respectively. Observe that

the approximate expansions provided in the two theorems above make sense only if the terms |Ei(z) -

2 . 2
/Bég’)) (x)dx‘ and ’H“‘(z) : /B Pno (X)dx’ are not vanishing. In [8], it is shown that for a sphere-shaped B,

. 2 . 2
we have ’Em(z) . / égi) (x)dx’ = C'|E™(z)| with a positive constant C*. Therefore it is not vanishing.
B

2. The leading order terms in Theorem 1.2 are given by g wS(ep) 53-2h @y S(ep) 55-2h

W and ST E ] respectively.
Therefore, by selecting h close 2, the generated heat can be increased to any desired amount at a distance
of the order § from the nanoparticle while it decreases away from it. We further highlight that to adjust
the dominant terms to any desired temperature, one requires knowledge of both the surrounding medium

and optical properties of the nanoparticle. Such features are useful for the purpose of therapy using heat.
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The remaining parts of the work are structured as follows. In Sec. 2.1 and Sec. 2.2, the proofs of Theorem 1.1(1)
and Theorem 1.1(2), which deal with the asymptotic expansions of the Electric field, used to create plasmonic as
well as dielectric resonances, are provided. In Sec 3, we give the proof of Theorem 1.2, which is the main finding
of this work i.e. to provide an asymptotic expansion of the generated heat. In Sec. 4, we provide the justifications
for some claimed a priori estimates. Finally, in Appendix 5, we present a few technical estimates used in the prior
sections.

Unless specified, in this paper, we indicate ' <’ with its right-hand side multiplied by a general positive constant
by the notation ’ <.

2 Proof of Theorem 1.1

The proof is based on the Lippmann-Schwinger system of equations. First, we note that the Lippmann-Schwinger
equation stated in (1.13) consists of Newtonian and Magnetization operators. Second, as we are using Lorentzian
nanoparticles, plasmonic and dielectric resonant frequencies enable us to perform the approximations. We show
that the field corresponding to the Magnetization operator is the dominant one in equation (1.20) when we choose
the incidence frequency close to plasmonic frequency and the field corresponding to the Newtonian operator is the
dominant one in equation (1.21) when we choose the incidence frequency close to dielectric resonance. In order
to avoid confusion, we separated the proofs into Theorem 1.1(1) and Theorem 1.1(2).

2.1 Proof of Theorem 1.1(1)

In this section, we describe the asymptotic analysis of the solution to (1.4) as § — 0 when a plasmonic nanoparticle
occupy the domain 2 = 6B + z.

We begin by stating the Lippmann-Schwinger equation, given below as the solution to the electromagnetic scat-
tering problem, (1.4)

E(x) — (¢p — €m) /Q T® (x,y) - B(y)dy = E*(x), x e, (2.1)

where, T (x,y) := Hess G (x, y)+w?um G (x, y) is the corresponding dyadic Green’s function and G (x,y)
is the Green’s function for the Helmholtz Operator. Let us also denote ¢ := e, — ep.
From the definition of dyadic Green’s function, we rewrite integral equations representation

E(x) + ¢ MM [E] (x) — w?ims N® [E] (x) = E®(x), (2.2)

where, we recall the magnetization operator and the Newtonian operator

M® [E](x) = V /Q VG™M(x,y) - E(y)dy and N®[E](x)= /Q G (x,y)E(y)dy. (2.3)

Then, the magnetization as well as Newtonian potentials can be decomposed as follows

W lhm w3 p? X,y) -
1A 5] ) = MO [E] (09 + 22O 5] ) - 2288 [ Bty + L [ G0y A2 g

1
1 TRTTER .
- Loy B pess(x - v, (24)

i |
4 = G+ 1)

where A(x,y) :==(x—y)® (x —y) and
N9 E] () = 8O E]0) + 2% [ gy o L3 B [ 25)

dr 47TJ>1 G+ 1)!

Let us recall the following decomposition of the space (ILQ(Q)) into the following three sub-spaces as a direct
sum as follows:

(L2(92))” = Hy(div, 0) @ Ho(curl, 0) & VEapm, (2.6)
where we define these three sub-spaces as follows:
Hy(div,0) = {u € H(div,Q) :divu=0in Qandu-v =0on GQ},
Ho(curl, 0) = {u € H(curl,Q) :curlu =0in Q and u x v =0 on 89}, and (2.7)
VHarm = {u € (L2(2))°: Jp st u= Ve, ¢ € H(Q) and Ap = 0}.
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We also know that the Magnetization operator is self-adjoint and bounded, which satisfies the followings
M©® =0, and MO =1 (2.8)
Ho (div,0) Hp (curl,0)

2 3
From the decomposition (2.6), we deﬁne ,IP and P to be the natural projectors as follows

1 2 3
P :=1L? — Hy(div,0), P:=L? — Hy(curl,0), and P := L? — VHpm. (2.9)

We also know that the Magnetization operator M© : VHum — VHam induces a complete orthonormal ba-

sis namely (A, e”), . Also N A,y

generate complete orthonormal bases (

Ho (div,0) Hpo (curl,0)

and (/\512), 6512)) nen Of Ho(div,0) and Hy(curl, 0) respectively. Due to the scale-invariance of the magnetization
operator, we rewrite the integral representation given above in the scaled domain B to obtain

E() + ¢ MYV [E] () — w’pmed® NGV [E] (6) = B (¢). (2.10)

The aforementioned equation will be considered in each of the sub-spaces indicated in (2.7). We start with
Hy(div, 0).

1. We consider the inner-product with respect to eg ) to obtain

(E58) + oM™ [E]5800) = (E™580) + wpmss®(Ng [E];80)
As MU has vanishing property in Ho(div, 0) we obtain
(E;80) = (B 60 + wpunes® (NS [E]; ).
Consequently, we derive

H]P) HLZ Z’ Eln ~(1 ’ + w . 2 2542’ N(k&) }égl)>’2 (211)

2. Next, we consider the sub-space Hp(curl, 0) and we take the inner-product with respect to eff) to obtain

(B2 + (0 [B):6) = (B350 + oM [E]:2) + o () — 12 [B]552))

=1, we derive
Hp (curl,0)

(1+ §)(Bs ) = (B 62)) + wpumcd® (NG [E]:82) + o ( (MG — M) [E];e2).

As M](30)

Moreover, we express the above equation as follows

2 . g 1 ~in ~ 2 )*s*o* (k5) &
HP(E)HL%B):W;KE A+ et |1+<|2 Z’ (N ] €) le <|2‘ R

(2.12)

where we denote by err.? = <(M](3k6) - M]%O)) [E] ; 6512)>-

3. As a last step, we consider the sub-space VH,,,, and we take the inner-product with respect to e( ). We
then derive

(B5) + (M [E]58) = (E™56%) + w0 puancd®(Ng ™ [E];607) + o((M5” —ME") [E];6)
Then with the self-adjointness of the magnetic operator, we deduce
(1+ AP (E8Q0) = (B8 + 0 msd>(NGV[E];60) + o (MG — MY) [E];63)).

Consequently,

3 . 1 S W2 i ) %620% - ¢?
B2y = 3 s (B e+ 3 ik S ) g9 P+ 3 e 9]

11+ A2 11+ Y2 11+ A2
(2.13)

where we denote by err.; . <(M(k5) M](BO)) [E] ; ég3)>.
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Now, we use Parseval’s identity to estimate E, i.e. we write

B2 ) = ZHP iz
nin, ~ 1n = 1 nin, ~
SZKE ?egl)>| |1+§|2Z‘ (2) Zi)KE 56513)>‘2

1 + ol |2
2 2 2 24
S (3)]2 <> @2, Wihm) "8 o) 1
+;|1+§Af}3)|2‘err.n | +;I14r<|2|err'“ I TERSYRE NG (B2 (2.14)

Furthermore, from the choice of the incident frequency, based on the Lorentz model, we have the following
properties (1.17), with h > 0,

& n=
1+ @ | ~ {1 n#no (2.15)
n 1g.

Next, we estimate the following term
err. ) = ( (M — M) [E]:59)
AT (0) . iw3u? 63 ~ ~
= LT (N [E)55) - ?</E;E(n)dn;e§f’)>
5 Hess([|¢ — |)
w? i 0 / A(&n) - E(n) 1 oy £ -
+ 2 GO ) =2y 6B — — N T (jwp2s)i /—E dn; &)
3 S T ) g 3 (i (| —Geor— Bane?)
(2.16)

Using the continuity of the Newtonian operator, squaring the preceding expression, taking the series with respect
to n on both sides, we obtain

1

1
2 2 4
S 2 _ _on[(wpmd)* (wpko)o (wum5) =
> |1+§A(3)|2\err-§f’)\ S0 2h{7”EHL2(B)+7( 2 ol 74 IElZ2(8)

(wphd)® Hess(| \X*YH)

ji>3

<+oo

‘err.f)f. Consequently, after simplification, we reach the

A similar analysis follows for the term Z |1j_ E
S

following conclusions from (2.14)
1Bl s = Z 1B o

Gin |2 (W2 i) 26264 (w2t ) 2626
B ey + 2 g NS Bl llaqey + -y IBIE

IEllL2
=+ A(g A 1+ AP s oadE e
and then
(w2um)2<254) =2 1 L 1 -
(1_7 E 57 E™ + - ||E™ . (2.18)
|1+§)\5130)|2 || Hle(B) |1+§)\§3})|2H HIL,2(B) H;O |1+§)\§13)|2|| H]L2(B)

Thus, we deduce an a priori estimate using the identity (2.15)

[E]l 2y ~ 627" forh<2. (2.19)

Next, we use the above derived a priori estimate to clarify the exact dominant term of the formulation (2.14).
We know that the following mean vanishing integral properties are satisfied by the eigenfunctions e( D for j j=1,2:

/ el (x)dx = 0. (2.20)
B
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Thereafter, we do the following estimate using Taylor’s expansion
] Finy |2 min, ~(j 2
[P(E )||IL2(B) = Z (B ;eg)>|
. . 2
B IR
—~1JB
.. _ 2
=Y |- / o) (x| +O(F?). (2.21)
- B

=0, (2.20)

Jo.,
Therefore, we have shown that HIP’(E‘“)HLZ(B) ~ § for j = 1,2. Then, based on the a priori estimate (2.19), we
deduce that

¢? (3)]2 4—4h
Z m |err.n | ~ 6 . (222)
In a similar way, we can show that
2
3 |1i B lerr.)|” ~ 5i=ib, (2.23)
S

Moreover, we rewrite the expression (2.14) using (2.21), (2.22), (2.23) as follows:

- 1 P 2 S 2 1 S 9 .
/B|E|2(77)d77:7)‘<E ;egi)>| +Z ‘<E ;6513)>| +;|1+§|2‘<E ;eg2)>| +(9(54 4h)'

1+ oA o L A2
(2.24)
in, ~ 2 in. in ~
Now, as Z T —o, [(E";8()|" ~ 1 and (E™;&( )>]L2(B) u™(z) - / & (x)dx + O(5), we deduce that
n#ng S | B
2 L o O(5*2) for he(0,3).
[EF(y)dy = ———57=0"|E™(2) - | & (x)dx| +
(32 0
° L+ Ao | B O(5™™) for he(Z,2).

The proof of Theorem 1.1(1) is completed.

2.2 Proof of Theorem 1.1(2)

In a similar way as for to the plasmonic case, we show the asymptotic analysis of the solution to (1.4) as 6 — 0
when a dielectric nanoparticle occupy the domain Q2 = 6B + z.

We begin by recalling that for dielectric nanoparticle the contrast parameter ¢ := e, — &, behaves as 672, § < 1.
Then, we start from Lippmann-Schwinger system of equation in the scaled domain B

= k&) [ k6) [ Sin
B(€) +< My [E](€) — w’umsd® N [E] () = E™ (). (2.25)
Similarly to the plasmonic situation, we project the scaled equation (2.25) with respect to the eigen-functions e(J)

for j = 1,2, 3, in each of the sub-spaces mentioned in (2.7).

1. As, M(k) is vanishing in Hy(div, 0) and N(O) induces an eigen-system (Xfll),éfll))neN, we rewrite (2.25) after
taking an inner product with respect to e( ) as follows:
(1 — wums8? A (E; 60) = (B 6(0) 4 w?umed?(NS?) — NY[E]; (D). (2.26)

Then, using the expression (2.5) in (2.26), we deduce the following after taking a modulus

in. ~(1) 2“"/““6 /” s
(B 80)] + s 22| BE(n)dn,en )|

W2 62 (zwu i
m m _ E 1)
sy (m /H nP Bl )| |

i>1

1

Bie(l)| - :
|< € >| ’1—W2Mm§52)\511)’

(2.27)
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Moreover, we know that VHaym is orthogonal to each of the subspace Hy(div,0) and Hy(curl,0). Addi-
tionally, we have / égl)(x)dx = 0 as the identity matrix I € VHarm. Consequently, we obtain
B

||P HM(B) § :|<E;éf]1)> ’
1 - 2 1 - 2
in, x(1) 4—2h A L&D
N Z ‘<E 1 €n >| +9 §n : ‘ j§>1: Ar(j + 1)!</B | nl'E(n)dn; &, >’

1 — w2l 52/\(1)|

1 Rin, —2h||F
<Z 3| (B &) + 612 || L,

2.28
|17w hm 52/\(1)| (2.28)

B)

2. Next, we consider the equation (2.25) in Hy(curl, 0) and we take inner product with respect to &% in the
scaled domain B to obtain

(E;82) + o(MEV [E];62) — wumsd?(NGD [E];:62)) = (Ein;6@). (2.29)

The adjoint operators of the Magnetization and Newtonian potentials are then taken into account, and they

are M](;ké) and Ngk respectively. We then pass the adjoint operator with respect to eg ) to derive

(B;8@) + (B MG ™ (6)) — w2 pmed?(B; NG (52))) = (B 52)). (2.30)
First, we note that M( ka)( @ )=-VV. N(fka)( (2)) Then from the 1dent1ty VV :-u= (A +curl curl )u

and as e ¢ Hy(curl, 0), we have Mgka) (eg)) =w Mm(SQN% ka)( 512)) a2, Consequently, (2.30) becomes

<E; 6512)> <E1n ~(2)>

1+¢
As, E™ € Hy(div) which is equal to Ho(div, 0) @ VHarm, orthogonal to Hy(curl, 0), we deduce

By = S (s =0, (2:31)

3. We then consider the sub-space VH,;,, and we take the inner-product with respect to eflg) to write the

equation (2.25) as follows

(B0 + (M) [B]; &) = (B &0) + 020 (NG [B]:669) + (6 — 1Y) [E]:269).

We know that the magnetization potential is self-adjoint and induces an eigen-system (,\Sf’),egg))neN in
VHarm-, we deduce from the previous expression
(1 4+ AB (E;8®)) = (B 6®) 4+ w?pineo? (NG [E];60)) +<<(M§“‘> — M) [E];ég3>>. (2.32)
Furthermore, using the expression for Ng{) in (2.21), we deduce
Iy = 3 s ) 3 Ll S prwort? 13— o
L2(B) - |1+§)\513)|2 11+ )\3)|2 11+ )\3)|2
(2.33)
where we denote by Error(2) <N(k6) [ ] 6513)> and Errorg‘o’) = <(Mg6) — M](BO)) [E] ; éﬁf’)>.
In a similar way as (2.17), we obtain that
2 3 3 5\6 3 s\4
S 32 « (wpmd)* 4 wnd)” e o (wphd)® | = o
Z mmrrorn " < 7HEHL2 WHEHI{P(B) + T”E”LZ(B)
Hess(|[x - y[I’)
(w,um
2. dde. (2.34)
( L ; G+ 1

<+oo

10
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Now, we estimate Error( ) as follows

Errorg)

- (N )
2 m5 ~ <3 ?ﬂé‘B ~ _ 1 . 2 J+1
= Lm0 (N [E]s ) - 2 [ E(n)dn;e53>>+ﬂz% L=l Eane®).

j=1

We then use the Continuity of the Newtonian operator to obtain the following

(w? pm ) 263 (w,um (w,um
Z W‘E”OI‘@)‘ 7||E||]L2(B) + ﬁ”E”LZ(B)

(‘”(“‘“ Bl > [ [ ( "J‘J’ )dydx (2.35)

j>1

<+oo

Consequently, inserting (2.34) and (2.35) in (2.33), we deduce
3 . o 8 .o .
PE|a 5y = 0 [PE™)|La ) + 5 1ElE2s)- (2.36)

Thus, using (2.28), (2.31) and (2.36) into the following Parseval’s identity, we deduce

Bl s, = Z G-

1 1 . 2 _ 5
_ in. ~(1) in, x(1) 2 2 ¢4—2h
- w2 <52X(1o)|2‘<E &) ; 11— w2y <52X(1)\2’<E ) ) 0B
m n n#ng m n
3 .
+ 0| P(E™) H]?P(B) (2.37)
or
| (226 (B2 < 1 inc )Y 4 LI Ein s (2,38
(1 (@ hm) ) H]L2(B) ~ 7w2um§52>\%)‘2’< €no H;O I —wQ;ng52)\f]1)|2‘< &))" (2:38)
We also have
<Ei“;éf]?> = <Ei“; curl(@n,)) = <curl(Ei“); Png) = iwum5<ﬁi“; Pro ) (2.39)

where, we write é%) = curl(gy,) as éfl{)) € Hy(div,0) = curl (Ho(curl) N H(div, 0))

Thus, we have the following a priori estimate for the electric field E when a dielectric nanoparticle occupy the
domain 2 =0B+z, § <« 1

B2 ~ 6272 forh < 2. (2.40)
Thus, utilizing the estimate (2.40) and the identity (2.39) we deduce from (2.37)

0(6°%) for he (0,1).

, w22 slent 2
BRIy = —— i) [ g, God] o+
Q |1 — w2pumsd? Ay | B O(627*) for he (1,2).

The proof of Theorem 1.1(2) is completed.

3 Proof of Theorem 1.2

This section describes the asymptotic analysis of the solution to (1.5) as § — 0 when a Lorentzian nanoparticle
occupy a bounded domain © = z + §B.

11
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3.1 Mathematical Preliminaries

We start this section by recalling the following classical singular estimates for the fundamental solution ®(x, t;y, 7) :

’fb(x,t;y,T) < oL or<3

N —7)" [x—y[?- 27 29

IGXZKI)(X,t;y,T) < o1 r<l i=1,2

~ {—7) [x—y[F 20 2

|Duq)(xvt;YaT>| 5 ( o

1
t—7)" x—y[3- 2>

< 3, for x,y € 0Q, (3.1)

1 r 1

0:®(x, 85y, 7)| S oy oy T <3

1 r
0} 800, 19,7)| § b, 7 <3

~ (t_.r)r |X_y‘4—2r) 29

for 0 <7<t < T andx,y € R with x # y. It will be important to work in the environment of the anisotropic
11
Sobolev spaces for our problem. We use Hz'% to denote the Hilbert space

=

H

N

1= L2(R; H2 (R%)) N HT (R; L2(R%)),

with the associated norm

=

ulli 4 =l o o) + it o)
HE (RY)) HT (RiL2(R?))

Analogously, we define, for 9Q C R3, the following norm

fJu(, HL2
2 (99)
||U||H2 i 6Q><]R /” ||H2(6Q) // t—7‘| dtdr, (3,2)

where

2 x) —u(y)[?
u + doydo
H HH2(BQ) H HL2(6Q) /6( /6Q |X—y|3 y:

We also recall some known properties of the boundary layers operators, volume and initial potentials for the heat
operator. We refer to [5, 6, 12, 17, 16, 18] for more details.

Lemma 3.1. Let us consider Q to be a bounded, open subset of R® with a C?-boundary. Then

1. The single layer heat operator S[ // (x,t;y,7) u(y, 7)doydr, maps H 21 (8(2 X R) —
o
Hz'1 (8(2 X R) 1somorphically.

2. The following operators

vk HEY (00 x R) > HYY (99 x R) and %I FICHTE (90 x R) — H 271 (90 x R)

2
are invertible, where IC and K* are the double layer and adjoint double layer operator, which are defined as
follows:
IC[u] (x,t) := é// D, ®(x,t;y,7) u(y, 7)doydr ; K* [u] (x,t) := é/ D, o(x,t;y,7) uly, 7)doydr,
R JoQ R JoQ
respectively.

3. Furthermore, we refer to the Newtonian heat potential associated with the source term f € L2(Q x R) as

1 t) = /_ too /Q B(x, by, 7) f (v, 7)dydr.

(a) The Operator DgV : L2(Q x R) — Hz-i (092 x R) defines a linear and bounded operator, where V is
the Newtonian heat potential.

(b) The Operator D,V : L2(Q2 x R) — H™ 24 (092 x R) defines a linear and bounded operator, where V
is the Newtonian heat potential.

4. Also, let us define the initial heat potential for f € L? (Q) as follows
11716, 0) = | @ ti) F5)dy, (33)

12
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(a) The initial heat operator 1: L2(2) — Hb= 2 (Q x R) defines a linear and bounded operator.

In the following, we describe the integral operators’ and the Sobolev spaces’ essential scaling properties. The
proofs of these properties can be obtained in a similar manner, with no essential difference, to those described in
[17, Section 7.5] where they are performed in the 2-dimensional case.

We consider a nanoparticle that is located within Q = §B +z C R3, where B is centered at the origin and |B| ~ 1.
Let us define the functions ¢ and ¥ on 92 x R and B x R, respectively, using the notation below

b 7) = N0, 7) = g0+ 7,00%), Pt) =9V o t) = (L )

for (x,t) € 90 x R and (n,7) € OB x R respectively. Suppose 0 < § < 1 and ¢ := ad?t. Then, we assert the next
two lemmas, which, respectively, correspond to the used function spaces and integral operators.

Lemma 3.2. 1. for ¢ € Hz 7 (GQ X R) and P € H 21 (GQ X R), we have the following scales

O‘Z&QH(‘DH 1 (9BxR) s H(‘DHH2 1 (00xR) <aigs]|p H? T (9BxR) (3.4)
CELE Hd}” ~371 (0BxR) < HSDHH*%’*i(anR) < a2 8%||4 H™ 3~ (9BxR)’ .
2. for Owp € H 21 (8(2 X R) we have the following scales
OF%(S%H&A H™ 21 (9BxR) = Hat@HH*%’*i(anR) = OF%H&A H™ 274 (9BxR)’ (3.5)
3. for o€ H 2 2(QxRy) andp € H 172 (Q x Ry) we have the following scales
63 < 63|
08l ) = [t (o) S5 160t () o
ag? HZ/}HH*I’*%(BAL) < Hw||H71’7%(QXR+) < azizjy H V73 (BxRy )
Lemma 3.3. 1. forp e H Hz %(GQ X R) and Y € H 21 (GQ X R), we have the following estimate
Soaxr [0] (x,t) = 6(Somxr [V1]) " and Syd .z 0] (x,t) = 67 (S5h = [2]) (3.7)
The following estimate is produced using the aforementioned estimates.
HS@inXRHz:(H%’% (90xR).H™2 "1 (00xR)) < 671||S§§><RHL(H%’% (9BxR),H"2~% (9BxR))’ (38)
where, S represents the single layer operator corresponding to the fundamental solution with o := 1.
2. for € H 21 (GQ X R) we have
S [B]1.4 (o) = ISt (o) = @02 UISION 3 4 (o) (3.9)
3. for ¥ € L2(Q x R) we have the following identities
Voxe[](x,) = 6 (Ve [9]) (3.10)
1 ~T e LTy T7 .
20| V[¥] s 4 (omum) < IVt 4 (o) < @02 IVt 4 (omnr):
4. for ¥ € L?(Q x R) we have the following
D, Vaxz [¢)](x,t) = 6 (Du,eVexr[¥])
3.7 ~ 1 <
@103 [DueV[U] -1 (opxr) < Do 4-1-4 (oaxg) < @7 IPueV[¥]ll5-1-1 (o5xr)-
(3.11)
5. for € L2 (Q) we have the following
AT ) < I ) < A8 IEE] g ) 312

13
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3.2 A Priori Estimate

We begin this section by recalling the following boundary integral equations on 92 as a solution to (1.5), that
are derived in [17, Section 2]

(31a — K5,) [Dy Uil (x, 1) = Ha, [DoUi] (x, 1) + D V[ ] (x, ) (3.13)
Dy Ui(x,6) = —2 (4a + Ka) 'S0, A% Dy UJ(x.0) + (s +Ko) DV (x.0) -
associated with the source term f := w;ffp) |E|2X(0 To) and we denote H as the hyper-singular heat operator

and the Steklov-Poincaré operator by A®**. Then, using the analysis described in [17, Section 4.1], we arrive at
the following proposition, making the needed adjustments for the scaling properties indicated in Lemma 3.2 and
Lemma 3.3.

Proposition 1. The a priori estimate for the solution of boundary integral equations (3.13) is as follows:

_ w- (e 1
Do UiHH%’i(anR) 571’ ag °[|[E] H r2(0)’ (3.14)
and
— w-S(ep), 1 1.3
||Dy UiHH’%”%({)QXR) ,S T’ypp(aff5+ ap53)|||E|2||L2(Q). (315)

3.3 Estimation of the Heat Potential’s Dominating Term

We begin by stating the integral representation formula for the exterior heat problem in (1.5), see [17]. For
(§,1) € R?\ Q x (0, To)

Ue (€, 1)

/ / (&, t;y, T)DI Uely, T)doydr + —/ D} ®°(¢,t; v, 7)DF Ue(y, 7)doy dr
%n Qm Y] 0

= / / e (¢, t;2,7)D,, Ui(y, )daydT—i——/ D, ®°(&, t;y, 7)Dg Ui(y, 7)doydr
’Ym Om o0 o0

/ / &, t;z,T) — e(&,t;y,T)]D;Ui(y,T)dJydT.
%n Qm a0

Then, we recall the following approximation for Ue(£,t) obtained in [17, Eq. 4.54]. For (¢,t) € (R?\ Q)p, and
z € ) the required formulation of the heat potential around the inserted Lorentzian nanoparticle is as follows

EL[&(%)

Ym COm

t
Ue(,t) = / (&, b2, T dT/ |E[2(y)dy + err™ + err® + err® + err® + err(f’)}7 (3.16)

27Yp 0

where,
@(52HD—U~H e [797E 8 0 )
Hi 1 (00xK) HD”(I)e(g’ &Y, ')HLZ (902x(0,1)) ) ’

2260 053 | 0°(6. 2.1, 1BP, (9))

3o [ 109065 )

|0, @

D5 Uil

HZ: i(a(zXR)‘ Z")HLZ(O,TU)

(3.17)

Next, to estimate the dominant term and the error terms we modify appropriately the proofs given in [17] for the
2D case. The following lemma is the 3D version of [17, Lemma 4.1]. We state it here and defer its proof until the
appendix.

Lemma 3.4. We set p(v,y,t,7) as follows:

o(v,y,t,7) = /OT (47T((:Ii T))§ QTLY_T‘)’| emp( — %)@e(f,t;z,s)ds. (3.18)

14
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Then we have
vy.t7) = 05(e 12, 7) = O Vaply — vl 10856 62, 4, ) (3.19)
for x,y such that |v —y| < t and t € (0, T] uniformly with respect to Q.

Instead of using [17, Lemma 4.2], we utilize its 3D version, see Lemma 3.5 below, to derive the term err®. The
justification of Lemma 3.5 can be found in [19, Theorem 4.1].

Lemma 3.5. Let T' be the boundary of a bounded Lipschitz domain and ¥ = 9Q x (0, T). For ¢, € H%’%(E)
there holds the integration by parts formula

(Hep, 1/)>E = 042<C’U,’I‘l2’(/}, S|eurlsy] >z: + ab(p, ). (3.20)

Here, the single layer boundary integral operator S is applied component-wise to the surface curl curlsp :=nx Ve
11 11
and the bi-linear form b(-,-) : H2'1(X) x H2°1(X) — R is defined by

- ~ 3}
b 0) = (o (D5)" (Slen) ) ) [9] = —(STen), —-m)., (3.21)
for o € H23(%),¢ € Dy (CSO(RQ X (O,T)) and 1 € C2(R? x (0,T) such that ¢ = s, and as its continuous

extension for general ¥ € H%&(E). (Dg )* is the adjoint of the Dirichlet trace operator Dq , which needs to be
understood in a distributional sense.

Using classical singularities listed in (3.1), we first note that

To
Hat E tyza' HLQ(O To) /0 |atq)e(€at;za7-)|2d7-

afrf To 1
< |§—z|10—4r/0 e (3.22)
T To 1 1
Let us now denote KS - SUD¢e (0, Ty) / Wdt’ which only make sense for r < 3 Consequently, we
El 0 — T I
obtain from (3.22) and using Proposition 1 that
6w (€p) 4 1 + /1 (To)
err 2T 45 [iely HL2 ()] = z[p—= Ke o (3.23)
. . . 3 aél 4/1-(To)
Again, based on the estimates (3.1), we deduce that H@e(f,t,z, -)HHL% (00xR) N = VKo 7 and

% (To) (To) To pTo
/ [0s@2 (&, 65 2, )| 2 .1y B S S VS, where S{T ;tesgpfo)/ / = 2rdtd7

which only makes sense forr < 1. (3.24)

Therefore, we obtain that

1
ere® ~ LEC o (BB ) o VRIS (3.25)
27mp —2r

AT
In a similar way, we can show that

orr® L W (Ep) 1
27r'y

5 B o) = V™ (3.26)

err® ~ 2 >p) S(ep) 7}/—mafn g |||E| || |3 5V K(TO) (3.27)
p

27,

and

1 1
erxt) v L2 o 089 o) g VK (3.28)

15
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Now, we recall that we are in regimes where
Yo = Tp 5% ppcp~1, and am~1, <1 (3.29)

Therefore, assuming (3.29), we insert (3.23), (3.25), (3.26), (3.27), and (3.28) in (3.16) to obtain the desired
approximation for Ue(£,t) with € € R3\ © and z € Q such that dist(¢, Q) ~ 67 and therefore |£ — 2| ~ 0P + §),
where p € [0,1)

w - S(ep)

¢
Ue(é,t) = /0 @e(f,t;z,T)dT/Q|E|2(y)dy+(’)(%(Ep)(sg—p@—%)

P, (@) K£T°>). (3.30)

2T o0y

Proposition 2. We have the following a priori estimations of the electric fields.

H|E|2HL2(Q) = (9(6%_2}1) for the plasmonic case,

; (3.31)
H|E|2HL2(Q) = 0(627"), for the dielectric case,
with h < 2.
Proof. See Section 4 for the proof. O
As a result, using this a priori knowledge, we infer the followings from (3.30) considering the two scenarios:
1. Plasmonic case.
w - S(ep) ! e 2 4—2h—p(3—2r) (To)
Vel t) = 52582 [ @%(g iz, m)dr | B (y)dy +O(S(e,)6" 2 k(™). (3.32)
m Jo Q

2. Dielectric case.

~ t
Uee.t) = 220 [as(etizmr [ [P0y +O(S()s O KIY) @)
0 Q

2mo,

Next, we recall the fundamental solution of the heat operator am% — A for the three dimensional spatial space

Qm 2 _o¢m|x—y\2
O(x, by, 7) = (4,,@,7)) exp(~ =), t>7

(3.34)
0, otherwise

Let us consider the following integral

t

J::/Q)(&tZT)dT
0
t 3 2
Qi ) 2 am|x — v
= —— ) exp(— ——)dr
[ ) - S0

If we apply the change of variable m := 2\/%, then it is evident that dr =t — ﬁ and then dr = %m_3dm. We

3
also have m® = (ﬁ) 2 . Consequently,

° | | 2 1 (0%
= e~ mlE—zlm™ o 273 (—m) m3dm
. 2 s
1 Oy % & —bm?
=5 [ am,
a

where we define by b := ap,|¢€ — z|> and a := 2%/{ Now, we can derive that

T b —ﬁ—ﬁer a
/a i = Y~ VetV (3.35)

16
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> b 2j+1
where, for | —z| < t, we have error function’s Maclaurin series as: erf(v/ba) = % JZ e +a1) . Therefore,
we obtain
t
J:= / De(&,t; 7, 7)dT
0
1, am.3
= _(a_) P VT VT erf(v/ba)
2%V 7 2Vb  2vb
™ 2 i ba)QJ"’1
 A4r|¢ — g 47r|§—z| 7rJ 2J+1
Om
40 3.36
= e o (3:30)

We consider the next two scenarios in order to justify the final asymptotic expansion described in Theorem 1.2:

1. Plasmonic Case. For the plasmonic nanoparticle, we have S(ep) ~ 6P, h < 2. Then, considering the
approximation formula for / |E|?(y)dy, derived in Theorem 1.1(1) and using (3.36) with the condition
Q
r < 1 and 2p(1 — 1) < 1 we obtain the following from (3.32):

0(54_h_p) + 0(64—h—p(3—2r) K:ETO))

(9(57 3h— p)+(9<54 h—p(3—2r) \//C(To)

2. Dielectric Case. We assume that S(ep) ~ o"=2 5§ <« 1 and h < 2. Considering the derived approximation

w - S(ep) —2h|ping y . [ x(3) 2
Ue(§,t) = 787727m|£p—z|53 2 ’E (z) /Beni (X)dX’ +

formula for / |E|*(y)dy in Theorem 1.1(2), estimate in (3.36), with the condition r < % and 2p(1 —1) <,
Q
we obtain from (3.33) the following:

+

}2 0(53+h7p) + (9(53*13(37204 /ICgTO))'

Ue(f, ) _ "‘8] :U/m- (Ep)55 2h}H1n( ) / (ﬁno(X)dX
w2 Ym |§ - Z| B 0(67_3h_p) + 0(63_p(3_2r) K:ETO))

Therefore it completes the proof of Theorem 1.2.

4 Proof of Proposition 2

In this section, we provide an a priori estimate for || |E|2||]L2 when we consider the plasmonic nanoparticle or

(@)
the dielectric nanoparticle as the source of heat. This requires that we should have the L?(R3)-regularity of the
given source term ﬁ%(spﬂEP. As S(e) = 0in R?\ Q, we only require the L*(Q)-regularity of the electric field
E. We refer to [7, Section 3.4] for more information regarding this needed regularity condition. We then consider
the two cases related to the plasmonic and dielectric nanoparticles respectively.

4.1 Plasmonic Case

To begin, let us recall the following Lippmann-Schwinger equation with the contrast parameter ¢ := ep(w) — em
E(x) + ¢ M® [E](x) — w?tims N [E](x) = E'"(x).

Now, with integration by parts and as V - E = 0, we show that M®) [E} =vsk [V . E] Consequently, we obtain
that

B(x) +< VS® [1- E] (x) — w?ptms N® [E] (x) = B (x).
By scaling the prior equation to the domain B, we arrive at the following expression:

E+¢ VS](Bk) v E] — W sd? Ng() [E] = En, (4.1)
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To write the closed system of equations, we need to take the Dirichlet trace of the above equations in B and use
the jump relation of the single-layer operator to get

{(1+2) CICB}(V E)_w Mm§62V N( )[ ]+l/ Ein

= (1—|— 2)1/ E—glCB(Z/ E)—l—w 2 lmsd? v - Nk )[ }—l—y Ein, (4.2)

Afterward, we obtain by taking into account the H2-norm on both sides of the aforementioned equation

E T _ * T 2 2 .(k)~‘ ".~in
= (1+ 2)HV E‘ H? (9B) CHKB(V E)HH%(aB) W hmsd HV Ny~ [E] H? (9B) v B H2 (8B) (43)
Then, from the continuity of the operator K : H™ % (9B) — H2 (9B) we obtain
. . w? s 0” (1) 15 =
. < . - . [ — D
= HV EHH%(@B) ~ ’1+ %’ ‘V EH]HT%(BB) |1+ 5] HV N [E]‘H%(aB) * |1+ 5 v H? (0B) (44)
Now, from (4.1), we estimate the following using the estimate (2.19)
lewrl B s ) < st [Jeurd N [B][| s ) + [lourl B2 .
< i e + [y = O ™) + 0D ~ 1 w
Therefore, we obtain the following estimate
HV EHH*E (6B) ™~ H | Heur1(B)
< (||EHL2(B) + [|curl EHLZ(B)) ~5h (4.6)

Furthermore, inserting the estimates (4.5) and (4.6) in (4.4), taking into account (1.1), the fact that AD) 2
different from 2 5, and due to the smoothness of the Newtonian operator, we obtain

n . wiumed?

= Bllgt oy % 7517+ 5T Bl + g ¥ v
b, @Hmsd 1 “h
~ 57"
’1+<’ " |1+ 5] +|1+§|

Then, based on the Calderén Zygmund inequalities and the traces properties, we deduce

HEHHl(B) < HEHLZ(B)+chr1EHL2(B)+Hdiv EHLZ +Hu EHHZ(E)B ~§7h (4.7)
——

~§-h ~1 =0

We have the following estimate based on Gagliardo-Nirenberg inequality, estimate (2.19) and using (4.7)

Ellamy < BN ) [l m)
<57E.5E TR (4.8)

So, using the aforementioned estimate and scaling it back to €2, we arrive at

3—h
HE||IL4(Q) ~ 0T
Consequently, we derive the desired a priori estimate
H|E|2‘ ~ 53, (4.9)
L2(Q)

4.2 Dielectric Case

Similar to the plasmonic situation, we consider the same equation as was derived in (4.4), recalling the fact that
for dielectric nanoparticle, we have ¢ ~ 572, § < 1

V.Eln

2 2
‘ ~H W? U, SO H” (k)[EH (4.10)

Sl—=1| )
B Z@0B) |1+ 3]

B
H” 1+5

1 T 1 .
H? (9B) HE(@B) |14 % HZ (B)

2These eigenvalues have % as an accumulation point but they are different from it.
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Following that, we first estimate HV . EH }om)’ To accomplish that, we perform the following estimates utilizing
H™ 2 (5B
the estimate (2.40) and the continuity of the Newtonian potential. First, we do

fevurt B[ 5, S w502 curt NG E] g+ flurt 2]

S O ums? B oy + 1E™ |2y = O@?pmd ™) + O(1) ~ 1. (4.11)

Consequently, using a priori estimate (2.40), we derive
17 Ell g5 o) S 1Elte)
l
< (||EH]2L2(B) + [|curl EHLZ(B)) ~1. (4.12)
Moreover, we use the estimate (4.12) and continuity of the Newtonian operator in the equation (4.10) to obtain
I w2:um§52 o in
= ||V'E||H%(3B) S |1 + %| ‘1 + %’ HEHLZ(B) ’1 + s ’HE HM(B)
2 1—h
<1_S w2y 0 1 o1
T T T
We then arrive to the following estimate using Calderén Zygmund inequalities and the traces properties
Bl gy S 1oy + llewrd Bl oy + [|div Bl o) + [ Ell gy ) ~ 1
~ §1-h ~1 =0 ~1

We have the following estimate based on Gagliardo-Nirenberg inequality, estimate (2.40) and using (4.13)

~ ~ 1 ~ L
1Ellys ey S 1Bl Bl s

<5§*5 1~6273, (4.13)
Thus, after scaling back to €2, we derive from the aforementioned estimate
HEHL4(Q) ~ o173
and hence
H|E|2‘ o ~ 53D, (4.14)

5 Appendix

5.1 Proof of Lemma 3.4
Let us start with defining the Double layer heat operator K corresponding to the density ®°(&,t;2,-) b

K[®°(€, b2, )] (v, ) |
//asz (1 —3s) y(47r(Ta—s))Eexp(H)‘PQ(ét;Z,S)dovds

y— V) bty T o 22nlv —yl|? alv—y2 .
:/BQ( 473 |ij|3 {/0 (4W(77S)) 2(|TS;3)’| exp(—H)‘P (&, t;2,8)ds| doy, (5.1)

c
where a := a;, = 22=2 and we set
P

i « $omlv —y|? alv —y|?
Y T) = ( ) _ VT e (e, t: 2, 5)ds. 5.2
ctevte) = [ (i) T exp(— G #e6 s (52)
We then use the change of variable m := ‘QF\/‘LV‘ then it follows that s = 7— O"Z—Vl and then ds = aly —v[*m™3
Therefore, we deduce
e —v]2, 2 1
@(Vayath) = /\/E‘y7v‘ exp(—mQ)q)e(§7t’Z,7— |};m2V| )(Tfs)m3§a|yiv|2m73dm

4 /°° aly —v|?, aly — v|?
= exp( )(I)e (&7 32, T — 2 )
N3 \/Ezwy\/:—v\ 4m 4(1 —s)

4 [ 2
= 7 /\F\ ‘ m2exp(—m2)¢e(£,t;z,7 — Ly 2V| )dm
T ) Valy—v

4m

dm
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™
Now, we can show that / erxp(—mQ)dm = % Therefore, with this result, we rewrite the above equation

as follows:

et = [ mlexp(om®)|@e(e timr - TN geie
@(VaYath) N (f,t,Z,T) 7/\/5\y—v\ m exp( m )|:(I) (f,t,z,’r 4m?2 ) @ (gat,sz) dm
4 S
- —<I)e(§,t;z,7')/ . m?exp(—m?)dm. (5.3)
VT 0

We also have

(& t:2,7) / 0.0°(E, 7,9 < 11,33, 10:0°(E b2l 1
1 e
<0 67 )y o (5.4)
In a similar way as before, we write the following expression
aly — v[? R =
(I)e(é,t,Z,Tf};T)—@e(f,t;z,ﬂ :/,- (g,t,Z,S)
We observe that m > % which implies 7 — O“ZT?‘Q > 0. Hence we get
e O‘|y*V|2 e _ \/a|yfv| e .

X (gvta Z, T — ﬂ) - (gvta Z, T) - O(THaSq) (gvta Z, ')HH—i(Oﬂ_))' (55)

Then, inserting (5.4) and (5.5) in (5.3), we obtain

—m? \/aly_V| e .
vt - eean =0( 2 [ me il .,
\/_\y v]

+O(f/ e ™ dm 73 || 0,® (E,t;z,-)|Hi(07T)). (5.6)

1 _aly—v?

We also have / mefmzdm =—-e 4 and
\/a\y—v\ 2
Valy—v|
TavE o —m? dm — £ (\/_|y V|) 1 \/_|y - V| _ely TV‘
0 4 2T 2 2T

quently, with this integral identities, we derive from (5.6)

, where ”erf” is the error function. Conse-

QO(V, Y ta T) - q)e(ga t7 Z, 7_)

(1 _aly—v] , 1 erVoly — vl ele t.

O( = valy - vle €62l 1)+ O(rtert (LT = et vl o
1 _aly—v|? e

O( = valy ~vle= = 0.0%E izl 1 0, ) 5.7

Therefore, we obtain

o(vV,y,t,7) — D&, b2, 7) = O(Téerf(\/i'yi\/;vl)uasq)e(&t;z, -)||Hi(0,7)). (5.8)

Furthermore, considering the regime |y — v| < t, and as we have error function’s Maclaurin series as: erf(a) =

>, (—1)iai+!

2 AN
ﬁ; i+

we deduce

P(v,y,t,7) = D& 2, m) = O(Valy = vI)19:99(E, 2, )3 ) (5.9)

The proof of Lemma 3.4 is completed.
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