
ar
X

iv
:2

30
1.

06
50

4v
2 

 [
m

at
h.

PR
] 

 2
1 

A
pr

 2
02

3

Bifurcation theory for SPDEs: finite-time Lyapunov exponents

and amplitude equations

Dirk Blömker∗ and Alexandra Neamţu†

April 24, 2023

Abstract

We consider a stochastic partial differential equation close to bifurcation of pitchfork type,

where a one-dimensional space changes its stability. For finite-time Lyapunov exponents we

characterize regions depending on the distance from bifurcation and the noise strength where

finite-time Lyapunov exponents are positive and thus detect changes in stability.

One technical tool is the reduction of the essential dynamics of the infinite dimensional

stochastic system to a simple ordinary stochastic differential equation, which is valid close

to the bifurcation.
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1 Introduction

The main goal of this work is to provide an analysis of the stability for general SPDEs of the
type

{
du = [Au+ νu+ F(u)] dt+ σdWt

u(0) = u0,
(1.1)

where A is a linear operator with a one dimensional kernel, the parameter ν ∈ R shifts the
spectrum of A, F is a stable cubic nonlinearity and σ > 0 denotes the intensity of the infinite-
dimensional noise, which is given by a Hilbert-space valued Wiener process (W (t))t∈[0,T ].
For the deterministic PDE, i.e. for σ = 0, we expect a classical pitchfork-type bifurcation at
ν = 0, which is easy to verify in many examples. For the stochastic case our analysis relies
on finite-time Lyapunov exponents (FTLE), which turned out to be useful to detect bifurcation
points for stochastic (partial) differential equations [21, 20]. Finite-time Lyaponov exponents
measure the pathwise local expansion rate of nearby solutions. This is not limited to statistically
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invariant solutions, but can be evaluated at any solution of the SPDE. If the FTLE are positive
for a given time and a given solution, then nearby solutions tend to separate on a finite time
horizon given by that time. In contrast to that negative finite-time Lyapunov exponents indicate
a pathwise local attraction on a given time-scale.
In our main results we study FTLE for various initial conditions and various values of ν and σ.
A key technical idea is to use the reduction via amplitude equations close to a change of stability.
This allows to reduce the infinite dimensional dynamics to a finite dimensional SDE, which is a
center like part, although this finite dimensional space is not invariant for the dynamics of the
SPDE. A particular example we will study is the solution of the SPDE starting in a suitably
chosen initial condition, so that the amplitude equation will evolve according to a statistically
invariant solution given by a random attractor.

Main Results. We show the following results for FTLE of (1.1) near ν = 0, which is the
bifurcation point of the deterministic PDE. Below we refer to ν = 0 as the bifurcation point.

I. Before the bifurcation, ν < 0. The solutions of (1.1) are stable for all σ with probability
one.

To be more precise, following well-known results we show in Theorem 3.2 that FTLEs for
all solutions and all times are negative with probability one.

II. After the bifurcation, moderate noise strength, 0 < ν ≈ σ ≪ 1. Here we have instability,
in the sense that there is at least one time T and one solution for which the finite-time
Lyapunov exponent λT > 0 is positive with positive probability.

The proof of this statement (Theorem 6.1) relies on the approximation with the amplitude
equation given by the SDE evolving on a slow time scale T given by db = (b − b3) dT +
σ
ν dβ(T ), where (β(T ))T≥0 is a Brownian motion, and we consider the SPDE starting in
the rescaled random attractor of the amplitude equation.

Due to the nature of the approximation result (Theorem 5.3), our result is applicable
for times T of order 1/ν but for technical reasons not up to 0. This means there is a ν
dependent interval, where we can prove that the FTLE is positive and this interval contains
values of the type C/ν for some values of the constant C > 0.

III. After the bifurcation, small noise strength, 1 ≫ ν ≫ σ ≥ 0. Similar to case II. we observe
instability for at least one solution and one time.

This relies on the approximation via the amplitude equation db = (b − b3) dT . We show
(Theorem 6.4) that for the solution with initial condition zero, we have a positive FTLE
λT > 0 for times T of order 1/ν with positive probability. But this result should hold true
for any solution with a sufficiently small initial condition.

IV. At the bifurcation, 0 ≤ ν ≪ σ ≪ 1. Here we have stability, meaning that λT < 0 for all
solutions with positive probability. The proof of this statement (Theorem 6.7) relies on
the approximation with the amplitude equation of the type db = −b3dT + dβ(T ), where
(β(T ))T≥0 is a Brownian motion.
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Let us remark that in II. the probability where the finite time Lyapunov exponent is positive
might be very small, as the proof relies on trajectories where the random attractor is initially
close to 0. In contrast to that in III. and IV. the probability is significantly larger and close to
one, but we do not quantify this in more detail.

Remark 1.1 We emphasize that based on the interplay between ν (the bifurcation parameter)
and σ (the intensity of the noise) as given above in the cases II.-IV., we can estimate the FTLEs
of the SPDE (1.1) under the Assumptions 2.1, 2.2 and 2.3 on the coefficients and on a specified
time scale. To this aim we use the order of the approximation of the SPDE with the amplitude
equation (Theorem 5.3) to control the error term between the linearization of the SPDE and the
linearization of the amplitude equation. In all cases we state bounds on the corresponding FTLEs
for the SDEs but do not directly estimate the difference between the FTLEs for the SPDEs and
the SDEs, as the FTLE of the SDE is in general not sufficient to control the linearization of the
SPDE.

1.1 Known results

Lyapunov exponents and amplitude equations are well known tools to study random dynamical
systems. We briefly summarize results related to our work.

Lyapunov exponents. The famous work of Crauel-Flandoli [23] establishes that the attractor
of the SDE

dx = (αx− x3) dt+ σ dWt (1.2)

is a unique random fixed point independent of the bifurcation parameter α ∈ R and of the noise
intensity σ > 0, inferring that additive noise destroys the deterministic pitchfork bifurcation.
This phenomenon is also referred to as synchronization by noise and can be read from the top
asymptotic Lyapunov-exponent, which is always negative. An analogous statement holds for
the Allen-Cahn SPDE [22], whereas further statements on synchronization by noise for order-
preserving dynamical systems can be looked up in [27]. A recent result which goes beyond
order-preservation is available in [28], where the invariant measure is used to determine the
Lyapunov exponent in a system of reaction diffusion equations.
However, Callaway et al. [22] (based on an earlier work of Rasmussen [32]) challenged this point
of view by measuring local stability for trajectories of the SDE (1.2) on finite time scales, using
finite-time Lyapunov exponents. They proved that, whereas all FTLEs are negative for α < 0,
there is always a positive probability to observe positive FTLEs for α > 0, i.e. sensitivity of initial
conditions for finite time dynamics; this change of the FTLEs corresponds with a transition from
uniform to non-uniform attractivity of the attractor and a loss of (uniform) hyperbolicity, a main
paradigm of bifurcation theory. In order to prove such statements, a detailed analysis on the
location of the random attractor is required. These results have been extended to the stochastic
Allen-Cahn equation in [20] using a novel argument for cones invariance.
Our result in contrast to the previously stated result does not require the monotonicity of the
SPDE. We carry over properties of the SDE via amplitude equations to the SPDE.
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Finally, we remark that it is a very challenging task to obtain sign information on asymptotic
Lyapunov exponents. In a series of remarkable papers J. Bedrossian, A. Blumenthal and
S. Punshon-Smith [6, 7] introduced methods based on the Fisher information for obtaining
strictly positive lower bounds on the top Lyapunov exponent of high-dimensional, stochastic dif-
ferential equations such as the weakly damped Lorenz-96 (L96) model or Galerkin truncations of
the 2D Navier-Stokes equations. The positivity of the top Lyapunov exponent has been also ob-
tained for Lagrangian flows in [5]. We emphasize that our analysis on the Lyapunov exponents is
made on a suitable finite-time scale, which is motivated by our applications to bifurcation theory.

An alternative but related problem is to fix the bifurcation parameter ν and introduce a coefficient
ε in front of the noise and determine for ε ≪ 1 the extent to which the random motion resembles
that of the deterministic system, i.e. ε = 0. For the stochastic Allen-Cahn equation, these
situation has been for example investigated in [8, 4]. For the latter, the bulk of initial conditions
relax to one of two stable solutions, while when ε > 0 these solutions are metastable, with typical
random trajectories transitioning from the vicinity of one to the other, reflecting the fact that
the system admits a unique stationary measure. Large deviations estimates provide a way of
estimating the typical timescale of these transitions, thereby giving another perspective on the
"persistence" of the bifurcation in the presence of noise.

Amplitude equations. These are a well-known tool to study stochastic dynamics for SPDEs
close to a bifurcation. There are numerous results on the approximation of SPDEs via amplitude
equations mostly treating results with Gaussian noise given by the derivative of a Wiener process,
but we comment only on a few of them. In [15] the authors study large domains, where the
dominating pattern is slowly modulated in space and the amplitude equation is thus an SPDE
of Ginzburg-Landau type. See also [9] for an example of a fully unbounded domain. Degenerate
noise was studied in [16] and several other publications. Here the noise is not acting directly
on the dominating pattern, but through interaction of nonlinearity and additive noise additional
terms appear in the amplitude equation that have the potential to stabilize the dynamics of the
dominant modes. While all these references treated the case of additive Wiener noise, other
types of noise were discussed in the literature. Multiplicative Wiener noise was studied by [17],
while for additive fractional noise with H > 1/2 certain results for Rayleigh-Bénard convection
are available in [12]. Recently, fractional noise for H ∈ (0, 1) was considered in [18] and the case
of α-stable Lévy noise was treated in [19].
While most approximation results treat large but finite time-scales only, the result on multiscale
expansion of invariant measures from [10] gives an approximation of the invariant measure of a
Swift-Hohenberg SPDE in terms of the invariant measure of the Amplitude Equation. This can
be used for a result characterizing a P-bifurcation. For the definition and further details on this
bifurcation see [2].
For SPDEs close to but still below the deterministic bifurcation one can observe pattern formation
below criticality. Here the trivial solution is stable without adding noise, but using amplitude
equations one can show for the perturbed model that patterns are visible for long times. See
Section 3.2 of [13]. This is an indication that noise shifts the deterministic bifurcation point.
But let us point out that this is not captured by the finite time Lyapunov exponents, as we see
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in case I.

Possible Extensions. We plan to treat in a future work SPDEs with quadratic nonlinearities,
such as Burger’s equation. We expect to generalize the results obtained here for such SPDEs.
However the order of the approximation result via amplitude equations will be slightly worse [12].
Moreover, we expect that multiplicative noise can be handled in the SPDE if the diffusion
coefficient in front of the noise is non-zero, i.e. σ(u) 6= 0 for all u 6= 0. Then similar results
should hold around the bifurcation as presented here. If the diffusion coefficient is zero, then
multiplicative noise will appear in the amplitude equation, and the problem is wide open in
that case even for an SDE. Adding higher order terms to the cubic nonlinearity does not change
the amplitude equation, so similar results are expected in that case. Also, considering other
stable nonlinearities like quintic instead of cubic should only change the technical details of the
proof. Challenging is the case when a two or higher dimensional space changes stability at the
bifurcation, as we crucially rely on the properties of the one-dimensional amplitude equation,
when we use the random attractor of the SDE or Birkhoff’s ergodic theorem. Even for two
dimensional SDEs there is no result for FTLE available yet.

Structure of the manuscript. This work is structured as follows. In Section 2 we specify
the setting of the problem, state the necessary assumptions and collect important properties of
finite-time Lyapunov exponents. Section 3 is devoted to the most simple case that we consider,
i.e. ν < 0. Here we trivially have stability, meaning that the finite-time Lyapunov exponents
around the singleton attractor are always negative with probability one. Section 4 discusses
finite-time Lyapunov exponents for the two types of amplitude equations that we obtain. These
results will be used later in the main Section 6, where we approximate the Lyapunov-exponents
of the SPDE (1.1) with the ones of the amplitude equations. In Section 6 we derive error bounds
for the linearization of the SPDE and of the amplitude equations in several situations regarding
the bifurcation parameter ν and the intensity of the noise σ. The necessary approximation
result of the SPDE via amplitude equations near a change of stability is derived in Section 5.
Finally, we provide in Section 7 possible applications of our theory. These include the stochastic
Allen-Cahn, Swift-Hohenberg and a surface growth model.

2 Setting and Assumptions

We work in the following setting. We let H stand for a separable Hilbert space and consider the
SPDE

{
du = [Au+ νu+ F(u)] dt+ σdWt

u(0) = u0 ∈ H.
(2.1)

We make the following standard assumptions on the coefficients.

Assumptions 2.1 (Differential operator A) The linear operator A generates a compact analytic
semigroup (etA)t≥0 on H. Moreover, it is symmetric and non-positive and has a one-dimensional
kernel which we denote by N . We define the orthogonal projection Pc onto N , set Ps = Id− Pc
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and obtain that H = N ⊕S, where S stands for the range of Ps. The semigroup is exponentially
stable on PsH which means that there exists µ > 0 such that

‖etAPs‖L(H) ≤ e−tµ, for all t ≥ 0.

We further define the spaces Hα = D((1 − A)α) for α ≥ 0 endowed with the norm ‖ · ‖α =
‖(1−A)α · ‖ and scalar product 〈u, v〉α = 〈(1−A)αu, (1−A)αv〉 and set H−α = (Hα)∗ the dual
of Hα. It is well-known that (etA)t≥0 is an analytic semigroup on Hα for every α ∈ R. Finally,
we have that N ⊂ Hα for all α > 0 since (1−A)αN = N .

Under our assumptions we have for some constant C > 0 depending on α > 0 that ‖AαPsu‖ ≥
C‖Psu‖ for all u ∈ H, which we use frequently.

Assumptions 2.2 (Nonlinearity) We assume that there exists a Banach space X such that

Hα ⊂ X ⊂ H

for α ∈ (0, 1/2) with continuous and dense embeddings. Moreover, the mapping F : X → X∗ ⊂
H−α is a stable cubic (i.e. trilinear) nonlinearity with

〈F(u)−F(v), u − v〉 ≤ −c‖u− v‖4X , for u, v ∈ X. (2.2)

Let us remark that we can allow terms like C‖u− v‖2 on the r.h.s. of (2.2), but we can always
modify the linear term to remove these terms.
In Section 7, we give several examples that will fit in our abstract setting like Allen-Cahn,
Swift-Hohenberg, and a surface growth model.

Assumptions 2.3 (Stochastic convolution) We assume that the stochastic convolution

Z(t) =

∫ t

0
eA(t−s) dWs

is well-defined and has continuous trajectories in X.

Let us remark that for a trace-class Wiener W process on H, this assumption is automatically
satisfied, since Z ∈ C([0, T ];Hα) for α < 1/2 by the factorization method [25].

Remark 2.4 For F we have the following sign condition. For any positive δ > 0 there is a
constant C > 0 depending on δ such that for all u, z ∈ X

〈F(u + z), u〉 ≤ −c‖u+ z‖4X + C‖u+ z‖3X‖z‖ ≤ −δ‖u‖4X + Cδ‖z‖4X . (2.3)

As F is trilinear we have that F is Fréchet-differentiable with

DF(u)[h] = F(u, u, h) + F(u, h, u) + F(h, u, u).

Moreover, for u, h ∈ X we obtain due to (2.3)

〈DF(u)h, h〉 = lim
t→0

1

t
〈F(u+ th)−F(u), h〉 ≤ − lim

t→0

1

t2
‖th‖4 = 0. (2.4)
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Definition 2.5 For the O-notation here we use moments uniformly in time in the space X.
This means that a process M is O(f) for a term f on an interval I in the space X, if for all
p > 1 there is a constant Cp > 0 such that E supt∈I ‖M(t)‖pX ≤ Cpf . For time independent
quantities we use the similar notation without the supremum in time. If the process M and the
bound f depends on some small quantity ε > 0 we assume that the constant Cp is independent
of ε ∈ (0, ε0] for some ε0 > 0.

Assumptions 2.6 For the stochastic convolution, we have for every small κ > 0

PsZ = O(T κ) and PcZ = PcW = O(T 1/2) (2.5)

on any interval [0, T0] in the space X.

Remark 2.7 These bounds are natural and can be checked in applications. See for example [13],
where the bound on Ps is obtained by the factorization method [25]. We also remark that the
bound by T κ is often not optimal, but sufficient for our applications. A sharp bound should have
a logarithmic term [31].

2.1 Existence of solutions

For SPDEs of our type the existence and uniqueness of solutions is in many examples well known.
To verify this there are several options.
Firstly, by fixed-point arguments one shows the local existence of unique solutions in the space
X. One only needs some results on the semigroup acting on the space X, which follows from
our assumptions. In a similar way one can use the fact that F : Hα → H−α and establish local
well-posedness in Hα, but only if the stochastic convolution is in that space, too.
Alternatively, we can rely on the Galerkin method and the standard transformation w = u− Z
that solves the random PDE

∂tw = Aw + νw + F(w + Z)

and we can proceed with classical pathwise existence result. See for example [33, 34].
This is based on (2.3) giving regularity in L4(0, T,X), together with the compact embedding of
X into H1/2 and Aubin-Lions Lemma.
For initial conditions in H and Z being a continuous stochastic process with values in X this
shows global existence of solutions such that

u− Z ∈ L2(0, T,H1/2) ∩C0([0, T ],H) ∩ L4(0, T,X)

which also implies some regularity of ∂t(u − Z) as A(u − Z) ∈ L2(0, T,H−1/2) and F(u) ∈
L4/3(0, T,X∗).
The pathwise uniqueness of solutions follows immediately from (2.2). For the difference d =
u1 − u2 of two solutions u1 and u2 satisfying

∂td = Ad+ νd+ F(u1)−F(u2)

we only need the differentiability of the H-norm to conclude

∂t‖d‖2 = 〈Ad+ νd+ F(u1)−F(u2), d〉 ≤ ν‖d‖2.
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The differentiability of the norm follows, as we have

d = (u1 − Z)− (u2 − Z) ∈ L2(0, T,H1/2) ∩ L∞(0, T,H)

by standard parabolic regularity together with d ∈ L4(0, T,X) and F(ui) ∈ L4/3(0, T,X∗).
With the arguments sketched above one can prove the following theorem, which we state without
proof.

Theorem 2.8 Let Assumptions 2.1, 2.2, 2.3 be satisfied. Then for all initial conditions u0 ∈ H
there is a unique (up to global null sets) stochastic process u with continuous paths in H, which
is a weak solution of (2.1) and satisfies for all T > 0

u− Z ∈ L2(0, T,H1/2) ∩ C0([0, T ],H) ∩ L4(0, T,X).

Next, we recall some basic facts about random dynamical system (RDS) without giving too many
technical details. Under our assumptions, we know due to standard results [22, 27] that the
solution operator of (1.1) generates a RDS, which is a family of linear maps ϕ : R+×Ω×H → H
satisfying the cocycle property, i.e.

ϕ(t+ s, ω, u0) = ϕ(t, θsω,ϕ(s, ω, u0) for all s, t ∈ R+.

Here θtω(s) := ω(t+ s)− ω(s) for ω ∈ Ω and t, s ∈ R denotes the Wiener shift, where (Ω,F ,P)
stands for the canonical probability space associated to the two-sided Wiener process (W (t))t∈[0,T ]

and ωt = Wt(ω). Furthermore the random dynamical system ϕ has a random attractor [27, 30]
which is a singleton, i.e. there exists a random variable a : Ω → H such that

ϕ(t, ω, a(ω)) = a(θtω).

In this framework we denote the two-sided filtration on (Ω,F) by F t
s := σ(Wu−Wv, s ≤ u, v ≤ t)

for all s ≤ t with θ−1
τ F t

s = F t+τ
s+τ .

2.2 Finite-time Lyapunov-exponents

Consider the RDS generated by the solutions u of (2.1). The linearization Du0(ω)ϕ(t, ω, u0(ω)) =
Du0(ω)u(t, ω, u0(ω)) of (1.1) around a solution u(t, ω, u0(ω)) with initial condition u0 is defined
as the solution of the linear PDE called also the first variation equation, see [20]

{
dv = [Av + νv +DF(u)v] dt

v(0) = v0.
(2.6)

Remark 2.9 The Fréchet differentiablity of the cocycle follows regarding that u ∈ L2(0, T ;H1/2)
due to [26, Lemma 4.4].

For t > 0 we denote the random solution operator Uu0
(t) : H → H such that v(t) = Uu0

(t)v0,
where v is a solution of (2.6) given the initial condition v0 ∈ H.
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Remark 2.10 Note that for any solution u ∈ L4(0, T,X) we have F(u) ∈ L4/3(0, T,X∗) ⊂
L4/3(0, T,H−α). We can now use pathwise deterministic theory for linear PDEs. For example
Galerkin methods show that for given v0 ∈ H there is an (up to global null sets) unique stochastic
process v with continuous paths in H and v ∈ L2(0, T ;H1/2) for all T > 0 that solves (2.6).

We define the finite-time Lyapunov exponent as in [20].

Definition 2.11 (Finite-time Lyapunov exponent). Let t > 0 be fixed. We call a finite-time
Lyapunov exponent for a solution u of the SPDE with (random) initial condition u0

λt(u0) := λ(t, ω, u0(ω)) =
1

t
ln

(
‖Uu0

(t)‖L(H)

)
. (2.7)

From the definition it is clear that finite-time Lyaponov exponents measure local expansion
rates of nearby solutions. Negative finite-time Lyapunov exponents indicate attraction whereas
positive ones indicate that nearby solutions tend to separate on a finite time horizon.

Remark 2.12 We can compute ‖Uu0
‖L(H) as follows

‖Uu0
(t)‖L(H) = sup{‖v(t)‖/‖v(0)‖ : v solves (2.6) with v(0) 6= 0}

= sup{‖v(t)‖ : v solves (2.6) with ‖v(0)‖ = 1}.

Definition 2.13 (Asymptotic Lyapunov-exponent) The asymptotic Lyapunov exponent around
u0 ∈ H is defined as

λ(u0) := lim
t→∞

1

t
ln(‖Uu0

(t)‖L(H)).

Remark 2.14 In contrast to (2.7), due to the ergodic theorem the limit in Definition 2.13 exists
and is deterministic (independent of ω) with probability one. Here we need to rely on the
ergodicity of a stationary solution, which for instance holds if the random attractor is a single
point. Estimating this quantity for SPDEs is a highly challenging task, compare [28, 5].

3 Stability for negative ν

This is the trivial case, which is well known in many examples. See for example [30].

Lemma 3.1 The SPDE (2.1) has a global attractor which is a unique random fixed point.

Proof. We only sketch the standard arguments, see [30] for further details. We consider the
difference of two solutions d = u1−u2 ∈ L2(0, T ;H1/2)∩L∞(0, T ;H) which satisfies the equation

∂td = Ad+ νd+ F(u1)−F(u2).

Using standard energy estimates we obtain using the assumptions on A and (2.2)

1

2
∂t‖d‖2 = 〈Ad, d〉 + ν‖d‖2 + 〈F (u1)− F (u2), u1 − u2〉

≤ ν‖d‖2 − c‖d‖4X ,
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which implies that ‖d(t)‖ ≤ ‖d(0)‖etν for all t > 0. Since ν < 0 this means that all solutions
converge towards each other yielding the existence of a singleton attractor. �

As a consequence of the previous result we have that all finite time Lyapunov exponents are
negative.

Theorem 3.2 Let Assumptions 2.1,2.2,2.3 hold true and let ν < 0. Furthermore let u be a
solution of (2.1) in the sense of Theorem 2.8 with random initial condition u0 ∈ H. Then for
all T > 0 we have with probability one

P(λT (u0) ≤ ν) = 1.

Proof. The proof is similar to [20, Proposition 3.1 a)]. We consider a solution v of the
linearized problem (2.6) around a solution u of (2.1) with random H-valued initial condition
u0. Recalling that v ∈ H1(0, T,H−1/2) ∩ L2(0, T,H1/2) ∩ C(0, T,H) we obtain using (2.4) the
standard energy estimate

1

2
∂t‖v‖2 = 〈Av, v〉 + ν‖v‖2 + 〈DF(u)v, v〉 ≤ ν‖v‖2.

This implies that ‖v(t)‖ ≤ ‖v(0)‖etν for all t > 0. Due to Remark 2.12 we have for any time
T > 0

λT (u0) =
1

T
ln(‖Uu0

(T )‖L(H)) ≤ ν

which finishes the proof. �

Remark 3.3 Note that the result is still true for ν > 0 but there it only gives a positive upper
bound for the Lyapunov exponents, which is not relevant.

4 Lyapunov Exponents for Amplitude Equations

Here we summarize properties of the one-dimensional SDE given by the amplitude equation. Let
us first start with an important technical lemma about the projected nonlinearity.

Lemma 4.1 The nonlinearity

Fc(b) := PcF(b) for b ∈ N

is always a stable cubic as a map on N ≈ R.

Proof. Obviously, since N is one-dimensional we get that N = span{e} for a fixed e ∈ N
with ‖e‖ = 1. Note that e belongs to the kernel of A and thus e ∈ Hα for all α > 0, meaning
that e ∈ X, due to the embedding Hα ⊂ X. Therefore, writing b = ξ · e and using (2.3) we get

〈Fc(b), e〉 = ξ3 〈Fc(e), e〉︸ ︷︷ ︸
≤−c‖e‖4X<0

.
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Thus, if we identify N ≈ R the cubic nonlinearity is always a stable cubic −Cξ3 for a positive
constant. Analogously we have for the derivative of Fc using (2.3)

〈DFc(b)e, e〉 = 3ξ2〈DFc(e)e, e〉 ≤ 0

where equality only holds if b = 0. �

For the approximation via amplitude equations later, we assume that ν ≥ 0 and fix a small
quantity ε > 0, where we always assume the upper bounds

ν = O(ε2) and σ = O(ε2).

Using the nonlinearity Fc and depending on the order of ν and σ we obtain in Section 6 amplitude
equations of two different types. Mostly, we have

db = (b+ Fc(b)) dT + (σ/ν) dβ√ν(T ) (4.1)

and for ν ≪ σ

db = Fc(b) dT + dβ√σ(T ), (4.2)

where βc is an N -valued Brownian motion that is rescaled in time by γ, i.e. βγ(T ) = γβ(T/γ2).
By standard theory [23], due to monotonicity, these SDEs have a random attractor {a(ω)}ω∈Ω
which is a single fixed point. Our aim is to analyze the finite-time Lyapunov exponents around
this random fixed point.

Remark 4.2 We know that E‖a‖pN < ∞ for all p ≥ 1, which means that a = O(1). More
precisely, using the Fokker-Planck equation one can show that the Markov semigroup associated
to (4.1) has an invariant measure with density ( [2, p. 474])

p(x) =
1

N
exp

(ν2
σ2

(
x2 − 1

2
x4

))
,

where N is a normalization constant. Analogously, the density for (4.2) reads as

p(x) =
1

N
exp

(
− 1

2
x4

)
.

Moreover using that {a(ω)}ω∈Ω is the random fixed point of (4.1) respectively (4.2), we can infer
that a(θTω) = O(1) for T ∈ [0, T0], see also the computations below.

We now provide results for the finite-time Lyapunov exponents of these SDEs around the random
attractor a(ω).

Lemma 4.3 (Positive finite-time Lyapunov-exponent for (4.1)) There exists a constant c > 0
independent of the choice of the Brownian motion and a set Ω0 ∈ FT

−∞ with P(Ω0) ≥ c > 0 such
that λT (a(ω)) ≥ 1

4 .
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Proof. Recalling that a(ω) is the random attractor of (4.1), we define

A1 := {ω ∈ Ω : a(ω) ∈ (−η, η)} ∈ F0
−∞,

where η := δ
2(1+σ

ν
) , with δ > 0 to be chosen later and

A2 := {ω ∈ Ω : sup
t∈[0,T ]

|β√ν(t)| ≤
η

2
} ∈ FT

0 .

We know that P(A1) > 0 due to the fact that a(ω) is distributed according to an invariant
measure which is supported on the real line. Furthermore, P(A2) > 0 since in our case ε =

√
ν,

so β√ν(T ) = εβ(Tε−2) is just a rescaled Brownian motion. We define Ω0 := A1 ∩A2 ∈ FT
−∞.

Since A1 and A2 are independent, in order to give a uniform lower bound for the probability of
Ω0, we can consider the set separately. First for A2 we apply Doob’s inequality for every p ≥ 1,
which yields

P

(
sup

t∈[0,T ]
|β√ν(t)| >

η

2

)
≤ Cp

(2
η

)p
T,

for some constant Cp > 0. For A1 we can simply rely on the Fokker-Planck equation for the law
of a to get a uniform lower bound, recall Remark 4.2.
Let us now turn to the lower bound on the Lyapunov exponent. Using the equation (4.1) and
regarding that Fc is a stable cubic, one can verify, similar to [21], that for ω ∈ Ω0

|a(θTω)| ≤ (1 +
σ

ν
)ηeT < δ for all T ∈ [0, T0].

This further implies that the finite-time Lyapunov exponent of (4.1) is positive with positive
probability, since for ω ∈ Ω0 we have

λT (a(ω)) =
1

T
ln

(
exp

(
T +

∫ T

0
DFc(a(θtω)) dt

))
≥ 1

4
,

choosing δ := 1
2 . �

Now let us turn to the negative finite-time Lyapunov-exponent for (4.2)). Here we need a
quantitative result of Birkhoff type.

Lemma 4.4 For all probabilities p ∈ (0, 1) there exists a time T ∗ > 0 and a set Ω̃p with P(Ω̃p) ≥
1− p, such that for all T ≥ T ∗ and ω ∈ Ω̃p it holds that

1

T

∫ T

0
a(θsω)

2 ds ≥ 1

4
Ea(ω)2.

We can apply this result in our setting since we will be interested in time scales of order between
1/
√
ν and 1/ν.

Proof. We split the proof into the following steps.
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First step: Using Birkhoff’s ergodic theorem we obtain

lim
T→∞

1

T

∫ T

0
a(θsω)

2 ds = Ea(ω)2,

which means that ∣∣∣
1

T

∫ T

0
a(θsω)

2 ds− Ea(ω)2
∣∣∣ → 0 as T → ∞.

This statement is not enough for our aims, since the quantity above can only be made arbitrarily
small for all T ≥ T ∗(ω), i.e. after a random time. But we need precise quantitative bounds on
the time scale and of course this shall not depend on ω.

Second Step: We can show that for even integers k we have uniformly in T

E

∣∣∣
1

T

∫ T

0
[a2(θsω)− Ea(ω)2] ds

∣∣∣
k
≤ E|[a2(ω)− Ea(ω)2]|k.

This follows using Hölder’s inequality combined with the fact that the random attractor
{a(ω)}ω∈Ω is the unique stationary solution of (4.2). In particular this means that E|a(θsω)|2k =
E|a(ω)|2k for all s ∈ [0, T ]. More precisely, Hölder’s inequality gives us for ℓ ∈ N

E

∣∣∣
∫ T

0
[a(θsω)

2 − Ea(ω)2] ds
∣∣∣
2ℓ

≤
∫ T

0
E|[a(θsω)2 − Ea(ω)2]|2ℓ ds T 2ℓ−1

= T 2ℓ
E|[a(ω)2 − Ea(ω)2]|2ℓ, s ∈ [0, T ],

due to the stationarity of a. Dividing by T 2ℓ proves the statement.

Third Step: The convergence in Birkhoff’s ergodic theorem holds in Lp for all p < k. The
previous moment bounds imply the uniform integrability of

XT :=
1

T

∫ T

0
a(θsω)

2 ds− Ea(ω)2.

We have thus for all C > 0

E|XT |p = Eχ{|XT |≤C}|XT |p + Eχ{|XT |>C}|XT |p.

The first term obviously converges to 0 by dominated convergence, the second term is bounded
by C−p

EX2p
T using Cauchy-Schwarz and Chebychev’s inequality. Thus by the second step we

have a bound of order O(C−p) uniformly in T . Hence, for all p > 1 we have E|XT |p → 0 for
T → ∞.

13



Fourth step: In conclusion we obtain that for all δ̃ > 0 that

P

(∣∣∣
1

T

∫ T

0
a(θsω)

2 ds− Ea(ω)2
∣∣∣ ≤ δ̃

)
→ 1 for T → ∞.

For T ≥ T ∗(p) and δ̃ := 3
4Ea(ω)

2 we find a set Ω̃p with measure larger than 1− p, such that

1

T

∫ T

0
a(θsω)

2 ds ≥ 1

4
Ea(ω)2.

�

Lemma 4.5 (Negative finite-time Lyapunov-exponent for (4.2)) The finite-time Lyapunov-
exponents around the attractor of (4.2) are negative with positive probability.

Proof. The linearization of (4.2) around the random atractor {a(ω)}ω∈Ω entails in this case

db = DFc(a) dt.

Due to (2.4) and Lemma 4.4 we obtain the existence of a time T ∗ > 0, of a set ΩT ∗ with
probability almost one and of a constant c > 0 such that for all T ≥ T ∗

λT (a(ω)) =
1

T
ln exp

(∫ T

0
DFc(a(θtω) dt

)
< −c < 0 for ω ∈ ΩT ∗ .

�

5 Approximation of the SPDE via Amplitude Equations

We recall here briefly the steps of the approximation of (1.1) via amplitude equations. Note that
we work in a slightly different setting than the results in the literature [10, 12, 13].
We consider ν ≥ 0 and fix ε ∈ (0, ε0] for some ε0 > 0 sufficiently small.

Assumptions 5.1 In our setting we make the following assumptions

ν = O(ε2) and σ = O(ε2).

Recall that this does not exclude ν or σ to be much smaller that ε2.

Ansatz 5.2 The process b is an N -valued process and solves the amplitude equation

db = (νε−2b+ Fc(b)) dT + σε−2dβε(T ). (5.1)

Recall that βε is a rescaled Brownian motion defined by βε(T ) = εβ(Tε−2) where β = PcW .

In the following, given our ε > 0 we fix a time Tε = T0ε
−2 and consider T0 as a constant.

Theorem 5.3 Let u be a solution of the SPDE (2.1) with initial condition u0 = O(ε) in H such
that Psu0 = O(ε2) in H. Further, let b be a solution of (5.1) with b(0) − ε−1u0 = O(ε). Then

u− εb(ε2·) = O(ε2−κ) on [0, Tε] in H for all small κ > 0.

We split the proof into several steps in order to bound the error u−εb(ε2·) = Psu+(Pcu−εb(ε2·)).

14



1st step: If u0 = O(ε) in H, then we show that u = O(ε) in H on [0, Tε]. Using the standard
transformation ũ := u− σZ we obtain the partial differential equation with random coefficients

∂tũ = Aũ+ ν(ũ+ σZ) + F(ũ+ σZ).

Note that σZ = O(ε) on [0, Tε] due to (2.5). Thus it is enough to bound ũ. Due to (2.3) using
Young’s inequality we obtain the estimate

1

2
∂t‖ũ‖2 ≤ ν〈ũ+ σZ, ũ〉+ 〈F(ũ+ σZ), ũ〉

≤ ν‖ũ‖2 + νσ〈Z, ũ〉+ Cσ4‖Z‖4X − δ‖ũ‖4X
≤ 1

2
(ν‖ũ‖2 − δ‖ũ‖4X) + C(νσ2‖Z‖2 + σ4‖Z‖4X)

≤ C(ν2 + νσ2‖Z‖2 + σ4‖Z‖4X) = O(ε4).

Here we used again that σZ = O(ε) on [0, Tε], where Tε = O(ε−2) and that ν = O(ε2). This
completes the proof of the first step. Additionally, we can also conclude that

1

2
∂t‖ũ‖2 = −1

4
δ‖ũ‖4X +O(ε4),

which gives the L4(0, Tε,X) bound on ũ

∫ Tε

0
‖ũ(t)‖4X dt = O(ε2). (5.2)

2nd step: If u0 = O(ε) and Psu0 = O(ε2) in H, then we show that Psu = O(ε2−κ) in H on
[0, Tε]. To this aim we use the splitting

u = Pcu+ Psu := uc + us,

and define with Zs := PsZ. Again we use the standard transformation

ũs = us − σZs = Psũ.

Using that ũ = u− σZ and taking the stable projection entails

∂tũs = Aũs + ν(ũs + σZs) + PsF(uc + σZs + ũs).

The Assumption 2.1 implies that the quadratic form of A on PsH is bounded from below by a
positive constant. Therefore we further obtain

1

2
∂t‖ũs‖2 ≤ −c‖ũs‖2 + ν‖ũs‖2 + ν〈ũs, σZs〉+ 〈F(uc + σZs + ũs), ũs〉.

Using (2.3) together with the fact that ε0 is sufficiently small and thus ν = O(ε2) is small, we
derive the energy estimate
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1

2
∂t‖ũs‖2 ≤ − c

2
‖ũs‖2 + Cνσ2‖Zs‖2 + C(‖uc‖4X + σ4‖Zs‖4X)− δ‖ũs‖4X , (5.3)

for two universal constants c, C > 0. Hence, via a Gronwall type estimate, for all t ≤ Tε

‖ũs(t)‖2 ≤ ‖ũs(0)‖2 + C

∫ Tε

0
e−c(t−τ)

(
νσ2‖Zs‖2 + ‖uc‖4X + σ4‖Zs‖4X

)
dτ.

We use that all norms are equivalent on N together with the bounds σ = O(ε2), ν = O(ε2),
‖Zs‖X = O(T κ) and Psu0 = O(ε2) to obtain

‖ũs‖2 = O(ε4) on [0, Tε].

Thus
‖us‖ ≤ ‖ũs‖+ σ‖Zs‖ = O(ε2) +O(ε2−κ) on [0, Tε]

which bounds the error on PsH.

3rd step: Bounds on Psu in X.
Note that from (5.3) we also obtain

δ

∫ t

0
‖ũs‖4X dt ≤ ‖ũs(0)‖2 + C

∫ t

0
(νσ2‖Zs‖2 + ‖uc‖4X + ‖Zs‖4X) dt

and thus ∫ Tε

0
‖ũs(t)‖4X dt = O(ε4)

or ∫ T0

0
‖ũs(ε−2t)‖4X dt = O(ε6).

4th step: The order of the amplitude equation is b = O(1) on [0, T0]. The proof is fairly
standard, compare [10, Lemma 4.3]. For completeness of presentation, we only sketch the main
ideas. Subtracting the scalar stochastic convolution

z(T ) := σε−2

T∫

0

e−(νε−2)(T−S) dβε(S),

we obtain the random ODE on the slow-time scale T > 0

∂T b̃ = νε−2(b̃+ z) + Fc(b̃+ z) + νε−2z,

where we set b̃ := b−z. Now taking the inner product with b̃ and using (2.4) to bound the stable
cubic nonlinearity Fc, we obtain

1

2
∂T ‖b̃‖2 = 〈νε−2(b̃+ z), b̃〉+ 〈Fc(b̃+ z), b̃〉+ 〈νε−2z, b̃〉
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≤ Kνε−2‖b̃‖2 +Kνε−2‖z‖2 + 〈Fc(b̃+ z), b̃〉
≤ Kνε−2‖b̃‖2 +Kνε−2‖z‖2 + Cδ‖z‖4 − δ‖b̃‖4

≤ Kνε−2‖b̃‖2 +Kνε−2(1 + ‖z‖2)2,

for positive constants all denoted by K. Now, Gronwall’s inequality entails for T ∈ [0, T0]

‖b̃(T )‖2 ≤ eνε
−2KT‖b̃(0)‖2 +Kνε−2

∫ T

0
eνε

−2K(T−τ)(1 + ‖z(τ)‖2)2 dτ.

This proves the statement regarding that ν = O(ε2).

5th step: We show that ε−1Pcu(ε
−2·)− b = O(ε2) on [0, T0] for our fixed T0. We recall that

duc = (νuc + F(uc + us))dt+ σdWc.

If we define the error
e := b− ε−1uc(ε

−2·)
we obtain after a short calculation

∂te =
ν

ε2
e+ PcF(b)− PcF(ε−1u(ε−2·)).

Taking the inner product with e we further get

1

2
∂t‖e‖2 =

1

2

ν

ε2
‖e‖2 + 〈Fc(b)−Fc(ε

−1u(ε−2·)), e〉. (5.4)

We use with the short-hand notation u(ε) := ε−1u(ε−2·) and expand the cubic (using that on N
all norms are equivalent) to derive

〈Fc(b)−Fc(u
(ε)), e〉

≤ 〈Fc(b)−Fc(u
(ε)
c ), e〉 + C‖e‖ · (‖u(ε)c ‖2‖u(ε)s ‖X + ‖u(ε)c ‖‖u(ε)s ‖2X + ‖u(ε)s ‖3X)

≤ −δ‖e‖4X + C‖e‖ · (‖u(ε)c ‖2‖u(ε)s ‖X + ‖u(ε)c ‖‖u(ε)s ‖2X + ‖u(ε)s ‖3X)

≤ −1

2
δ‖e‖4X +C‖u(ε)c ‖4 + C‖u(ε)s ‖4X .

Thus from (5.4)
1

2
∂t‖e‖2 ≤ 1

2

ν

ε2
‖e‖2 − 1

2
δ‖e‖4X + C‖u(ε)c ‖4 + C‖u(ε)s ‖4X

and using a Gronwall type estimate we obtain for all T ∈ [0, T0] with constants depending on T0

‖e(T )‖2 ≤ C‖e(0)‖2 + C

∫ T

0
(‖u(ε)c ‖4 + C‖u(ε)s ‖4X) dT = O(ε4).

Note that for uc due to the equivalence of norms, we can use the uniform bound in H, while for
us we needed the bound on the L4(0, T,X)-norm. This finishes the proof of the last step and
bounds the error on N . �
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6 Proof of the main results for non-negative ν

We split the result in three cases.

6.1 Case 1 ≫ σ ≈ ν > 0

More precisely, we consider ν ∈ (0, ν0] for some sufficiently small ν0 and that the quotient σ/ν
is bounded by positive constants from above and below.
In this case we observe with positive probability a finite-time Lyapunov exponent for the
SPDE (2.1). This means that we have instability shortly after the bifurcation. We recall that Ω0

was defined in Lemma 4.3 and depends explicitly on the choice of the Brownian motion and thus
on ν. But the probability P(Ω0) ≥ c > 0 is independent of the choice of the Brownian motion.

Theorem 6.1 Let {a(ω)}ω∈Ω be the random fixed point of (4.1) and λT be the finite-time Lya-
punov exponent of the SPDE (2.1) with initial data u0 = εa(ω). For all terminal times T0 > 0
and all probabilities p ∈ (0, 1) there is a set Ωp with probability larger than p and a constant
Cp > 0 such that for ω ∈ Ω0 ∩ Ωp we have that

λTν−1(εa(ω)) >
ν

4
− Cp

εν

T
for all T ∈ (0, T0].

Remark 6.2 This theorem gives a positive lower bound on the Lyapunov exponent with positive
probability for times between order 1/

√
ν and 1/ν. We will see below that the lower bound on T

is mainly due to the uniform in time error estimate for the amplitude equation. We believe that
this is only a technical restriction that can be solved by improving the approximation result for
amplitude equations for smaller times, and we expect the finite time Lyapunov exponent to be
positive for all times up to order 1/ν.

We split the proof of Theorem 6.1 into several steps. The main ideas are the approximation
of the SPDE (2.1) with the amplitude equation for ε2 = ν, Lemma 4.3 and the control of the
approximation error. As we start the SPDE in the rescaled random attractor, we can apply these
results, as a = O(1) and thus u0 = εa = O(ε).
In this case the amplitude equation is given by

db = [b−Fc(b)] dT +
σ

ν
dβ√ν(T ).

Now we control the approximation error between the linearized SPDE and the linearized ODE.
To this aim we firstly introduce the slow scaling T = tε2 and define U via

u(t) = εU(tε2).

Let v be the solution of the linearization of the SPDE around a solution u

∂tv = Av + νv +DF(u)v.

On the slow scale v(t) = εV (tε2) we have (using that DF is quadratic)

∂TV = ε−2AV + V +DF(U)V.
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Let ϕ be the solution of the linearization of the amplitude equation around the attractor
{a(ω)}ω∈Ω

∂Tϕ = ϕ+DFc(a)ϕ.

We only consider initial conditions V (0) = ϕ(0) ∈ N of order 1 independent of ε.
The first crucial step is the following approximation result.

Theorem 6.3 For any probability p ∈ (0, 1) there is a set Ωp with probability larger than p such
that the error between the linearization of the SPDE (1.1) with initial data u0 = εa(ω) and of
the amplitude equation (4.1) is bounded by Cε.

Proof. We show in several steps that the following error bound holds on the set of large
probability Ωp

‖V (T )− ϕ(T )‖H ≤ ‖PsV (T ) + PcV (T )− ϕ(T )‖H ≤ Cε, T ∈ [0, T0]. (6.1)

To this aim we first prove

‖PsV (T )‖H = O(ε) and ‖PsV ‖L2(0,T0,H1/2) = O(ε2). (6.2)

We first consider V and use standard energy-type estimates to obtain

1

2
∂T ‖V ‖2 = ε−2〈AV, V 〉+ ‖V ‖2 + 〈DF(U)V, V 〉 ≤ ‖V ‖2,

where we used the non-negativity of A and (2.4). As V (0) = O(1) this yields a uniform O(1)-
bound on V and thus PcV in H on [0, T0] (with constants depending on T0).
We have (using the short-hand notation Vs := PsV and Vc := PcV )

1

2
∂T ‖Vs‖2 =ε−2〈AVs, Vs〉+ ‖Vs‖2 + 〈PsDF(U)V, Vs〉

≤ − cε−2‖Vs‖2H1/2 + ‖Vs‖2 + 〈PsDF(U)Vc, Vs〉, (6.3)

where we used the spectral properties of A (Assumption 2.1) and the sign condition on DF from
(2.4).
The crucial step is to estimate the nonlinear term. This we can bound as follows

〈PsDF(U)Vc, Vs〉 ≤ C‖U‖2X‖Vc‖X‖Vs‖Hα ≤ Cε2‖U‖4X‖Vc‖2X + cε−2‖Vs‖2Hα ,

where we used ε-Young’s inequality in the last step. Further, as shown above V is O(1) in H.
Therefore we obtain that Vc is bounded in X since all norms are equivalent on N . Consequently,
we only need a bound on

∫ T
0 ‖U(S)‖4X dS, which can be derived from the first step of the

approximation result, Theorem 5.3. Namely, using

∫ Tε

0
‖u(t)‖4X dt = O(ε2)

we obtain
∫ T0

0
‖U(S)‖4X dS = ε2

∫ Tε

0
‖U(tε2)‖4X dt = ε−2

∫ Tε

0
‖u(t)‖4X dt = O(1). (6.4)
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Thus we can conclude from (6.3) for two different universal constants c > 0 and C > 0 using
that ‖ · ‖Hα ≤ ‖ · ‖H1/2

1

2
∂T ‖Vs‖2 ≤ −cε−2‖Vs‖2H1/2 + ‖Vs‖2Hα + Cε2‖U‖4X‖Vc‖2X + cε−2‖Vs‖2Hα

≤ −cε−2‖Vs‖2H1/2 + Cε2‖U‖4X‖Vc‖2X . (6.5)

Consequently, recalling that Vs(0) = 0 via a Gronwall type estimate we obtain for all T ∈ [0, T0]
the inequality (with constants depending on T0)

‖Vs(T )‖2 ≤ Cε2
∫ T0

0
‖U(S)‖4X dS = O(ε2),

which means that ‖Vs‖H = O(ε), as claimed.
For the second statement in (6.2) we get from (6.5) that

cε−2‖Vs‖2H1/2 ≤ −1

2
∂T ‖Vs‖2 + Cε2‖U‖4X‖Vc‖2X ,

therefore by integration (recall Vs(0) = 0) we derive

∫ T0

0
‖Vs(S)‖2H1/2 dS ≤ −cε2

2
‖Vs(T )‖2 + Cε4

∫ T0

0
‖U(S)‖4X‖Vc(S)‖2X dS.

As ‖Vs‖H = O(ε) and
∫ T0

0 ‖U(S)‖4X dS = O(1) we obtain

‖Vs‖L2(0,T0,H1/2) = O(ε2).

We now focus on the bound for ‖Vc − ϕ‖, which requires more work. We observe that Vc − ϕ
satisfies the equation

∂T (Vc − ϕ) = Vc − ϕ+ (DFc(U)V −DFc(a)ϕ),

so we have to estimate

1

2
∂T ‖Vc − ϕ‖2 = ‖Vc − ϕ‖2 + 〈DFc(U)V −DFc(a)ϕ, Vc − ϕ〉. (6.6)

Here the crucial term contains the nonlinearity

〈DFc(a)ϕ− PcDF(U)V, ϕ − Vc〉N = −〈PcDF(U)Vs, ϕ− PcV 〉N
+〈DFc(a)ϕ− PcDF(a)Vc, ϕ− PcV 〉N
+〈Pc[DF(a)−DF(U)]Vc, ϕ− PcV 〉N ,

where the bound on PsV is needed in the space X, but here the integral bounds turn out to be
sufficient. We also rely on our O(1)-bounds on ϕ and Vc.
We begin with the first term above which entails

〈PcDF(U)Vs, ϕ− Vc〉N ≤ C‖U‖2X‖Vs‖X‖ϕ− Vc‖N
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≤ C‖U‖2X‖Vs‖H1/2‖ϕ − Vc‖N
≤ C‖Vs‖2H1/2 + ‖U‖4X‖ϕ− Vc‖2N .

In the last step we used again Young’s inequality.
The second term gives

〈DFc(a)(ϕ − Vc), ϕ− Vc〉N ≤ C‖a‖2N ‖ϕ− Vc‖2N .

For the last one we use that PcDF and DFc are the same on N , which can be seen by explicitly
using the cubic.

〈Pc[DF(a)−DF(U)]Vc, ϕ− Vc〉N ≤ C‖a− U‖2X‖Vc‖X‖ϕ− Vc‖N
≤ C‖a− Uc‖2N ‖Vc‖N ‖ϕ− Vc‖N + C‖Us‖2X‖Vc‖N ‖ϕ− Vc‖N
≤ C‖a− Uc‖4N ‖Vc‖2N + C‖Us‖4X‖Vc‖2N + c‖ϕ− Vc‖2N .

Regarding (6.6) and putting all the estimates together we infer that (with universal constants
C, C̃ > 0)

1

2
∂T ‖Vc − ϕ‖2 ≤ ‖Vc − ϕ‖2 + C‖Vs‖2H1/2 + ‖U‖4X‖ϕ− Vc‖2N + ‖a‖2N ‖ϕ − Vc‖2N

+ C‖a− Uc‖4N ‖Vc‖2N + C‖Us‖4X‖Vc‖2N + C‖ϕ− Vc‖2N
≤ ‖Vc − ϕ‖2N (C̃ + ‖U‖4X + ‖a‖2N ) + C‖Vs‖2H1/2 + C‖a− Uc‖4N ‖Vc‖2N + C‖Us‖4X‖Vc‖2N
≤ I · ‖Vc − ϕ‖2N + C · J,

where we set

I := C̃ + ‖U‖4X + ‖a‖2N and J := ‖Vs‖2H1/2 + ‖a− Uc‖4N ‖Vc‖2N + ‖Us‖4X‖Vc‖2N .

Using Gronwall’s inequality we get for T ∈ [0, T0]

‖Vc(T )− ϕ(T )‖2 ≤ ‖Vc(0) − ϕ(0)‖2 +
∫ T

0
J(S) dS exp

(∫ T

0
I(S) dS

)
.

We now investigate the order of J . First of all, since we start the SPDE in u0 = εa(ω) we obtain
due to Theorem 5.3

‖a(T )− Uc(T )‖H = ε−1‖εa− uc(ε
−2·)‖H = O(ε).

Again we use the fact that all norms are equivalent on N . Further, similar to (6.4) by using the
third step in Theorem 5.3 we know that with us(t) = εUs(tε

2)

∫ T0

0
‖Us(T )‖4X dT = ε−2

∫ Tε

0
‖us(t)‖4X dt = O(ε2).

Due to the above results, we have pathwise bounds for
∫ T
0 J(S) dS ≤ Cε2 on a set of probability

going to 1 for C → ∞. Moreover,

exp
(∫ T

0
I(S) dS

)
= exp

(∫ T

0
(C̃ + ‖U(S)‖4X + ‖a(S)‖2N dS

)
≤ C
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on a set of probability going to 1 for C → ∞. Together with the previous bound this gives
another condition for the set Ωp.
In summary, this entails the following error bound on Ωp

‖ϕ(T ) − Vc(T )‖2 ≤ Cε2 for T ∈ [0, T0].

Putting all these deliberations together, proves the statement (6.1) on Ωp, i.e.

‖V (T )− ϕ(T )‖H ≤ ‖Vs(T )‖H + ‖Vc(T )− ϕ(T )‖N ≤ Cε, T ∈ [0, T0].

Here we have to add another condition to Ωp, as ‖Vs‖H ≤ Cε2 uniformly in T with probability
going to 1 if C → ∞. �

Using this result we can proceed with the proof of Theorem 6.1. We first recall the definition of
the FTLE

λTν−1(εa(ω)) =
ν

T
ln(sup{‖v(T/ν)‖ : ‖v(0)‖ = 1})

=
ν3/2

T
ln(sup{‖V (T )‖ : ‖V (0)‖ = ε−1})

=
ν

T
ln(sup{‖V (T )‖ : ‖V (0)‖ = 1}).

Using (6.1) for the finite-time Lyapunov exponents of the SPDE we have on Ω0 ∩ Ωp recalling
Lemma 4.3

‖V (T )‖ ≥ ‖ϕ(T )‖ − ‖V (T )− ϕ(T )‖ ≥ ‖ϕ(T )‖ − Cε

≥ exp{(1− 3δ2)T} − Cε > 0,

which is positive if ε0 is sufficiently small. Here we can choose δ = 1
2 as in Lemma 4.3.

To proceed we use a simple estimate for the logarithm. It is known that there exists a positive
constant c > 0 such that ln(1− x) ≥ −cx for 0 ≤ x ≤ 1

2 . Therefore as ε ≪ eTc we have that

ln(ecT − ε) = ln(ecT (1− εe−cT )) = cT + ln(1− εe−cT ) ≥ cT − Cεe−cT ≥ cT − Cε.

Thus we can conclude that on Ω0 ∩Ωp we can bound

λTν−1(εa(ω)) =
ν

T
ln(sup{‖V (T )‖ : ‖V (0)‖ = 1})

≥ ν

T
ln(sup{‖ϕ(T )‖ − ‖V (T )− ϕ(T )‖ : ‖V (0)‖ = 1})

≥ ν

T
ln(sup{‖ϕ(T )‖ − ‖V (T )− ϕ(T )‖ : ‖v(0)‖ = 1, V (0) = ϕ(0) ∈ N})

≥ ν

T
ln(sup{‖ϕ(T )‖ − ε : ‖V (0)‖ = 1, V (0) = ϕ(0) ∈ N})

≥ ν

T
ln(exp{(T +

∫ T

0
DFc(a(θsω)) ds} − Cε)

≥ ν

T
ln(exp{(1− 3δ2)T} − Cε)

≥ ν(1− 3δ2 − Cε/T ),

and we finished the proof, as δ = 1/2. �
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6.2 Case 1 ≫ ν ≫ σ > 0

In this case the amplitude equation is given by

db = [b+Fc(b)] dT.

Here we consider the solution b = 0 of the amplitude equation and let u be the solution of SPDE
with u(0) = u0 = 0. Let us remark that this is not precisely the setting of the approximation
result of section 5, where the amplitude equation would contain a small noise term (σ/ν)dβ.
Here we simplify the proof by neglecting the small noise in the approximation. Thus we cannot
use the full Theorem 5.3 here, but can still rely on all the bounds provided for u, see Remark 6.5
below.
As before, let V be the solution of the linearized SPDE

∂TV = ε−2AV + V +DF(U)V

and thus
∂TVc = Vc + PcDF(U)V = Vc +DFc(U)(Vc + Vs).

The linearization of the amplitude equation around 0 reduces to

∂Tϕ = ϕ+DFc(0)ϕ,

which gives
∂Tϕ = ϕ.

The main result in this case reads as follows.

Theorem 6.4 Let λT be the finite-time Lyapunov exponent of the SPDE (2.1) with initial data
u0 = 0. For all probabilities p ∈ (0, 1) there is a set Ωp with probability larger than p and a
constant Cp > 0 such that for ω ∈ Ωp we have that

λTν−1(0) > ν − Cp
νε

T
.

Proof. Analogously to the previous case we have on a set Ωp that

λTν−1(0) =
ν

T
ln(sup{‖v(T/ν)‖ : ‖v(0)‖ = 1})

=
ν3/2

T
ln(sup{‖V (T )‖ : ‖V (0)‖ = ε−1})

=
ν

T
ln(sup{‖V (T )‖ : ‖V (0)‖ = 1})

≥ ν

T
ln(sup{‖ϕ(T )‖ − ‖V (T )− ϕ(T )‖ : ‖V (0)‖ = 1})

≥ ν

T
ln(sup{‖ϕ(T )‖ − ‖V (T )− ϕ(T )‖ : ‖v(0)‖ = 1, V (0) = ϕ(0) ∈ N})

≥ ν

T
ln(sup{‖ϕ(T )‖ − ε : ‖V (0)‖ = 1, V (0) = ϕ(0) ∈ N})

≥ ν

T
ln(expT − ε)
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≥ ν − C
νε

T
.

�

In the previous computation we use similar to the first case that the error between the lineariza-
tion of the SPDE (1.1) with initial data u0 = 0 and of the amplitude equation is of order O(ε).
This follows by similar computations as in 6.1, which we shortly sketch for the convenience of
the reader. In contrast to (6.1), the linerization of the amplitude equation changes, since we are
now interested in the case a(ω) = 0.
Therefore we get

∂T (Vc − ϕ) = Vc − ϕ+DFc(U)(Vc + Vs),

which further leads to

1

2
∂T ‖Vc − ϕ‖2 = ‖Vc − ϕ‖2 + 〈DFc(U)(Vc + Vs), Vc − ϕ〉

= ‖Vc − ϕ‖2 + 〈DFc(U)Vc, Vc − ϕ〉+ 〈DFc(U)Vs, Vc − ϕ〉
≤ ‖Vc − ϕ‖2 + c‖U‖2X‖Vc‖N ‖Vc − ϕ‖N + c‖U‖2X‖Vs‖X‖Vc − ϕ‖N
≤ ‖Vc − ϕ‖2 + c‖U‖2X‖Vc‖N ‖Vc − ϕ‖N + c‖U‖2X‖Vs‖H1/2‖Vc − ϕ‖N
≤ c‖Vc − ϕ‖2 + c‖U‖4X‖Vc‖2N + c‖Vs‖2H1/2 + c‖U‖4X‖Vc − ϕ‖2N
≤ c(1 + ‖U‖4X)‖Vc − ϕ‖2N + c‖U‖4X‖Vc‖2N + c‖Vs‖2H1/2

≤ c‖Vc − ϕ‖2N I + cJ,

where I := 1 + ‖U‖4X and J := ‖U‖4X‖Vc‖2N + ‖Vs‖2H1/2 and c stands for a universal constant
which varies from line to line. Again, Gronwall’s inequality on [0, T0] entails

‖Vc(T )− ϕ(T )‖2 ≤ c
(
‖Vc(0)− ϕ(0)‖2 + c

∫ T

0
J(S) dS

)
· exp

(
c

∫ T

0
I(S) dS

)
.

This gives ‖Vc(T )−ϕ(T )‖ ≤ Cε on a set of probability arbitrarily close to 1 with constant depend-
ing probability. In contrast to Case 6.1 we need pathwise bounds on J of order ε2 which hold on a
set of arbitrarily large probability since ‖U‖L4(0,T0,X) = O(1) and that ‖Vs‖L2(0,T0,H1/2) = O(ε2).

The exponent
∫ T
0 I(S) dS can be bounded by a constant on a set of large probability.

In conclusion we obtain on [0, T0] and on a set of probability arbitrarily close to 1

‖V (T )− ϕ(T )‖H ≤ ‖Vs(T )‖H + ‖Vc(T )− ϕ(T )‖H ≤ Cε.

Remark 6.5 Note that we do not rely on the approximation of the SPDE with the amplitude
equation, which was not even established in this case. We only control the error term between
the two linearizations. This is enough for our aims, since we start the SPDE and the amplitude
equation in zero, in contrast to the previous case, and the L4(0, T ;X) bound on U established in
Theorem 5.3 suffices. In particular this follows from (5.2) and is independent of the amplitude
equation.
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6.3 Case: ν = 0, 1 ≫ σ > 0

At the bifurcation point, we consider ε =
√
σ. Here the amplitude equation is

db = PcF(b) dT + dβε(T ).

Therefore, we get

∂Tϕ = DFc(a)ϕ. (6.7)

The linearization of the SPDE (2.1) reads now as

∂tv = Av +DF(u)v,

which means that setting v(t) = εV (tε2) we obtain

∂TV = ε−2AV +DF(U)V. (6.8)

As in the previous cases we compute the error term between the two linearizations.

Theorem 6.6 The approximation order between the linearization of the SPDE (6.8) and of
the amplitude equation (6.7) with initial data u0 = εa(ω) is bounded by Cpε on a set Ωp with
probability larger than p.

Proof. Since the linear term containing ν drops out, we compute new energy estimates. To
get a O(1) bound on V we rely on the energy-estimate

1

2
∂T ‖V ‖2 ≤ ε−2〈AV, V 〉+ 〈DF(U)V, V 〉,

which gives now due to (2.3)
1

2
∂T ‖V ‖2 ≤ ε−2〈AV, V 〉 ≤ 0,

due to the non-negativity of A. As V (0) = O(1) this yields a uniform O(1) bound on V in H on
[0, T0]. Due to the O(1) bound on V in H we can also bound Vc in N in any norm.
For Vs we obtain as before that ‖Vs(T )‖H = O(ε) and that ‖Vs‖L2(0,T0,H1/2) = O(ε2). This
follows by the usual energy estimate regarding Assumption 2.1 and (2.3) combined with the
ε-Young inequality. To be more precise, the estimate is based on

1

2
∂T ‖Vs‖2 = ε−2〈AVs, Vs〉+ 〈PsDF(U)V, Vs〉

≤ −Cε−2‖Vs‖2H1/2 + C‖U‖2X‖Vc‖X‖Vs‖Hα

≤ −Cε−2‖Vs‖2H1/2 + Cε2‖U‖4X‖Vc‖2X + Cε−2‖Vs‖Hα

≤ −Cε−2‖Vs‖H1/2 + Cε2‖U‖4X‖Vc‖2X .

For Vc and ϕ we have

∂TVc = DFc(U)V and ∂Tϕ = DFc(a)ϕ,
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leading to
∂T (Vc − ϕ) = (DFc(U)−DFc(a))V +DFc(a)(V − ϕ).

For the difference, we estimate as follows. Here c is a universal constant which varies from line
to line.

1

2
∂T ‖Vc − ϕ‖2

= 〈(DFc(U)−DFc(a))V, Vc − ϕ〉+ 〈DFc(a)(V − ϕ), Vc − ϕ〉
= 〈(DFc(U)−DFc(a))V, Vc − ϕ〉+ 〈DFc(a)(Vc − ϕ), Vc − ϕ〉+ 〈DFc(a)Vs, Vc − ϕ〉
≤ c‖U − a‖2X(‖Vs‖X + ‖Vc‖N )‖Vc − ϕ‖+ c‖a‖2N ‖Vc − ϕ‖2N + c‖a‖2N ‖Vs‖Hα‖Vc − ϕ‖
≤ c‖Uc − a‖2N (‖Vs‖Hα + ‖Vc‖N )‖Vc − ϕ‖N + c‖Us‖2X(‖Vs‖Hα + c‖Vc‖N )‖Vc − ϕ‖N

+‖a‖2N ‖Vc − ϕ‖2N + c‖a‖4N ‖Vs‖2Hα + c‖Vc − ϕ‖2N
≤ c‖Uc − a‖4N ‖Vc − ϕ‖2N + c‖Vs‖2H1/2 + c‖Uc − a‖4N ‖Vc‖2N + c‖Vc − ϕ‖2N

+c‖Us‖4X‖Vc − ϕ‖2N + c‖Us‖4X‖Vc‖2N + c‖a‖2N ‖Vc − ϕ‖2N + c‖a‖4N ‖Vs‖2H1/2 .

Thus
∂T ‖Vc − ϕ‖2 ≤ cI‖Vc − ϕ‖2N + cJ,

where
I := 1 + ‖Uc − a‖4N + ‖Us‖4X + ‖a‖2N

and
J := ‖Vs‖2H1/2 + ‖Uc − a‖4N ‖Vc‖2N + ‖Us‖4X‖Vc‖2N + ‖a‖4N ‖Vs‖2H1/2 .

Using Gronwall’s inequality as before we obtain

‖Vc(T )− ϕ(T )‖2 ≤
(
‖Vc(0) − ϕ(0)‖2 + c

∫ T

0
J(S) dS

)
· exp

(
c

∫ T

0
I(S) dS

)
.

Now we use again the O(1) bounds on Vc and a and the O(ε2)-bounds for ‖Us‖L4(0,T0,X) and
‖Vs‖L2(0,T0,H1/2) together with Theorem 5.3 that yields

‖a(T )− Uc(T )‖H = ε−1‖εa− uc(ε
−2·)‖H = O(ε).

In contrast to case 6.1 we only need pathwise bounds on J and a of order one, which hold on a
set of probability arbitrarily close to 1. There is no need for a being small.
Moreover, a bound by a constant of the exponent

∫ T
0 I(S) dS holds as before only on some set

of probability arbitrarily close to 1.
Thus we finally conclude ‖V (T )−ϕ(T )‖N ≤ ε for all T ∈ [0, T0] on a set of probability arbitrarily
close to 1. �

Theorem 6.7 Let {a(ω)}ω∈Ω be the random fixed point of (4.2) and λT be the finite-time Lya-
punov exponent of the SPDE (2.1) with initial data u0 = εa(ω). For all probabilities p ∈ (0, 1)
there exists sets Ωp and Ω̃p with probability larger than p and a constant Cp > 0 such that for
ω ∈ Ωp ∩ Ω̃p we have that

λTε−1(εa(ω)) ≤ −Cpε+ ε2
ecT

T
≤ −c̃ < 0.
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Proof. Similar to 6.1 we infer

λTε−1(εa(ω)) =
ε

T
ln(sup{‖V (T )‖ : ‖V (0)‖ = 1})

≤ ε

T
ln sup({‖ϕ(T )‖ + ‖V (T )− ϕ(T )‖ : ‖V (0)‖ = 1})

≤ ε

T
ln(exp{

∫ T

0
DFc(a(θsω)) ds}+ ε).

The upper bound is clear as long as the attractor does not spend too much time in zero. To
exclude this possibility, we need a lower bound on the probability of a set Ω̃, where

∫ T

0
DFc(a(θsω)) ds ≥ −cT.

This is provided in Lemma 4.4. Regarding this we easily derive on a set of large probability
Ωp ∩ Ω̃p that

ln(e−cT + ε) = ln(e−cT (1 + εecT )) = −cT + ln(1 + εecT ) ≤ −cT + εecT .

This further leads to

λTε−1(εa(ω)) ≤ −cε+ ε2
ecT

T
,

which proves the statement. �

6.4 Case: 1 ≫ σ ≫ ν > 0

This situation can be dealt with similar to Case 6.3 using the amplitude equation

db̃ = [
ν

σ
b̃+ PcF(b̃)] dT + dβε(T ), (6.9)

and its linearization
∂T ϕ̃ =

ν

σ
ϕ̃+DFc(a)ϕ̃.

Since the difference between (6.9) and (4.2) is of order O( νσ ), the following statement can be
obtained analogously to Case 6.3.

Theorem 6.8 Let {a(ω)}ω∈Ω be the random fixed point of (6.9) and λT be the finite-time Lya-
punov exponent of the SPDE (2.1) with initial data u0 = εa(ω). For all probabilities p ∈ (0, 1)
there exists sets Ωp and Ω̃p with probability larger than p and a constant Cp > 0 such that for
ω ∈ Ωp ∩ Ω̃p we have that

λTε−1(εa(ω)) ≤
(
− Cp +

ν

σ

)
ε+ ε

(ν
σ

)2 ec−
ν
σ

T
≤ −c̃ < 0.

Remark 6.9 For a fixed T the bound on the FTLE is negative with since σ ≫ ν. As ε =
√
σ

we obtain negative FTLE for times t with (ν/σ)2 ≪ t ≤ T0/
√
σ.
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Proof. We only give a sketch of the proof, since this is similar to Case 6.3. Regarding the
computations in Case 6.3 we infer on a set of probability almost 1 that

‖V (T )− ϕ̃(T )‖ ≤ Cp

(
(ε+

ν

σ
)2
)
.

This follows from the bound on J , which is now determined by

‖ã(T )− Uc(T )‖N = O
((

ε+
ν

σ

)2)
,

where ã is the attractor of (6.9). Note that in Case 6.3 the order of J was in lowest order
determined by ‖Vs‖L2(0,T ;H1/2) = O(ε) and the other terms were higher order.

Therefore the lower bound for the FTLE for ω ∈ Ωp ∩ Ω̃p (as in Case 6.3) results in

λTε−1(εa(ω)) =
ε

T
ln(sup{‖V (T )‖ : ‖V (0)‖ = 1})

≤ ε

T
ln sup({‖ϕ(T )‖ + ‖V (T )− ϕ(T )‖ : ‖V (0)‖ = 1})

≤ ε

T
ln

(
exp

{ν

σ
T +

∫ T

0
DFc(a(θsω)) ds

}
+ C

(ν
σ

)2)
.

Utilizing our Birkhoff-Lemma 4.4 this entails for ω ∈ Ωp ∩ Ω̃p that

λTε−1(εa(ω)) ≤ ε
(
− c+

ν

σ

)
+ ε

(ν
σ

)2 ec−
ν
σ

T
,

as claimed. �

7 Examples

In this section we list a few well known examples of SPDEs that satisfy the assumptions made
in Section 2. The approximation via amplitude equations has been discussed for example in [10,
12, 13], but either in a slightly different setting or with a different statement of the main error
estimate.
Combing this approach with finite-time Lyapunov exponents, our main results (Section 6) provide
a partial bifurcation analysis for these SPDEs.

7.1 Allen-Cahn

This case is well studied including the properties of FTLE. See for example [22, 20].
To be more precise, we consider the stochastic Allen-Cahn equation with Dirichlet boundary
conditions on [0, π] given by

{
du = ((∆ + 1)u+ νu− u3) dt+ σ dWt

u(0) = u0 ∈ H, u(0) = u(π) = 0.
(7.1)
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The solution operator is an order-preserving random dynamical system on H := L2([0, π]) which
has a singleton attractor [22, 27]. However in [20] it was justified that a bifurcation can be de-
tected using finite-time Lyapunov exponents and the monotonicity induced by order preservation
was crucial in all these results. The statements obtained in Section 6 recover these results using
only the approximation via the amplitude equations (4.1) and (4.2).
For the assumptions, it is well known that A = ∆ + 1 generates an analytic semigroup in
H = L2([0, π]) that satisfies Assumption 2.1 with a one-dimensional kernel N spanned by the
sine. For the cubic nonlinearity F(u) = −u3 we can directly check (2.2) and thus Assumtion 2.2
using X = L4([0, π]). Moreover the regularity of the stochastic convolution Z is easy to establish
if W is sufficiently regular. For example, for space-time white noise one has that Z is jointly
continuous in t and x.

7.2 Swift-Hohenberg

We consider the SPDE with Neumann boundary conditions on the interval [0, kπ] for some integer
k ≥ 1 given by

{
du = [−(1 + ∆)2u+ νu− u3] dt+ σ dWt

u(0) = u0 ∈ H, u′(0) = u′(kπ).
(7.2)

This equation is a toy model for the first convective instability in Rayleigh-Benard convection
and a well studied in pattern formation. See [24].
The differential operator A = −(1 + ∆)2 as in the previous example generates an analytic
semigroup in H = L2([0, kπ]) that satisfies Assumption 2.1 with a one-dimensional kernel N
spanned by the sine. The nonlinearity F is the same as in the previous example with X =
L4([0, kπ]). Furthermore, the regularity of Z works in a similar way, and we can allow even noise
less regular than space-time white noise, as the differential operator is fourth order instead of
second.
For previous results on the approximation via amplitude equations for Swift-Hohenberg see [10]
or [11]. However, since this random dynamical system is not order-preserving, to our knowledge
there are no previous results on Lyapunov exponents, while we obtain a qualitative change in
the behaviour of FTLEs at ν = 0.

7.3 Surface growth model

Our final example is a model from surface growth, which was originally proposed by [29],

dh = [−∆2h− µ∆h+∇ · (∇h|∇h|2)]dt+ σdW

subject to Neumann boundary conditions on [0, L] and in a moving frame
∫ L
0 h(tx) dx = 0. Here

the fluctuations are space-time white noise given by fluctuations in the deposited material, but
as the equation is posed in a moving frame, we need to remove the first Fourier mode from the
noise.
These type of equations are often studied with additional quadratic terms and periodic boundary
conditions. See [1] or for a general survey [3].
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Again, the linear operator generates an analytic semigroup in H = L2([0, L]) satisfying Assump-
tion 2.1. The nonlinearity F(h) = ∇· (∇h|∇h|2) satisfies Assumption 2.2 with X = W 1,4([0, L]).
This follows by similar computations than for the plain cubic taking into account the derivatives.
For the regularity of Z it is well known that for space-time white noise the spatial derivative ∂xZ
is continuous in space and time.
This equation fits into the setting of amplitude equations with cubic nonlinearities and it was
briefly mentioned in [16] where degenerate noise was studied.

Remark 7.1 Let us remark that this equation does not fit directly to our results. The change
of stability appears here at µ0 = π2/L2 and we could fix µ = µ0+ν in order to apply our results.
But then we need a small modification of the approximation result, as we have ν∆h instead of
νu. The estimate via amplitude equations should hold with the same order of error in a similar
way. Nevertheless, some of the methods in the technical bounds in Step 2 do change, but we do
not give details here. The limiting SDE does not change and the final bounds on the FTLEs
remain the same.

Acknowledgements. The authors thank the two referees for the valuable comments.
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