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ON THE PERIODIC HOMOGENIZATION OF ELLIPTIC EQUATIONS IN

NON-DIVERGENCE FORM WITH LARGE DRIFTS

WENJIA JING AND YIPING ZHANG

Abstract. We study the quantitative homogenization of linear second order elliptic equations in

non-divergence form with highly oscillating periodic diffusion coefficients and with large drifts, in

the so-called “centered” setting where homogenization occurs and the large drifts contribute to

the effective diffusivity. Using the centering condition and the invariant measures associated to

the underlying diffusion process, we transform the equation into divergence form with modified

diffusion coefficients but without drift. The latter is in the standard setting for which quantitative

homogenization results have been developed systematically. An application of those results then

yields quantitative estimates, such as the convergence rates and uniform Lipschitz regularity, for

equations in non-divergence form with large drifts.

Key words: Periodic homogenization; elliptic equations in non-divergence form; generator of

diffusion processes; large drift; convergence rates; uniform regularity in homogenization.
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1. Introduction and the main results

In this paper, we investigate the periodic homogenization of linear second order elliptic equations

in non-divergence form with large drift. More precisely, for 0 < ε < 1, we consider the following

equation {
− ãij(

x
ε )∂i∂juε(x)− 1

ε b̃i(
x
ε )∂iuε(x) = f(x) in Ω,

uε(x) = g(x) on ∂Ω.
(1.1)

Here and below, repeated indices are summed over their range unless otherwise stated, and T
d :=

R
d/Zd denotes the flat torus. Ω ⊂ R

d is an open bounded domain. The following assumptions are

imposed, for all i, j = 1, . . . , d:




The domain Ω is of class C1,1;

ãij = ãji, ãij ∈ C1(Td), b̃i ∈ L∞(Td);

ãij(x+ z) = ãij(x), b̃i(x+ z) = b̃i(x), ∀z ∈ Z
d,∀x ∈ R

d;

∃λ ∈ (0,∞), such that λ|ξ|2 ≤ ãkℓ(x)ξkξℓ, ∀x, ξ ∈ R
d.

(1.2)

The second line implies ‖ãij‖L∞(Td) + ‖∂ℓãℓj‖L∞(Td) + ‖b̃i‖L∞(Td) ≤ Λ for some Λ ∈ (0,∞) . Under

the above assumptions, the diffusion matrix ã is symmetric and uniformly elliptic and, together

with the drift coefficient b̃, it is Zd-periodic and sufficiently regular. To emphasize the periodicity

of the coefficients, we view ã, b̃ as functions on T
d. The C1,1 regularity for Ω is the standard setting

for the Dirichlet problem (1.1) for elliptic equations in non-divergence form, since it yields a strong

solution uε ∈ H2(Ω) for each fixed ε, f ∈ L2(Ω) and g ∈ H2(Ω). For the method of this paper to
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work out, the regularity assumptions for ã can be relaxed to ã ∈ C0,δ(Td) for some δ ∈ (0, 1). See

Remarks 1.2 and 2.1 below. Less regular domains (e.g., bounded and convex, or piecewise regular

Lipschitz domains, such as polyhedrons in R
3) are often used in numerical methods for (1.1); see

analysis of such domains in [24, 32, 29] under certain restrictions of ã. Our method applies to those

settings; see Remark 3.1 below. For presentational simplicity, however, we assume (1.2) throughout

the paper.

The following notations and conventions are used throughout the paper: Id denotes the d × d

identity matrix. A bounding constant in an estimate is called universal if it depends only on the

quantities d, λ,Λ,Ω in (1.2) but is independent of ε, f and g. As usual, bounding constants in

various lines may change but are denoted by the same notation.

The problem (1.1) arises naturally when modeling diffusive phenomena in heterogeneous envi-

ronments. It is the simplest model of this kind, a periodic one, but it reveals important features

that are shared by more general situations. Let us define the differential operator

Lε
ã,̃b

:= −ãij(
x
ε )∂i∂j − 1

ε b̃j(
x
ε )∂j .

Using the regularity of ã we can rewrite Lε
ã,̃b

as

Lε
ã,̃b

uε = Lε
ã,β̃

uε := −∂i
(
ãij(

x
ε )∂juε

)
− 1

ε β̃j(
x
ε )∂juε,

where β̃j(y) := b̃j(y)− ∂yi ãij(y).
(1.3)

The differential operator Lε
ã,β̃

is in divergence form and still with a large drift.

The differential operator Lε
ã,̃b

is the generator of the diffusion process determined by the following

stochastic differential equation (SDE):
{
dXε

t = 1
ε b̃(

Xε
t

ε )dt+
√
2σ(

Xε
t

ε )dWt,

Xε
0 = x.

(1.4)

Here, σ(x) =
√

ã(x) is the square root of the positive definite matrix ã(x) and Wt is a standard

d-dimensional Wiener process. Via a standard change of variable one checks that the law of Xε
t is

the same to εXt/ε2 where (Xs)s∈R+
is determined by

dXs = b̃(Xs)ds +
√
2σ(Xs)dWs, X0 =

x
ε .

Under the periodicity assumptions of the coefficients ã, b̃, the path Xs can be viewed as living in

the torus Td. In view of this connection between (1.1) and SDEs, there is a probabilistic approach

to study the homogenization problem as done in the seminal work [8] by Bensoussan, Lions and

Papanicolaou; see Chapter 3 there. Under proper conditions (see (1.7)) on the drift b̃, the solution

uε is known to converge weakly in H1(Ω) to the solution u of a homogenized problem with constant

diffusion coefficients with no drift. In other words, the original large drift contributes to the effective

diffusion in a spatial scale much larger than the periodicity of it.

This paper is mainly concerned with quantitative aspects of the homogenization of (1.1). The

authors of [8] obtained an L∞ convergence rate using the classical two-scale expansion method.

However, their method requires higher (than (1.2)) regularities on ã, b̃ and on f and only treats the

case of g = 0. New ideas and techniques for quantitative homogenization, not only in the periodic

but also in the stationary ergodic settings, have been developed in the recent decades. It is natural

to check how such advances apply to (1.1). We refer to [8, 22], as representative works, for the
2



classical theory on homogenization, and to [27, 25, 26, 3, 15, 14, 23, 30] for recent developments

with emphases on the quantitative aspects.

In periodic homogenization there are now standard methods (see e.g. [30]) to obtain (even op-

timal) convergence rates in Lp and W 1,p (with proper correctors) etc., to describe the asymptotic

behaviours of the Green functions, and to prove regularity estimates that are uniform in ε. For

(1.1), in view of the connection to (1.4), it is most natural to consider Lε
ã,̃b

in non-divergence form

when the diffusion coefficient ã is not a constant matrix. However, most works about quantitative

homogenization concentrate on equations in divergence form rather than the form of (1.1); even

when the (weak) differentiability of ã is imposed so that we can rewrite Lε
ã,̃b

into divergence form,

as in (1.3), much fewer results are available when the large drift ε−1β̃(x/ε) is present. Nevertheless,

see Allaire and Orive [1], Henning and Ohlberger [21] and Capdeboscq [10] for qualitative homog-

enization results in this (and a bit more general) setting. The main objective of this paper is to

study quantitative homogenization results when the large drift is present.

When b̃ = 0 and in the periodic setting, Avellaneda and Lin [6] obtained various uniform regular-

ity estimates for uε (up to the class of C1,1 in certain settings) using their influential compactness

method. For convergence rates, Guo, Tran and Yu [19] showed that O(ε) is the generic optimal

rate in L∞, and they constructed correctors to get an O(ε2) rate in L∞. They also initiated the

study of under what conditions the convergence rate is O(ε2) without using correctors; see [17] for

such studies and see Sprekeler and Tran [34] for O(ε) convergence rates in W 1,p. We refer to [5, 4]

for uniform regularity results in the random setting with short range dependence assumptions, and

to [16, 18] for the studies from the random walk in a random environment point of view.

Numerical approximations of the solution to the equation (1.1) in non-divergence form with

highly oscillating coefficients is both challenging and of practical importance, and it inspires much

analysis of (1.1). We refer to Capdeboscq, Sprekeler and Süli [11], Henning and Ohlberger [20] and

the references therein for more details.

In the following, we first review the qualitative theory, and then state our main results on the

quantitative homogenization.

1.1. The qualitative homogenization result. Under the conditions in (1.2), it is known (see

[8, Theorem 3.4 of Chapter 3] and Proposition 2.1 below) that there exists a unique invariant

measure with positive density m(y) ∈ C(Td) for the diffusion process (1.4), and m is the unique

weak solution to the equation:

−∂yi

[
∂yj (ãij(y)m(y))− b̃i(y)m(y)

]
= 0 in T

d, and

ˆ

Td

m(y) dy = 1. (1.5)

Let β̃ be defined as in (1.3). The equation for m can also be put in divergence form as

−∂yi

[
ãij(y)∂yjm(y)− β̃i(y)m(y)

]
= 0. (1.6)

See Proposition 2.1 below for more details. In [8] the qualitative homogenization of (1.1) was

established under the following additional condition:
ˆ

Td

b̃j(y)m(y) dy = 0, j = 1, . . . , d. (1.7)
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The above is henceforth referred to as the centering condition. Since the existence and uniqueness

of m is guaranteed by the assumptions in (1.2), the problem (1.5) with (1.7) form an overdetermined

system which has a solution only for some special class of drifts.

In [8], Bensoussan, Lions and Papanicolaou established the homogenization of (1.1) using both

probabilistic and PDE based analytic methods. In both approaches, the centering condition (1.7)

is the key assumption. It allows one to solve the following cell problem (a central concept for

homogenization). More precisely, (1.2) and (1.7) guarantee, for each j = 1, · · · , d, the unique

existence of χ̃j which solves

−ãik∂yi∂yk χ̃
j(y)− b̃i(y)∂yi χ̃

j(y) = b̃j(y) in T
d, and

ˆ

Td

χ̃j = 0. (1.8)

The qualitative homogenization result is then as follows.

Theorem 1.1 (Theorem 3.5.2 in [8]). Suppose that (1.2) and (1.7) hold. Define a = (aij) by

aij :=

ˆ

Td

[(I +∇yχ̃)ã(I +∇yχ̃)
T(y)]ijm(y) dy

=

ˆ

Td

(
ãij + ãik∂yk χ̃

j + ãkj∂yk χ̃
i + ãkℓ∂yk χ̃

i∂yℓ χ̃
j
)
m(y) dy.

(1.9)

Then a is a constant symmetric matrix, and a ≥ λ1Id for some positive constant λ1 > 0 that

is universal. Moreover, for any f ∈ L2(Ω) and g ∈ H2(Ω) (that is, the Dirichlet datum is the

restriction on ∂Ω of such a function), the solution uε of (1.1) converges weakly in H1(Ω) to the

solution u of the homogenized problem
{

− aij∂i∂ju = f in Ω,

u = g on ∂Ω.
(1.10)

This theorem appeared as Theorem 5.2 in Chapter 3 of [8] under stronger assumptions than

ours. We reprove this theorem in Section 3.1. It is important to note that under the C1,1 regularity

assumption of Ω, the solution of (1.10) actually belongs to H2(Ω).

Remark 1.1. A discussion about the centering condition is now in order.

If the large drift is not present, i.e., b̃ = 0, then the centering assumption is always satisfied.

This is the case in [6, 19, 34, 4]. If the matrix ã is constant and ∇ · b̃ = 0, then m(y) ≡ 1 is the

invariant measure and the centering condition reduces to the mean-zero condition; detailed studies

of such cases can be found in [12].

In the so-called laminated media where the coefficients ã and b̃ only depend on one coordinate,

namely the first one y1 of y = (y1, . . . , yd), the invariant measure m(y) is of the form m(y) = m(y1)

and it is determined by

−∂2
y1(ã11(y1)m(y1)) + ∂y1 (̃b1(y1)m(y1)) = 0, y1 ∈ T

1.

Note that ã11 > 0 due to ellipticity. Assuming that ã, b̃ are sufficiently smooth, the centering

condition is then equivalent to
ˆ 1

0

b̃1(s)

ã11(s)
ds = 0,

ˆ 1

0

b̃j(s)

ã11(s)
exp

(
ˆ s

0

b̃1(t)

ã11(t)
dt

)
ds = 0, for j = 2, . . . , d. (1.11)

The simpler 1D case is treated in more detail in Section 4. We also remark there that one cannot

expect to have homogenization in general when the centering condition fails.
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1.2. Main results on quantitative estimates. Our main results of this paper concern the

quantitative estimates for the homogenization of (1.1), namely the convergence rates in L2, L∞

and in H1 and the uniform Lipschitz regularity of {uε}ε∈(0,1).
As is standard, for convergence rates in H1 (in general for W 1,p) some correctors are needed (add

to the limit u). Following [25, 30], we introduce the so-called Dirichlet correctors Φε,j, j = 1, . . . , d,

defined by

−∂i
(
qik(

x
ε )∂kΦε,j

)
= 0 in Ω, Φε,j = xj on ∂Ω. (1.12)

Here, the diffusion matrix q = (qij) is defined later in (2.8) and is uniformly elliptic. It is easily

verified that the function Φε,j − xj belongs to H1
0 (Ω) and has size of order O(ε) in L∞. The size

of its gradient, however, is not small in L2. This function corrects ∇uε − ∇u to make the latter

converge strongly.

The first of our main results is concerned with the quantification of the convergence of uε to u

in various functional spaces.

Theorem 1.2. Assume that (1.2) and (1.7) hold. Then the following results are true.

(1) There exists a universal constant C ∈ (0,∞) such that for any f ∈ H1(Ω) and g ∈ H2(Ω),

we have

‖uε − u‖L2(Ω) ≤ Cε
(
‖f‖H1(Ω) + ‖g‖H2(Ω)

)
(1.13)

and

‖uε − u− {Φε,j − xj}∂ju‖H1
0
(Ω) ≤ Cε

(
‖f‖H1(Ω) + ‖g‖H2(Ω)

)
. (1.14)

(2) Let g = 0 and p ∈ (1, d), and let r = dp/(d − p). Then there is a constant Cp ∈ (0,∞)

depending only on the data in (1.2) and on p so that, for any f ∈ W 1,p(Ω), we have

‖uε − u‖Lr(Ω) ≤ Cp ε‖f‖W 1,p(Ω). (1.15)

(3) Let g = 0 and p ∈ (d,∞). Then there is a constant Cp ∈ (0,∞) depending only on the data

in (1.2) and on p so that, for any f ∈ W 1,p(Ω), we have

‖uε − u‖L∞(Ω) ≤ Cp ε‖f‖W 1,p(Ω). (1.16)

We also have the following uniform (in ε) Lipschitz regularity for the solutions {uε}ε to (1.1).

Theorem 1.3. Assume that (1.2) and (1.7) hold. Let p > d and η ∈ (0, 1) be fixed numbers. Then

there exists a constant Cp,η ∈ (0,∞) depending only on the data in (1.2) and on p, η, so that, for

any f ∈ Lp(Ω) and g ∈ C1,η(∂Ω), we have

‖∇uε‖L∞(Ω) ≤ Cp,η {‖g‖C1,η(∂Ω) + ‖f‖Lp(Ω)}. (1.17)

Item (3) of Theorem 1.2 recovers the L∞ convergence rate as in Theorem 5.1 of Chapter 3 in [8].

All other results concerning the convergence rates and the uniform Lipschitz estimate above are new

in the setting of this paper. Note also, in view of the uniform Lipschitz regularity of {uε}ε, we also
recover the convergence of uε to u in C(Ω) (with same rate as (1.16)). The qualitative convergence

in C(Ω) was established in Theorem 4.5 of Chapter 3 in [8] using probabilistic methods. Moreover,

the L∞ rate in [8] was established under higher regularity assumptions on ã, b̃ and for f ∈ W 3,p(Ω)

with p > d. Our result, hence, is an improvement.

On the other hand, all those quantitative results look almost identical to the corresponding results

recently developed for periodic homogenization of elliptic equations in divergence form without any
5



drifts, namely in [27, 26, 30], except for the higher regularity requirement in f in Theorem 1.2. In

fact, the main contribution of this paper is the observation that, under the centering condition (1.7),

(1.1) can be transformed into an elliptic equation with periodic and uniformly elliptic coefficients

without any drift; see (2.10) below. This allows us to use the recent quantitative homogenization

results in the more standard setting directly to get the results above. It will be clear from the proof

that the higher regularity requirement on f is also due to this transformation.

Remark 1.2. We finish the introduction by several remarks.

The key transformation that puts (1.1) into a divergence form equation without drift is carried

out in detail in the next section. For b̃ = 0, such a transformation was used already by Avellaneda

and Lin [6]. We show in this paper that it works for more general b̃ that satisfies the centering

condition. If this last condition fails, the homogenization is more involved and one cannot expect

(1.10) as the effective model; see Section 4 and the works in [21, 2, 10].

The Lipschitz class is the sharp space for uniform regularity of the solutions to (1.1). In general,

we cannot expect to obtain uniform regularity in C1,r(Ω) for r > 0; see discussions in Section 4.

This is a clear contrast with the case of b̃ = 0. For the latter setting, uniform C1,1 a priori estimates

were established by Avellaneda and Lin in [6].

It is possible to relax the regularity assumptions in (1.2). As long as the regularity for ã is

concerned, the key is to have the existence and uniqueness of the invariant measure m and to make

sure that m ∈ C0,α(Td) for some α ∈ (0, 1). Hence, it is enough to require ã ∈ W 1,p(Td) (for b̃, it

suffices to impose b̃ ∈ Lp(Td) for p > d large enough). Under those assumptions, the existence and

regularity of m was studied systematically in [34]. We also note that the proof about m in this

paper (see Proposition 2.1 below) is essentially the one in [8] and it can be carried out under the

quite weak regularity assumption ã ∈ C0,δ(Td), β ∈ (0, 1) and b̃ ∈ L∞(Td); see Remark 2.1. This

assumption on ã is more or less optimal.

Last but not least, the quantitative results selected in Theorems 1.2 and 1.3 are just a few

representatives. Various other results (e.g.W 1,p rate, Neumann boundary conditions, etc.) in [30]

can also be considered here.

The rest of the paper is organized as follows. In the next section we use the key transformation

to put (1.1) into a divergence form equation without any drift. The resulting equation is in the

standard form for which the recently developed quantitative homogenization results apply. We then

apply those results to prove the main theorems of this paper in Section 3. In sections 4 and 5 we

comment on the centering conditions for the drifts, provide some examples and further discussions.

2. The key transformation

In this section we transform (1.1) into an equation in divergence form without any drift term.

In the case of b̃ = 0, this transformation was already used in Avellaneda and Lin [6]. It consists of

two steps as follows.

2.1. Weighting by the invariant measure. In the first step, we weight the equation (1.1) by

the invariant measure m and change the equation into divergence form with a large drift that is

mean-zero and divergence free. Note that, without this weighting, the drift β̃ in (1.3) does not have

those properties.
6



First, the invariant measure m in (1.5) is well defined with the following important properties.

Proposition 2.1. Under the assumptions in (1.2), the equation (1.5) admits a unique weak solution

m ∈ H1(Td). Moreover, we can find α ∈ (0, 1) and C ∈ (1,∞), both of which are universal, such

that m ∈ C0,α(Td) and

‖m‖C0,α(Td) + ‖m‖H1(Td) ≤ C, inf
y∈Td

m(y) ≥ C−1. (2.1)

Proof. The existence and uniqueness of m ∈ H1(Td) that solves (1.5) follows essentially from the

proof of Theorem 3.4 in Chapter 3 of [8]. The proof there is based on a Fredholm alternative

argument and the key is to show that if z ∈ H1(Td) solves

−∂yi
(
ãij(y)∂yjz(y)

)
− β̃i(y)∂yiz(y) = 0 in T

d = R
d/Zd,

then z must be a constant. In [8] this was proved for ã ∈ C1 ∩ W 2,∞(Td) and b̃ ∈ C1(Td) with

the by-product that m ∈ W 2,p(Td) for some p > 2. Inspecting the proof, however, we see that the

above holds under the assumption (1.2). Indeed, by elliptic regularity (e.g. Theorem 8.24 of [13])

z ∈ C0,α(Td) for some α ∈ (0, 1) and hence we can assume z > 0. Then we can conclude using the

strong maximum principle (e.g. Theorem 8.19 of [13]) for the equation above. Once we solve (1.6)

for m ∈ H1(Td), using elliptic regularity again we get m ∈ C0,α(Td) with the desired estimates.

The existence of a positive lower bound was established, again, in [8]. �

Remark 2.1. The above proof is essentially from Bensoussan, Lions and Papanicolaou [7]. Using

the more recent solvability and regularity theory of the double divergence form equation (1.5) by

Bogachev and Shaposhnikov [9, Corollary 3.7 and Theorem 3.1] (and see also the work of Sjögren

[31]), one can still obtain a positive and Hölder continuous invariant measure m after weakening the

regularity of the diffusion matrix to ã ∈ C0,δ(Td) for some δ ∈ (0, 1). Then, although the modified

drift β̃ defined in (1.6) is no longer in L∞, it is the sum of a bounded term with a weak divergence

of a C0,α term, and all the elliptic PDE tools can still be used. We omit further discussions on this.

In the case of b̃ = 0, Sprekeler [33] obtained existence and uniqueness of a non-negative invariant

measure m ∈ L2(Td) associated to a uniformly elliptic diffusion matrix ã ∈ L∞(Td) (and under

the Cordes condition if d ≥ 3). Among quite a few other interesting results, he used m and the

transformation method of [6] to establish homogenization of (1.1) (weakly in H2 and strongly in

H1) for Ω that is bounded and convex.

We put weights on the coefficients and the right hand side of (1.1) and, for y ∈ T
d and x ∈ Ω,

define:

aij(y) = ãij(y)m(y), bj(y) = b̃j(y)m(y), fε(x) = f(x)m(xε ). (2.2)

Then problem (1.1) can be rewritten as
{

− ∂i
(
aij(

x
ε )∂juε

)
− 1

εβi(
x
ε )∂iuε = fε in Ω,

uε = g on ∂Ω.
(2.3)

Here the periodic vector field β = (βj), j = 1, . . . , d, is defined by

βj(y) = bj(y)− ∂yiaij(y) = b̃j(y)m(y)− ∂yi (ãij(y)m(y)) , y ∈ T
d. (2.4)

7



In view of the regularity properties of ã, b̃ and m, we check that bj ∈ L∞(Td) and aij ∈ C0,α(Td)

for all i, j = 1, . . . , d. Moreover, by (1.5) we obtain the following key property for β:

∂yiβi = 0,

ˆ

Td

βi(y)dy = 0. (2.5)

We point out that in the PDE method for qualitative homogenization in [8], the authors there

started from (2.3) and adapted the usual energy method by paying extra attention to the large

drift term. In particular, a formal two-scale expansion suggests one to consider the following cell

problem: for each j = 1, . . . , d,

−∂yk(akℓ(y)∂yℓχ
j(y)) − βℓ(y)∂yℓχ

j(y) = ∂ykakj(y) + βj(y) in T
d,

ˆ

Td

χj = 0. (2.6)

The fact that the drift term satisfies (2.5) is crucial, since it guarantees the unique solvability of

(2.6). See Chapter 3 of [8] for details.

Remark 2.2. Let us also point out the following: One could continue the PDE approach of [8]

and quantify the homogenization of (2.3) directly, by adapting the recently developed methods for

quantitative results (e.g. in [30]) for divergence form and by carefully tracking the effects of the

large drift. Roughly speaking, it suffices to replace the cell problems in the standard setting (see

[30]) by (2.6).

2.2. A further transformation for the drift term. We take a much simpler approach than

the one outlined in the remark above. This is the second step of the key transformation.

Recall that due to the centering condition of b̃, the large drift in the resulted equation (2.3) is

mean zero and divergence free. The following then holds.

Lemma 2.2. Assume (1.2) and (1.7). Let β be as in (2.4) and α ∈ (0, 1) as in Proposition 2.1.

There exists an anti-symmetric 2-tensor φ = (φij) and a universal constant C ∈ (1,∞) so that

φij ∈ C0,α(Td), and for all k, j = 1, . . . , d, the following holds:

βj = ∂yℓφℓj, φkj = −φjk,

ˆ

Td

φkj(y) dy = 0, and ‖φkj‖C0,α(Td) ≤ C. (2.7)

Results of this type play important roles in homogenization theory and they were present in

classical books like [8, 28]; see also [30, Section 3.1]. We provide some details of the proof below

for the sake of completeness.

Proof. For each j = 1, . . . , d, solve the Poisson problem

∆yf
j = βj = bj − ∂yiaij in T

d,

ˆ

Td

f j(y) dy = 0.

Since bj ∈ L∞(Td) and aij ∈ C0,α(Td), by elliptic regularity theory we get f j ∈ C1,α(Td). Let

φij := ∂yif
j − ∂yjf

i.

Then φij ∈ C0,α(Td) and it clearly satisfies φij = −φji. The identity ∂yiφij(y) = βj , which is

equivalent to ∂yi∂yjf
i(y) = 0, can be checked by verifying that ∆y(divf) = 0. The latter follows

from the equations of (f j) and the fact that div β = 0. The estimate in (2.7) follows from the

definitions of β, φ and from the bounds in (1.2) and (2.1). �
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The second step of our key transformation is carried out as follows. Define

qij(y) = aij(y) + φij(y) = ãij(y)m(y) + φij(y), y ∈ T
d, i, j = 1, . . . , d. (2.8)

The following is a direct consequence of the previous lemma.

Corollary 2.3. The diffusion matrix q = (qij) is in C0,α(Td) and is uniformly elliptic, and there

exist universal constants λ1,Λ1 ∈ (0,∞) so that

‖qij‖L∞(Td) ≤ Λ1, qij(y)ξ
iξj ≥ λ1|ξ|2, ∀y ∈ T

d, ∀ξ ∈ R
d. (2.9)

Moreover, the problem (2.3) can be rewritten as
{

− ∂i
(
qij(

x
ε )∂juε

)
= fε in Ω,

uε = g on ∂Ω.
(2.10)

Let us point out that this second step of transformation was used in [10] and is now standard.

Proof. In view of the regularity of φij , the bounds and the positivity of m, and the anti-symmetry

of (φij), we check that

λ1 := λ inf
Td

m, Λ1 := max
i,j

‖φij‖L∞ + Λ max
Td

m.

works for (2.9). To check the equivalence between (2.3) and (2.10) it suffices to verify

−
ˆ

Ω

[
1
εβj(

x
ε )∂juε(x)

]
ϕ(x) dx =

ˆ

Ω
φij(

x
ε )∂juε(x)∂iϕ(x) dx, ∀ϕ ∈ C∞

c (Ω). (2.11)

To this end, using the relation

∂ℓ[φℓj(
x
ε )] = (ε−1∂ℓφℓj)(

x
ε ) = ε−1βj(

x
ε )

we can compute the left hand side of (2.11) as follows:

−
ˆ

Ω
[∂ℓ(φℓj(

x
ε ))]ϕ(x)∂juε(x) dx =

ˆ

Ω
φℓj(

x
ε )∂ℓ [ϕ∂juε] dx

=

ˆ

Ω
φℓj(

x
ε )(∂ℓϕ)∂juε dx+

ˆ

Ω
ϕ(x)φℓj(

x
ε )∂j∂ℓuε(x) dx.

The last term in the second line vanishes because φ is anti-symmetric (note that uε ∈ H2(Ω) for

each ε ∈ (0, 1) and f ∈ L2(Ω)). This verifies (2.11) and completes the proof of the corollary. �

To summarize, we have transformed (1.1) into the elliptic equation (2.10) which is in divergence

form and without any drift term. Moreover, the unscaled diffusion matrix q = (qij) is Z
d-periodic,

uniformly elliptic and belongs to C0,α(Td). In other words, (2.10) is in the standard setting for

quantitative periodic homogenization results; see [30]. Let us emphasize that this two-step trans-

formation was already used in Avellaneda and Lin [6] when b̃ = 0. We provide above the details of

the transformation for non-zero b̃ that satisfies the centering condition (1.7).

3. Proofs of the main results

With the preparations in the last section, we can apply the now well known quantitative homog-

enization results to (2.10) and prove the main theorems of the paper.
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3.1. The qualitative convergence result. First, we reprove Theorem 1.1 using the equivalence

between (1.1) and (2.10). For the latter equation, since (qij) is Z
d-periodic and satisfies (2.9), and

fε(x) = f(x)m
(
x
ε

)
⇀ f(x)

ˆ

Td

m(y) dy = f(x) in L2(Ω),

by the standard qualitative homogenization theory, we know that uε converges weakly in H1(Ω) to

the unique solution of {
− ∂i

(
qij∂ju

)
= f, in Ω,

u = g on ∂Ω.
(3.1)

Here, the homogenized diffusion matrix q = (qij) is given by (see e.g. [8, 22]):

q =

ˆ

Td

(I +∇yχ(y))q(y)(I +∇yχ(y))
T dy

where χ = (χ1, . . . , χd), and, for each j = 1, . . . , d, χj ∈ H1(Td) is the solution of the corresponding

cell problem

−∂yi(qik(y)(∂ykχ
j + δkj)) = 0 in T

d,

ˆ

Td

χj = 0. (3.2)

Note that the matrix q is not necessarily symmetric since q is not. Under the C1,1 regularity of Ω,

the unique H1 solution u of the homogenized equation (3.1) in fact belongs to H2(Ω), and hence

the homogenized equation can be written in non-divergence form and the diffusion matrix can be

symmetrized. In other words, (3.1) can be rewritten as
{

− qsymij ∂i∂ju = f, in Ω,

u = g on ∂Ω,
(3.3)

where qsym is the symmetrization of q. Since a = mã is precisely the symmetric part of q, we have

qsym =

ˆ

Td

(I +∇yχ(y))a(y)(I +∇yχ(y))
T dy. (3.4)

It suffices to check a defined in (1.9) agrees with qsym. To this end, we prove that the solution

χj of (3.2), j = 1, . . . , d, coincides with the solution χ̃j of (1.8). Multiply on both sides of (1.8) by

m, we see that χ̃j solves

−aik(y)∂yi∂yk χ̃
j(y)− bi(y)∂yi χ̃

j(y) = bj(y), in T
d.

Note that by elliptic regularity (we only need ã to be Hölder and b̃ be bounded), χ̃j ∈ H2(Td), and

hence we also have

−qik(y)∂yi∂yk χ̃
j(y)− bi(y)∂yi χ̃

j(y) = bj(y), in T
d.

In view of the weak formulations of the cell problems (3.2) in this section, the definition of (qij), the

anti-symmetry of (φij), theH
2-regularity of the χ̃j ’s again, and the relation ∂yiqij = ∂yiaij+βj = bj

(see (2.4)), we verify that χ̃j satisfies

−∂yi(qik(y)∂yk χ̃
j) = bj(y).

In view of the relation in (2.4) again, we see that the above equation is just a rewriting of (3.2). By

the uniqueness of the solution to the cell problem, we conclude that χ̃j = χj , for all j = 1, . . . , d.

Now by comparing (1.9) with (3.4) we conclude that a = qsym. This reproves the qualitative

homogenization result in Theorem 1.1.
10



It remains to prove a ≥ λ1Id where λ1 is defined in the proof of Corollary 2.3. For the homog-

enization of (3.5) in divergence form, due to the ellipticity condition (2.9) for (qij), we can apply

Theorem 3.2 in Chapter 1 of [8] which says the homogenized matrix (qij) satisfies q ≥ λ1Id. That

is, the homogenized diffusion matrix enjoys the same ellipticity bound. Since a = qsym, a has the

same lower ellipticity bound.

Remark 3.1. The C1,1 regularity of Ω was used above to show that the homogenized equation

(3.1) for (2.10) can be written in non-divergence form. In numerical methods, piecewise regular

domains such as polyhedral ones (in R
3) are often used but they fail to be C1,1. For convex Lipschitz

domains, Smears and Süli [32] established solvability in H2(Ω) of the equation in non-divergence

form (if d ≥ 3, under the additional assumption that ã satisfies Cordes condition); see also [29].

Theorem 1.1 and item (1) of Theorem 1.2 continue to hold in those settings. Other convergence

rates and regularity results in Theorem 1.2 and in Theorem 1.3 require C1,β regularity for Ω, even

for the homogenization of elliptic equations in divergence form.

3.2. Convergence rates. We need to quantify the homogenization of (2.10). Since the right hand

side is fε = f(x)m(xε ) which depends on ε, we introduce another problem:
{

− ∂i
(
qij(

x
ε )∂jvε

)
(x) = f(x) in Ω,

vε(x) = g(x) on ∂Ω.
(3.5)

Then standard homogenization theory shows that vε → u weakly in H1(Ω) as ε → 0. Moreover,

since the right hand side above is fixed for all ε, the convergence rate is quantified by standard

theory, namely, by Corollary 7.1.3 of [30].

We also need to estimate the difference uε − vε. It satisfies the Dirichlet problem

−∂i
(
qik(

x
ε )∂k(uε − vε)

)
= f(x)[m(xε )− 1] in Ω, uε − vε = 0 on ∂Ω. (3.6)

We use the trick in the proof of Lemma 2.2 again. Since m(y)− 1 is mean zero in T
d, there exists

a unique function h so that

∆yh(y) = m(y)− 1 in T
d,

ˆ

Td

h(y) dy = 0. (3.7)

Since m ∈ C0,α(Td), by the standard elliptic regularity theory h ∈ C2,α(Td). We then have the

following results.

Lemma 3.1. Assume (1.2) and (1.7). There is a universal constant C ∈ (1,∞) so that for all

f ∈ H1(Ω)

‖f(x)[m(xε )− 1]‖H−1(Ω) ≤ Cε ‖f‖H1(Ω), (3.8)

and

‖uε − vε‖H1
0
(Ω) ≤ Cε‖f‖H1(Ω). (3.9)

Proof. It suffices to prove there exists a universal constant C < ∞ so that
∣∣∣∣
ˆ

Ω
f(x)[m(xε )− 1]ϕ(x) dx

∣∣∣∣ ≤ Cε‖f‖H1(Ω)‖∇ϕ‖L2(Ω), ∀ϕ ∈ C∞

c (Ω). (3.10)

Using the function h defined earlier, the integral on the left hand side above can be written as

ε2
ˆ

Ω
f(x)ϕ(x)∆x

(
h(xε )

)
dx = ε

ˆ

Ω
fϕ∂ℓ[(∂ℓh)(

x
ε )] = −ε

ˆ

Ω
(∂ℓh)(

x
ε )[ϕ∂ℓf + f∂ℓϕ].

11



For (3.7) we use the C2,α elliptic regularity estimate and (2.1) to get a uniform bound on ‖∇h‖L∞ .

Then (3.10) follows, and (3.8) is proved.

Finally, using the standard energy estimate

‖uε − vε‖H1
0
(Ω) ≤ C‖f [m(xε )− 1]‖H−1(Ω)

for (3.6), we get (3.9). �

Proof of Theorem 1.2. The Lr, W 1,p, W−1,p and H2 norms below are all for the domain Ω. We

hence omit writing Ω explicitly.

Proof of (1): In view of the uniform ellipticity and the regularity of q in (2.9), and by Corollary

7.1.3 of [30], for f ∈ L2 and g ∈ H2, we get

‖vε − u‖L2 + ‖vε − u− {Φε,j(x)− xj}∂ju‖H1
0
≤ Cε‖u‖H2 ≤ Cε (‖f‖L2 + ‖g‖H2)

for some universal constant C < ∞. Under the further assumption that f ∈ H1(Ω), we can combine

the estimate above with (3.9) to obtain (1.14) and (1.13) of Theorem 1.2.

Proof of (2): Now g = 0 and p ∈ (1, d). Let 1/r = 1/p − 1/d, let vε solve (3.5) with g = 0.

Apply Theorem 7.5.1 of [30] to this equation, we first get ‖vε − u‖Lr ≤ Crε‖f‖Lp for some Cr

that only depends on the data in (1.2) and on r. The difference uε − vε is still characterized by

(3.6). Apply the uniform W 1,p regularity result in Theorem 5.3.1 of [30] associated to the operator

−∂i(qij(x/ε)∂j) (note that q is Hölder and hence VMO), for some constant Cp depending on the

data in (1.2) and on p, we have

‖uε − vε‖W 1,p ≤ Cp ‖f(x)[m(xε )− 1]‖W−1,p ≤ Cε ‖f‖W 1,p . (3.11)

The last inequality is obtained by repeating the argument in Lemma 3.1. By Sobolev embedding,

the above still holds if the left hand side is changed to ‖uε − vε‖Lr . Combine all the results above

we obtain (1.15).

Proof of (3): The proof is almost the same as above. Apply Theorem 7.5.1 of [30] to the problem

(3.5) with g = 0. We get ‖vε − u‖L∞ ≤ Cε‖f‖Lp . To estimate the difference uε − vε, we note

that (3.11) holds, and because p > d, the inequality is still true if the left hand side is replaced by

‖uε − vε‖L∞ . Combine the results above we get (1.16) and finish the proof of Theorem 1.2. �

3.3. Uniform Lipschitz estimates. We prove Theorem 1.3 as a direct consequence of the uniform

Lipschitz regularity theory provided in Chapter 5 of [30]. Applying Theorem 5.6.2 there to the

equation (2.10), we can find a constant C > 0 depending only on the data in (1.2) and on p, η so

that

‖∇uε‖L∞(Ω) ≤ C{‖g‖C1,η(∂Ω) + ‖fε‖Lp(Ω)},
provided that fε ∈ Lp and p > d. Since f ∈ Lp for some p > d, m ∈ L∞(Td) and fε(x) = f(x)m(xε ),

we have ‖fε‖Lp ≤ C‖f‖Lp for some universal constant C ∈ (0,∞). We hence get (1.17) and finish

the proof of Theorem 1.3.

4. One dimensional examples

In this section we study the one-dimensional setting and make several comments on the centering

condition for the drift.
12



4.1. The centering condition in laminated media. As explained in Remark 1.1, for laminated

media, the study of the invariant measures reduces to that in the one dimensional setting. We hence

consider the following equation on the torus T := R/Z (and assume ã, b̃ are smooth):

(ã(y)m(y))′′ − (̃b(y)m(y))′ = 0, y ∈ T. (4.1)

Here the prime denotes derivative in y. Let m̃(y) := ã(y)m(y) and rewrite the equation above as

m̃′′(y)−
(
b̃(y)

ã(y)
m̃(y)

)
′

= 0.

Integrate this equation once, we get

m̃′(y)− b̃(y)m(y) = C1. (4.2)

Integrate again, we get

m(y) =
1

ã(y)

{
C0 exp

(
ˆ y

0

b̃(s)

ã(s)
ds

)
+C1

ˆ y

0
exp

(
ˆ y

y′

b̃(s)

ã(s)
ds

)
dy′

}
.

The constants C0 and C1 are determined by the periodicity of m̃ and by the fact that
´

T
m = 1.

In view of (4.2), the centering condition is equivalent to C1 = 0, and it holds if and only if
ˆ

T1

b̃(y)

ã(y)
dy = 0.

The invariant measure is then given by

m(y) =
1

ã(y)
exp

(
ˆ y

0

b̃(s)

ã(s)
ds

)/ ˆ 1

0

1

ã(y)
exp

(
ˆ y

0

b̃(s)

ã(s)
ds

)
dy.

The above also verifies that, for laminated media in higher dimensions, the centering condition is

precisely (1.11).

4.2. Some comments. To check the sharpness of Theorem 1.3 in terms of the order of regularity,

we consider the 1D equation

−ã(xε ) (uε)
′′ − 1

ε b̃(
x
ε ) (uε)

′ = 0 in (0, 1), (4.3)

where b̃ is of the form b̃(y) = ã(y)b(y). In view of (1.11), the centering condition is
´

T
b = 0. For

example, set b(y) = cos(2πy); we compute and get

m(y) =
m̃(y)

ã(y)
, m̃(y) = C0 exp

(
sin(2πy)

2π

)

with some normalization constant C0 > 0. Multiply on both sides of (4.3) by m(xε ). Then we get

−
(
m̃(xε )u

′

ε(x)
)
′
= 0.

The unique solution uε with boundary data uε(0) = 0 and uε(1) = 1 then satisfies

u′ε(x) =
cε

m̃(xε )
,

1

cε
=

ˆ 1

0
m̃−1(xε ) dx.

This simple one dimensional example shows that, for b̃ 6= 0 under the centering condition, one

cannot expect to have uniform in ε regularity that is higher (smoother) than Lipschitz in general.
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Compare this with the case of b̃ = 0. The simple 1D equation at the beginning with boundary

condition uε(0) = 0 and uε(1) = 1 then has smooth solution.

Next, we comment on the necessity of the centering condition. It is known already in [8] that

when the centering condition fails one cannot expect to have a homogenization result like Theorem

1.1. As a simple example in 1D, consider the problem

(uε)
′′ + 1

ε (uε)
′ = f in (0, 1), and uε(0) = uε(1) = 0, (4.4)

and f(x) ≡ 1. It is clear that the invariant measure is m(y) ≡ 1 on T, and the periodic drift vector

b(y) ≡ 1 fails the centering condition. Direct computation then shows

uε(x) = ε

(
x− 1− e−x/ε

1− e−1/ε

)
.

It follows that uε → u uniformly in [0, 1] where u(x) ≡ 0. Clearly u cannot be a solution to a

uniformly elliptic equation with right hand side f ≡ 1.

5. Concluding remarks

In this paper, we studied quantitative homogenization of uniformly elliptic equations with a

periodic diffusion matrix and a large drift term. We show that when the drift satisfies the centering

condition (1.7), the equation can be transformed to divergence form without any drift. We can then

transfer almost all of the recently developed sharp quantitative estimates, including convergence

rates in various norms and uniform Lipschitz regularity results, to the setting of this paper. We

also comment on the necessity of the centering condition and on the sharpness of the results.

Our method is quite flexible. For example, one may consider the more general equation

−ãij(
x
ε )∂i∂juε − 1

ε b̃j(
x
ε )∂juε − c̃j(

x
ε )∂juε +

1
εq1(

x
ε )uε + q0(

x
ε )uε = f,

say, for uε ∈ H1
0 (Ω). Qualitative theory for the above equation without the large potential was

treated already in [8]. The large potential case in divergence form without the drifts was considered

by Zhang [35]; a combination of the technique there with our method can be used for the problem

above. As long as O(ε−2) potential is considered, see e.g. Allaire and Orive [1], the large potential

will affect the homogenization at the highest order and more involved transformation or analysis

will be needed. We leave it to future studies. Note also, since the key transformation in this

paper does not involve the boundary conditions, we expect that our method continues to work

for Neumann boundary problems of (1.1) (for nonzero data, this amounts to oscillatory Neumann

data). Our method is hence a clear improvement of the classical approaches which are restricted,

as remarked in [8], to homogeneous Dirichlet boundary conditions.
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