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Regularity and long time behavior of one-dimensional first-order

mean field games and the planning problem

Nikiforos Mimikos-Stamatopoulos∗ Sebastian Muñoz†

Abstract

We study the regularity and long time behavior of the one-dimensional, local, first-order mean field

games system and the planning problem, assuming a Hamiltonian of superlinear growth, with a non-

separated, strictly monotone dependence on the density. We improve upon the existing literature by

obtaining two regularity results. The first is the existence of classical solutions without the need to assume

blow-up of the cost function near small densities. The second result is the interior smoothness of weak

solutions without the need to assume neither blow-up of the cost function nor that the initial density

be bounded away from zero. We also characterize the long time behavior of the solutions, proving that

they satisfy the turnpike property with an exponential rate of convergence, and that they converge to the

solution of the infinite horizon system. Our approach relies on the elliptic structure of the system and

displacement convexity estimates. In particular, we apply displacement convexity methods to obtain both

global and local a priori lower bounds on the density.
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1 Introduction

The main purpose of this paper is to establish that, under very general conditions, the solutions to the one-
dimensional first-order mean field games system with local coupling (MFG for short) are smooth, and to fully
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characterize their long time behavior. Specifically, we study the regularity of the solutions to standard MFG
with a prescribed terminal condition,











−ut(x, t) +H(ux(x, t),m(x, t)) = 0 (x, t) ∈ QT = T× (0, T ),

mt(x, t)− (m(x, t)Hp(ux(x, t),m(x, t)))x = 0 (x, t) ∈ QT ,

m(x, 0) = m0(x), u(x, T ) = g(m(x, T )) x ∈ T,

(MFG)

as well as to the so-called planning problem with a prescribed terminal density,











−ut(x, t) +H(ux(x, t),m(x, t)) = 0 (x, t) ∈ QT ,

mt(x, t)− (m(x, t)Hp(ux(x, t),m(x, t)))x = 0 (x, t) ∈ QT ,

m(x, 0) = m0(x), m(x, T ) = mT (x) x ∈ T,

(MFGP)

where T denotes the 1-dimensional torus, −H(p,m) : R × (0,∞) → R and g(m) : (0,∞) → R are strictly
increasing in m, H has super-linear growth in p, and m0,mT : T → [0,+∞) are probability densities. We also
show convergence of the solutions to each of these problems, as T → ∞, to the solution of the infinite time
horizon MFG system,











−vt(x, t) + λ+H(vx(x, t), µ(x, t)) = 0 (x, t) ∈ T× (0,∞),

µt(x, t)− (µ(x, t)Hp(vx(x, t), µ(x, t)))x = 0 (x, t) ∈ T× (0,∞),

µ(x, 0) = m0(x) x ∈ T,

(MFGL)

where λ = −H(0, 1).

MFG were introduced by Lasry and Lions [19, 16], and at the same time, in a particular setting, by Caines,
Huang, and Malhamé [14]. They are non-cooperative differential games with infinitely many players, in which
the players find an optimal strategy, determined by the value function u, by observing the distribution m of
the other players.

Classical solutions to (MFG), in arbitrary dimension, were previously obtained by the second author in
[21, 22], when the initial density is bounded away from 0, and under the blow-up assumption

lim
m→0+

H(p,m) = +∞, (1)

which, from the optimal control point of view, corresponds to placing a very strong incentive for players to
occupy low-density regions and precludes the appearance of empty regions. A similar regularity result was
recently obtained in [26] by A. Porretta for the case of (MFGP), when the Hamiltonian has the separated
form H(p,m) ≡ H(p)− f(m), and the terminal density mT is also bounded away from 0.

Our first contribution is the following theorem, which shows that, in the one-dimensional problem, assumption
(1) can be completely removed. We refer to Section 2 for assumptions (M), (H) (G), (E), (W), and (L), and
to the notation subsection for the definition of the function spaces mentioned below.

Theorem 1.1. Let 0 < α < 1, and assume that (M), (H), (G), and (E) hold. Then the following statements
hold:

(i) There exists a classical solution (u,m) ∈ C3,α(QT )× C2,α(QT ) to (MFGP). The function m is unique,
and u is unique up to a constant.

(ii) There exists a unique classical solution (u,m) ∈ C3,α(QT )× C2,α(QT ) to (MFG).

Our second result establishes interior smoothness of the solutions when, besides removing the assumption
(1), one also weakens the lower bound assumptions for given densities m0 and mT , replacing the latter with
the integrability conditions

1

mκ
0

∈ L1(T),
1

mκ
T

∈ L1(T) for some κ > 0. (2)
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We observe that, in particular, (2) allows the initial density to vanish in a set of measure zero. In spite of
this fact, our result also shows that m becomes strictly positive instantly after the initial time. Moreover, in
the case of (MFG), the density remains bounded below, and the solution remains smooth up to and including
t = T . We refer to Section 6 for the definition of a weak solution.

Theorem 1.2. Let 0 < α < 1, and assume that (W), (H) (G), and (E) hold. Then the following statements
hold:

(i) There exists a weak solution

(u,m) ∈ (BV(QT ) ∩ L∞(QT ))× (C([0, T ], H−1(T)) ∩ L∞
+ (QT ))

to (MFGP). Moreover, (u,m) ∈ C3,α
loc

(QT ) × C2,α
loc

(QT ) and m > 0 in (0, T ). The function m is unique,
and u is unique up to a constant.

(ii) Assume, further, that the function H satisfies, for each (p,m) ∈ R× (0,∞),

Hp(p,m)p ≥ 0. (3)

Then there exists a unique weak solution

(u,m) ∈ (BV(QT ) ∩ L∞(QT ))× (C([0, T ], H−1(T)) ∩ L∞
+ (QT ))

to (MFG). Moreover, (u,m) ∈ C3,α
loc

(T× (0, T ])× C2,α
loc

(T× (0, T ]), and m > 0 in (0, T ].

Concerning the long time behavior of (1.1), it was shown by P. Cardaliaguet and P.J. Graber in [3, Thm
5.1] that the rescaled solution (x, s) 7→ u(x, sT )/T converges, in a certain space Lp(T × (δ, 1)), to the map
λ(1 − s), while the rescaled density (x, s) 7→ m(x, sT ) converges in Lp(T × (0, 1)) to the invariant measure
µ ≡ 1. Our third result shows that, when the marginals are strictly positive, a much stronger statement holds.
That is, the solutions satisfy the turnpike property with an exponential rate of convergence, and the limit as
T → ∞ of the pair (u(t)−λ(T − t),m(t)) can be fully characterized as the solution to (MFGL). We emphasize
that this is a convergence result at the original time scale (compare with [6, Thm 2.6, Thm. 5.1] and [8, Thm
4.1, Thm. 5.3]).

Theorem 1.3. Assume that (M), (H), (G),(E), and (L), hold, and let T > 1. Assume that (uT ,mT ) is either
the solution to (MFG), or the solution to (MFGP) that satisfies

∫

T
vT (·, T2 ) = 0, where

vT (x, t) := uT (x, t)− λ(T − t).

Then the following holds:

(i) There exist constants C, ω > 0, independent of T , such that

‖mT (t)− 1‖L∞(T) + ‖uTx (t)‖L∞(T) ≤ C(e−ωt + e−ω(T−t)), t ∈ [0, T ].

Moreover, if (uT ,mT ) solves (MFG), and (3) holds, we have

‖mT (t)− 1‖L∞(T) + ‖uTx (t)‖L∞(T) ≤ Ce−ωt, t ∈ [0, T ].

(ii) There exist functions (v, µ) such that, for each T0 > 0,

vT → v in C3,α(T× [0, T0]) as T → ∞,

and
mT → µ in C2,α(T× [0, T0]) as T → ∞.

Moreover, one has
lim
t→∞

v(·, t) = c, lim
t→∞

µ(·, t) = 1 uniformly in T, (4)
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where

c =

{

g(1) if (uT ,mT ) solves (MFG),

0 if (uT ,mT ) solves (MFGP).

Finally, (v, µ) is the unique classical solution to (MFGL) satisfying (4) and

v ∈W 1,∞(T× (0,∞)), µ−1 ∈ L∞(T× (0,∞)),

µ− 1 ∈ L1(T× (0,∞)) ∩ L∞(T × (0,∞)). (5)

In particular, since the HamiltonianH(p,m) is non-separated, our results yield well-posedness and regularity
of MFG systems with congestion, such as

{

−ut + |ux|2
2(m+c0)α

= f(m) in QT ,

mt − ( m
(m+c0)α

ux)x = 0 in QT ,
(6)

where 0 < α < 2, c0 ≥ 0, and f ′ > 0. Some of the key techniques used in [21, 22, 26], as well as in the present
work, were developed by P.-L. Lions in his lectures at Collège de France [19], where he obtained several a
priori estimates for the solutions to (MFGP), in the special case of a separated, quadratic Hamiltonian. The
most important of these is the observation that the problems (MFG) and (MFGP) can be transformed into a
single quasilinear elliptic equation in u after eliminating the variable m. Indeed, if one defines H−1 by

m = H−1(p,H(p,m)),

then m = H−1(ux, ut) and the problem becomes

{

Qu := −Tr(A(Du)D2u) = 0 in QT ,

Nu := B(x, t, u,Du) = 0 on ∂QT ,
(Q)

where Du = (ux, ut) and, for (x, z, p, s) ∈ T× R× R× R,

A(p, s) =

(

Hp +
1

2
mHmp,−1

)

⊗
(

Hp +
1

2
mHmp,−1

)

−
(

1
4m

2H2
mp +mHmHpp 0

0 0

)

, (Q1)

B(x, 0, z, p, s) =− s+H(p,m0(x)), (B1)

and

B(x, T, z, p, s) =

{

s−H(p, g−1(z)) in the case of (MFG)

s−H(p,mT (x)) in the case of (MFGP).
(B2)

The condition for ellipticity, that is, for the matrix A to be positive, is

−4mHmHpp > m2H2
mp, (7)

which is also the well-known condition for uniqueness to (MFG) that follows from the Lasry-Lions monotonicity
method (see, for instance, Lions and P.E. Souganidis [20]). We remark from (7) that, in particular, the strict
positivity of the density is crucial for the regularizing properties of the system. The lower bounds on m
obtained in Corollary 3.2 and Proposition 6.3 both heavily rely on the one-dimensionality assumption, and
this is the main obstacle to generalizing our results to higher dimensions. Indeed, in dimensions d > 1, it
remains an open question whether the existence of smooth solutions to local first order MFG systems can still
be established if one removes or significantly weakens (1), or if m0 is not assumed to be bounded away from
0. Even for d = 1, it is still unknown whether one can allow m0 or mT to vanish in a set of positive measure.

Section 2 contains all the assumptions that will be in place about the Hamiltonian H , as well as the initial
and terminal data. In Section 3, we establish an integral displacement convexity formula (see Proposition
3.1) that will allow us to bound the density m in terms of its initial and terminal values. Section 4 contains
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the necessary a priori estimates that are needed to prove the existence of classical solutions. In particular,
we obtain, in Section 4.1, estimates for an ǫ–approximation of (MFGP) via standard MFG systems with a
terminal condition of the type u(·, T ) = g(·,m(·, T )), which we require to prove existence for (MFGP). Finally,
we provide a counterexample to existence of solutions to (MFG) when the terminal cost function g is also
allowed to depend on the space variable (see Proposition 4.5). In Sections 5 6, and 7, we prove our main
results, Theorems 1.1, 1.2, and 1.3, respectively.

We remark that, in the special case of a separated Hamiltonian, the displacement convexity estimates of
Section 3 were first obtained by D. A. Gomes and T. Seneci in [11]. Further estimates on the density using
displacement convexity were also obtained by T. Bakaryan, R. Ferreira, and Gomes in [1], and by Porretta
in [26] (see also Lavenant, Santambrogio [17]). Weak solutions, as defined in Section 6, have been widely
studied for both (MFG) (see [2, 3, 4, 7, 21]) and (MFGP) (see [13, 26, 23]). For classical solutions in the
time-independent case we refer to Evans [9] and Gomes, Mitake [12]. Concerning the study of the long time
behavior of solutions, specifically the second part of Theorem 1.3, we follow the program developed by Porretta
and Cirant in [8], where a similar analysis was performed for second-order MFG systems, and, unlike the earlier
work [6], does not involve the use of the master equation (see also [5, 25]).

Notation

Let d, k ∈ N. For T > 0, we denote by QT := T × (0, T ), QT := T × [0, T ] and ∂QT := T × {0, T }. For
α ∈ (0, 1], T > 0, and Ω ⊂ R

d we denote by Ck+a(Ω), the standard space of k times differentiable scalar
functions with α−Hölder continuous kth order derivatives, with the usual norm. Furthermore, we denote by
Ck+α

loc (Ω) the functions u that belong to Ck+α(K), for all compact setsK ⊂ Ω. For functions u : T×[0, T ] → R,
we denote by osc u := max

(x,t)∈T×[0,T ]
u(x, t) − min

(x,t)∈T×[0,T ]
u(x, t), Du(x, t) := (ux(x, t), ut(x, t)). We denote by

H−1(T) the dual space of the Sobolev space H1(T), and the space of H−1(Td)–valued α–Hölder continuous
functions by C0,α([0, T ];H−1(Td)). We write C = C(K1,K2, . . . ,KM ) for a positive constant C depending
monotonically on the non-negative quantities K1, . . . ,KM . BV(QT ) denotes the space of functions of bounded
variation, and L∞

+ (QT ) consists of the functions m ∈ L∞(QT ) such that m ≥ 0 a.e. in QT .

2 Assumptions

In what follows, C0 and γ, α are positive constants, with γ > 1, and 0 < α < 1. Moreover, C : (0,∞) → (0,∞)
is a continuous, strictly positive function. Except when explicitly stated, assumptions (M), (H), (G), and (E)
will be in place throughout the paper.

(M) (Assumptions on m0 and mT for classical solutions) The given functions m0 and mT satisfy

m0,mT ∈ C2,α(T), m0,mT > 0, and

∫

T

m0 =

∫

T

mT = 1. (M1)

(H) (Assumptions on H) The functions H , Hp, and Hpp are in C4(R× (0,∞)), and Hm < 0. Moreover, for
(p,m) ∈ R× (0,∞),

1

C0
(1 + |p|)γ−2 ≤ Hpp ≤ C(m)(1 + |p|)γ−2, (H1)

pHp ≥ (1 +
1

C0
)H − C(m), (H2)

|Hppp| ≤ C(m)(1 + |p|)γ−3, (H3)

|Hm| ≤ C(m)(1 + |p|)γ , (HM1)

m|Hmm| ≤ −C(m)Hm, |p|‖Hmp| ≤ −C(m)Hm, m|p||Hmmp| ≤ −C(m)Hm, (HM2)
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|Hmpp| ≤ C(m)(1 + |p|)γ−2 (HM3)

(G) (Assumptions on g) The function g : (0,∞) → R is four times continuously differentiable and satisfies,
for all m > 0,

g′(m) > 0. (G1)

(E) (Ellipticity of the system) The function H satisfies, for m > 0, the condition

−4mHmHpp ≥
(

1 +
1

C0

)

m2H2
mp. (E1)

(W) (Assumptions on m0, mT , H , and g for weak solutions) The functions m0 and mT satisfy, for some
κ > 0,

m0, mT ∈ L∞(T), m0, mT ≥ 0,

∫

T

m0 =

∫

T

mT = 1, and
1

mκ
0

,
1

mκ
T

∈ L1(T), (MW)

H satisfies, for some constant s ∈ (−κ− 1, κ− 1), and for (p,m) ∈ R× (0, 1
C0

),

−Hm(0,m) ≤ C0m
s, −Hm(p,m) ≥ 1

C0
ms, (HW)

and g satisfies
lim

m→0+
g(m) > −∞. (GW)

(L) (Assumption on H for the long time average) The function H satisfies, for (p,m) ∈ R× (0,∞),

−mHm(p,m) ≥ 1

C(m)
. (HL)

3 Displacement convexity and estimates on the density

To obtain estimates for the density at interior times, we will prove an integral formula which, in particular,
implies that the quantity

∫

T

h(m(x, ·))dx

is a convex function in [0, T ] whenever h is convex, provided that (7) holds.

Proposition 3.1. Let (u,m) ∈ C2(QT )× C1(QT ) be a classical solution to











−ut +H(ux,m) = 0, in QT

mt − (mHp(ux,m))x = 0, in QT

m(·, 0) = m0, in T,

(8)

and let h ∈ W 2,∞(R). Then

d2

dt2

∫

T

h(m(x, t))dx =

∫

T

h′′(m)
(

mt −mx(Hp +
m

2
Hpm)

)2

dx

−
∫

T

h′′(m)(mx)
2
(m2

4
H2

pm +mHppHm

)

dx. (9)

Moreover, there exists C = C(C0) such that, if h′′ > 0,

d2

dt2

∫

T

h(m(x, t))dx ≥ 1

C

∫

T

h′′(m)(−mHmHppm
2
x +m2H2

ppu
2
xx)dx.

6



Proof. Let g : R → R, be a smooth function. Since m satisfies the continuity equation, the following holds for
each t ∈ [0, T ]:

∫

T

(

mt(x, t) − (m(x, t)Hp(ux,m(x, t)))x

)(

∂tg(m(x, t)) − (g(m(x, t))Hp(ux,m(x, t)))x

)

dx = 0. (10)

Expanding equation (10), we obtain

0 =

∫

T

(mt −mx(Hp +mHpm)−mHppuxx)(g
′(m)mt −mx(g

′(m)Hp + g(m)Hpm)− g(m)Hppuxx)dx

=

∫

T

g′(m)(mt)
2 −mtmx

[

2g′(m)Hp +
(

g′(m)m+ g(m)
)

Hpm

]

+mxHppuxx

[

Hp

(

g′(m)m+ g(m)
)

+ 2g(m)mHpm

]

+m2
x

[(

Hp +mHpm

)(

g′(m)Hp + g(m)Hpm

)]

−mtHppuxx

[

Hp

(

g′(m)m+ g(m)
)

+ 2g(m)mHpm

]

+ g(m)m
(

Hppuxx

)2

dx = A1 −A2 +A3 +A4 −A5 +A6.

We split term A3 as follows

A3 =

∫

T

mxHppHpuxx

(

g′(m)m+ g(m)
)

dx+ 2

∫

T

g(m)mxmHpmHppuxxdx = A3.1 +A3.2.

From the continuity equation, we have that

mHppuxx = mt −mx(Hp +mHpm).

Hence, terms A3.2 and A6 can be written as

A3.2 = 2

∫

T

mtmxHpmg(m)dx− 2

∫

T

(mx)
2Hpm

(

g(m)Hp +mg(m)Hpm

)

dx = A3.2.1 −A3.2.2

A6 =

∫

T

g(m)

m

[

mt −mx

(

Hp +mHpm

)]2

dx

=

∫

T

g(m)

m
(mt)

2 − 2
g(m)

m
mtmx

(

Hp +mHpm

)

+
g(m)

m
(mx)

2
(

Hp +mHpm

)2

dx = A6.1 −A6.2 +A6.3.

From the Hamilton-Jacobi (HJ for short) equation, we have that

Hpuxx = uxt −Hmmx.

Therefore, A3.1 may be written as

A3.1 =

∫

T

mxHppuxt

(

g′(m)m+ g(m)
)

dx−
∫

T

(mx)
2HppHm

(

g′(m)m+ g(m)
)

dx = A3.1.1 −A3.1.2

We now begin by grouping together terms A5, and A3.1.1, which yields, for L(m) = g(m)m, L′(m) = g(m) +
mg′(m),

−A5 +A3.1.1 =

∫

T

mx

(

g(m) +mg′(m)
)

Hppuxt −
(

g(m) +mg′(m)
)

mtHppuxxdx

=

∫

T

−∂t(L(m))(Hp)x + L′(m)mtHpmmx + (L(m))x∂t(Hp)− L′(m)mxmtHpmdx

=

∫

T

∂t((L(m))x)Hp + (L(m))∂t(Hp)dx =
d

dt

∫

T

(L(m))xHpdx,

7



Next, we group together all the terms with mtmx factor, namely A2, A3.2.1, and A6.2, which yields

−A2 +A3.2.1 −A6.2 = −
∫

T

2mtmx

(

g′(m) +
g(m)

m

)

(

Hp +
m

2
Hpm

)

dx.

Collecting the terms involving (mt)
2, namely terms A1 and A6.1, we obtain

A1 +A6.1 =

∫

T

(mt)
2

(

g′(m) +
g(m)

m

)

dx.

Finally, we group together the terms involving m2
x, namely A4, A3.2.2, A6.3, and A3.1.2:

A4 −A3.2.2 +A6.3 −A3.1.2 =
∫

T

(mx)
2
[(

g′(m) +
g(m)

m

)(

Hp +
m

2
Hpm

)2]

dx

−
∫

T

(mx)
2
[(

g′(m) +
g(m)

m

)(m2

4
H2

pm +mHppHm

)]

dx.

Thus, putting everything together, we obtain

− d

dt

∫

T

(L(m))xHpdx =

∫

T

(

g′(m) +
g(m)

m

)(

mt −mx

(

Hp +
m

2
Hpm

))2

dx

−
∫

T

m2
x

(

g′(m) +
g(m)

m

)

(m2

4
H2

pm +mHppHm

)

dx. (11)

Next, notice that for a smooth function h : R → R, we have

d

dt

∫

T

h(m)dx =

∫

T

(h(m))xHp +mh′(m)(Hp)xdx =

∫

T

(h(m)− h′(m)m)xHpdx.

Thus, if we require that
−L(m) = h(m)− h′(m)m,

we obtain

− d

dt

∫

T

(L(m))xHpdx =
d2

dt2

∫

T

h(m)dx.

The relation between h, g is
mg(m) = h′(m)m− h(m),

therefore

g(m) = −h(m)

m
+ h′(m),

and, thus,

g′(m) +
g(m)

m
= −h

′(m)

m
+
h(m)

m2
+ h′′(m)− h(m)

m2
+
h′(m)

m
= h′′(m),

from which (9) follows.
Now, setting r = 1− 1

1+C−1

0

, we have

−m
2

2
H2

pm −mHmHpp = −m
2

2
H2

pm − (1− r)mHmHpp − rmHmHpp,

and so, applying (E), and multiplying by h′′(m)m2
x, (9) yields

d2

dt2

∫

T

h(m(x, t))dx ≥
∫

T

−rh′′(m)mHmHppm
2
x. (12)

8



On the other hand, we infer from (E) that

(

mt −mx(Hp +
m

2
Hpm)

)2

−m2
x

(

m2

2
H2

pm +mHmHpp

)

≥
(

mt −mxHp −
mxm

2
Hpm

)2

+
1

C0

(mxm

2
Hpm

)2

= (mt −mxHp)
2 − 2(mt −mxHp)

mxm

2
Hpm

+ (1− r)−1
(mxm

2
Hpm

)2

= r(mt −mxHp)
2 +

(

(1− r)
1
2 (mt −mxHp)− (1− r)−

1
2
mxm

2
Hpm

)2

≥ r(mt −mxHp)
2 = rm2H2

ppu
2
xx. (13)

where the last equality follows from the equation of m. As before, multiplying by h′′(m) then yields

d2

dt2

∫

T

h(m(x, t))dx ≥
∫

T

rh′′(m)m2H2
ppu

2
xx. (14)

Combining (12) and (14), we conclude that (3.1) holds.

It now follows readily that the density of the solution is bounded above and below in terms of the initial
and terminal densities.

Corollary 3.2. Let (u,m) ∈ C2(QT ) × C1(QT ) be a classical solution to (MFG) or (MFGP). Then, if
c1 := min(minm0,minm(·, T )), C1 = max(maxm0,maxm(·, T )), we obtain that

c1 ≤ m(x, t) ≤ C1, for all (x, t) ∈ QT . (15)

Proof. The proof follows directly from Proposition 3.1 above. Indeed, note that, in view of (E), for any convex
function h, the map

C(t) :=

∫

T

h(m(x, t))dx

is convex, and thus
C(t) ≤ max(C(0), C(T )), for all t ∈ [0, T ].

Hence, setting hp(m) = mp and letting p→ −∞ yields the result for the lower bound, whereas letting p→ +∞
yields the upper bound.

Remark 3.3. For dimensions d > 1, formula (9) is no longer true. If one repeats the same argument, the
issue will arise at the term A6.2. However, in the case of a separated Hamiltonian, i.e. H(p,m) ≡ H(p)−f(m),
one still obtains the weaker formula

d2

dt2

∫

T

h(m(x, t))dx =

∫

T

((h′′(m)m2 − h′(m)m+ h(m))(tr(D2
ppHD

2
xxu))

2

+ (h′(m)m− h(m))tr((D2
ppHD

2
xxu)

2) + h′′(m)mf ′(m)|Dm|2)dx. (16)

In this higher-dimensional setting, it is no longer true that the left hand side is convex whenever h is convex.
In particular, the statement is false for negative powers of m, but true for positive powers. Thus, from the
proof of Corollary 3.2 we see that the upper bound on m still holds (see [11]).

4 Estimates on the solution and the terminal density

In this section we obtain the necessary a priori L∞−bounds on u, Du, and m(·, T ) for solutions to both (MFG)
and (MFGP). Combined with the results of the previous section, this will yield global upper and lower bounds
on the density. In order to treat the setting of Theorem 1.2, where the density may vanish at {0, T }, we also
obtain L∞-bounds on u that do not depend on the quantities (minm0)

−1, (minmT )
−1.
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Proposition 4.1. Let (u,m) ∈ C2(QT )×C1(QT ) be a classical solution to (MFG), and let c1 = minm0, C1 =
maxm0. Then, for each (x, t) ∈ QT ,

c1 ≤ m(x, T ) ≤ C1 for all x ∈ T, (17)

H(0, c1)(t− T ) + g(c1) ≤ u(x, t) ≤ H(0, C1)(t− T ) + g(C1) for all (x, t) ∈ QT , (18)

and

−
∫ T

t

H(0,min
T

(m(·, s))ds+ g(c1) ≤ u(x, t) ≤ −
∫ T

t

H(0,max
T

(m(·, s))ds + g(C1). (19)

Proof. We will only show the lower bounds, since the argument for the upper bounds is completely symmetrical.
We fix δ > 0 and let ǫ > 0 be such that

H(0, c1)−H(0, c1 − δ) < −ǫT, for all x ∈ T.

We define
wǫ,δ(t) := H(0, c1 − δ)(t− T ) +

ǫ

2
(t− T )2 + g(c1 − δ),

and note that
wxx = 0, wx,t = 0, wtt = ǫ.

The function vǫ,δ(x, t) := u(x, t) − wǫ,δ(t) has a minimum at some (x0, t0) ∈ QT . If we first assume that
t0 ∈ (0, T ), then it follows that

D2u−D2wǫ,δ ≥ 0,

which, in view of (Q), implies

0 = −Tr(AD2u) ≤ −Tr(AD2wǫ,δ) = −ǫ < 0,

a contradiction. On the other hand, assume that t0 = 0. Then,

ut(x0, 0) ≥ wǫ,δ
t (x0, 0), ux(x0, 0) = wǫ,δ

x (0) = 0,

and thus

0 = −ut(x0, t0) +H(0,m0(x0)) ≤ −wǫ,δ
t (0) +H(0,m0(x0)) = −H(0, c0 − δ) +H(0,m0(x0)) + ǫT

≤ −H(0, c1 − δ) +H(0, c1) + ǫT < 0,

by our choice of ǫ, which is a contradiction. Hence, the minimum must be achieved at t0 = T . At that point,
we have

ut(x0, T ) ≤ wǫ,δ
t (T ), ux(x0, T ) = wǫ,δ

x (T ) = 0.

Consequently,

u(x0, T ) = g(H−1(0, ut(x0, T ))) ≥ g(H−1(0, wǫ,δ
t (T ))) = g(H−1(0, H(0, c1 − δ)))

= g(c1 − δ) = wǫ,δ(T ).

We have thus shown that
u(x, t) ≥ wǫ,δ(t), for all (x, t) ∈ QT .

Letting ǫ→ 0, and then δ → 0, yields the lower bound in (18) In particular, for t = T , we have

g(m(x, T )) ≥ g(c1) for all x in T,

which proves the lower bound in (17). Now, we define

w(t) = −
∫ T

t

H(0, c(s))ds+ g(c1),

10



where c(s) := min
T

{m(·, s)} is the running minimum of the density. We observe that the function v(x, t) =

u(x, t) − w(t) satisfies vt = ut − H(0, c(t)), vx = ux. Thus, for any ǫ > 0, at any extremum point of v − ǫt,
one has vt = H(0,m)−H(0, c(t))− ǫ < 0. Letting ǫ→ 0 thus implies that v achieves its minimum at t = T .
Therefore, using (17), we obtain

u(x, t)− w(t) ≥ min
T

g(m(·, T ))− g(c1) ≥ 0,

and this is precisely the lower bound in (19).

Now, for solutions to (MFGP), we do not need to estimate the terminal density, as it is part of the given
data. Concerning u, since the solution is only unique up to a constant, we may only bound the oscillation of
u, and this is done in the following proposition.

Proposition 4.2. Let (u,m) ∈ C2(QT )× C1(QT ) solve (8). There exists a constant C > 0, with

C = C

(

C0,

∫ T

0

|H(0,min
T

m(·, s))|ds, C(max
QT

m)

)

,

such that

oscQT
u ≤ C(T + T− 1

γ−1 +

∫ T

0

|H(0,min
T

m(·, s)|ds).

Proof. We define the functions c and w, for t ∈ [0, T ], by

c(t) = min
T

m(·, t), w(t) = −
∫ T

t

H(0, c(s))ds.

Arguing as in the proof of (19), we obtain

max
QT

(u− w) = max
T

((u(·, 0)− w(0)) , min
QT

(u− w) = min
T

(u(·, T )− w(T )) . (20)

Now, in view of (H1) and Proposition 4.1, 0 = −ut +H(ux,m) ≥ −ut + 1
C |ux|γ − C. Next, we define γ′ by

1
γ + 1

γ′ = 1. By the Hopf-Lax formula, the function

v(x, t) = min
y∈R

(

(

C

γ

)
γ′

γ

(T − t)
|x− y|γ′

γ′(T − t)γ′ + C(T − t) + u(y, T )
)

then solves, in QT ,

−vt(x, t) +
1

C
|vx|γ − C = 0, v(·, T ) = u(·, T ),

and, thus, by the comparison principle,
u ≤ v.

On the other hand, up to increasing the constant C,

v(x, 0) ≤ C

T γ′−1
+ CT +min

T

u(·, T ),

and so

max
T

u(·, 0) ≤ max
T

v(·, 0) ≤ C

T γ′−1
+ CT +min

T

u(·, T ).

In view of (20), we obtain

oscQT
(u − w) ≤ C

T γ′−1
+ CT + w(T )− w(0),

and, thus,

oscQT
u ≤ C

T γ′−1
+ CT + 2 · oscQT

w ≤ C

T γ′−1
+ CT + 2

∫ T

0

|H(0, c(s))|ds.
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We finally obtain a priori estimates on the gradient of u, while simultaneously treating the case of (MFG)
and (MFGP). The proof closely follows [21, Lem. 3.8] and [22, Lem 3.3], but yields a slightly stronger estimate
due to the d = 1 assumption (see (23)). For the purpose of studying the long time behavior, we will keep
track of the dependence of T for large values of T .

Proposition 4.3. Let (u,m) ∈ C3(QT )×C2(QT ) be a classical solution to (MFG) or (MFGP). There exists
a constant C > 0, with

C = C
(

C0, T, T
−1, osc u, γ, ‖m‖L∞(QT ), ‖m−1‖L∞(QT ),

‖(m0)x‖L∞(T), ‖(mT )x‖L∞(T), ‖C‖L∞[minm,maxm]

)

such that
‖Du‖γ

L∞(QT )
≤ C.

Proof. Since ut = H(ux,m), and m is bounded above and below, we infer from (H1) and (H2) that it is enough
to show that

||ux||L∞(QT ) ≤ CT 2.

We let

ũ = u−minu+ 1− (osc u+ 2)

T
(T − t),

and note that the function ũ has been constructed to satisfy

|ũ| ≤ 1 + osc u, ũ(·, 0) ≤ −1, ũ(·, T ) ≥ 1.

Define

v(x, t) =
1

2
u2x +

k

2
ũ2,

where k = ‖ux‖
3
2

QT

. Let (x0, t0) ∈ QT be a point where v achieves its maximum value. With no loss of

generality, we may assume that p = ux(x0, t0) satisfies

|p| ≥ 1, |p|2 ≥ 1

2
‖ux‖2.

We remark here that throughout the proof, the constant C is subject to increase from line to line.
Case 1: t0 = T . For this case we consider the linearization of the HJ equation,

Tuv = −vt +Hp(ux,m)vx.

Since vx = 0 and vt ≥ 0,

0 ≥ Tuv = Tu

(

1

2
|ux|2

)

+ kũ(−ũt +Hpux)

= −Hmuxmx + kũ(−ut +Hpp− C) ≥ −Hmuxmx + kũ(
1

C0
H)− Ckũ

≥ −Hmuxmx + kũ
1

C0

(

1

C(m)
|p|γ − C(m)

)

− C|p| 32 ≥ −Hmuxmx +
1

C
|p|γ+ 3

2 − C|p| 32 . (21)

If (u,m) solves (MFG), then

−Hmuxmx = −Hm

g′
|p|2 > 0.

On the other hand, if (u,m) solves (MFGP), then

| −Hmuxmx| ≤ C‖(mT )x‖∞|p|γ+1. (22)
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In either case, (21) then implies
|p| ≤ C.

Case 2: t0 = 0. Regardless of whether (u,m) solves (MFG) or (MFGP), this case is dealt with in the same
way as was done for t0 = T when (u,m) solved (MFGP), because, in view of HM2, we then have the bound

| −Hmuxmx| ≤ C‖(m0)x‖∞|p|γ+1.

Case 3: 0 < t0 < T . We first observe that, since vx = 0, we have

uxuxx = −kũux,

and, thus,
|uxx| ≤ Ck. (23)

We consider the linearization of (Q), namely

Lu(w) = −Tr(A(Du)D2w)−DqTr(A(Du)D2u) ·Dw.

Through direct computation, using (Q1), one obtains

Lu

(

1

2
u2x

)

= −
∣

∣

∣

∣

−uxt +
(

Hp +
1

2
mHmp

)

uxx

∣

∣

∣

∣

2

+
1

4
m2H2

mpu
2
xx −mHmHppu

2
xx, (24)

and

Lu

(

k
1

2
ũ2
)

= −k
∣

∣

∣

∣

−ũt + (Hp +
1

2
mHmp)ux

∣

∣

∣

∣

2

+ k
1

4
m2H2

mpu
2
x − kmHmHppu

2
x + E1 + E2 + E3 + E4, (25)

where

E1 = 2

(

−uxt +
(

Hp +
1

2
mHmp

)

uxx

)(

Hpp +
1

2
mHmpp

)

kũux,

E2 =

(

1

2
HmpHmpp +mHmpHpp +mHmHppp

)

uxxkũux,

E3 =

(

−uxt +
(

Hp +
1

2
mHmp

)

uxx

)

2

Hm

(

Hpm +
1

2
(mHmmp +Hmp)

)

kũ(−ũt +Hpux)

E4 =

1

Hm

(

1

2
(mH2

mp +m2HmpHmmp) +mHmmHpp +mHmHmpp +HmHpp

)

uxxkũ(−ũt +Hpux).

Now we estimate each of the Ei. By Young’s inequality, we obtain

|E1| ≤
1

4

∣

∣

∣

∣

−uxt +
(

Hp +
1

2
mHmp

)

uxx

∣

∣

∣

∣

2

+ C|Hpp +
1

2
mHmpp|2k2u2xũ2.

As a result of (H1), and (HM3), we thus obtain

|E1| ≤
1

4

∣

∣

∣

∣

−uxt +
(

Hp +
1

2
mHmp

)∣

∣

∣

∣

2

+ C|p|2γ+1. (26)

Next, to estimate |E2|, we use (23), (H1) (H3), (HM1), (HM2), and (HM3) to obtain

|E2| ≤ C|p|2γ+1. (27)
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For E3, we have

|E3| ≤ 1

4

∣

∣

∣

∣

−uxt +
(

Hp +
1

2
mHmp

)

uxx

∣

∣

∣

∣

2

+
Ck2

H2
m

(

H2
pm +m2H2

mmp +H2
mp

)

| − ũt + Hpux|2, (28)

and therefore, in view of (H1) and (HM2), as well as the HJ equation, we obtain

|E3| ≤
1

4

∣

∣

∣

∣

−uxt + (Hp +
1

2
mHmp)uxx

∣

∣

∣

∣

2

+ C|p|2γ+1. (29)

Finally, for E4, we observe that (23), (H1), (HM2), and (HM3) yield

|E4| ≤ C|p|2γ+1. (30)

Now, (E) implies that

∣

∣

∣

∣

−ũt + (Hp +
1

2
mHmp)ux

∣

∣

∣

∣

2

− 1

4
m2H2

mpp
2 +mHmHppp

2

≥
∣

∣

∣

∣

−ũt + (Hp +
1

2
mHmp)ux

∣

∣

∣

∣

2

+
1

4C0
m2H2

mpp
2 =

∣

∣

∣

∣

−ũt +
(

Hpux +
1

2
mHmp

)

p

∣

∣

∣

∣

2

+
1

C0

(

1

2
mHmpp

)2

≥ 1

2

∣

∣

∣

∣

−ũt +
(

Hp +
1

2
mHmp

)

ux

∣

∣

∣

∣

2

+
1

C
| − ũt +Hpux|2. (31)

So, as a result of (25), (H1) and (H2), we get

Lu

(

k
1

2
ũ2
)

≤ −1

2
k

∣

∣

∣

∣

−ũt +
(

Hp +
1

2
mHmp

)

ux

∣

∣

∣

∣

2

− 1

C
|p|2γ+ 3

2 + E1 + E2 + E3 + E4. (32)

Now, since (x0, t0) is an interior maximum point of v, we have Lu(v) ≥ 0. Thus, combining (26), (27), (29),
(30), (24) and (32), we conclude

0 ≤ − 1

C
|p|2γ+ 3

2 + C|p|2γ+1,

which implies
|p| ≤ C.

4.1 Estimates for MFG with ǫ–penalized terminal condition

In order to obtain classical solutions to (MFGP), it will be necessary to use a natural approximation method,
which was previously used in [24] to obtain weak solutions to the second-order planning problem. The solution
will be obtained as the limit of solutions to standard MFG systems with a penalized terminal condition.
Specifically, we will need to prove estimates for solutions (uǫ,mǫ) to











−uǫt +H(uǫx,m
ǫ) = 0 in QT ,

mǫ
t − (mǫHp(u

ǫ
x,m

ǫ))x = 0 in QT ,

mǫ(x, 0) = m0(x), ǫu
ǫ(x, T ) = mǫ(x, T )−mT (x) on ∂QT .

(MFGǫ)

As long as uǫ is bounded in L∞(QT ), the limit is expected to solve (MFGP). This estimate is obtained in
the following lemma. While treating this system, we will temporarily assume that H(0, 0) is finite. This
assumption will be removed in the proof of Theorem 1.1.
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Lemma 4.4. For ǫ > 0, let (uǫ,mǫ) ∈ C2(QT ) × C1(QT ) be a classical solution to system (MFGǫ), and set
c1 = min{minTm0,minTmT }, C1 = max{maxTm0,maxTmT }. Assume that H(0, 0) <∞. Then there exists
a constant C > 0, independent of ǫ, such that

‖uǫ‖L∞(QT ) ≤ C. (33)

Furthermore, for all ǫ < 1
C , we have

c1
2

≤ mǫ(x, t) ≤ 2C1 for all (x, t) ∈ QT , (34)

and
‖mǫ(T, ·)−mT (·)‖∞ ≤ ǫC. (35)

Proof. As a result of Proposition 4.2, since H(0,min
QT

mǫ) ≤ H(0, 0), there exists

C = C(C0, T, |H(0, 0)|, |H(0,max
QT

mǫ)|, C(max
QT

mǫ))

such that
oscQT

(uǫ) ≤ C.

To make this bound on the oscillation independent of ǫ, we must obtain upper bounds on the density mǫ.
Note that, from Corollary 3.2, it is enough to bound mǫ(T, ·) from above. To this end, let M0 := max

T

m0 and,

for δ > 0, define
vδ(x, t) = uǫ(x, t) +H(0,M0 + δ)(T − t).

Since D2vδ = D2uǫ, we have that vδ also solves the elliptic equation (Q) in QT . Therefore, the maximum of
vδ, must occur at t = 0 or t = T . If the maximum occurred at t = 0, then at that point

uǫt −H(0,M0) = vδt ≤ 0, vδx = uǫx = 0,

and, hence,
0 ≥ uǫt −H(0,M0 + δ) = H(0,m0)−H(0,M0 + δ),

which is a contradiction because Hm < 0. Therefore, for every δ > 0, the maximum occurs at t = T , and,
letting δ → 0, we see that the same is true for δ = 0. The maximum value of v(x, t) := uǫ(x, t)+H(0,M0)(T−t)
equals the maximum of uǫ(x, T ), since v(x, T ) = uǫ(x, T ). Letting x0 ∈ T be a point at which this maximum
occurs, it follows that vt(x0, T ) ≥ 0, and therefore

H(0,mǫ(x0, T )) ≥ H(0,M0),

which implies that
mǫ(x0, T ) ≤M0.

But, since
ǫuǫ(x, T ) = mǫ(x, T )−mT (x),

we obtain, for each x ∈ T,

ǫuǫ(x, T ) ≤ ǫuǫ(x0, T ) = (mǫ(x0, T )−mT (x0)) ≤ (M0 −mT (x0)),

and, consequently,

mǫ(x, T ) = ǫuǫ(x, T ) +mT (x) ≤M0 +mT (x)−mT (x0) ≤M0 + oscT(mT ).

We have thus shown that the bound on the oscillation of uǫ does not depend on ǫ. Furthermore, since

ǫuǫ(x, T ) = mǫ(x, T )−mT (x),
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and mǫ(T, ·),mT (·) are both probability densities, we have
∫

T
uǫ(·, T ) = 0, so there must exist some xǫ ∈ T

such that
uǫ(xǫ, T ) = 0.

This implies that, for any (x, t) ∈ QT ,

−oscQT
(uǫ) ≤ uǫ(x, t) − uǫ(xǫ, T ) ≤ oscQT

(uǫ),

which shows (33). To prove (34), we require C to be large enough to satisfy 1
C ‖uǫ‖∞ < 1

2c1. Then for all
ǫ < 1

C , we have

mǫ(x, T ) = mT (x) + ǫuǫ(x, T ) ≥ mT (x) −
1

2
c1 ≥ 1

2
c1.

The upper bound for mǫ(x, T ) is obtained similarly. We now conclude by Corollary 3.2, since the maxima
and minima of mǫ both occur at t = 0, t = T . Finally, (35) follows immediately from the terminal condition
in (MFGǫ) and (33).

While the usefulness of (MFGǫ) will mainly be as a tool to obtain existence for (MFGP), it can also be
used to provide an interesting counterexample. Indeed, one should note that (MFGǫ) is not itself a planning
problem, but rather a special case of a standard MFG system, which would fit in the framework of (MFG)
if the terminal cost function g were allowed to depend on x. Such terminal conditions are treated in [21, 22]
under the blow-up assumption (1), as well as the requirement that

g(x, 0) is constant, or lim
m→0+

g(x,m) = −∞,

which is a slightly weaker version of (1). The following proposition illustrates the fact that, when such
assumptions do not hold, the solution may fail to exist.

Proposition 4.5. Assume that H(0, 0) <∞, and that the condition mT > 0 in (M1) does not hold, so that
mT (x0) < 0 for some x0 ∈ T. Then there exists C > 0 such that, for all 0 < ǫ < 1

C , there exists no classical
solution to (MFGǫ).

Proof. We assume, by contradiction, that there exists a decreasing sequence ǫn > 0, with lim
n→∞

ǫn = 0, such

that, for each positive integer n, there exists a solution (un,mn) to system (MFGǫn). Since H(0, 0) < ∞,
the proof of Lemma 4.4 shows that, for some constant C > 0 independent of n ∈ N, we have ‖un‖∞ ≤ C.
However, this implies that

‖mn(T, ·)−mT (·)‖∞ ≤ Cǫn,

while mn(x0, T ) ≥ 0 > mT (x0), which is a contradiction.

We finish our estimates for the ǫ–penalized problem with an analogue of Proposition 4.3.

Lemma 4.6. For ǫ > 0, let (uǫ,mǫ) ∈ C3,α(QT ) × C2,α(QT ) be a classical solution to system (MFGǫ), and
assume that H(0, 0) < ∞. Let c1 and C1 be as in Corollary 3.2. There exists a constant C > 0, independent
of ǫ, such that, for ǫ < 1

C ,
‖Duǫ‖∞ ≤ C.

Proof. We first observe that, by Corollary 3.2 and Lemma 4.4, ‖mǫ‖QT
and ‖(mǫ)−1‖QT

are bounded a priori

in terms of C1 and c−1
1 . The proof of Proposition 4.3 may thus be repeated here, with Lemma 4.4 replacing

the use of Proposition 4.2, with one exception. Namely, the term −Hmu
ǫ
xm

ǫ
x in (21) should be estimated as

−Hmu
ǫ
xm

ǫ
x = −ǫHm(uǫx)

2 −Hmu
ǫ(mT )x ≥ −Hmu

ǫ(mT )x,

which, in view of (22), yields the gradient bound in the case t0 = T . The rest of the argument follows
unchanged.
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5 Existence of classical solutions

In the previous sections, a priori L∞−bounds were obtained for u, Du, m, and m−1. This is already sufficient
to obtain classical solutions to (MFG), following the arguments of [21, 22]. The existence of solutions to
(MFGP), on the other hand, is a more delicate issue, because the Neumann type boundary condition that
appears in the linearization makes the latter non–invertible. Namely, the linearization of (Q) is











Lu(w) = f in QT ,

(−1, Hp(ux,m)) ·Dw = g1(x) at t = 0,

(1,−Hp(ux,m)) ·Dw = g2(x) at t = T,

which is an oblique boundary value problem that is only solvable for certain functions f, g1, g2 satisfying a
compatibility condition that itself depends on u. This failure of invertibility precludes the direct use of the
implicit function theorem and thus of the method of continuity, which means a different approach is needed.
Indeed, we will obtain the solution as the limit as ǫ → 0 of the solution to the ǫ–penalized problem (MFGǫ).
We begin by noting, in the following lemma, that for ǫ small enough, the solutions to (MFGǫ) are a priori
uniformly bounded in C1,β(QT ), for some 0 < β < 1, and that the system thus has a classical solution.

Lemma 5.1. Let C be as in Lemma 4.4. For all 0 < ǫ < 1
C , (MFGǫ) has a unique smooth solution

(uǫ,mǫ) ∈ C3,α(QT ) × C2,α(QT ). Moreover, there exist constants K > 0, 0 < β < 1, independent of ǫ, such
that

‖uǫ‖C1,β ≤ K. (36)

Proof. The a priori C1−bounds on uǫ, as well as L∞−bounds on mǫ and (mǫ)−1 (and thus on the ellipticity
constants of the system), were all established in Lemmas 4.4 and 4.6. The Hölder estimate for the gradient then
follows in the same way as in [21, Lem. 4.1], by directly applying the classical C1,α–estimates for quasilinear
elliptic equations with oblique boundary conditions (see [18, Lem. 2.3]). Indeed, it suffices to verify that, for
(x, t, z, p, s) ∈ T× {0, T } × R× R× R, the boundary condition

Bǫ(x, 0, z, p, s) = −s+H(p,m0(x)), B
ǫ(x, T, z, p, s) = s−H(p, ǫz +mT (x)),

is oblique. For this purpose, we let ν(x, t) denote the outward unit normal vector at (x, t) ∈ ∂QT . Then we
have

D(p,s)B
ǫ(x, 0, z, p, s) · ν(x, 0) = −Bǫ

s(x, 0, z, p, s) = 1 > 0,

D(p,s)B
ǫ(x, T, z, p, s) · ν(x, T ) = −Bǫ

s(x, T, z, p, s) = 1 > 0

and thus the a priori estimate (36) follows. The proof of existence is then the same as in [21, Thm. 1.1]
through the method of continuity.

We now have enough information on the ǫ–penalized problem to prove our first theorem.

Proof of Theorem 1.1. We initially assume that m0,mT ∈ C∞(T). The proof of part (ii), corresponding to
(MFG), is identical to the one carried out in [21, Thm. 1.1]. We simply note that the condition lim

m→0+
H(p,m) =

+∞ in that proof was only used to guarantee the existence of a positive lower bound for the density, which
in turn makes the equation (Q) uniformly elliptic. In our case, the lower bound is a consequence of Corollary
3.2 and Proposition 4.1.

Now, for the case of (MFGP), we remark first that uniqueness of u, up to a constant, follows by the standard
Lasry-Lions monotonicity method. To establish existence, we consider first the approximate system (MFGǫ),
under the assumption H(0, 0) < ∞. We assume that ǫ > 0 is small enough for Lemma 5.1 to guarantee the
existence of solutions (uǫ,mǫ). Letting 0 < β < 1 be as in Lemma 5.1, we also have (36), for some constant
K > 0 independent of ǫ. We infer that there exist a subsequence {un}n ⊂ {uǫ}ǫ, and u ∈ C1,α(QT ), such that
un → u uniformly. Furthermore, in view of Lemma 4.4, there exists C > 0, independent of ǫ, such that

1

C
≤ mǫ(x, t) ≤ C for all (x, t) ∈ QT .
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We let (A,B) and (An, Bn), be the quasilinear operators and boundary conditions corresponding, respectively,
to u and un. Then one has

(An, Bn) → (A,B) locally uniformly,

DqBn · ν = 1.

Hence, by Fiorenza’s convergence theorem for elliptic equations with oblique boundary conditions (see [21,
Thm. 2.5], [10, Chapter 17, Lemma 17.29]), we obtain un → u in C2,α(QT ), and u solves (Q), with the
boundary condition corresponding to (MFGP). The C3,α regularity (and, in fact, uniform convergence in
C3,α) then follows readily from the standard Schauder estimates for linear oblique problems, as in [21, Thm.
1.1].

The last step will be to remove the assumption that m0 ∈ C∞(T) and, for (MFGP), the assumptions that
mT ∈ C∞(T) and H(0, 0) < ∞. We will explain the argument for (MFGP), with the treatment of (MFG)
being completely analogous. Consider, for δ > 0, the modified Hamiltonians Hδ(p,m) := H(p,m+ δ), which
satisfy (H) and (E), uniformly in δ, as well as Hδ(0, 0) < ∞, and a sequence of C∞ densities (mδ

0,m
δ
T ),

uniformly bounded in C2,α and bounded away from 0, converging uniformly to (m0,mT ). Let (uδ,mδ) be the
corresponding solutions to



















−uδt +Hδ(uδx,m
δ) = 0 in QT ,

∫ T

0

∫

T
uδ = 0,

mδ
t − (mδHδ

p(u
δ
x,m

δ))x = 0 in QT ,

mδ(·, 0) = mδ
0, m

δ(·, T ) = mδ
T on T.

(37)

Propositions 4.3 and 4.2, and Corollary 3.2, yield uniform C1−bounds on uδ, and thus, as in the proof of
Lemma 36, uniform C1,β bounds for some 0 < β < 1. We may thus conclude by letting δ → 0 and applying
Fiorenza’s convergence result as above.

6 Regularity of weak solutions

We now study the existence and regularity of solutions to (MFG) and (MFGP) under the weaker assumption
that, for some κ > 0

∫

T

1

mκ
0 (x)

dx <∞,

∫

T

1

mκ
T (x)

dx <∞.

We note that, in particular, the above conditions allow for the densities to vanish at a set of measure zero.
This, in general, creates significant issues, because (Q) is no longer uniformly elliptic. The key estimate that
will allow us to prove smoothness in this setting is an interior lower bound on the density which depends only
on t−1, ‖m−κ

0 ‖1 (and (T − t)−1, ‖m−κ
T ‖1, in the case of (MFGP)). Indeed, this yields uniform ellipticity of

(Q) away from t = 0 and t = T .
We begin by giving the standard definition of a weak solution (see, for instance, [3, 21, 26]).

Definition 6.1. [Definition of weak solution] A pair (u,m) ∈ BV(QT )×L∞
+ (QT ) is called a weak solution to

(MFG) (respectively (MFGP)) if the following conditions hold:

(i) ux ∈ L2(QT ), u ∈ L∞(QT ), m ∈ C0([0, T ];H−1(T)).

(ii) u satisfies the HJ inequality
−ut +H(ux,m) ≤ 0 in QT ,

in the distributional sense.

(iii) m satisfies the continuity equation

mt − (mHp(ux,m))x = 0 in QT , (38)

in the distributional sense.
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(iv) We have m(·, T ) ∈ L∞(T). Moreover, m(·, 0) = m0 in H−1(T) and u(·, T ) = g(m(·, T )) in the sense of
traces (respectively, m(·, T ) = mT in H−1(T)).

(v) The following identity holds:

∫ ∫

QT

m(x, t)(H(ux,m)−Hp(ux,m)ux)dxdt =

∫

T

(m(x, T )u(x, T )−m0(x)u(x, 0))dx.

The following lemma will be needed to show that, for solutions to (MFG), our interior regularity results
may be extended up to time t = T .

Lemma 6.2. Let (u,m) be a smooth solution to (MFG) under the assumptions of Theorem 1.1 and assume
that (3) holds. Then, for every convex function h ∈ C2(0,∞), the map

t→
∫

T

h(m(x, t))dx

is decreasing. Moreover, there exists a constant C = C(C0, ‖(g′)‖−(γ−1)
L∞([minm0,maxm0])

) such that

d

dt

∫

T

h(m(x, T ))dx+
1

C

∫

T

h′′(m(x, T ))|mx(x, T )|γ ≤ 0.

Proof. In view of Proposition 3.1, we have that

d2

dt2

∫

T

h(m(x, t))dx ≥ 0,

and, thus, the function

d(t) :=
d

dt

∫

T

h(m(x, t))dx

is increasing. We then infer that the monotonicity will follow if we show that

d(T ) ≤ 0.

Since u(·, T ) = g(m(·, T )), and m satisfies the continuity equation, we have

d(T ) =

∫

T

h′(m(x, T ))mt(x, T )dx =

∫

T

h′(m)(mHp(ux,m))xdx = −
∫

T

h′′(m)mxHp(mxg
′(m),m).

Now, as a result of (3) and (H1),

Hp(mxg
′(m),m)(mxg

′(m)) ≥ 1

C
|mxg

′(m)|γ ,

and, therefore,

d(T ) ≤ − 1

C

∫

T

h′′(m)|mx|γ .

We are now ready to obtain the interior lower bounds on m. Our method of proof relies on the displacement
convexity formula (9), and uses similar techniques to [26, Prop. 5.2].

Proposition 6.3. Let (u,m) be a smooth solution to (MFG) or (MFGP), under the same assumptions as in
Theorem 1.1. Assume, furthermore, that (HW) holds and, in the case of (MFG), assume that (3) holds. Let

β =
2

κ− s− 1
,
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and let δ > 0. Then, there exist a constant C = C(C0‖m−κ
0 ‖L1 , ‖m−κ

T ‖L1 , δ−1) such that

m(x, t) ≥ 1

C

(

1

tβ+δ
+

1

(T − t)β+δ

)−1

. (39)

Furthermore, in the case of (MFG), one has

m(x, t) ≥ 1

C
tβ+δ. (40)

Proof. Using the displacement convexity formula (9) for h(m) = 1
mκ , we have, for each t ∈ [0, T ],

∫

T

1

mκ(x, t)
dx ≤ max

(∫

T

1

mκ
0 (x)

dx,

∫

T

1

mκ(x, T )
dx

)

. (41)

Combined with Lemma 6.2 (for the case of (MFG) where m(·, T ) is not prescribed), this yields

sup
t∈[0,T ]

‖m−κ(t)‖1 ≤ C. (42)

Next, for any p > 1, we define the function

φ(t) :=

∫

T

m−pκ(t)dx.

Using Proposition 3.1 with h(m) = m−pκ, as a result of (E), we obtain

d2

dt2

∫

T

m−pκ(t)

pκ(pκ+ 1)
dx ≥ − 1

C

∫

T

m−pκ−1mHppHm(mx)
2dx ≥

∫

T

1

C
m−pκ−1+s(mx)

2dx

≥ 1

C(−pκ+s+1
2 )2

∫

T

(m
−pκ+s+1

2 )2xdx.

As a result, letting

Cp :=
C(pκ− s− 1)2

4pκ(pκ+ 1)
,

λ :=
−pκ+ s+ 1

2
,

we have shown that

Cpφ
′′(t) ≥

∫

T

(mλ)2xdx. (43)

From (W), and the fact that p > 1, we see that λ < 0. For each t ∈ [0, T ], since m(·, t) is a probability
measure, there exists a point xt0 such that m(xt0, t) = 1. By the fundamental theorem of calculus,

∥

∥

∥mλ(t)− 1
∥

∥

∥

2

∞
=
∥

∥

∥mλ(t)−m(xt0, t)
λ
∥

∥

∥

2

∞
≤ C

∫

T

(mλ)2xdx, (44)

and therefore
∥

∥

∥

1

m

∥

∥

∥

2|λ|

∞
≤ C

(

∫

T

(mλ)2xdx+ 1
)

. (45)

Now, using (42), we obtain

φ =

∫

T

1

mκp
≤
∫

T

1

mκ

∥

∥

∥

∥

1

m

∥

∥

∥

∥

κ(p−1)

∞
≤ C

∥

∥

∥

∥

1

m

∥

∥

∥

∥

κ(p−1)

∞
,

and, consequently,

C−rφr ≤
∥

∥

∥

∥

1

m

∥

∥

∥

∥

2|λ|

∞
, (46)
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where r := 2|λ|
κ(p−1) . From condition (W), we see that r > 1. Combining (43), (45), and (46), we obtain

Cp

(

φ′′(t) + 1
)

− C−rφ(t)r ≥ 0,

that is, for some constant C = C(p),

−φ′′(t) + 1

C
φr ≤ C. (47)

A straightforward computation then shows that the functions

ψ1(t) = Apt
−pκβ +Kp,

ψ2(t) = Ap(T − t)−pκβ +Kp,

ψ(t) = ψ1(t) + ψ2(t),

are supersolutions of (47) for large enough Ap,Kp. Therefore, we have

∫

T

m−pκ(t) ≤ Ap(t
−pκβ + (T − t)−pκβ) + 2Kp. (48)

Now, going back to (43) and (45), we may write

∥

∥

∥

∥

1

m

∥

∥

∥

∥

2|λ|

∞
(t) ≤ C(

d2

dt2

∫

T

m−pκ + 1). (49)

In view of (9), for q > 0, the map

t 7→
∫

T

m−q(t) (50)

is convex in [0, T ]. Thus, fixing t0 ∈ (0, T2 ], we infer that, for each t ∈ [t0, T − t0],

(∫

T

m−2|λ|q(t)

)
1
q

≤ 2

t0
max

(

∫ t0

t0
2

(∫

T

m−2|λ|q
)

1
q

,

∫ T− t0
2

T−t0

(∫

T

m−2|λ|q
)

1
q

)

≤ 2

t0

∫ T− t0
2

t0
2

(∫

T

m−2|λ|q
)

1
q

.

Letting q → ∞, we obtain

∥

∥m−1
∥

∥

2|λ|
L∞(T×[t0,T−t0])

≤ 2

t0

∫ T− t0
2

t0
2

∥

∥m−1(t)
∥

∥

2|λ|
∞ dt. (51)

Now, letting ζ ∈ C∞(QT ) be a test function, supported in [ t04 , T− t0
4 ], such that 0 ≤ ζ ≤ 1, ζ ≡ 1 in [ t02 , T− t0

2 ],

and
∫ T

0 |ζ′′(t)|dt ≤ C
t0

, we see that (51) implies

∥

∥m−1
∥

∥

2|λ|
L∞(T×[t0,T−t0])

≤ 2

t0

∫ T

0

∥

∥m−1
∥

∥

2|λ|
∞ (t)ζ(t)dt. (52)

Hence, integrating by parts twice, we infer from (48) and (49) that

∥

∥m−1
∥

∥

2|λ|
L∞(T×[t0,T−t0])

≤ C

t0

(

∫ T

0

∫

T

(m−pκζ′′) + CT

)

≤ C

(

1

t2+pκβ
0

+
1

t0

)

,

which yields

∥

∥m−1
∥

∥

L∞(T×[t0,T−t0])
≤ C





1

t
2+pκβ
2|λ|

0

+
1

t
1

2|λ|

0



 .

21



Now, recalling (6), we see that

lim
p→∞

1

2|λ| = 0 and lim
p→∞

2 + pκβ

2|λ| = β.

Thus, we may fix p chosen large enough that 2+κβ
2|λ| < β + δ, and, as a result of (6),

∥

∥m−1
∥

∥

L∞(T×[t0,T−t0])
≤ C

1

tβ+δ
0

.

This implies (39). Now, for the case of (MFG), we simply observe that, from Lemma 6.2, the map (50) is
non-increasing on [0, T ], and, thus, (51) may be strengthened to

∥

∥m−1
∥

∥

2|λ|
L∞(T×[t0,T ])

≤ 2

t0

∫ T

t0
2

∥

∥m−1
∥

∥

2|λ|
∞ (t)dt.

The following lemma is a basic computation exploiting (E1), and will be used in the proof of Theorem 1.2
to estimate the terms arising from the Lasry-Lions monotonicity method.

Lemma 6.4. There exists a constant C = C(C0) > 0 such that, given −∞ < p0 < p1 < ∞ and 0 < m0 <
m1 <∞, we have

(m1Hp(p1,m1)−m0Hp(p0,m0)) (p1 − p0)− (H(p1,m1)−H(p0,m0)) (m1 −m0)

≥ m1 +m0

C
(p1 − p0)

2 +
k

C
(m1 −m0)

2, (53)

where k = min[p0,p1]×[m0,m1](−Hm(p,m)). Moreover, if H satisfies (W), then

(m1Hp(p1,m1)−m0Hp(p0,m0)) (p1 − p0)− (H(p1,m1)−H(p0,m0)) (m1 −m0)

≥ m1 +m0

C
(p1 − p0)

2 +
1

C(s+ 1)
(ms+1

1 −ms+1
0 )(m1 −m0). (54)

Proof. Following the technique carried out in [20], for z ∈ [0, 1], we define

∆p = p1 − p0 ∆m = m1 −m0, pz = p0 + z∆p, ms = m0 + z∆m.

We then let
φ(z) = (mzHp(pz ,mz)−m0Hp(p0,m0))∆p− (H(pz ,mz)−H(p0,m0))∆m,

and differentiation yields

φ′(z) = mzHpp(∆p)
2 +mzHmp∆m∆p−Hm(∆m)2.

Now, in view of (E1), we have, for some constant C > 0,

−Hm ≥ 1

4Hpp
mzH

2
mp(1 +

1

C
)− 1

C
Hm.

Therefore,

φ′(z) ≥ mz





1
√

1 + 1
C

√

Hpp∆p+

√

1 + 1
C

2
√

Hpp

Hmp∆m





2

+mzHpp(∆p)
2(1− 1

1 + 1
C

)− 1

C
Hm(∆m)2. (55)

If (W) holds, then, up to increasing the constant C > 0, as well as using (H1) and (W), we obtain

φ′(z) ≥ 1

C
(mz(∆p)

2 +ms
z(∆m)2),

and integrating over [0, 1] then yields (54). The proof of (53) follows from (55) in the same way.
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Before proving Theorem 1.2, we remind the reader that assumption (M) will not be in place, and will be
instead replaced by (W).

Proof of Theorem 1.2. For ǫ ∈ (0, 1), let mǫ
0, m

ǫ
T be smooth, positive densities such that, for θ ∈ {0, T },

mǫ
θ → mθ a.e. inT, ||mǫ

θ||∞ ≤ C and ||(mǫ
θ)

−κ||1 ≤ C,

where C > 0 is a constant independent of ǫ. Let (uǫ,1,mǫ,1) be a smooth solution to (MFGP) obtained from
taking mǫ

0 and mǫ
T , respectively, as the initial and terminal densities. Similarly, let (uǫ,2,mǫ,2) be the smooth

solution to (MFG) corresponding to the initial density mǫ
0. The existence and regularity of such solutions is

guaranteed by Theorem 1.1. We may further choose the uǫ,1 to be normalized so that
∫

T
uǫ,1(T ) = 0.

As in the proof of Proposition 6.3, we obtain, for some C > 0 independent of ǫ and for i ∈ {1, 2},

‖(mǫ,i)−κ‖1 ≤ C. (56)

On the other hand, Corollary 3.2 and Proposition 4.1 yield

‖mǫ,i‖∞ ≤ C, (57)

and (57), (HW) and Proposition 6.3 imply that

∫ T

0

|H(0,min
T

mǫ,i(s)|ds ≤ C. (58)

Thus, as a result of (GW), Proposition 4.1, and Proposition 4.2,

‖uǫ,i‖∞ ≤ C. (59)

We will first observe that, up to a subsequence, there is convergence to a weak solution. Indeed, given
0 < ǫ, ǫ′ < 1, applying the Lasry-Lions monotonicity method to the corresponding systems yields, for i ∈ {1, 2},

∫

T

(uǫ,i(T )− uǫ
′,i(T ))(mǫ,i(T )−mǫ′,i(T ))−

∫

T

(uǫ,i(0)− uǫ
′,i(0))(mǫ,i(0)−mǫ′,i(0))

+

∫ ∫

QT

(

mǫ,iHp(u
ǫ,i
x ,mǫ,i)−mǫ′,iHp(u

ǫ′,i
x ,mǫ′,i)

)

(uǫ,ix − uǫ
′,i
x )

−
(

H(uǫ,ix ,m
ǫ,i)−H(uǫ

′,i
x ,mǫ′,i)

)

(mǫ,i −mǫ′,i) = 0. (60)

Lemma 6.4 therefore yields

∫

T

(uǫ,i(T )− uǫ
′,i(T ))(mǫ,i(T )−mǫ′,i(T ))−

∫

T

(uǫ,i(0)− uǫ
′,i(0))(mǫ,i(0)−mǫ′,i(0))

+

∫ ∫

QT

(

mǫ,i +mǫ′,i

C
(uǫ,ix − uǫ

′,i
x )2 +

1

C(s+ 1)
((mǫ,i)s+1 − (mǫ′,i)s+1)(mǫ,i −mǫ′,i)

)

≤ 0. (61)

Proceeding as in [21, Thm. 1.2], it readily follows that, for i ∈ {1, 2}, as ǫ → 0, (uǫ,i,mǫ,i) converges to a
weak solution (ui,mi).

It remains to show the interior regularity. For δ > 0, we define

I1,δ = [δ, T − δ], I2,δ = [δ, T ].

By Proposition 6.3, there exists C = C(δ−1) such that, for ti ∈ Ii,δ/4,

mǫ,i(·, ti) ≥
1

C
. (62)
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We must first obtain a priori gradient bounds for uǫ,i on Ii,δ/2. Setting

φ1(t) = (t− δ/4)−2/(γ−1) + (T − δ/4− t)−2/(γ−1) φ2(t) = (t− δ/4)−2/(γ−1),

we go through the steps of Proposition 4.3, replacing the function v by

vi(x, t) =
1

2
(uǫ,ix )2 +

1

2
(ũǫ,i)2 −Kφi(t),

whereK > 0, ũǫ,i is defined as in Proposition 4.3. We consider the maximum point (x0, t0) of vi in T×Ii,δ/4. In
the case of (MFGP), namely i = 1, this maximum must be attained in the interior of Ii, since φi is unbounded
near the endpoints. When i = 2, the maximum may be attained at t = T , and the proof that |p| ≤ C in this
case follows through unchanged from Case 1 of Proposition 4.3. If the maximum is achieved at an interior
time, the steps of Proposition 4.3 yield that if vi(x0, t0) is large enough, then

0 ≤ −|p|2γ + |p|2γ−2 −K(−φ′′i +
1

C
Kγφγi − Cφi).

Similarly to Proposition 6.3, we see that, if K is chosen large enough, φi must be a supersolution to

−φ′′i +
1

C
Kγφγi − Cφi = 0,

which then implies p ≤ C, and thus |uǫ,ix | is bounded on Ii,δ/2. In view of (62) and (57), |uǫ,it | = |H(uǫ,ix ,mǫ,i)|
is also bounded on Ii,δ/2. That is, we have

‖uǫ,i‖C1(T×Ii,δ/2) ≤ C. (63)

The interior C1,α-estimates for quasilinear elliptic equations (see [10, Chapter 13, Thm. 13.6]), followed by the
interior Schauder estimates (see [15, Chapter, 2, (1.12)]) then yield, for some C = C(δ−1), and for i ∈ {1, 2},

||uǫ,i||C3+α(T×I1,δ) ≤ C. (64)

For i = 1, by virtue of the Arzelà–Ascoli theorem, we may finish the proof by simply letting ǫ → 0. On the
other hand, for i = 2 (that is, the case of (MFG)), we require estimates up to the terminal time T . We first
observe that (62), (57), and (64) imply that uǫ,2 solves, in I2,δ × T, a system of the form (MFG), where the
initial density mǫ,2(·, δ) is bounded below by a positive constant, and bounded above in C2,α(T). Moreover,
as in Lemma 5.1, (63) implies that uǫ,2 is bounded in C1,β for some 0 < β < 1. We may now conclude through
the same convergence argument as in the proof of Theorem 1.1.

Finally, by requiring some further regularity on the marginals, we establish additional Sobolev regularity
for the weak solutions.

Proposition 6.5. Let m0,mT satisfy (m0)xx, (mT )xx ∈ L1(T). Let (u,m) be a weak solution to (MFG) or
(MFGP) under the assumptions of Theorem 1.2. Then, for some constant C > 0 we have:

• In the case of (MFG),

∫

T

g′(m(x, T ))|mx(x, T )|2 +
∫ T

0

∫

T

m(uxx)
2 +ms(mx)

2dxdt ≤ C, (65)

where C = C(‖u‖∞, ‖(m0)xx‖1, C0).

• In the case of (MFGP),
∫ T

0

∫

T

m(uxx)
2 +ms(mx)

2dxdt ≤ C, (66)

where C = C(‖u‖∞, ‖(m0)xx‖1, ‖(mT )xx‖1, C0).
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Proof. We will show the result in the case where (u,m) is smooth, since the general case follows by considering
the approximations employed in the proof of Theorem 1.2. Differentiating with respect to x the (MFG) or
(MFGP), we obtain

{

−uxt +Hp(ux,m)uxx +Hm(ux,m)mx = 0 in QT ,

mxt − (mxHp(ux,m) +mHpp(ux,m)uxx +mHpm(ux,m)mx)x = 0 in QT .
(67)

Testing against ux in the equation for mx above we obtain

∫

T

mx(T )ux(T )dx−
∫

T

mx(0)ux(0)dx+

∫ T

0

∫

T

mx(−uxt + uxxHp(ux,m))

+mu2xxHpp(ux,m) +muxxHpm(ux,m)mxdx = 0, (68)

and, therefore,
∫

T

mx(T )ux(T )dx+

∫ T

0

∫

T

mu2xxHpp −Hm(mx)
2dx

= −
∫

T

u(0)(m0)xxdx−
∫ T

0

∫

T

muxxHpm(ux,m)mxdx.

Next, we use the following bounds

∣

∣

∣

∫

T

u(0)(m0)xxdx
∣

∣

∣ ≤ ‖u‖∞‖(m0)xx‖1,

and, for δ ∈ (0, 1),
∣

∣

∣muxxHpmmx

∣

∣

∣ ≤ (1 − δ)mu2xxHpp+
1

4(1− δ)
m|Hpm|2(mx)

2

≤ (1− δ)mu2xxHpp−
4

4(1− δ)(1 + 1
C0

)
Hm(mx)

2,

where in the last inequality we used (E1). Choose δ > 0 small enough so that

1

(1− δ)(1 + 1
C0

)
< 1.

Hence, in the case of (MFG), we have the bound

∫

T

g′(m(T ))(mx(T ))
2dx+

∫ T

0

∫

T

mHpp(uxx)
2dx−Hm(mx)

2dx ≤ C + ‖u‖∞‖(m0)xx‖1

while in the case of (MFGP), we have

∫ T

0

∫

T

mHpp(uxx)
2dx−Hm(mx)

2dx ≤ C + ‖u‖∞
(

‖(m0)xx‖1 + ‖(mT )xx‖1
)

.

7 Long time behavior and the infinite horizon problem

In this section, we will characterize the behavior, as T → ∞, of solutions to (MFG) and (MFGP). First, we
establish the turnpike property with an exponential rate of convergence. This property shows that, for large
values of T , the players spend most of their time close to the equilibrium m ≡ 1.
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Lemma 7.1. Let (u,m) be a solution to (MFG) or (MFGP), let T > 1, and set

c1 = min(minm0,minmT ), C1 = max(maxm0,max(mT )).

Then there exist constants C, ω > 0, with

C = C(C0, C1, c
−1
1 , ‖C‖L∞([c1,C1]), ‖(m0)x‖∞, ‖(mT )x‖∞, ‖(g′)‖−(γ−1)

L∞([minm0,maxm0])
)

and
ω−1 = ω−1(C0, c

−1
1 , C1, ‖C‖L∞([c1,C1])),

such that
‖m(t)− 1‖L∞(T) + ‖ux(t)‖L∞(T) ≤ C(e−ωt + e−ω(T−t)), t ∈ [0, T ]. (69)

If (u,m) solves (MFG), and (3) holds, we have

‖m(t)− 1‖L∞(T) + ‖ux(t)‖L∞(T) ≤ Ce−ωt, t ∈ [0, T ]. (70)

Proof. As in previous arguments, we recall that the constant C may increase at each step. For each k ∈ N,
Proposition 3.1 yields

d2

dt2

∫

T

(m− 1)2kdx ≥ 0, (71)

and, as a result of (L), (H1), and Corollary 3.2,

d2

dt2

∫

T

(m− 1)2dx ≥ 1

C

∫

T

−mHmmHppm
2
xdx ≥ 1

C

∫

T

|(m− 1)x|2 dx.

Since
∫

T
m(·, t) ≡ 1, arguing in the same way as in (44), we obtain

d2

dt2

∫

T

(m− 1)2dx ≥ 1

C

∥

∥

∥m− 1
∥

∥

∥

2

∞
.

Therefore, setting

φ(t) :=

∫

T

(m(t) − 1)2dx,

we have

−φ′′ + 1

C
φ ≤ 0. (72)

Moreover, if (u,m) solves (MFG) and (3) holds, up to increasing the value of C, Lemma (6.2) implies that

φ′(T ) ≤ − 1√
C
φ(T ). (73)

We now fix the choice ω = 1
2
√
C

(the value of C may still increase in subsequent steps, but the value of ω will

not). The comparison principle applied to (72) then implies that, for each t ∈ [0, T ],

φ(t) ≤ φ(0)e−2ωt + φ(T )e−2ω(T−t) ≤ C(e−2ωt + e−2ω(T−t)). (74)

Similarly, if (u,m) solves (MFG) and (3), then (72), coupled with the Robin boundary condition (73), readily
implies that

φ(t) ≤ φ(0)e−2ωt ≤ Ce−2ωt. (75)

By using the same convexity arguments as in (52), in view of (71), we have

‖m(t)− 1‖2∞ ≤ C

∫ t+ 1
2

t− 1
2

‖m(s)− 1‖∞(s)2ds ≤ C

∫ t+1

t−1

∫

T

(m− 1)2 = C

∫ t+1

t−1

φ(s)ds. (76)
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We now turn our attention to estimating ux. Fixing t ∈ [1, T − 1], as a result of (H1), Proposition 3.1, and
Corollary 3.2, we obtain, for s ∈ [t− 1, t+ 1],

1

C

∫

T

u2xx(s) ≤
d2

ds2

∫

T

(m(s) − 1)2.

Thus, testing against a bump function ζ ≥ 0, which is supported on [t− 1, t+ 1], and identically equals 1 on
[t− 1

2 , t+
1
2 ], we get

∫ t+ 1
2

t− 1
2

∫

T

u2xx ≤ C

∫ t+1

t−1

∫

T

(m− 1)2ζ′′ ≤ C

∫ t+1

t−1

φ(s)ds. (77)

Differentiating (Q) with respect to x, one sees that v = ux solves a linear elliptic equation of the form

−Tr(A(x, t)D2v) + b(x, t) ·Dv = 0.

Thus, v satisfies the maximum and minimum principles on compact subsets of QT . Applying this observation
to T× [t− s, t+ s], for s ∈ (0, 12 ), as well as the fact that, for every t ∈ [0, T ], {x ∈ T : ux(x, t) = 0} 6= ∅, we
have

oscTv(t) ≤ oscTv(t+ s) + oscTv(t− s) ≤
∫

T

|uxx(t+ s)|+
∫

T

|uxx(t− s)|.

Integrating in s then yields

oscTux(t) ≤
∫ t+ 1

2

t− 1
2

∫

T

|uxx|,

and, thus, as a result of (77) and the Cauchy-Schwarz inequality,

‖ux(t)‖2∞ ≤ C

∫ t+1

t−1

φ(s)ds. (78)

Now, adding (76) and (78), followed by (74), we obtain (69) for t ∈ [1, T − 1]. Similarly, when (u,m) solves
(MFG) and (3) holds, (75) yields (70) for t ∈ [1, T − 1]. We observe that, for t ∈ [0, T ]\[1, T − 1], the bounds
on ‖m(t) − 1‖∞ given by (69) and (70) hold trivially, up to increasing the value of C. Let us see that the
same is true for the bounds on ‖ux(t)‖∞ on the interval [0, 1]. Indeed, we may simply follow the proof of
Proposition 4.3, applied to the MFG system on the domain T × [0, 1], with the only change being on Case 1
of that proof, that is, when the maximum value is attained at t = 1. For this case, we may simply use the
fact that, as a result of (69) holding for t = 1, |ux(·, 1)| is bounded. Thus, if we take T = 1 in Proposition
4.2, this yields a bound on ‖ux‖T×[0,1] that depends only on C0, ‖m‖L∞(QT ), ‖m−1‖L∞(QT ), ‖(m0)x‖∞, and

‖C‖L∞([minm,maxm]). A similar argument may be followed on T× [T − 1, T ], which completes the proof.

Having established the turnpike property, we now follow the program developed in [8] to study the long
time behavior. In order to characterize the limit, as T → ∞, of the functions (u(t)− λ(T − t),m(t)), we first
show a uniqueness result for (MFGL).

Lemma 7.2. Assume that (L) holds. Then, up to adding a constant to v, there exists at most one classical
solution (v, µ) to (MFGL) satisfying (5).

Proof. Assume that (v1, µ1), (v2, µ2) are solutions to (MFGL) satisfying (5). Since µ1 − 1, µ2 − 1 ∈ L1(T ×
(0,∞)), there exists a sequence Tk → ∞ such that

lim
k→∞

∫

T

(

|µ1(·, Tk)− 1|+ |µ2(·, Tk)− 1|
)

= 0.

Performing the standard Lasry-Lions computation for v1, v2 on QTk
, using Lemma 6.4, and noting that

µi, (µi)−1, vix,∈ L∞(T× (0,∞)), i ∈ {1, 2},
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we obtain

1

C

(

∫ Tk

0

∫

T

|v1x − v2x|2 + |µ1 − µ2|2
)

≤
∫

T

−(v1(Tk)− v2(Tk))(µ
1(Tk)− µ2(Tk))

=

∫

T

−(v1(Tk)− v2(Tk))((µ
1(Tk)− 1)− (µ2(Tk)− 1)). (79)

Now, since v1, v2 ∈ L∞(T× (0,∞)), the right hand side converges to 0 as k → ∞. Therefore,
∫ ∞

0

∫

T

|v1x − v2x|2 + |µ1 − µ2|2 = 0.

This implies that µ1 = µ2 and v1x = v2x. From the HJ equations, v1t = v2t , which concludes the proof.

In the following lemma, we obtain uniform estimates for the solution that are independent of T .

Lemma 7.3. Let (uT ,mT ) be a solution to (MFG) or (MFGP) for T > 0, and let ω > 0 be the constant from
Lemma 7.1. Set vT = uT − λ(T − t). Then there exists a constant C > 0, independent of T , such that:

• If (3) holds and (uT ,mT ) solves (MFG), then

|vT (t)− g(1)| ≤ Ce−ωt for all t ∈ [0, T ]. (80)

• If (uT ,mT ) solves (MFGP), and
∫

T

vT
(

1

2
T

)

dx = 0, (81)

then we have
‖vT ‖L∞(QT ) ≤ C (82)

and
‖vT ‖L∞(QT

2

) ≤ Ce−ωt. (83)

Proof. First we note that in both (MFG) and (MFGP), as a result of Lemma 7.1, the function vTx = uTx is
bounded uniformly, independently of T , and, by Corollary 3.2, so are mT , (mT )−1. Therefore, since H is
smooth, and thus locally Lipschitz, we have, for some constant C > 0 independent of T > 0,

|vTt | ≤ C(|vTx |+ |mT − 1|). (84)

Assume first that (uT ,mT ) solves (MFG) and (3) holds. Integrating the HJ equation in [t, T ] and using (84)
along with (70) in Lemma 7.1 we obtain

|vT (t)− vT (T )| ≤ C

∫ T

t

e−ωsds.

Furthermore, using the fact that
vT (T ) = uT (T ) = g(mT (T )),

and
|mT (T )− 1| ≤ Ce−ωT ,

by increasing the constant C if necessary, we obtain

|vT (t)− g(1)| ≤ C(e−ωT + e−ωt) ≤ 2Ce−ωt,

which proves (80). Next, we assume that (uT ,mT ) solves (MFGP) and (81) holds. Letting t < T
2 , and

integrating the HJ equation in [t, T2 ], we obtain from (84) and (69) that

∣

∣

∣

∫

T

vT (·, t)
∣

∣

∣ ≤ C

∫ T
2

t

e−ωs + e−ω(T−s)ds ≤ 2C

ω

(

e−ωt + e−ω T
2

)

≤ 4C

ω
e−ωt. (85)
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Similarly, for t ≥ T
2 integrating the HJ equation in [T2 , t] yields

∣

∣

∣

∫

T

vT (·, t)dx
∣

∣

∣ ≤ C. (86)

Now, for every t ∈ [0, T ], there exists a point xt ∈ T such that vT (xt, t) =
∫

T
vT (·, t). Therefore,

|vT (x, t)| ≤ oscTv
T (t) +

∣

∣

∣

∫

T

vT (·, t)
∣

∣

∣.

As a result, in view of (69), the estimates (86) and (85) yield, respectively, (82) and (83).

We are now ready to prove our last result.

Proof of Theorem 1.3. We set
vT = uT − λ(T − t),

and show that vT is is convergent as T → ∞.
In view of Lemmas 7.1 and 7.3, as well as (84), we see that ‖vT ‖W 1,∞(QT ) and ‖mT‖∞ are bounded,

independently of T . We may therefore apply the Arzelà–Ascoli theorem to conclude that, up to extracting a
subsequence, there exist v ∈W 1,∞(T× [0,∞)) and µ ∈ L∞(T× [0,∞)) such that

vT → v locally uniformly in T× [0,∞),

and
mT ⇀ µ weakly–* in L∞(T× (0,∞)).

We now fix T0 ∈ (1,∞), and assume that T > T0 + 1. Then (vT ,mT ) solves the system










−vTt + λ+H(vTx ,m
T ) = 0 in QT0

,

mT
t − (mTHp(v

T
x ,m

T ))x = 0 in QT0
,

mT (·, 0) = m0.

(87)

Moreover, as a result of the interior C1,α estimates for quasilinear elliptic equations, and the interior Schauder
estimates for linear equations, mT (·, T0) is uniformly bounded in C2,α+ǫ, where ǫ > 0 is chosen such that
α+ ǫ < 1. Therefore, as in the proof of Theorem 1.1, we conclude that, as T → ∞,

(vT ,mT ) → (v, µ) in C3,α(T× [0, T0])× C2,α(T× [0, T0]). (88)

In particular, this implies that (v, µ) ∈ C3,α
loc

(T × [0,∞)) × C2,α
loc

(T × [0,∞)), and that (v, µ) solves (MFGL).
Letting T → ∞ in (69) yields

‖µ(t)− 1‖∞ + ‖vx(t)‖∞ ≤ Ce−ωt, (89)

which shows that µ−1 ∈ L1(T× (0,∞)). Moreover, since ‖(mT )−1‖∞ is bounded, we conclude that (5) holds.
Now, since a subsequence was extracted, we must verify that the limit is uniquely determined. In view of

Lemma 7.2, µ is uniquely determined, and v is uniquely determined up to a constant. In the case of (MFG)
we see from (80) that

lim
t→∞

‖v(t)− g(1)‖∞ = 0.

On the other hand, in the case of (MFGP), letting T → ∞ followed by t→ ∞ in (83), we obtain

lim
t→∞

‖v(t)‖∞ = 0.
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