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Abstract. We consider a composite optimization problem where the sum of a con-

tinuously differentiable and a merely lower semicontinuous function has to be minimized.

The proximal gradient algorithm is the classical method for solving such a problem numer-

ically. The corresponding global convergence and local rate-of-convergence theory typically

assumes, besides some technical conditions, that the smooth function has a globally Lip-

schitz continuous gradient and that the objective function satisfies the Kurdyka–Łojasiewicz

property. Though this global Lipschitz assumption is satisfied in several applications where

the objective function is, e.g., quadratic, this requirement is very restrictive in the non-

quadratic case. Some recent contributions therefore try to overcome this global Lipschitz

condition by replacing it with a local one, but, to the best of our knowledge, they still

require some extra condition in order to obtain the desired global and rate-of-convergence

results. The aim of this paper is to show that the local Lipschitz assumption together with

the Kurdyka–Łojasiewicz property is sufficient to recover these convergence results.
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1 Introduction

In this paper, we are concerned with problems from composite optimization where the
sum of a continuously differentiable function f and a merely lower semicontinuous
function φ has to be minimized. Problems of this type appear quite frequently in
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many practically relevant areas like, e.g., machine learning, data compression, matrix
completion, and image processing, see [11,20,21,27,36,39], where, typically, f models
a tracking-type term while φ is used to promote sparse structures in the solutions.

For an algorithmic treatment of such problems, one can exploit the composite
form, i.e., differentiability of f on the one hand and additional structural properties
of the function φ on the other hand (typically, the nonsmoothness encapsulated within
φ is of specific type in all aforementioned applications). More precisely, the so-called
proximal mapping of the function φ has to be available, which is typically the case in
the aforementioned practically relevant scenarios. The idea behind the definition of
proximal mappings is to interrelate the search for minimizers (or at least stationary
points) with a fixed-point problem, and to apply a fixed-point iteration to the proximal
mapping in order to tackle the minimization of the underlying function. Combining
the available oracles for f and φ in order to construct an algorithm to minimize
f +φ led to the development of so-called proximal gradient methods which date back
to [28]. It is worth noting that proximal gradient algorithms can be interpreted as
so-called forward-backward splitting methods which are far older, see [18, 19, 44, 47]
for their origins and [7] for a modern view. Popular instances of proximal gradient
methods are the iterative shrinkage/threshold algorithm (ISTA) and its accelerated
version (FISTA = fast ISTA), see [9], where φ has to be convex. The monograph
[8] presents a nice overview of existing results addressing proximal gradient methods
where the nonsmooth part enjoys convexity.

It has been pointed out in the seminal works [5, 14] that the convergence theory
for proximal gradient methods can be extended to situations where the nonsmooth
part φ is merely lower semicontinuous and not necessarily convex. In both afore-
mentioned papers, the analysis, which covers both (global) convergence and rate-
of-convergence results, requires a so-called descent lemma as well as the celebrated
Kurdyka–Łojasiewicz property, originating from [34,37,38]. The majority of available
convergence results regarding proximal gradient methods seems to indicate that the
price we have to pay for allowing φ to be nonsmooth is that the gradient ∇f of the
smooth part has to be globally Lipschitz continuous. This requirement, which holds
naturally when f is a (convex) quadratic function (as indicated above, this happens
to be the case in many standard applications from image processing and data sci-
ence), turns out to be rather restrictive in the non-quadratic situation which also is
of practical interest, see Examples 3.6 and 3.7 below.

Let us review some contributions where the authors try to get rid of this global Lip-
schitz assumption. First, we would like to mention [6] where composite optimization
problems with convex functions f and φ are considered without postulating global
Lipschitzness of ∇f . It is shown that local Lipschitz continuity of ∇f is enough to
obtain rate-of-convergence results for the iterates generated by a Bregman-type prox-
imal gradient method. However, the authors of [6] require the additional assumption
that there is a constant L > 0 such that Lh−f is convex, where h is a convex function
which defines the Bregman distance (let us mention that h equals the squared Eu-
clidean norm in our setting). This convexity-type condition is satisfied in a couple of
practically relevant situations. The approach of [6] was generalized to the nonconvex
setting in [15] using, once again, a local Lipschitz assumption on ∇f , as well as the
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slightly stronger assumption (in order to deal with the nonconvexity) that there exist
a constant L > 0 and a convex function h such that both Lh − f and Lh + f are
convex. Let us emphasize that this constant L plays a central role in the design of
the corresponding proximal-type methods. More precisely, it is used explicitly for the
determination of the stepsizes. In the recent paper [23], global convergence results
are proven under a local Lipschitz assumption on ∇f (without postulating any of
the convexity-type conditions from above), but the authors assume (a priori) bound-
edness of iterates and stepsizes. Let us also mention some related works which do
not address proximal gradient algorithms. In [33,41], the authors are concerned with
(inexact) descent methods for differentiable functions without a Lipschitzian gradi-
ent and also investigate situations where the aforementioned Kurdyka–Łojasiewicz
property is present. The paper [45] studies the (convex-)constrained minimization of
the composition of a convex and a twice continuously differentiable function whose
gradient is not assumed to be globally Lipschitzian, based on a (nonsmooth) Gauß–
Newton method. Using the Kurdyka–Łojasiewicz property, convergence of the whole
sequence of iterates is shown.

The present paper is based on [32] where the authors show global convergence
results for proximal gradient methods in the sense that every accumulation point is
shown to be a suitable stationary point of the composite optimization problem. The
analysis in [32] is based on the local Lipschitz continuity of ∇f , and does not require
the iterates to be bounded. Related results under similar assumptions for the par-
ticular proximal gradient algorithm PANOC+ can be found in [26]. An extension of
the findings in [32], using a nonmonotone line search, is given in [24]. In contrast to
most existing papers on proximal gradient methods, however, convergence of the en-
tire sequence is not addressed in [24,26,32]. Hence, no associated rate-of-convergence
results could be given ([24] presents some standard worst-case rate-of-convergence
results addressing the difference of two consecutive iterates along convergent subse-
quences). The aim of this paper is to fill this gap. More precisely, we show that the
entire sequence generated by the proximal gradient method converges to a limit (with
a suitable rate), provided that this point is an accumulation point of the generated
sequence which satisfies the Kurdyka–Łojasiewicz property. The underlying conver-
gence theory is still based on a merely local Lipschitz assumption on ∇f , neither
its global Lipschitzness nor the (a priori) boundedness of the iterates and stepsizes
is presumed. To this end, we stress that our analysis is not based on any kind of
(global) descent lemma, which is in contrast to the contributions [6, 15] mentioned
above. Let us emphasize that the mild assumptions used in [24,26,32] or the present
paper do not guarantee the existence of accumulation points of the generated se-
quence. Some additional properties of the considered model problem are needed to
ensure this. Since extensive numerical comparisons of (different types of) proximal
gradient methods can already be found in several papers, see e.g. [29, 35, 49], we ab-
stain from the presentation of computational results here but focus on the compact
justification of our theoretical findings.

The paper is organized as follows: In Section 2, we formally introduce the model
problem of interest and provide some necessary notation as well as background ma-
terial from generalized differentiation. The proximal gradient method together with
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the global convergence properties known from [32] are stated in Section 3. The con-
vergence and rate-of-convergence analysis is then given in Section 4. We close with
some final remarks in Section 5.

2 Problem Setting and Preliminaries

2.1 Problem Setting

Throughout the paper, we investigate the numerical treatment of the composite op-
timization problem

min
x

ψ(x) := f(x) + φ(x), x ∈ X, (P)

where f : X→ R is continuously differentiable, φ : X→ R := R ∪ {∞} is lower semi-
continuous (possibly infinite-valued and nondifferentiable), and X denotes a Euclidean
space, i.e., a real and finite-dimensional Hilbert space. Since we do not want to deal
with trivial situations, we assume that there exist points in X where the value of φ is
finite. Let us underline that X is chosen to be Euclidean because this allows to cover
applications from matrix analysis like low-rank optimization or matrix completion.

In order to minimize the function ψ : X→ R in (P), we will exploit its composite
structure which allows for gradient steps with respect to the continuously differen-
tiable function f on the one hand and so-called proximal steps with respect to φ on
the other hand, i.e., we rely on a splitting approach. Throughout the last decades,
experiments on numerous practically relevant optimization problems have shown that
splitting methods are superior to the direct applications of standard methods from
nonsmooth optimization to the function ψ.

2.2 Basic Notation

Throughout the paper, the Euclidean space X will be equipped with the inner product
〈·, ·〉 : X × X → R and the associated norm ‖·‖. Given a set A ⊂ X and an element
x ∈ X, we use A+x := x+A := {x}+A := {x+a | a ∈ A} for brevity. Furthermore,

dist(x,A) := inf{‖y − x‖ | y ∈ A}

denotes the distance of the point x to the set A with dist(x, ∅) :=∞. For given ε > 0,
Bε(x) := {y ∈ X | ‖y − x‖ ≤ ε} denotes the closed ε-ball around x.

The continuous linear operator f ′(x) : X → R denotes the derivative of the con-
tinuously differentiable function f : X → R at x ∈ X, and we will make use of
∇f(x) := f ′(x)∗1 where f ′(x)∗ : R → X is the adjoint of f ′(x). This way, ∇f is
a mapping from X to X.

We further say that a sequence {xk} ⊂ X converges Q-linearly to x∗ ∈ X if there
is a constant c ∈ (0, 1) such that the inequality

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖
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holds for all sufficiently large k ∈ N. Furthermore, {xk} is said to converge R-linearly
to x∗ if we have

lim sup
k→∞

‖xk − x∗‖1/k < 1.

Note that this R-linear convergence holds if there exist constants ω > 0 and µ ∈ (0, 1)
such that ‖xk − x∗‖ ≤ ωµk holds for all sufficiently large k ∈ N, i.e., if the expression
‖xk − x∗‖ is dominated by a Q-linearly convergent null sequence.

2.3 Generalized Differentiation

The following concepts are standard in variational analysis, and we refer the interested
reader to the monographs [40, 48] for more details.

Let us fix a merely lower semicontinuous function ϑ : X→ R and pick x ∈ domϑ
where domϑ := {x ∈ X | ϑ(x) <∞} denotes the domain of ϑ. Then the set

∂̂ϑ(x) :=

{
η ∈ X

∣∣∣∣ lim inf
y→x, y 6=x

ϑ(y)− ϑ(x)− 〈η, y − x〉
‖y − x‖ ≥ 0

}

is called the regular (or Fréchet) subdifferential of ϑ at x. Furthermore, the set

∂ϑ(x) :=

{
η ∈ X

∣∣∣∣∣
∃{xk}, {ηk} ⊂ X :

xk → x, ϑ(xk)→ ϑ(x), ηk → η, ηk ∈ ∂̂ϑ(xk) ∀k ∈ N

}

is well known as the limiting (or Mordukhovich) subdifferential of ϑ at x. Clearly, we
always have ∂̂ϑ(x) ⊂ ∂ϑ(x) by construction of these sets. Whenever ϑ is a convex
function, equality holds, and both subdifferentials coincide with the subdifferential of
convex analysis, i.e.,

∂̂ϑ(x) = ∂ϑ(x) = {η ∈ X | ∀y ∈ domϑ : ϑ(y) ≥ ϑ(x) + 〈η, y − x〉}

is valid in this situation. By definition of the regular subdifferential, it is clear that
whenever x∗ ∈ domϑ is a local minimizer of ϑ, then 0 ∈ ∂̂ϑ(x∗) hold. The latter
fact is known as Fermat’s rule, see [40, Proposition 1.30(i)]. Thus, the inclusion
0 ∈ ∂ϑ(x∗) is a necessary optimality condition for x∗ being a local minimizer of ϑ
as well. Note that, for ϑ being convex, this necessary optimality condition is also
sufficient for (global) minimality of x∗ for ϑ.

Let us now apply this to the special case where ϑ := ψ is the sum of the contin-
uously differentiable function f and a merely lower semicontinuous function φ, as it
happens to be the case when investigating (P). Whenever x ∈ domφ is fixed, the
sum rule

∂(f + φ)(x) = ∇f(x) + ∂φ(x) (2.1)

holds due to the assumed continuous differentiability of f , see [40, Proposition 1.30(ii)].
Application of Fermat’s rule therefore shows that the optimality condition

0 ∈ ∇f(x∗) + ∂φ(x∗)
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holds at any local minimizer x∗ ∈ domφ of the composite optimization problem (P).
Any point x∗ ∈ domφ satisfying this necessary optimality condition will be called an
M-stationary point of (P) due to the appearance of the limiting (or Mordukhovich)
subdifferential.

We next introduce the famous Kurdyka–Łojasiewicz property that was already
mentioned in Section 1 and which plays a central role in our subsequent convergence
analysis. The version of this property stated below is a generalization of the classical
Kurdyka–Łojasiewicz inequality for nonsmooth functions as introduced in [4, 12, 13]
and afterwards used in the local convergence analysis of several nonsmooth optimiza-
tion methods, see [3, 5, 14, 16, 17, 42, 43] for a couple of examples.

Definition 2.1. Let g : X → R be lower semicontinuous. We say that g has the KL
property, where KL abbreviates Kurdyka–Łojasiewicz, at x∗ ∈ {x ∈ X | ∂g(x) 6= ∅} if
there exist a constant η > 0, a neighborhood U ⊂ X of x∗, and a continuous concave
function χ : [0, η]→ [0,∞) which is continuously differentiable on (0, η) and satisfies
χ(0) = 0 as well as χ′(t) > 0 for all t ∈ (0, η) such that the so-called KL inequality

χ′
(
g(x)− g(x∗)

)
dist

(
0, ∂g(x)

)
≥ 1

holds for all x ∈ U ∩
{
x ∈ X | g(x∗) < g(x) < g(x∗) + η

}
. The function χ from above

is referred to as the desingularization function.

We note that there exist classes of functions where the KL property holds with
the corresponding desingularization function given by χ(t) := ctκ for κ ∈ (0, 1] and
some constant c > 0, where the parameter κ is called the KL exponent, see [13, 34].

3 A Proximal Gradient Method and its Global Con-

vergence Properties

This section begins with a formal description of a proximal gradient method for
the composite optimization problem (P), and then summarizes the associated global
convergence properties established in [32]. Note that our proximal gradient method
uses a line search which is important to get global convergence properties without a
global Lipschitz assumption. We start with a precise statement of the algorithm.

Algorithm 3.1 (Proximal Gradient Method).

Require: τ > 1, 0 < γmin ≤ γmax <∞, δ ∈ (0, 1), x0 ∈ domφ
1: Set k := 0.
2: while A suitable termination criterion is violated at iteration k do
3: Choose γ0k ∈ [γmin, γmax].
4: For i = 0, 1, 2, . . ., compute a solution xk,i of

min
x

f(xk) + 〈∇f(xk), x− xk〉+ γk,i
2
‖x− xk‖2 + φ(x), x ∈ X (3.1)

with γk,i := τ iγ0k, until the acceptance criterion

ψ(xk,i) ≤ ψ(xk)− δγk,i
2
‖xk,i − xk‖2 (3.2)
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holds.
5: Denote by ik := i the terminal value, and set γk := γk,ik and xk+1 := xk,ik .
6: Set k ← k + 1.
7: end while
8: return xk

Our convergence analysis requires some technical assumptions as well as a local
Lipschitz condition on the gradient of the continuously differentiable function f .

Assumption 3.2.

(a) The function ψ is bounded from below on domφ.

(b) The function φ is bounded from below by an affine function.

(c) The function ∇f : X→ X is locally Lipschitz continuous.

Keeping in mind that our goal is to minimize the function ψ in (P), Assumption 3.2 (a)
is reasonable. Furthermore, Assumption 3.2 (b) is employed to guarantee existence
of solutions for the appearing subproblems (3.1). To be precise, Assumption 3.2 (b)
implies that the objective function of the subproblem (3.1) is, for fixed k, i ∈ N,
coercive, and therefore always attains a global minimizer xk,i (which does not need
to be unique). Finally, the local Lipschitz condition for ∇f from Assumption 3.2 (c)
will play a crucial role especially in Section 4 where we consider situations where a
sequence generated by Algorithm 3.1 converges as a whole and give associated rate-
of-convergence results.

In the following, we recall the central global convergence properties of Algorithm 3.1
whose proofs can be found in [32, Section 3]. Note that, throughout our analysis of
Algorithm 3.1, we implicitly assume that this method generates an infinite sequence.
For a discussion of a practical termination criterion, we refer to [32, Remark 3.1] for
more details.

First, we recall that the stepsize rule in Step 4 of Algorithm 3.1 is always finite if
the current iterate is not already stationary. Hence, the overall method is well-defined.

Lemma 3.3. Consider a fixed iteration k ∈ N of Algorithm 3.1, assume that xk is
not an M-stationary point of (P), and suppose that Assumption 3.2 (b) holds. Then
the inner loop in Step 4 of Algorithm 3.1 is finite, i.e., we have γk = γk,ik for some
finite index ik ∈ {0, 1, 2, . . .}.

The following result summarizes some of the properties of Algorithm 3.1 that will
later be used in Section 4.

Proposition 3.4. Let Assumption 3.2 (a) and (b) hold, and let {xk} be a sequence
generated by Algorithm 3.1. Then the following statements hold:

(a) ‖xk+1 − xk‖ → 0 as k →∞,

(b) for any convergent subsequence {xk}K, γk‖xk+1− xk‖ →K 0 holds as k →K ∞,

(c) if, additionally, Assumption 3.2 (c) is valid, then for any convergent subse-
quence {xk}K , {γk}K is bounded.
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Finally, we restate the main global convergence result for Algorithm 3.1, see again
[32, Section 3] for the corresponding details.

Theorem 3.5. Let Assumption 3.2 be satisfied. Then each accumulation point of a
sequence {xk} generated by Algorithm 3.1 is an M-stationary point of (P).

Note that [32, Theorem 3.1] shows that a result like Theorem 3.5 also holds with-
out any Lipschitz condition regarding ∇f , but it then requires a slightly stronger
condition for the nonsmooth function φ, namely the continuity of φ on its domain
(this condition holds, e.g., if φ is the indicator function of a constraint set). Our
analysis in Section 4, however, requires the local Lipschitz condition for the gradient
∇f , so we decided to treat it as a standing assumption.

We close this section by mentioning two classes of examples where the standard
global Lipschitz assumption on the gradient of f is typically violated, whereas a local
Lipschitz condition is often satisfied.

Example 3.6. (Augmented Lagrangian Methods)
Consider the constrained optimization problem

min
x

f(x) + φ(x) s.t. c(x) ∈ C,

where f : X→ R and φ : X→ R are as in (P). In addition, we have some constraints
defined by a continuously differentiable function c : X → Y, where Y is another Eu-
clidean space, and a nonempty, closed, and convex set C ⊂ Y.

Given a current iterate xk ∈ X and a corresponding Lagrange multiplier estimate
λk ∈ Y, augmented Lagrangian techniques then compute the next iterate xk+1 by
solving (approximately) the subproblem

min
x
f(x) + φ(x) +

ρk
2
dist2

(
c(x) +

λk

ρk
, C

)
, x ∈ X

for some penalty parameter ρk > 0. Since the squared distance function y 7→
dist2(y, C) is continuously differentiable by convexity of C, see [7, Corollary 12.31],
this subproblem has exactly the structure of the composite optimization problem
(P) and can therefore, in principle, be solved by a proximal gradient method, see
[22, 25, 30, 31] for suitable realizations of this approach.

Assuming that the gradient of the smooth part of this objective function (with
respect to the variable x) is globally Lipschitz continuous, however, is pretty strong
is this setting and, basically, requires the constraint function c to be linear and the
set C to be polyhedral, whereas local Lipschitzness of this gradient holds under mild
conditions on the smoothness of f and c.

The following example makes use of conjugate functions, see [7, Definition 13.1].
Since, within this paper, they only occur in this particular application, we refrain
from stating their precise definitions and properties, and refer the interested reader
to the excellent monographs [7, 8, 48] for more details.
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Example 3.7. (Dual Proximal Gradient Methods)
Consider the (primal) optimization problem

min
x

g(x) + h(Ax), x ∈ X (3.3)

where both functions g : X→ R and h : Y→ R are lower semicontinuous and convex
while possessing nonempty domains, and A : X → Y is a linear operator. Above, Y
is another Euclidean space. Note that none of the functions g or h is assumed to be
(continuously) differentiable.

The (Fenchel) dual problem of (3.3) is given by

min
y

g∗(A∗y) + h∗(−y), y ∈ Y (3.4)

with the two conjugate functions g∗ : X→ R and h∗ : Y→ R being lower semicontinu-
ous and convex, and A∗ : Y→ X being the adjoint of A. Under suitable assumptions,
the pair (3.3), (3.4) enjoys strong duality, i.e., the optimal objective function values
of these problems coincide, see [46], which motivates to solve (3.4) instead of (3.3) in
some applications where the conjugate functions are explicitly available.

Assuming, in addition, that g is uniformly convex, it is known that g∗ is real-
valued everywhere and continuously differentiable with a globally Lipschitz continuous
gradient, see [48, Proposition 12.60]. Consequently, as promoted in [10], a standard
proximal gradient algorithm can be applied to the dual problem (3.4). On the other
hand, if g is only strictly convex, then the domain of g∗ is, in general, no longer the
entire space, but g∗ can still be shown to be continuously differentiable on the interior
of its domain. Its gradient, however, is no longer guaranteed to be globally Lipschitz
continuous on the domain.

4 Convergence Analysis in the Presence of the KL

Property

The aim of this section is to show convergence of the entire sequence {xk} generated by
Algorithm 3.1 provided that there exists an accumulation point x∗ which, in addition,
satisfies the KL property, and to present associated rate-of-convergence results. The
proofs of these results are based on a local Lipschitz assumption on ∇f only, without
the a priori assumption that the whole sequence {xk} is bounded. Based on some
recent contributions in the area of proximal gradient and related first-order methods,
it seems reasonable to expect such a result to hold. For example, [14, 42] consider a
whole class of first-order methods and investigate their (essentially local) convergence
showing, in particular, that the entire sequence {xk} generated by their methods stays
within a certain neighborhood of a solution provided that the KL property holds at
this solution.

Their approach is not directly applicable to our situation since, on the one hand,
we do not use the a priori assumption that our iterates are bounded, and, on the other
hand, because the adaption of the methods considered in [14, 42] to the proximal
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gradient setting would result in an algorithm with a constant stepsize. However,
having an accumulation point of Algorithm 3.1 satisfying the KL property, we know
from the local Lipschitz assumption on∇f that a respective global Lipschitz condition
holds in a suitable neighborhood of this point, which then can be used to verify
that the stepsizes computed by Algorithm 3.1 remain bounded. This – more or less
heuristic – idea fortifies us to believe that one can also get convergence and rate-
of-convergence results under the KL property in the presence of Assumption 3.2 (c).
The following analysis is a careful mathematical realization of this somewhat vague
idea.

We begin with a result which shows that, locally around an accumulation point
of the sequence {xk}, the associated stepsizes γk remain bounded. This observation
and its proof are related to [32, Corollary 3.1]. Note that this statement is essentially
different from the boundedness of stepsizes along convergent subsequences of iterates
which is inherent in the presence of Assumption 3.2, see Proposition 3.4 (c).

Lemma 4.1. Let Assumption 3.2 hold, let {xk} be any sequence generated by Algorithm 3.1,
and let x∗ be an accumulation point of this sequence. Then, for any ρ > 0, there is a
constant γ̄ρ > 0 (usually depending on ρ) such that γk ≤ γ̄ρ holds for all k ∈ N such
that xk ∈ Bρ(x

∗).

Proof. First, recall from Lemma 3.3 that the stepsize γk is well-defined for each k ∈ N.
Let ρ > 0 be fixed, and recall that the assumed local Lipschitz continuity of ∇f
implies that this gradient mapping is (globally) Lipschitz continuous on the compact
set B2ρ(x

∗) (note that we took 2ρ as the radius of this ball here). Let us denote the
corresponding Lipschitz constant by L2ρ. Since x∗ is an accumulation point of the
sequence {xk}, there are infinitely many iterates of this sequence belonging to Bρ(x

∗).
Now, assume, by contradiction, that there is a subsequence {γk}K with xk ∈

Bρ(x
∗) for all k ∈ K such that {γk}K is unbounded. Without loss of generality, we

may assume that γk →K ∞, that the subsequence of iterates {xk}K converges to
some point x̄ (not necessarily equal to x∗), and that, for each k ∈ K, the acceptance
criterion (3.2) is violated in the first iteration of the inner loop. Then, for the trial
stepsize γ̂k := γk/τ = τ ik−1γ0k , we also have γ̂k →K ∞, whereas the corresponding
trial vector x̂k := xk,ik−1 does not satisfy the acceptance criterion from (3.2), i.e., we
have

ψ(x̂k) > ψ(xk)− δ γ̂k
2
‖x̂k − xk‖2 ∀k ∈ K. (4.1)

On the other hand, since x̂k solves the corresponding subproblem (3.1) with γ̂k in
place of γk,i, we have

〈∇f(xk), x̂k − xk〉+ γ̂k
2
‖x̂k − xk‖2 + φ(x̂k)− φ(xk) ≤ 0. (4.2)

We claim that this, in particular, implies that x̂k →K x̄. In fact, using (4.2), the
Cauchy-Schwarz inequality, and the fact that {ψ(xk)} is monotonically decreasing by
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construction of Algorithm 3.1, we obtain

γ̂k
2
‖x̂k − xk‖2 ≤ ‖∇f(xk)‖‖x̂k − xk‖+ φ(xk)− φ(x̂k)

= ‖∇f(xk)‖‖x̂k − xk‖+ ψ(xk)− f(xk)− φ(x̂k)
≤ ‖∇f(xk)‖‖x̂k − xk‖+ ψ(x0)− f(xk)− φ(x̂k).

Since f is continuously differentiable and −φ is bounded from above by an affine
function in view of Assumption 3.2 (b), the above estimate implies ‖x̂k − xk‖ →K 0.
In fact, if {‖x̂k − xk‖}K would be unbounded, then the left-hand side would grow
more rapidly than the right-hand side, and if {‖x̂k − xk‖}K would be bounded, but
staying away, at least on a subsequence, from zero by a positive number, the right-
hand side would be bounded, whereas the left-hand side would be unbounded on
the corresponding subsequence. Consequently, we have ‖x̂k − xk‖ →K 0, and since
xk →K x̄, this implies x̂k →K x̄. In particular, since x̄ ∈ Bρ(x

∗), this implies that,
for all sufficiently large k ∈ K, we have both xk ∈ B2ρ(x

∗) and x̂k ∈ B2ρ(x
∗).

Let us fix some k ∈ K. Using the mean-value theorem yields the existence of a
point ξk on the line segment connecting xk with x̂k such that

ψ(x̂k)− ψ(xk) = f(x̂k) + φ(x̂k)− f(xk)− φ(xk)
= 〈∇f(ξk), x̂k − xk〉+ φ(x̂k)− φ(xk).

Substituting the resulting expression for φ(x̂k)− φ(xk) into (4.2), we see that

〈∇f(xk)−∇f(ξk), x̂k − xk〉+ γ̂k
2
‖x̂k − xk‖2 + ψ(x̂k)− ψ(xk) ≤ 0. (4.3)

Exploiting (4.1), we therefore obtain

γ̂k
2
‖x̂k − xk‖2 ≤ −〈∇f(xk)−∇f(ξk), x̂k − xk〉+ ψ(xk)− ψ(x̂k)

≤ ‖∇f(xk)−∇f(ξk)‖‖x̂k − xk‖+ δ
γ̂k
2
‖x̂k − xk‖2

which can be rewritten as

(1− δ) γ̂k
2
‖x̂k − xk‖ ≤ ‖∇f(xk)−∇f(ξk)‖.

Since ξk in an element from the line connecting xk and x̂k, it follows that ξk ∈ B2ρ(x
∗)

for all k ∈ K sufficiently large. Hence, the Lipschitz continuity of ∇f on this ball,
we find

(1− δ) γ̂k
2
‖x̂k − xk‖ ≤ L2ρ‖xk − ξk‖ ≤ L2ρ‖xk − x̂k‖

for all sufficiently large k ∈ K. Since x̂k 6= xk in view of (4.1), this implies that
{γ̂k}K is bounded which, in turn, yields the boundedness of the subsequence {γk}K ,
contradicting our assumption. This completes the proof.
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We next show that the entire sequence {ψ(xk)} converges to ψ(x∗), where x∗ is an
arbitrary accumulation point of a sequence {xk} generated by Algorithm 3.1. Note
that this result is not completely obvious since ψ is only lower semicontinuous but
not continuous in general. Indeed, this property results from the construction of the
iterates xk+1 of Algorithm 3.1.

Lemma 4.2. Let Assumption 3.2 be satisfied, and let x∗ be an accumulation point
of a sequence {xk} generated by Algorithm 3.1. Then the entire sequence {ψ(xk)}
converges to ψ(x∗).

Proof. Let {xk}K be a subsequence converging to x∗. By means of Proposition 3.4 (a),
we also have xk+1 →K x∗. Since ψ is lower semicontinuous, we then obtain

ψ(x∗) ≤ lim inf
k→K∞

ψ(xk+1). (4.4)

On the other hand, by construction, the entire sequence {ψ(xk)} is monotonically
decreasing. Since it is also bounded from below by ψ(x∗) as a consequence of (4.4), it
follows that the whole sequence {ψ(xk)} converges. It remains to show that its limit
is equal to (the lower bound) ψ(x∗).

To this end, we first note that xk+1 solves the subproblem (3.1) with stepsize γk
in place of γk,i. Hence, we have

〈∇f(xk), xk+1 − xk〉+ γk
2
‖xk+1 − xk‖2 + φ(xk+1)

≤ 〈∇f(xk), x∗ − xk〉+ γk
2
‖x∗ − xk‖2 + φ(x∗)

for each k ∈ N. Taking the upper limit as k →K ∞, and using the continuity of ∇f
as well as Proposition 3.4, we obtain

lim sup
k→K∞

φ(xk+1) ≤ φ(x∗).

Combining this with (4.4) and using the continuity of f yields ψ(xk+1) →K ψ(x∗).
Since {ψ(xk)} converges, the assertion follows.

All results stated so far are independent of the KL property. The remaining part of
our analysis, however, is heavily based on the assumption that our objective function
ψ satisfies the KL property at a given accumulation point x∗ of a sequence {xk}
generated by Algorithm 3.1. In particular, let η > 0 be the corresponding constant
from the definition of the associated desingularization function χ. Furthermore, we
will assume that Assumption 3.2 is valid. In view of Proposition 3.4, we can find a
sufficiently large index k̂ ∈ N such that

sup
k≥k̂

‖xk+1 − xk‖ ≤ η. (4.5)

We then define

ρ := η +
1

2
(4.6)
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as well as the compact set

Cρ := Bρ(x
∗) ∩ Lψ(x0), (4.7)

where Lψ(x0) := {x ∈ X |ψ(x) ≤ ψ(x0)} is the sublevel set of ψ with respect to x0,
the starting point exploited in Algorithm 3.1. By monotonicity of {ψ(xk)}, we have
{xk} ⊂ Lψ(x0). Finally, throughout the section, let Lρ > 0 be a (global) Lipschitz
constant of ∇f on Cρ from (4.7). Finally, in view of Lemma 4.1, we have

γk ≤ γ̄ρ ∀xk ∈ Cρ (4.8)

with some suitable upper bound γ̄ρ > 0 (depending on our choice of ρ from (4.6)).
Using this notation, we can formulate the following result.

Lemma 4.3. Let Assumption 3.2 hold, and let {xk} be any sequence generated by
Algorithm 3.1. Suppose that {xk}K is a subsequence converging to some limit point
x∗, and that ψ has the KL property at x∗ with desingularization function χ. Then
there is a sufficiently large constant k0 ∈ K such that the corresponding constant

α := ‖xk0 − x∗‖+
√

8
(
ψ(xk0)− ψ(x∗)

)

δγmin

+
2
(
γ̄ρ + Lρ

)

δγmin

χ
(
ψ(xk0)− ψ(x∗)

)
(4.9)

satisfies α < 1
2
, where ρ > 0 and γ̄ρ > 0 are the constants defined in (4.6) and (4.8),

respectively, while Lρ > 0 is a Lipschitz constant of ∇f on Cρ from (4.7), and δ > 0
as well as γmin > 0 are the parameters from Algorithm 3.1.

Proof. The statement follows from the fact that each summand on the right-hand
side of (4.9) can be made arbitrarily small. This is clear for the first one since the
subsequence {xk}K converges to x∗. This is also true for the second summand as a
consequence of Lemma 4.2. Finally, the third one can be made arbitrarily small since
we have ψ(xk)→ ψ(x∗) by Lemma 4.2, taking into account that the desingularization
function χ is continuous at the origin. Hence, the statement follows by taking an index
k0 ∈ K sufficiently large.

We next state another technical result.

Lemma 4.4. Let Assumption 3.2 hold, and let {xk} be any sequence generated by
Algorithm 3.1. Suppose that {xk}K is a subsequence converging to some limit point
x∗, and that ψ has the KL property at x∗ with desingularization function χ. Then

dist
(
0, ∂ψ(xk+1)

)
≤

(
γ̄ρ + Lρ

)
‖xk+1 − xk‖

holds for all sufficiently large k ∈ N such that xk ∈ Bα(x
∗), where α < 1

2
denotes the

constant from (4.9), γ̄ρ > 0 is the constant from (4.8), and Lρ > 0 is the Lipschitz
constant of ∇f on Cρ from (4.7).
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Proof. For any k ∈ N, since xk+1 is a solution of (3.1), we obtain

0 ∈ ∇f(xk) + γk(x
k+1 − xk) + ∂φ(xk+1)

from the corresponding M-stationary condition. This implies

γk(x
k − xk+1) +∇f(xk+1)−∇f(xk) ∈ ∇f(xk+1) + ∂φ(xk+1) = ∂ψ(xk+1) (4.10)

for all k ∈ N, where we used the sum rule (2.1) for the limiting subdifferential.
Now, take an arbitrary index k ∈ N sufficiently large such that xk ∈ Bα(x

∗) and
k ≥ k̂, where k̂ is the index from (4.5). In view of (4.6) and Lemma 4.3, we have
α ≤ ρ. Therefore, Lemma 4.1 shows that

γk ≤ γ̄ρ. (4.11)

Moreover, using (4.5), (4.6), and Lemma 4.3, we get

‖xk+1 − x∗‖ ≤ ‖xk+1 − xk‖+ ‖xk − x∗‖ ≤ η + α ≤ ρ.

Hence, xk, xk+1 ∈ Cρ holds with the compact set Cρ from (4.7). Therefore, we have
∥∥∇f(xk+1)−∇f(xk)

∥∥ ≤ Lρ‖xk+1 − xk‖

by definition of Lρ. Together with (4.10) and (4.11), we thus obtain

dist
(
0, ∂ψ(xk+1)

)
≤

∥∥γk(xk − xk+1) +∇f(xk+1)−∇f(xk)
∥∥

≤ γk‖xk+1 − xk‖+ Lρ‖xk+1 − xk‖
≤ (γ̄ρ + Lρ

)
‖xk+1 − xk‖

for all k ∈ N satisfying k ≥ k̂ and xk ∈ Bα(x
∗).

The following result shows that the entire sequence {xk}, generated by Algorithm 3.1,
already converges to one of its accumulation points x∗ provided that the objective
function ψ satisfies the KL property at this point. The proof combines our previous
results with a technique used in [14].

Theorem 4.5. Let Assumption 3.2 hold, and let {xk} be any sequence generated by
Algorithm 3.1. Suppose that {xk}K is a subsequence converging to some limit point
x∗, and that ψ has the KL property at x∗. Then the entire sequence {xk} converges
to x∗.

Proof. In view of Lemma 4.2, we know that the whole sequence {ψ(xk)} is monoton-
ically decreasing and converging to ψ(x∗). This implies that ψ(xk) ≥ ψ(x∗) holds for
all k ∈ N.

Now, suppose we have ψ(xk) = ψ(x∗) for some index k ∈ N. Then, by monotonic-
ity, we also get ψ(xk+1) = ψ(x∗). Consequently, we obtain from (3.2) that

0 ≤ δγmin

2
‖xk+1 − xk‖2 ≤ ψ(xk)− ψ(xk+1) = 0

14



and, thus, xk+1 = xk. Since, by assumption, the subsequence {xk}K converges to
x∗, this implies that xk = x∗ for all k ∈ N sufficiently large. In particular, we have
convergence of the entire (eventually constant) sequence {xk} to x∗ in this situation.

For the remainder of this proof, we can therefore assume that ψ(xk) > ψ(x∗) holds
for all k ∈ N. We then let α ∈ (0, 1/2) be the constant from (4.9), and k0 ∈ K be
the corresponding iteration index which is used in the definition of α, see Lemma 4.3.
We then have 0 < ψ(xk) − ψ(x∗) ≤ ψ(xk0) − ψ(x∗) for all k ≥ k0. Without loss of
generality, we may also assume that k0 ≥ k̂ (the latter being the index defined by
(4.5)) and that k0 is sufficiently large to satisfy

ψ(xk0) < ψ(x∗) + η. (4.12)

Let χ : [0, η] → [0,∞) be the desingularization function which comes along with the
validity of the KL property at x∗. Due to χ(0) = 0 and χ′(t) > 0 for all t ∈ (0, η), we
obtain

χ
(
ψ(xk)− ψ(x∗)

)
≥ 0 ∀k ≥ k0. (4.13)

We now claim that the following two statements hold for all k ≥ k0:

(a) xk ∈ Bα(x
∗),

(b) ‖xk0 − x∗‖+∑k
i=k0
‖xi+1 − xi‖ ≤ α, which is equivalent to

k∑

i=k0

‖xi+1−xi‖ ≤
√

8
(
ψ(xk0)− ψ(x∗)

)

δγmin

+
2
(
γ̄ρ + Lρ

)

δγmin

χ
(
ψ(xk0)−ψ(x∗)

)
. (4.14)

We verify these two statements jointly by induction. For k = k0, statement (a) holds
simply by the definition of α in (4.9). Furthermore, the acceptance criterion (3.2)
together with the monotonicity of {ψ(xk)} implies

‖xk0+1 − xk0‖ ≤
√

2
(
ψ(xk0)− ψ(xk0+1)

)

δγmin

≤
√

2
(
ψ(xk0)− ψ(x∗)

)

δγmin

. (4.15)

In particular, this shows that (4.14) holds for k = k0. Suppose that both statements
hold for some k ≥ k0. Using the triangle inequality, the induction hypothesis, and
the definition of α, we obtain

‖xk+1 − x∗‖ ≤
k∑

i=k0

‖xi+1 − xi‖+ ‖xk0 − x∗‖ ≤ α,

i.e., statement (a) holds for k+1 in place of k. The verification of the induction step
for (b) is more involved.

To this end, first note that (4.12) implies

ψ(x∗) < ψ(xi) < ψ(x∗) + η ∀i ≥ k0. (4.16)

Since ψ has the KL property at x∗, we have

χ′
(
ψ(xi)− ψ(x∗)

)
dist

(
0, ∂ψ(xi)

)
≥ 1 ∀i ≥ k0. (4.17)
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Since xi ∈ Bα(x
∗) for all i ∈ {k0, k0 + 1, . . . , k} by our induction hypothesis, we can

apply Lemma 4.4 and obtain (after a simple index shift)

dist
(
0, ∂ψ(xi)

)
≤

(
γ̄ρ + Lρ

)
‖xi − xi−1‖ ∀i ∈ {k0 + 1, k0 + 2, . . . , k + 1}.

In view of (4.17), we therefore obtain

χ′
(
ψ(xi)− ψ(x∗)

)
≥ 1(

γ̄ρ + Lρ
)
‖xi − xi−1‖ ∀i ∈ {k0 + 1, k0 + 2, . . . , k + 1}. (4.18)

To simplify some of the subsequent formulas, we follow [14] and introduce the short-
hand notation

∆i,j := χ
(
ψ(xi)− ψ(x∗)

)
− χ

(
ψ(xj)− ψ(x∗)

)

for i, j ∈ N. The assumed concavity of χ then implies

∆i,i+1 ≥ χ′
(
ψ(xi)− ψ(x∗)

)(
ψ(xi)− ψ(xi+1)

)
. (4.19)

Using (4.18), (4.19), and the acceptance criterion (3.2), we therefore get

∆i,i+1 ≥ χ′
(
ψ(xi)− ψ(x∗)

)(
ψ(xi)− ψ(xi+1)

)

≥ ψ(xi)− ψ(xi+1)

(γ̄ρ + Lρ)‖xi − xi−1‖ ≥
δγmin

2(γ̄ρ + Lρ)

‖xi+1 − xi‖2
‖xi − xi−1‖ = β

‖xi+1 − xi‖2
‖xi − xi−1‖

for all i ∈ {k0+1, k0+2, . . . , k+1}, where we used the constant β := δγmin

2(γ̄ρ+Lρ)
. Noting

that a+ b ≥ 2
√
ab holds for all real numbers a, b ≥ 0, we therefore obtain

1

β
∆i,i+1 + ‖xi − xi−1‖ ≥ 2

√
1

β
∆i,i+1‖xi − xi−1‖ ≥ 2‖xi+1 − xi‖

for all i ∈ {k0 + 1, k0 + 2, . . . , k + 1}. Summation yields

2
k+1∑

i=k0+1

‖xi+1 − xi‖ ≤
k+1∑

i=k0+1

‖xi − xi−1‖+ 1

β

k+1∑

i=k0+1

∆i,i+1

=

k∑

i=k0+1

‖xi+1 − xi‖+ ‖xk0+1 − xk0‖+ 1

β
∆k0+1,k+2

≤
k+1∑

i=k0+1

‖xi+1 − xi‖+ ‖xk0+1 − xk0‖+ 1

β
∆k0+1,k+2.

Subtracting the first summand from the right-hand side, exploiting the estimate
(4.15), and using the nonnegativity as well as monotonicity of the desingularization
function χ, we obtain

k+1∑

i=k0+1

‖xi+1 − xi‖ ≤
√

2
(
ψ(xk0)− ψ(x∗)

)

δγmin

+
1

β
χ
(
ψ(xk0)− ψ(x∗)

)
.
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Adding the term ‖xk0+1 − xk0‖ to both sides and using (4.15) once again, we get

k+1∑

i=k0

‖xi+1 − xi‖ ≤
√

8
(
ψ(xk0)− ψ(x∗)

)

δγmin
+

1

β
χ
(
ψ(xk0)− ψ(x∗)

)
.

Hence, statement (b) holds for k + 1 in place of k, and this completes the induction.
In particular, it follows from (a) that xk ∈ Bα(x

∗) for all k ≥ k0. Taking k →∞
in (4.14) therefore shows that {xk} is a Cauchy sequence and, thus, convergent. Since
we already know that x∗ is an accumulation point, it follows that the entire sequence
{xk} converges to x∗.

Let us note that Theorem 4.5 says that, in the presence of Assumption 3.2 and
the KL property (on the overall domain of φ), any sequence {xk} generated by
Algorithm 3.1 either satisfies ‖xk‖ → ∞ or converges to a limit point (which is an
M-stationary point of (P) by Theorem 3.5). This alternative behavior, which typi-
cally comes along with the KL property, see e.g. [4, Theorem 3.2], has been observed
for the first time in [1, Theorem 3.2] in the context of descent methods for analytic
functions.

We finally state our rate-of-convergence result for one particular class of desin-
gularization functions. The result holds for a more general class of such functions,
and we comment on this after the proof. To keep the notation simple and since this
result, having in mind the previous ones, is more or less a standard observation, we
decided to state this rate-of-convergence result in the following way.

Theorem 4.6. Let Assumption 3.2 hold, and let {xk} be any sequence generated by
Algorithm 3.1. Suppose that {xk}K is a subsequence converging to some limit point
x∗, and that ψ has the KL property at x∗. Then the entire sequence {xk} converges
to x∗, and if the corresponding desingularization function has the form χ(t) = ct1/2

for some c > 0, the following statements hold:

(a) the sequence {ψ(xk)} converges Q-linearly to ψ(x∗),

(b) the sequence {xk} converges R-linearly to x∗.

Proof. In view of Theorem 4.5, we only need to verify the quantitative statements (a)
and (b) of the theorem.

As noted at the beginning of the proof of Theorem 4.5, we may assume, without
loss of generality, that ψ(xk) > ψ(x∗) holds for all k ∈ N. In view of Lemma 4.2, we
then have

xk ∈ Bα(x
∗) ∩

{
x ∈ domφ | ψ(x∗) < ψ(x) < ψ(x∗) + η

}

for all k ∈ N sufficiently large, where α > 0 is the constant from (4.9) and η > 0
denotes the constant from the definition of the desingularization function χ. Since ψ
satisfies the KL property at x∗ with χ(t) = ct1/2, we have

1 ≤ χ′
(
ψ(xk+1)− ψ(x∗)

)
dist

(
0, ∂ψ(xk+1)

)

=
c

2

(
ψ(xk+1)− ψ(x∗)

)−1/2
dist

(
0, ∂ψ(xk+1)

)
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for all sufficiently large k ∈ N. Taking into account Lemma 4.4, this yields

1 ≤ c(γ̄ρ + Lρ)

2

(
ψ(xk+1)− ψ(x∗)

)−1/2‖xk+1 − xk‖

for all k ∈ N sufficiently large, where γ̄ρ > 0 is the constant from (4.8) and Lρ > 0
is the global Lipschitz constant of ∇f on Cρ from (4.7). Rearranging this expression
gives us

‖xk+1 − xk‖ ≥ 2

c(γ̄ρ + Lρ)

(
ψ(xk+1)− ψ(x∗)

)1/2
. (4.20)

On the other hand, by the acceptance criterion (3.2) and γk ≥ γmin, we have

ψ(xk+1)− ψ(xk) ≤ −δγmin

2
‖xk+1 − xk‖2. (4.21)

Combining (4.20) and (4.21), we obtain

(
ψ(xk+1)− ψ(x∗)

)
−

(
ψ(xk)− ψ(x∗)

)
= ψ(xk+1)− ψ(xk)
≤ −δγmin

2
‖xk+1 − xk‖2

≤ − 2δγmin

c2(γ̄ρ + Lρ)2
(
ψ(xk+1)− ψ(x∗)

)

= −σ
(
ψ(xk+1)− ψ(x∗)

)

for all k ∈ N sufficiently large, where we used the constant σ := 2δγmin

c2(γ̄ρ+Lρ)2
for brevity.

Rearranging these terms, we find that

ψ(xk+1)− ψ(x∗) ≤ 1

1 + σ

(
ψ(xk)− ψ(x∗)

)
(4.22)

holds for all k ∈ N large enough, which shows that the sequence {ψ(xk)} converges
Q-linearly to ψ(x∗).

To verify statement (b), observe that the descent test (3.2) and the monotonicity
of the sequence {ψ(xk)} yield

δγmin

2
‖xk+1 − xk‖2 ≤ ψ(xk)− ψ(xk+1) ≤ ψ(xk)− ψ(x∗) =: ψk,

and that the sequence {ψk} is Q-linearly convergent in view of part (a). Taking this
into account, it is not difficult to see that there exist constants ω > 0 and µ ∈ (0, 1)
such that

‖xk+1 − xk‖ ≤ ωµk

holds for all sufficiently large k ∈ N. Hence, for given integers ℓ > k > 0 large enough,
we therefore obtain

‖xℓ+1 − xk‖ ≤
ℓ∑

j=k

‖xj+1 − xj‖ ≤ ω

ℓ∑

j=k

µj ≤ ωµk
∞∑

j=0

µj =
ω

1− µµ
k.
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Taking the limit ℓ→∞ yields

‖xk − x∗‖ ≤ ω

1− µµ
k

for all large enough k ∈ N. This completes the proof of the (local) R-linear conver-
gence of {xk} to its limit x∗.

We note that similar rate-of-convergence results can be obtained for the more
general case where the desingularization function is given by χ(t) = ctκ for some
κ ∈ (0, 1]. The easiest way to see that is to modify the previous proof and to apply,
for example, [2, Lemma 1].

5 Conclusions

In this paper, we have shown that convergence of the whole sequence generated by
proximal gradient methods applied to the composite optimization problem (P) can
be achieved whenever the gradient of the smooth function f is locally Lipschitz con-
tinuous while the objective function ψ possesses the KL property at all points of its
domain. For our analysis, we neither needed a priori boundedness of iterates and
stepsizes nor any additional convexity assumptions. Our findings also gave rise to the
statement of associated rate-or-convergence results.

In [24], the author shows that the global convergence properties of Algorithm 3.1
from Theorem 3.5 remain valid if, instead of the exploited monotone line search, a
nonmonotone scheme is used to determine the step sizes. In the future, it should be
clarified whether the results of Theorems 4.5 and 4.6 can be carried over to nonmono-
tone proximal gradient methods.

Several generalizations of the proximal gradient method involving, e.g., inertial
terms or Bregman distances, see [6, 15–17] and the references therein, have been
investigated in the presence of global Lipschitzness of the gradient associated with
the smooth term, as well as the KL property. Keeping our findings in mind, it might
be promising to check whether our technique of proof can be applied in these settings
to weaken the current Lipschitz assumptions.
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