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Abstract. We study the spatial Maxwell restricted (N + 1)−body problem,

which consists of the motion of an infinitesimal particle attracted by the grav-
itational field of N bodies. These bodies are arranged in a planar ring con-

figuration. This configuration consists of N − 1 primaries of equal masses m
located at the vertices of a regular polygon that is rotating on its own plane

about its center of mass with a constant angular velocity ω. Another primary

of mass m0 = βm (β > 0) is placed at the center of the ring. Moreover, we
assume that the central body may be an ellipsoid, or radiation source, which

is modeled through the Manev potential (−1/r + e/r2), e 6= 0, where e is a

parameter related to the obliticity or radiation source (according to the sign of
the parameter e) of the central mass. We study the dynamics of a infinitesimal

mass under the gravitational attraction of the primaries plus the influence of

the central mass through the Manev potential. Specifically, we investigate the
relative equilibria of the infinitesimal mass and their linear stability as func-

tions of the mass parameter β, the ratio of mass of the central body to the

mass of one of N − 1 remaining bodies, and e parameter. We also prove the
nonexistence of binary collisions between the central body and the infinitesimal

mass.

1. Introduction and statement of the problem

Quasi–homogeneous potential of the form −(a/r− e/r2), where r is the distance
between particles, and a, e are real constants, was considered by Newton in his
work Philosophiae Naturalis Principia Mathematica (Book I, Article IX, Proposi-
tion XLIV, Theorem XIV, Corollary 2). One of the reasons to add the term e/r2 to
the gravitational attraction (−a/r) was the impossibility to explain the Moons apsi-
dal motion within the framework of the inverse-square force law. Nevertheless, the
model was abandoned in favor of the classical potential. Many years later Manev
(1924) [8] proposed a similar corrective term in order to maintain dynamical as-
tronomy within the framework of classical mechanics and offering at the same time
equally good justifications of the observed phenomena as in the relativity theory.
For instance, when a is positive and e is negative, the corrective term provides a
justification of the perihelion advance of Mercury.

In this work we consider the motion in a three-dimensional space of an infinites-
imal mass P under the gravitational attraction of N = n+ 1 point masses, P0, Pi,
i = 1, . . . , n called primaries. Assume that the potential generated by the primary
P0 is a Manev potential (−1/r+e/r2), with parameter e, and that the gravitational
attraction due to Pi, i = 1, . . . , n is Newtonian −1/r.

We emphasize that the parameter e ∈ R models several problems, for example,
when the central body of the ring is no longer spherical, but an ellipsoid of revolution
(spheroid). According to [5], [6] the parameter e is associated with flattening, in
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natural bodies like planets, the spheroid is flattened e < 0, but also we can think
of artificial bodies and assume they are prolates, in that case e > 0. In general,
this fact is seen more used in potentials of the Schwarzschild type (A/r − e/r3,
introduced in 1998 by Mioc and Savinski in [9]). We consider that the central body
is a source of radiation, repulsive if e > 0 and attractive if e < 0, and then the
effect of radiation can be modeled in a similar way to the flattened ellipsoid (see,
for example, [7]).

We also shall assume that the n-primaries Pi (i = 1, . . . , n) are in a n-gon
configuration, that is, the bodies Pi, i = 1, . . . , n have the same mass mi = m, for
all i = 1, . . . , n, and are located symmetrically with respect to the central body P0,
of mass m0 = βm, which is at the center of mass of the system. P0 will also be called
the central body, and Pi, i = 1, . . . , n the peripherals, as in the Maxwell ring model.
In an inertial reference system the peripheral bodies move in a circular orbit around
P0 with angular velocity ω. This problem will be called Maxwell’s ring restricted
(N + 1)-body problem with Manev potential or shortly, Manev R(N + 1)BP, note
that N = n+ 1.

Dynamical important aspects of the case n = 2 (the dynamics of the Spatial
Restricted Four Body Problem with repulsive Manev potential from an analytical
point of view) were given in [4]. For the planar case, a particular numerical study
(n = 7) is made on the number of equilibria and the bifurcations that depend on
the Manev parameter in [2]. Other studies about the existence of equilibria and
permitted region of motion can be found in [5] and [6]. We found that in [6] it was
studied the existence of some symmetric periodic solutions in the planar case using
numerical methods.

The main purpose is to study important aspects of the dynamics of the spatial
restricted (N + 1)-body problem with repulsive or attractive Manev potential from
an analytical, mainly for any quantity of peripherals n.

In Section 2 we pose the problem and study the main features in particular,
we deduce the Manev R(N + 1)BP model and characterize the symmetries of the
Hamiltonian system. For the repulsive case, that is, e > 0 we prove that, due to
the repulsive force emanating from the central body, it is not possible to have a
binary collision between the infinitesimal mass and the central body in the Manev
R(N + 1)BP.

In Section 3 we study the number and location of equilibria. In particular we
observe that any equilibrium must lie on the lines of symmetries of the regular
polygon that the peripheral bodies form. Using this information we are able to
determine the type of equilibrium points and the number of them as functions of
the parameters β and e. Bifurcation parameters are characterized.

In Section 4 several general results concerning the stability are proved analyti-
cally.

2. Statement of the problem and preliminary results

Although the equations of motion of the Manev R(N +1)BP are already known,
and derived by [5]. Here we present a different approach. Once we have the model,
we present some basic features. Specially, the model depend on a parametric e,
for the repulsive case, that is, e > 0 will be prove that it is not possible to have a
binary collision between the infinitesimal mass and the central body in the Manev
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R(N + 1)BP.

We consider one (N+1)-body problem in inertial frame, where qi = (q
(1)
i , q

(2)
i , q

(3)
i ),

with i = 0, . . . , N are the position of (N+1) bodies with positive massesm0,m1, . . .mN ,
respectively. If one of the bodies, in particular the one at position q0 has a Manev
effect, the potential U = U(q0, . . . , qN ) is given by

(1) U =
∑

0≤i<j≤N

Gmimj

||qi − qj ||
−

N∑
j=1

Gm0mjB

||q0 − qj ||2
,

where G is the Gaussian constant of gravitation and U = U(q0, . . . , qN ) is the poten-
tial and B is the corrective coefficient term corresponding to the Manev potential.
The equations of motion will be given by

(2)

m0q̈0 =

N∑
j=1

(
Gm0mj(qj − q0)

||q0 − qj ||3
− 2Gm0mjB(qj − q0)

||q0 − qj ||4

)
,

miq̈i =

N∑
j=0, j 6=i

Gmimj(qj − qi)
||qi − qj ||3

− 2Gm0miB(q0 − qi)
||q0 − qi||4

, i = 1, . . . , N,

If we consider that the particle at position qN is small, that is, with mass mN ≈ 0,
its influence on the other bodies can be neglected. We obtain a restricted problem
of N + 1-bodies as follows

(3)

m0q̈0 =

N−1∑
j=1

(
Gm0mj(qj − q0)

||q0 − qj ||3
− 2Gm0mjB(qj − q0)

||q0 − qj ||4

)
,

miq̈i =

N−1∑
j=0, j 6=i

Gmimj(qj − qi)
||qi − qj ||3

− 2Gm0miB(q0 − qi)
||q0 − qi||4

, i = 1, . . . , N − 1,

q̈N =

N−1∑
j=0

Gmj(qj − qN )

||qN − qj ||3
− 2Gm0B(q0 − qN )

||qN − q0||4
.

The system of equations (3) is uncoupled, in the sense that the first N equations
can be solved independently of the last one. In order to solve the last equation, a
solution of the first N equations is needed.

The primary P0 has mass m0 and is located at the origin, and the primaries Pi,
i = 1, . . . , N − 1 = n (also known as peripherals) have all equal masses m and are
located at the vertices of a regular polygon with center at P0 and rotate around it
with angular velocity ω.

From the first n+ 1 equation of (3), the equations of motion of the primaries are
given by

(4)

0 =

n∑
j=1

Gmqj
||qj ||3

− 2GmBqj
||qj ||4

,

q̈i =

n∑
j=1, j 6=i

Gm(qj − qi)
||qi − qj ||3

− Gm0qi
||qi||3

+
2Gm0Bqi
||qi||4

, i = 1, . . . , n.
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While that from the last equation of (3), the equation of motion of the small
particle is given by

(5) q̈n+1 =

n∑
j=1

Gm(qj − qn+1)

||qn+1 − qj ||3
− Gm0qn+1

||qn+1||3
+

2Gm0Bqn+1

||qn+1||4
.

As the location of the peripherals is on a plane, we will consider that q
(3)
i = 0, for

all i = 1, . . . , n. Thus, we will forget about the third component and we can use
complex coordinates in (4), so that

qj(t) = deiwtei
2π(j−1)

n , j = 0, . . . , n,

where d is the radius of the polygon. In particular q̈1(t) = −ω2deiωt. Thus, the
first two equations are as follows:

0 = deiωtGm

 n∑
j=1

ei
2π(j−1)

n

d3
− 2Bei

2π(j−1)
n

d4

(6)

−ω2deiωt = Gmdeiωt
 n∑
j=2

ei
2π(j−1)

n − 1

d3
j

− β

d3
+

2Bβ

d4

 ,(7)

where β = m0

m denotes the mass parameter and dj is the distance P1Pj , with
j = 2, . . . , n.

Equation (6) is satisfied trivially. Using the geometry of our model (see Figure 1)
we have the following general relation for the angles of the formed regular polygon
as a function of n.

ϕ =
(n− 2)π

n
, ψ =

2π

n
and θ =

ψ

2
=
π

n
=

ϕ

n− 2
.

Also, from the law of sinus, the distance between P0 and P1 (clearly is the same
distance between P0 and Pi, i = 1, . . . , n) is

d = a
sin(ϕ/2)

sin(ψ)
=

a

2 sin(πn )
,

where a is the side of the regular n-gnon and the distance between P1 and Pi,

i = 1, . . . , n is di = a sin((n−i+1)θ)
sin θ . We define the corrective coefficient term as

B := ea, where e is denoted as the Manev parameter. Thus, the equation (7) is
satisfied when

(8)
Gm
a3ω2

=
1

∆
,

where ∆ = ρ(Λ + βρ2 − 2βeρ3), with

Λ =

n∑
i=2

sin2(π/n)

sin[(i− 1)(π/n)]
and ρ = 2 sin(π/n).

From identity (8), ∆ must always be positive, i.e., e < Λ+βρ2

2βρ3 .
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Figure 1. The configuration of the primaries in the “ring” prob-
lem of n+ 1 bodies.

Definition 2.1. We call the admissible value of e, when e satisfies

(9) e < e0 :=
Λ + βρ2

2βρ3
.

Using the identity (8) in (5), the motion of the small particle P in the inertial
coordinate system is given by

(10) q̈n+1 = Gm

(
−βqn+1

r3
0

+
2eβqn+1

r4
0

+

n∑
i=1

qi − qn+1

r3
i

)
,

where ri, i = 0, . . . , n denote the distance between P and primaries.
By scaling the physical variables of (10) using the transformations q∗n+1 = qn+1

a ,
q∗i = qi

a , i = 0, . . . , n and t∗ = ωt (for simplicity, we will use the same notation as
in (10) so we will drop ∗) and using the identity (8) is obtained

(11) q̈n+1 =
1

∆

(
−βqn+1

r3
0

+
2eβaqn+1

r4
0

+

n∑
i=1

qi − qn+1

r3
i

)
,

Without loss of generality we assume that ω2 = ∆. The motion of the small
particle P in a rotating coordinate system Oxyz (see Figure 2) is then described
by the following system of second-order differential equations,

(12)
ẍ− 2ẏ = Ωx,
ÿ + 2ẋ = Ωy,

z̈ = Ωz,
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where the function Ω is defined by

(13) Ω = Ω(x, y, z) =
1

2
(x2 + y2) +

1

∆

[
β

(
1

r0
− e

r2
0

)
+

n∑
i=1

1

ri

]
,

with

(14) r0 = (x2 + y2 + z2)1/2 and ri = [(x− xi)2 + (y − yi)2 + z2]1/2.

Figure 2. The configuration of the problem. P is the small body
and Pi, i = 0, 1, 2, . . . , n are the primaries.

The phase space associated to system (12) (as a first order differential system)
is given by

M =
{

(x, y, z, ẋ, ẏ, ż) ∈
(
R3 \ {(0, 0, 0), (xi, yi, 0) : i = 1, . . . , n)}

)
× R3

}
.

where xi = 1
ρ cos

(
2π(i−1)

n

)
and yi = 1

ρ sin
(

2π(i−1)
n

)
, with i = 1, . . . , n.

Finally making the change of variables (x, y, z, ẋ, ẏ, ż)→ (x, y, z,X+y, Y −x, Z),
we obtains that system (12) can be written as a Hamiltonian system of first-order
differential equations, where the associated Hamiltonian function is given by

(15) H =
1

2
(X2 + Y 2 + Z2) + yX − xY − V,

where the potential V is

(16) V =
1

∆

[
β

(
1

r0
− e

r2
0

)
+

n∑
i=1

1

ri

]
,

The problem has two invariant subspaces, the plane z = ż = 0, named Planar
Manev R(N+1)BP and the z-axis, named Rectilinear Manev R(N+1)BP. This two
subproblems can be studied separately.

2.1. Symmetries. The system (12) admits the following time reversal symmetries:

(17)
S1 : (x, y, z, ẋ, ẏ, ż, t)→ (x,−y,−z,−ẋ, ẏ, ż,−t),
S2 : (x, y, z, ẋ, ẏ, ż, t)→ (x,−y, z,−ẋ, ẏ,−ż,−t),

for all n, and

(18)
S3 : (x, y, z, ẋ, ẏ, ż, t)→ (−x, y,−z, ẋ,−ẏ, ż,−t),
S4 : (x, y, z, ẋ, ẏ, ż, t)→ (−x, y, z, ẋ,−ẏ,−ż,−t),
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for n even.
In particular, if γ(t) ∈ M is a solution, then γ̃(t) = Sj(γ(−t)), for j = 1, 2, 3, 4

is also a solution. Of course, the composition of theses symmetries give us new
symmetries.

The fixed sets of these four symmetries are the subspaces

L1 = {y = z = ẋ = 0}, L2 = {y = ẋ = ż = 0},
L3 = {x = z = ẏ = 0}, L4 = {x = ẏ = ż = 0}.

If a solution starts in one Lagrangian subplane Li at time t = 0 and returns at a
later time T/2, then the solution is T -periodic and the orbit is Si-symmetric. If a
solution starts in one Lagrangian subplane Li at time t = 0 and hits another Lj
(i 6= j) at a later time t = T/4, then the solution is T -periodic and the orbit of this
solution is carried into itself by both symmetries. We call such a periodic solution
doubly symmetric.

In addition, the following rotation, composed with the previous symmetries, ver-
ifies that the symmetry axes that the regular polygon of the configuration possesses
determine reversibility symmetries.

(19)
R : (x, y, z, ẋ, ẏ, ż)→ (cos(α)x− sin(α)y, sin(α)x− cos(α)y, z,

cos(α)ẋ− sin(α)ẏ, sin(α)ẋ+ cos(α)ẏ, ż),

with α = 2π/n.

2.2. Jacobi constant. Similarly to the classical circular R(N + 1)BP, the system
(12) possesses the first integral, known as Jacobi constant, given by

(20) C = 2Ω(x, y, z)− (ẋ2 + ẏ2 + ż2).

In the repulsive case, it is not possible to have a binary collision between the
infinitesimal mass and the central body in the Manev R(N + 1)BP. This is conse-
quence of the following result.

Theorem 2.1. For any β > 0 and an admissible e > 0, a solution of the Manev
R(N+1)BP (12) must satisfy

lim inf
t→±∞

r0(t) > 0,

where r0 is given in (14).

Proof. Consider γ(t) a solution of the Manev R(N+1)BP. Then by (20), there exists
a constant C ∈ R such that C(γ(t)) = C, ∀ t. Suppose that lim inft→∞ r0(t) = 0
(analogously when t→ −∞). Then, there exists a sequence tn −→

n↗∞
∞ such that

lim
n→∞

C(γ(tn)) = −∞,

the above happens because the term 1
r0(tn) −

e
r0(tn)2 of the effective potential Ω

tends to −∞ when e > 0, which is a contradiction. �



8 MAURICIO ASCENCIO, ESTHER BARRABÉS, JOSEP M. CORS, AND CLAUDIO VIDAL

3. Equilibrium points

The equilibrium points of (12) correspond to the points (x, y, z, 0, 0, 0) ∈M such
that

(21)

x− 1

∆

[
β

(
1

r3
0

− 2e

r4
0

)
x+

n∑
i=1

x− xi
r3
i

]
= 0,

y − 1

∆

[
β

(
1

r3
0

− 2e

r4
0

)
y +

n∑
i=1

y − yi
r3
i

]
= 0,

z

[
β

(
1

r3
0

− 2e

r4
0

)
+

n∑
i=1

1

r3
i

]
= 0.

Since any equilibrium point is determined by the position (x, y, z) of the infinitesi-
mal mass, from now we represent the equilibrium points of (12) only by the position
vector.

In the following result we are going to characterize the location of the equilibrium
points.

Theorem 3.1. For any fixed value of n and for any β > 0 and an admissible e,
the equilibrium points of the Manev R(N+1)BP (12) in the z = 0 plane must lie on
the symmetry axes of the configuration, i.e., are located in the lines y = tan( iπn )x,
i = 1, . . . , n. In the case z 6= 0 (spatial case) for positive admissible value e the
equilibrium points are on the z-axis, while for e ≤ 0 there are no equilibrium points.

Proof. Recall that, in the planar case z = 0, the equations of the equilibrium points
given in (21) are reduced to

(22)
x+ Vx = 0
y + Vy = 0.

The system (22) implies the following equation

(23) yVx − xVy = 0,

where V is given by (16), Vx = ∂V
∂x and Vy = ∂V

∂y . From equation (23) it is obtained

that

(24)

n∑
i=1

xyi − yxi
r3
i

= 0.

The position of the peripherals is given by (xi, yi) where xi = 1
ρ cosϕi and yi =

1
ρ sinϕi, with ϕi = 2π(i−1)

n , i = 1, . . . , n. Let us introduce polar coordinates to the

position of the infinitesimal particle, x = −r cos θ, y = r sin θ, so for fixed r > 0 the
equation (24) can be rewrite as

F (θ) :=

n∑
i=1

sin(θ + ϕi)

r3
i

= 0,
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where r2
i = r2 + 2r cos(θ + ϕi) + 1. Now,

F (θ) =
sin(θ)

r3
1

+

n∑
i=2

sin(θ + ϕi)

r3
i

=
sin(θ)

r3
1

+

n−1∑
i=1

sin(θ + ϕi+1)

r3
i+1

.

If we consider ri as function of θ, that is, ri = ri(θ), we notice that r2
i+1(θ) =

r2
1(θ + ϕi+1). Acording to Lemma 7.1 (see Appendix 7)

F (θ) = f(θ) +

n−1∑
i=1

f(θ + iT ),

with f(θ) = sin(θ)
r31(θ)

and T = 2π
n . It is clear that F (θ) satisfies the hypothesis of

Lemma 7.1, and therefore, F (θ) = 0, if and only if, θ = kπ
n , k ∈ Z, which completes

the proof in the case z = 0.
Next we consider z 6= 0, the system (21) can be rewritten as

(25)

∆x Q = −
n∑
i=1

xi
r3
i

,

∆y Q = −
n∑
i=1

yi
r3
i

,

z(1−Q) = 0,

with Q = 1− 1

∆

(
β

(
1

r3
0

− 2e

r4
0

)
+

n∑
i=1

1

r3
i

)
. Since z 6= 0, then Q = 1, so the system

(25) is reduced to the system

(26)

∆x = −
n∑
i=1

xi
r3
i

,

∆y = −
n∑
i=1

yi
r3
i

.

The second equation of the system (26) can be rewritten as

(27)

∆y = −1

ρ

n∑
i=1

sin(ϕi)

r3
i

=
1

ρ

bn+1
2 c∑
i=2

sin(ϕi)

(
1

r3
n+2−i

− 1

r3
i

)
.

Suppose that y ≥ 0, then ri ≤ rn+2−i, for all i = 2, . . . , bn+1
2 c, now

1

r3
n+2−i

− 1

r3
i

≤ 0.

Therefore, the right member of (27) is not positive, so y ≤ 0, for the hypothesis
(y ≥ 0) we have y = 0. Now we can assume y = 0 and suppose that x > 0 in the
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Figure 3. Distance between the small particle in position (x, 0, z)
and the peripheries Pi and Pn−i, respectively.

first equation of the system (26). The equation can be rewritten as

(28) ∆x = −1

ρ

n∑
i=1

cos(ϕi)

r3
i

.

Using trigonometric identities we have cos(ϕi) =
sin(ϕi + θ)

sin θ
− cot θ sin(ϕi), with

θ = 2π
n . Now the equation (28) is given by

(29) ∆x = −1

ρ

(
1

sin(θ)

n∑
i=1

sin(ϕi+1)

r3
i

− cot(θ)

n∑
i=1

sin(ϕi)

r3
i

)
,

but as y = 0, then

n∑
i=1

sin(ϕi)

r3
i

= 0, so the equation (29) is transformed into

(30)

∆x = − 1

ρ sin(θ)

n∑
i=1

sin(ϕi+1)

r3
i

=
1

ρ

bn−1
2 c∑
i=1

sin(ϕi+1)

(
1

r3
n−i
− 1

r3
i

)
.

The same is true if we start considering y ≤ 0.
For y = 0 and x > 0, ri ≤ rn−i (see Figure 3), for all i = 1, . . . , bn−1

2 c and n ≥ 3
(in the case n = 2 is evident). In effect,

ri ≤ rn−i ⇔ r2
i < r2

n−i, ∀i = 1, . . . , bn−1
2 c

⇔ x2 + z2 + 1
ρ −

2x
ρ cos(ϕi) < x2 + z2 + 1

ρ −
2x
ρ cos(ϕn−i), ∀i = 1, . . . , bn−1

2 c

⇔ cos(ϕn−i) < cos(ϕi), ∀i = 1, . . . , bn−1
2 c.

Note that cos(ϕn−i) = cos(ϕi + 4π
n ), also cos(ϕi) is a decreasing function in [0, π]

for all i = 1, . . . , bn−1
2 c, therefore cos(ϕn−i) < cos(ϕi), ∀i = 1, . . . , bn−1

2 c is true.

So, ri ≤ rn−i, for all i = 1, . . . , bn−1
2 c. Now 1

r3n−i
− 1

r3i
< 0, the right member of

the equation (30) is negative, therefore x < 0, which contradicts the assumption.
On the contrary, if we assume x < 0, ri ≥ rn−i, for all i = 1, . . . , bn−1

2 c it is easy

to check with the same above argument, then 1
r3n−i

− 1
r3i
> 0, the right member of

the equation (30) is positive. Therefore, x > 0 which contradicts the assumption
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again, so x = 0. Thus, the equilibrium points with z 6= 0 must be on the z-axis.
Moreover, from (25) there are not equilibrium points on the z-axis when e < 0.
This completes the proof.

�

Next our purpose is to characterize the localization and number of equilibrium
points for a fixed value of β > 0 and admissible e. As we saw in Theorem 3.1, the
points of planar equilibria exist only on the axes of symmetry. In addition, given
the symmetries (17) and (18) and the rotational symmetry (19), we can note that
it is enough to study the equilibria that lie on the positive x-axis, those that lie on
the line y = tan(π/n)x, with x > 0 and those that are found on the positive z-axis.
We will denote the equilibrium points as:

Definition 3.1. We will denote the equilibrium points that lie on the x-axis, with
x > 0 by L+

x , the equilibria that lie on the line y = tan(π/n)x with x > 0 by L+
m

(m is for mediatrix) and those who are on the z-axis, with z > 0 by L+
z .

The sets where we will study the location of the equilibrium points on the xy-
plane will be defined below

Definition 3.2. The set R = {y =, x > 0} = R1 ∪ R2, where R1 = {y = 0, x >
1/ρ} and R2 = {y = 0, 0 < x < 1/ρ}. And the set L = {y = tan(π/n)x, x > 0}.

3.1. Equilibrium points on the z-axis with e > 0. From (21), an equilibrium
point on the positive z-axis, L+

z , is a solution z > 0 of

(31) β

(
1

z3
− 2e

z4

)
+

n

(1/ρ2 + z2)3/2
= 0.

The following result shows the existence of the only equilibrium point on the z-axis
with z > 0 and a bound on its location.

Theorem 3.2. For any fixed value of n, for any β > 0 and a positive admissible
e, there exists a unique equilibrium point on the positive z-axis, L+

z = (0, 0, z̄).
Furthermore, 0 < z̄ < 2e.

Proof. Consider the auxiliary functions

h1(z) = β

(
1

z3
− 2e

z4

)
and h2(z) = − n

(1/ρ2 + z2)3/2
.

Then, an equilibrium point on the positive z axis is a solution of the equation
h1(z) = h2(z). On one hand, we have that limz→0+ h1(z) = −∞, h1(z) < 0 and
h′1(z) > 0 for 0 < z < 2e, and h1(z) > 0 for z > 2e. On the other hand, h2(z) < 0
and h′2(z) > 0 for z > 0. Then, it is straightforward that there exists a unique
positive solution of h1(z) = h2(z).

�

Remark 3.1. For any β > 0 and admissible e, let L+
z be the equilibrium point

given in Theorem 3.2. Then,

lim
e→0

z̄ = 0, lim
β→0

z̄ = 0, and lim
β→∞

z̄ = 2e.
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(b) n = 10

Figure 4. Graph of the equilibrium point z = z(e, β) fixed β, for
β = 1, 2, . . . , 10.

The first limit is obtained from the upper and lower bounds of z̄. To obtain the
second limit, notice that using (31), we can written (for any fixed value of e) β as
a function of z̄ as

β =
nz̄4

(2e− z̄)(1/ρ2 + z̄2)3/2
.

Using Taylor expansion we get β = ρ3n
2e z̄

4+O(z̄5). Finally the third limit is obtained
directly dividing equation (31) by β.

Remark 3.2. If n = 2, n = 3 or n = 4, then min{e, βe} < z̄ < 2e. In effect, to
obtain the upper and lower bounds of the solution, notice that h2(0) = −nρ3 and

h1(e) =
−β
e3

< −nρ3 ⇔ e <
3
√
β

ρ 3
√
n
,

h1(βe) =
β − 2

β3e3
< −nρ3 ⇔ e <

3
√

2− β
βρ 3
√
n
.

For β ≥ 1, we have that e0 <
3
√
β

ρ 3
√
n

, whereas for β < 1, we have that e0 <
3
√

2− βρ
β

.

Using the fact that e < e0 (recall (9)), the claim is proved.

3.2. Equilibrium points on the positive x-axis. From (21), an equilibrium
point on the positive x-axis, L+

x , is a solution of

(32) ∆x3 +
2βe

x
− β = x2

n∑
i=1

x− xi
((x− xi)2 + y2

i )3/2
.

In order to calculate the equilibrium points we use the auxiliary functions

(33) f1(x) = ∆x3 +
2βe

x
− β,

and

(34) f2(x) = x2
n∑
i=1

x− xi
((x− xi)2 + y2

i )3/2
,
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defined for x > 0. It is clear that solving equation (32) is equivalent to solving the
equation given by f1(x) = f2(x) for x > 0.

Definition 3.3. Let x∗ = x∗(e) =

(
2βe

3∆

)1/4

be the minimum point from the

function f1, when 0 < e < e0.

Now we see how many equilibria exist on the x-axis, with x > 1/ρ, that is, to
the right of the first peripheral.

Theorem 3.3. For any fixed value of n, for any β > 0, consider R1 the positive
x-axis with x > 1/ρ.

(1) If 0 < e < e0, there exists at least one equilibrium point on R1, and only
one if n ≤ 472, denoted by L+

x1
= (x̄1, 0, 0). Moreover, x̄1 ≥ max{1/ρ, x∗},

where x∗ is given in Definition 3.3.
(2) If e ≤ 0, there is exactly one equilibrium point on R1, L+

x1
.

Proof. An equilibrium point on R1 satisfies the equation f1(x) = f2(x). First, for
the case 0 < e < e0, with the description of Lemma 7.3 for x > 1/ρ and with
the first three items (2.i), 2.ii) and 2.iii)) of Lemma 7.2, we can guarantee the
existence of an equilibrium point Lx1 . Also, using item 2.iv) from Lemma 7.2,
where h(n) := f1(1/ρ), and the fact that h(472) ≈ 471.957 and h(473) ≈ 473.116,
we have that Lx1

is unique for n ≤ 472. Using that f1(x∗) < f1(1/ρ) < f2(x) for
any x > 1/ρ, we obtain the lower bound. Second, for the case e ≤ 0 using point 1
from Lemma 7.2 and what has already been used from Lemma 7.3, it is obtained
that there is a unique equilibrium in this case. �

Remark 3.3. For any β > 0 and admissible e, let L+
x1

be the equilibrium point
given in Theorem 3.3. Then

lim
e→0

x̄1 = x̄1(β) exists, and lim
β→0

x̄1 = x̄10
,

where x̄10 does not depend on e and coincides with the x coordinate of the equilib-
rium of the Maxwell’s Ring R(N+1)BP with equal masses. When e → 0, we can
write the equation f1(x) = f2(x) as

ρ(Λ + βρ2)

β
x3 = 1 +

1

β
x2

n∑
i=1

(x− xi)
((x− xi)2 + y2

i )3/2
,

which clearly has one solution for x > 1/ρ (remember, by Lemma 7.3, f2(x) is
positive, when x > 1/ρ).

When β → 0 the equation f1(x) = f2(x) transforms into

ρΛx3 = x2
n∑
i=1

(x− xi)
((x− xi)2 + y2

i )3/2
.

Thus, the equilibrium point (x̄10
, 0, 0) coincides with the equilibrium of the restricted

(N +1)-body problem (see [3], case m0 = 0, the authors called him R1). In the next
result, we can see that it exists an admissible value of e such that for all values of
β, the equilibrium point L+

x1
coincide with (x̄10 , 0, 0). We can see this point as the

intersection of curves in Figure 5, we have, for example, the cases n = 3, n = 5,
n = 10 and n = 500.
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Figure 5. Evolution of the coordinates x̄1 as function of e.

Proposition 3.1. There exists an admissible value of e, such that the equilibrium
point L+

x1
= (x̄10

, 0, 0) for all β > 0, where x̄10
is given in Remark 3.3.

Proof. Recall that x̄1 is the only positive solution of the equation (32). This equa-
tion can be written as

x2

(
ρΛx−

n∑
i=1

(x− xi)
((x− xi)2 + y2

i )3/2

)
+
β

x

(
ρ4

(
1

ρ
− 2e

)
x4 − x+ 2e

)
= 0.

Substituting x = x̄10 in the above equation, the first term vanishes and we get that

ρ4

(
1

ρ
− 2e

)
x̄4

10
− x̄10

+ 2e = 0.

Solving for e,

e =
x̄10

(ρ2x̄2
10

+ ρx̄10
+ 1)

2(1 + ρx̄10)(1 + ρ2x̄2
10

)
<

1

2ρ
,

which is an admissible value. �

The approximate value of e for which L+
x1

= (x̄10
, 0, 0) for some n values are

given in Table 1.

Theorem 3.4. For any β > 0, there exists a value e∗ = e∗(β) > 0 such that the
number of equilibrium points along the R2 (x-axis for 0 < x < 1/ρ) is

(1) 0 if e ∈ (e∗, e0),
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n x̄10
e

3 1.1799984049 0.27099478169
5 1.4548950111 0.36616775409
10 2.5629997052 0.50888405339
500 101.8255392116 0.59920105662

Table 1. The approximate value of e for which L+
x1

= (x̄10
, 0, 0).

(2) 1 if e = e∗,
(3) 2 if 0 < e < e∗,
(4) 1 if e ≤ 0.

Furthermore, e∗ < 3e0/4, where e0 is given in (9).

Proof. From Equation (32), the number of equilibrium points with 0 < x < 1/ρ is
equivalent to the number of solutions of f1(x) = f2(x) for 0 < x < 1/ρ. First, we
consider 0 < e < e0. Fix a value of β > 0. Recall that f1 has a unique minimum at
x∗ = x∗(e) (see Lemma 7.2). Notice also that f2 does not depend on e, for Lemma
7.3 that is a decreasing function, f2(0) = 0 and limx→1/ρ− f2(x) = −∞. Then,

on one hand if e > 3e0/4, x∗(e) > 1/ρ, f1(1/ρ) = 1
4

∑n
i=2 1/ sin(π(i − 1)/n) and

the two functions do not intersect. On the other hand, lime→0 f1(x∗(e)) = −β, so
that for small values of e, f1(x∗) < f2(x∗) for 0 < x < 1/ρ and the two functions
intersect twice.

Finally, by continuity, there exists a value of e such that f1 and f2 coincide
tangentially only once for 0 < x < 1/ρ.

The case e ≤ 0, is simpler, f1(x) is an increasing function, f1 tends to −∞ when
e < 0 and f1 tends to −β when e = 0. Clearly, in both cases f1 and f2 intersect
at only one point. For the values of e ∈ (−∞, e∗] we denote the equilibrium points
L+
x̄i = (x̄i, 0, 0), i = 2, 3, where 0 < x̄3 ≤ x̄2 < 1/ρ, and the equality holds when

e = e∗ or e ≤ 0.
�

From the properties shown in Theorem 3.4 the following result can be proved.

Proposition 3.2. For any fixed value of n, for any β, let e∗ and x∗ be as in
Theorem 3.4 and Definition 3.3, respectively. Then, for any e < e∗, the equilibrium
point L+

x̄3
satisfies that 0 < x̄3 < x∗.

In the Figure 6 we can see the evolution of e∗ for different values of n and in the
Figure 7 we can see the regions where there are 0 and 2 equilibria, where the curve
e = e∗, as we know, represents the bifurcation that occurs, that is, when there is
only one equilibrium.

3.3. Equilibrium points on the line y = tan
(
π
n

)
)x, with x > 0. The equi-

librium point on the straight line y = tan(π/n)x is of the form L+
m = reiπ/n, in

complex coordinates, with r =
√
x2 + y2. The first two equations of (21) can be

represented by the equation

(35) h(r) = ∆r3 − β +
2eβ

r
−

n∑
j=1

1− 1
ρr cos( 2πj

n + π
n )

(1 + 1
(ρr)2 −

2
ρr cos( 2πj

n + π
n ))3/2

= 0.

Definition 3.4. Let C be the circumference containing the peripherals.
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Figure 6. Evolution of the e∗ in function of β, for different values
of n.

(a) n = 3 (b) n = 4

Figure 7. Evolution of the e∗ as a function of β, for the admissible
regions with their respective amount of equilibria, for x ∈ (0, 1/ρ).

The following result shows the existence of equilibrium points on the line y =
tan(π/n)x, x > 0.

Theorem 3.5. For any fixed value of n, for any β > 0 and admissible e, consider
L the line y = tan(π/n)x, with x > 0.

(1) If 0 < e < e0, there exist at least two equilibrium points on L. One of them
is inside the circumference C and the other is outside of C.

(2) If e ≤ 0, there exists at least one equilibrium point on L. It is outside the
circumference C .

The proof is directly from Lemma 7.4. Note that for the case 0 < e < e0, the
equilibrium points found are, one outside of the circumference C and the other
inside of C, let’s call them Lm1

and Lm2
, respectively.
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4. Linear Stability of the equilibrium solutions

The linearization of the the Hamiltonian system (12) is given by the matrix

A = A(x, y, z) =


0 1 0 1 0 0
−1 0 0 0 1 0
0 0 0 0 0 1
Vxx Vxy Vxz 0 1 0
Vxy Vyy Vyz −1 0 0
Vxz Vyz Vzz 0 0 0

 ,

Next, we study the eigenvalues and eigenvectors of the matrix A evaluated on
each equilibrium point. Due to the symmetries, we will only study the stability of
the equilibrium points L+

z and Lξ, ξ ∈ {xi,mj}, i = 1, 2, 3, j = 1, 2.

4.1. Stability of the equilibrium points on the z-axis. Consider the equilib-
rium point L+

z = (0, 0, z̄) (n ≥ 3) (see Theorem 3.2). Using the fact that z̄ must
satisfy the relation (31), it is not difficult to see that

(36)

Vxy(L+
z ) = Vxz(L

+
z ) = Vyz(L

+
z ) = 0,

Vxx(L+
z ) = Vyy(L+

z ) =
3β(2e− z̄)

2ρ2∆
(
z̄2 + 1

ρ2

)
z̄4
,

Vzz(L
+
z ) = β

∆(ρ2+z̄2)z4

(
3z̄ − 8e− 2eρ2z̄2

)
.

Proposition 4.1. For any β > 0 and an admissible e > 0. Then, the eigenvalues
associated to the the equilibrium point L+

z are ±λ3 = ±wi, w > 0, and

±λ1,2 = ±a± bi, a > 0, b > 0.

Proof. Using (36), the eigenvalues of the matrix A(L+
z ) are ±λ3 = ±

√
Vzz(L

+
z ) and

the solutions ±λ1,2 of

p(λ) = λ4 − (2γ − 2)λ2 + (1 + γ)2,

where γ = Vxx(L+
z ) > 0.

On one hand, using the fact that z̄ < 2e (see Theorem 3.2), we have that

3z̄ − 2eρ2z̄2 − 8e < 3z̄ − 8e < 6e− 8e = −2e < 0.

Therefore, Vzz(L
+
z ) < 0 and two of the eigenvalues are pure imaginary.

On the other hand, the solutions of p(λ) = 0 are

λ2
± = γ − 1± 2i

√
γ.

Therefore, the equilibrium point L+
z is of type center × saddle × saddle, that is,

unstable. This completes the proof. �

4.2. Stability of planar equilibrium points. Consider the equilibrium points
L+
xi = (x̄i, 0, 0), i = 1, 2, 3 and Lmj = (x̄j , tan π

n x̄j , 0), j = 1, 2 (see Theorems 3.3,
3.4 and 3.5 respectively). It is verified that the second partial derivatives of the
potential satisfies

Vxz(L
+
ξ ) = Vyz(L

+
ξ ) = 0,

and

Vzz(L
+
ξ ) = − 1

∆

β( 1

r3
0

− 2e

r4
0

)
+

n∑
j=1

1

r3
j

 ,
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where ξ ∈ {xi,mj}, i = 1, 2, 3, j = 1, 2. The characteristic polynomial can be
written as

λ4 + (2− Vxx − Vyy)λ2 + VxxVyy + Vxx − V 2
xy + Vyy + 1.

Then, the eigenvalues of the matrix A(L+
ξ ) are

(37)

±λ1 = ± 1√
2

(
Γ +
√

Λ
)1/2

,

±λ2 = ± 1√
2

(
Γ−
√

Λ
)1/2

,

±λ3 = ±
√
Vzz,

where

(38) Λ = (Vxx − Vyy)2 − 8(Vxx + Vyy)− 4V 2
xy, Γ = Vxx + Vyy − 2,

and the derivatives are evaluated at the corresponding equilibrium point. Notice
that

(39) Λ < Γ2 ⇔ (1 + Vxx)(1 + Vyy)− 4V 2
xy > 0.

Now we will study the stability of the equilibrium points, separately, the spatial
stability (in the direction of z) and the planar stability. For the first part it is only
enough to know the sign of Vzz(L

+
ξ ). When e ≤ 0 it is clear that Vzz(L

+
ξ ) < 0. If

0 < e < e0, we will use the equations of the equilibrium points (32) for L+
xi and

(47) for L+
mj .

(40) Vzz(L
+
xi) = − 1

∆

∆ +
1

ρx

n∑
j=1

cos( 2πj
n )

(x2 + 1
ρ2 −

2x
ρ + cos( 2πj

n ))3/2

 .

So that we know the sign Vzz(L
+
mj ), L

+
mj we will write it in polar coordinates, that

is, Lmj = rei
π
n , with r =

√
x2 + y2. Then,

(41)

Vzz(L
+
mj ) = − 1

∆

( 1

r3
− 2e

r4

)
β +

n∑
j=1

1

(r2 + 1
ρ2 −

2r
ρ + cos( 2πj

n + π
n )3/2


= − 1

∆

∆ +
1

ρr

n∑
j=1

cos( 2πj
n + π

n )

(r2 + 1
ρ2 −

2r
ρ + cos( 2πj

n + π
n ))3/2

 .

Clearly, Vzz(L
+
xi) < 0 and Vzz(L

+
mj ) < 0. Therefore, the eigenvalues associated to

the equilibrium points Lxi and Lmj , with i = 1, 2, 3 and j = 1, 2 are pure imaginary.
The planar stability will be studied below.

4.3. Planar stability of the equilibrium points on the x-axis, with x > 0.
We consider the points Lxi , i = 1, 2, 3. Using (21), we have that

x̄i −
1

∆

β( 1

x̄2
i

− 2e

x̄3
i

)
+

n∑
j=1

x̄i − xj
((x̄i − xj)2 + y2

j )3/2

 = 0,

mauricio ascencio
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The equation of motion (restricted to planar problem, that is, only the first two
equations seen in (12)) in complex variables, given by

(42) Ẅ + 2iẆ = ΩW ,

where W = x+ iy and

ΩW = Ωx + iΩy = W − 1

∆

n∑
j=1

W − ωj
|W − ωj |3

− β

∆

W

|W |3
+

2eβ

∆

W

|W |4
,

with ωj = 1
ρe
iϕj and ϕj = 2πj/n, j = 1, . . . , n. In the neighborhood of an equilib-

rium w0 (w0 being the affix of one of the points Lx1
, Lx2

or Lx3
), the following

expansions hold W = w0 + ε.
So we get the linear equations in ε and δ, with δ = ε̄

(43)
ε̈+ 2iε̇ = ε+Aε+Bδ

δ̈ − 2iδ̇ = δ +Aδ +Bε,

where

(44)

A =
1

2∆

n∑
j=1

1

|w0 − ωj |3
+

β

2∆

1

|w0|3
− 2eβ

∆

1

|w0|4

B =
3

2∆

n∑
j=1

1

|w0 − ωj |3
w0 − ωj
w0 − ωj

+
3β

2∆

1

|w0|3
w0

w0
− 4eβ

∆

1

|w0|4
w0

w0
.

In a matricial form 
ε̇

δ̇
ε̈

δ̈

 =


0 0 1 0
0 0 0 1

A+ 1 B −2i 0
B A+ 1 0 2i


with the characteristic polynomial for the coefficient matrix

χ(λ) = (1 + λ2)2 + 2A(1− λ2) +A2 − |B|2,

denoting by ν = λ2, the characteristic polynomial assumes the form

χ̂ = ν2 + 2(1−A)ν + (1 +A)2 − |B|2.

Note that the eigenvalues of the linearized system will be pure imaginary (i.e., the
equilibrium point of the planar system is linearly stable), if and only if, the roots
of the previous polynomial are non-positive. This condition is equivalent to

(45)
l1 = |B|2 − 4A > 0,
l2 = 1−A > 0,
l3 = 1 +A− |B| > 0.

Remark 4.1. The conditions for l1, l2 and l3 are equivalent to Λ > 0, Γ < 0 and
Λ < Γ2, respectively (see (38)).

Lemma 4.1. For each β > 0,

(1) If e < e0 and x = w0 ∈ ( 1
ρ ,+∞) (equilibrium solution), B(x = ω0) =

|B(x = ω0)|.
(2) If e ≤ 0 or e→ 0+ and x = w0 ∈ (0, 1

ρ ), B(x = ω0) = |B(x = ω0)|.
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Proof. B(x) admits a symmetry when changing x→ 1/x, so we can assume x = 1
ρs .

Thus, B(x) =
3

2∆

n∑
j=1

1

|x− ωj |3
x− ωj
x− ωj

+
3β

2∆

1

|x|3
− 4eβ

∆

1

|x|4
x

x
which is equivalent

to

B(x) =
3ρ3s3

2∆

n∑
j=1

1− sω̄j
1− sω̄−j

(
1 + s2 − 2s cos

(
2πj

n

))−3/2

+
3βρ3

2∆
s3 − 4eβρ4

∆
s4,

with ω̄j = e
i 2πj
n . We introduce the notation

{f(u)}n =
1

n

n∑
j=1

f

(
2πj

n

)

B(x) =
3nρ3s3

2∆

{
1− seiu

(1− se−iu)(1− seiu)3/2(1− se−iu)3/2

}
n

+
3βρ3

2∆
s3 − 4eβρ4

∆
s4

Note that the equation (32) (using s = 1/(ρx)) is equivalent to

(46) s3 = 2eρs4 +
∆

βρ3
− n

β
s3hn(s),

then

B =
3nρ3s3

2∆

{
1− seiu

(1− se−iu)(1− seiu)3/2(1− se−iu)3/2

}
n

+ 3
2 −

4eβρ4

∆ s4 − 3n
2∆s

3hn(s)

=
3nρ3s3

2∆

[{
1− seiu

(1− se−iu)(1− seiu)3/2(1− se−iu)3/2

}
n

− hn(s)

]
+ 3

2 −
4eβρ4

∆ s4.

Let B1 =

{
1− seiu

(1− se−iu)(1− seiu)3/2(1− se−iu)3/2

}
n

− hn(s),

B1 =

{
1− seiu

(1− se−iu)(1− seiu)3/2(1− se−iu)3/2
− 1− seiu

(1− seiu)3/2(1− se−iu)3/2

}
n

= s

{
e−iu(1− seiu)

(1− se−iu)(1− seiu)3/2(1− se−iu)3/2

}
n

= s

{
e−iu

1

(1− se−iu)2(1− se−iu)1/2(1− seiu)1/2

}
n

Using the expansion 1
(1−z)1/2 =

∑∞
k=1 akz

k, with ak > 0, we obtain then

B1 = s

{
e−iu

∞∑
k=0

(k + 1)ske−iku
∞∑
k=0

aks
ke−iku

∞∑
k=0

aks
keiku

}
n

=

{ ∞∑
p=0

{P (eiu, e−iu)sp}n

}
,

where P (eiu, e−iu) is polynomial with positive coefficients. Then B1 > 0, thus
B > 0, when 0 < s < 1, for all 0 < e < e0. In the case when e < 0, we consider,
again

B(x) =
3nρ3s3

2∆

{
1− seiu

(1− se−iu)(1− seiu)3/2(1− se−iu)3/2

}
n

+
3βρ3

2∆
s3 − 4eβρ4

∆
s4,

where the term {
1− seiu

(1− se−iu)(1− seiu)3/2(1− se−iu)3/2

}
n
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is positive, the proof is similar to the proof B1 > 0. Then B > 0, when s ∈
(0,+∞)−{1} and e < 0. Note that if e→ 0+, B > 0, thus, for continuity on e, we
have that for values of e close to 0, B > 0, when s > 1. �

The following technical lemma will be used later, the proof can be seen in [3].

Lemma 4.2. For every s ∈ (0,+∞)− {1},{
3

1 + s2e2iu − 2seiu

(1 + s2 − 2s cosu)5/2
− 1

(1 + s2 − 2s cosu)3/2
− 2

1− seiu

(1 + s2 − 2s cosu)3/2

}
n

> 0

Now we see what is the stability characteristic of the equilibrium point Lx1 .

Proposition 4.2. For each β and e admissible, Lx1
is unstable.

Proof. Using Lemma 4.1, that is, |B| = B and the equation (46), that is,

1 =
β

∆
s3 +

ns3

∆
hn(s)− 2βe

∆
s4,

then

|B| −A− 1 = B −A− 1

= nρ3s3

2∆

{
3 1+s2e2iu−2seiu

(1+s2−2s cosu)5/2
− 1

(1+s2−2s cosu)3/2
− 2 1−seiu

(1+s2−2s cosu)3/2

}
n

+ 3βρ3

2∆ s3 − 4eβρ4

∆ s4 − βρ3

2∆ s3 + 2eβρ4

∆ s4 − β
∆ρ3 s

3 + 2βeρ4

∆ s4

= nρ3s3

2∆

{
3 1+s2e2iu−2seiu

(1+s2−2s cosu)5/2
− 1

(1+s2−2s cosu)3/2
− 2 1−seiu

(1+s2−2s cosu)3/2

}
n

Now, using Lemma 4.2 is obtained that |B| − A − 1 > 0, thus l3 < 0. Therefore
there must be a root of the characteristic polynomial χ(λ) with a non-zero real
part. Thus, Lx1 is unstable. �

Proposition 4.3. For each β and e ≤ 0, Lx2 is unstable.

Proof. Using Lemma 4.1 and Lemma 4.2 the result is obtained in a similar form as
in Proposition 4.2. �

Proposition 4.4. For each β > 0 and 0 < e < e∗ < 3e0
4 , with e∗ bifurcation

parameter (as in Theorem 3.4), L+
x2

(x2 ∈ (x∗, 1/ρ), with x∗ as in Lemma 7.2) is
unstable.

Proof. Remember, from Lemma 4.1

B =
3nρ3s3

2∆
s

{
e−iu

1

(1− se−iu)2(1− se−iu)1/2(1− seiu)1/2

}
n

+
3

2
− 4eβρ4

∆
s4.

Notice that x∗ < x < 1/ρ is equivalent to 1 < s < s∗, with s∗ = 1/(ρx∗) =

(3∆/(2βe))1/4/ρ, then 3
2 −

4eβρ4

∆ s4 > 0. Thus, B > 0. To prove that l3 < 0,
proceed in a similar way to the proof of Proposition 4.2. �

4.4. Planar stability of the equilibrium points on the straight line y =
tan(π/n)x, with x > 0. The equilibrium points on the straight line y = tan(π/n)x
in the complex variable are of the form Lmj = reiπ/n, with j = 1, 2. Recall that
these equilibrium points satisfies the equation

(47) ∆r3 − β +
2eβ

r
−

n∑
j=1

1− 1
ρr cos( 2πj

n + π
n )

(1 + 1
(ρr)2 −

2
ρr cos( 2πj

n + π
n ))3/2

= 0.
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Note that equation (47) (using s = 1
ρr ) is equivalent to

(48)
Λ

ρ2
+ β − 2βeρ− βs3 + 2eβρs4 − s3hn(s, π/n) = 0,

with hn(s, π/n) =
∑n
j=1

1− s cos
(

2πj
n + π

n

)
(1 + s2 − 2s cos

(
2πj
n + π

n

)
)3/2

. If we divide the equation

(48) by β and make β tend to infinity, it is clear that for large β, s tends to 1 or s
tend to s̄, where s̄ satisfies the equation 2ρe−1+(2ρe−1)s+(2ρe−1)s2+2ρes3 = 0,
the second case happens only if e > 0. From the equation (48) is obtained

(49) β =
s3hn(π/n, s)− Λ

ρ2

1− s3 − 2eρ(1− s4)
,

and

(50) 1 =
ρ3

∆
(βs3 + s3hn(s, π/n)− 2βeρs4).

Equations (49) and (50) we will use later.
To study planar linear stability, we can use what was seen in the previous section,

that is, we can analyse the values l1, l2 l3 over the equilibria Lmi . For this, we
must calculate A and B defined in the previous section.

A =
1

2∆

n∑
j=1

1

|w0 − ωj |3
+

β

2∆

1

|w0|3
− 2eβ

∆

1

|w0|4

=
ρ3s3

2∆

n∑
j=1

1(
1 + s2 − 2s cos

(
2πj

n
+
π

n

))3/2
+
βρ3

2∆
s3 − 2eβρ4

∆
s4

=
ρ3s3

2∆(1− s3 − 2eρ(1− s4))

×

 n∑
j=1

1− s4 cos( 2πj
n + π

n )− 2eρ(1− s4)− 4eρs4(1− s cos( 2πj
n + π

n ))

(1 + s2 − 2s cos( 2πj
n + π

n ))3/2
− (1− 4ρes)

Λ

ρ2


B =

3

2∆

n∑
j=1

1

|w0 − ωj |3
w0 − ωj
w0 − ωj

+
3β

2∆

1

|w0|3
3

2∆

n∑
j=1

1

|w0 − ωj |3
w0 − ωj
w0 − ωj

+
3β

2∆

1

|w0|3
w0

w0
− 4eβ

∆

1

|w0|4
w0

w0
− 4eβ

∆

1

|w0|4
w0

w0

=
3ρ3s3

2∆
e
i2π
n

n∑
j=1

1− 2s cos( 2πj
n + π

n ) + s2 cos( 4πj
n + 2π

n )

(1 + s2 − 2s cos( 2πj
n + π

n ))5/2
+

3βρ3

2∆
e
i2π
n s3 − 4eβρ4

∆
e
i2π
n s4

Proposition 4.5. If β is sufficiently large and 1
8ρ < e < 3

8ρ , then Lm1
is linearly

stable.

Proof. Note that if, s tend to 1−, then by (49) β is sufficiently large, and so e0

tends to e0 = 1
2ρ . On the other hand,

|B| =

∣∣∣∣∣∣3ρ
3s3

2∆

n∑
j=1

1− 2s cos( 2πj
n + π

n ) + s2 cos( 4πj
n + π

n )

(1 + s2 − 2s cos( 2πj
n + π

n ))5/2
+

3βρ3

2∆
s3 − 4eβρ4

∆
s4

∣∣∣∣∣∣ .
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If s tends to 1− and e < 3
8ρ , then the argument inside || is positive. Substituting

relation (49) in l2 and l3, we obtain
l2 = 1−A

= βρ3s3

2∆ + ρ3s3

2∆

∑n
j=1

1−2s cos( 2πj+π
n )

2−2 cos( 2πj+π
n )

(
3/2)

,

l3 = A+ 1− |B|

=
ρ3s3

2∆

n∑
j=1

(
3− 2s cos

(
2πj
n + π

n

)
(1 + s2 − 2s cos

(
2πj
n + π

n

)
)3/2
−

3− 6s cos
(

2πj
n + π

n

)
− 3s2 cos

(
4πj
n + 2π

n

)
(1 + s2 − 2s cos

(
2πj
n + π

n

)
)5/2

)
,

Thus, when s tends to 1−

l1 =
3ρ3

2∆

n∑
j=1

1− 2 cos( 2πj
n + π

n ) + cos( 4πj
n + 2π

n )

(2− 2 cos( 2πj
n + π

n ))5/2
+
βρ3

∆

(
−1

2
+ 4eρ

)
> 0,

l2 =
ρ3

2∆

β +

n∑
j=1

1− 2s cos
(

2πj+π
n

)
2− 2 cos

(
2πj+π
n

)(
3/2)

 > 0,

l3 ·
2∆

ρ3
=

n∑
j=1

(
cos
(

2πj+π
n

)
+ 3
)

csc2
(

2πj+π
2n

)
4
√

2− 2 cos
(

2πj+π
n

) > 0,

since β is large enough. Finally, l1, l2 and l3 are all positive numbers when s→ 1−

(equivalently r → 1/ρ+) or when β sufficiently large. With these conditions Lm1
is

linearly stable.
�

5. Global dynamics of the rectilinear Manev R(N + 1)BP

As we said in Section 2, the (z, ż) plane is an invariant plane of the Manev
R(N + 1)BP. The equations (12) reduces to the first order system

(51)
ż = Z,

Ż = − z
∆

[
β

(
1

|z|3
− 2e

z4

)
+

2

(1/4 + z2)3/2

]
.

Furthermore, due to the symmetry (z, Z) → (−z,−Z), it is enough to study the
problem for z > 0. We consider in this section the rectilinear Manev R(N + 1)BP,
that is, the subproblem given by (51) for z > 0.

The problem can be written in Hamiltonian form with Hamiltonian function
associated

(52) H = H(z, Z) =
1

2
Z2 − V (z),

where the potential V (z), can be written for z > 0 as

V (z) =
1

∆

[
β

(
1

z
− e

z2

)
+

2

(1/4 + z2)1/2

]
.

V (z) possesses a unique critical point, which is a local maximum, that coincides
with the equilibrium point z̄ (see equation (31)). See the graph of V in Figure 8.

The constant value of H = h it is also called energy and is related to the Jacobi
constant by H = −C/2. Clearly, the energy of the equilibrium point L+

z is negative.
Analogously to the 2-body problem, we will say that a solution of (51), (z(t), Z(t)),

is hyperbolic if it comes from (and arrive at) infinity with positive velocity, and it
is parabolic if it comes from (and arrive at) infinity with zero velocity. Next result
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Figure 8. Graph of the potential V (z) for n = 3, β = 1 and e = 0.3.

states that the solutions of the rectilinear Manev R(N + 1)BP are similar to the
solutions of the one dimensional two body problem: periodic (bounded), parabolic
and hyperbolic orbits.

Theorem 5.1. For any β > 0 and a positive admissible e, let L+
z = (0, 0, z̄) be the

equilibrium point of the Manev R(N + 1)BP given in Theorem 3.2. Let H be the
Hamiltonian (52) and h̄ = H(z̄, 0). If (z(t), Z(t)) is a solution of the rectilinear
Manev R(N + 1)BP problem with h = H(z(t), Z(t)), then

(i) it is periodic, if and only if, h̄ < h < 0,
(ii) it is parabolic, if and only if, h = 0,

(iii) it is hyperbolic, if and only if, h > 0.

Proof. Since this restricted problem is given by an autonomous Hamiltonian with
one-degree of freedom, any solution of system of (51) lies on a level curve of H = h.
Clearly, H ≥ −V (z̄) = h̄.

For h ∈ (h̄, 0), the level curve H = h in the (z, Z) plane cuts the positive z-axis in
two points. Using the symmetry (z, Z)→ (z,−Z), the crossings are perpendicular,
so the level curve is symmetric with respect the z axis, and the solution is periodic.
If h = 0, the corresponding level curve is Z2 = 2V (z), which tends to zero as
z ↗ ∞. That correspond to the parabolic solution. Finally, if h > 0, the level
curve is 2h+ 2V (z) = Z2 −→ 2h when z ↗∞. That correspond to the hyperbolic
orbits. �

The phase portrait of the rectilinear Manev R4BP is shown (for a specific values
of β and e) in Figure 9. Notice that, as stated in Theorem 2.1, solutions cannot
accumulate at z = 0.

Recall that we have seen that the equilibrium point L+
z of the Manev R(N +

1)BP has a center in the z direction (see Section 4.1). The Lyapunov’s Center
Theorem ensures that if the ratios between the associated eigenvalues of L+

z are
not integers, there exists a family of periodic orbits emanating from the equilibrium
point. Theorem 5.1 shows that this family of periodic orbits (p.o.) exists for all
values of β and admissible e (vertical p.o. from now on).

6. Concluding remarks

7. Appendix

The following technical lemma characterizes the roots of a particular type of
function (see its proof in [1]).
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Figure 9. Phase portrait of the Hamiltonian system (51) for n =
3, β = 1 and e = 0.3.

Lemma 7.1. Let T be a positive constant, n a natural number, and

(53) F (p) = f(p) +

n−1∑
j=1

f(p+ jT )

where f is a function such that

i) f(p+ nT ) = f(p),
ii) f(p) = 0, if and only if, p = knT

2 , for all k ∈ Z,
iii) f(−p) = −f(p).

Then F (p) = 0, if and only if, p = kT
2 , k ∈ Z.

Some properties of the function f1, defined in (33) we will resume them in the
next Lemma.

Lemma 7.2. For any fixed value of β > 0 and e admissible, the function f1(x),
x > 0, defined in (33) has the following properties:

(1) Case e ≤ 0.
(i) f1(x) is an increasing function.
(ii) lim

x→+∞
f1(x) = +∞ and lim

x→0+
f1(x) = −∞.

(iv) f1(0) = −β, when e = 0.
(2) Case 0 < e < e0.

(i) It has only one critical point, which is a minimum, at

(54) x∗ = x∗(e) =

(
2βe

3∆

)1/4

,

where e0 is given in (9).
(ii) x∗(e) is an increasing function of e and x∗(3e0/4) = 1/ρ.

(iii) f1(x∗(e)) = 4∆1/4
(

2βe
3

)3/4

−β as a function of e has only one critical

point, which is a maximum, at 3e0/4.
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(iv) f1(1/ρ) =
1

4

n∑
i=2

1

sin
(
π(i−1)
n

) =
Λ

ρ2
, is an increasing function in n.

Proof. The proof of complete part 1 and the proof of part 2- i), 2- ii) and 2-ii) are
straightforward calculations. For part iv), we will just prove that h(n) = f1(1/ρ)
is an increasing function.

Consider the case where n is even; the odd case is similar. Then

h(n) =
1

4

n−1∑
j=1

1

sin
(
π j
n

)
=

1

4

2

n
2−1∑
j=1

1

sin
(
πj
n

) + 1


and

h(n+ 1) =
1

4

n∑
j=1

1

sin
(
π j
n+1

)
=

1

4

2

n
2∑
j=1

1

sin
(
πj
n+1

)
 .

Now,

h(n+ 1)− h(n) =
1

4

2

n
2−1∑
j=1

 1

sin
(
πj
n+1

) − 1

sin
(
πj
n

)
+

2

sin
(

nπ
2(n+1)

) − 1

 .

Since 1

sin( πj
n+1 )

− 1

sin(πjn )
> 0, for all j = 1, . . . , n2 − 1 and 2

sin( nπ
2(n+1) )

− 1 > 0, then

h(n+ 1)− h(n) > 0. Therefore, h(n) is an increasing function in n. �

Now, some properties of the function f2, defined in (34), we summarise them in
the next Lemma.

Lemma 7.3. The function f2(x), x > 0, defined in (34) has the following proper-
ties:

(1) f2(x) > 0, when x > 1/ρ and f2(x) < 0, when x ∈ (0, 1
ρ ), and in both cases

f2 is decreasing.
(2) lim

x→∞
f2(x) = n, lim

x→ 1
ρ
+
f2(x) = +∞, lim

x→ 1
ρ
−
f2(x) = −∞ and lim

x→0+
f2(x) = 0.

Proof. The proof of the item 2 and the first two properties of item 1 are easy to
verify, using straightforward calculations. For the last two properties we will use
the results of Bang and Elmabsout (2004) in [3] and Moeckel and Simo (1995) in

[10]. Now, using that xi = 1
ρ cos(ϕi) and yi = 1

ρ sin(ϕi), with ϕi = 2π(i−1)
n , for

i = 1, . . . , n, now

(55)

f2(x) = x2
n∑
i=1

x− 1
ρ cos(ϕi)

((x2 − 2x
ρ cos(ϕi) + 1

ρ2 )3/2

= (ρx)2

n∑
i=1

ρx− cos(ϕ)

((ρx)2 − 2xρ cos(ϕi) + 1)3/2
.
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Making the change of variable t =
1

ρx
, we obtain

(56) f2(t) =

n∑
i=1

1− t cos(ϕi)

(t2 − 2t cos(ϕi) + 1)3/2
.

We need to see that f2(t) is increasing for t ∈ (0, 1) and f2(t) is increasing for t > 1.
In order to [3], we notice that f(t) = (tV (t))′, where

(57) V (t) =

n∑
i=1

1

(t2 − 2t cos(ϕi) + 1)1/2
.

For 0 < t < 1, V (t) is a series in t with all its Taylor coefficients are positive (see
[10]). So V and all its derivatives are positive. So, f ′2(t) = V (t) + tV ′(t) > 0. Then
f2(t) is an increasing function for 0 < t < 1. Using that f2(t) = − 1

t2V
′(1/t), then

f ′2(t) = 2
t3V

′( 1
t ) + 1

t4V
′′(t), it follows that f2 is increasing for t > 1. �

Some properties of the function h defined in (35) are listed in the next lemma.

Lemma 7.4. For any fixed value of β > 0 and e admissible, the function h(r),
defined in (35) has the following properties.

(1) Case e ≤ 0.
(i) lim

r→+∞
h(r) = +∞

(ii) lim
r→0+

h(r) = −∞, when e < 0.

(iii) lim
r→0+

h(r) = −β, when e = 0.

(iv) h
(

1
ρ

)
< 0.

(2) Case 0 < e < e0.
(i) lim

r→+∞
h(r) = +∞.

(ii) lim
r→0+

h(r) = +∞.

(iii) h
(

1
ρ

)
< 0.

Proof. The proof of the case e ≤ 0 part 1-i), 1-ii) and 1-ii) and the case e < 0 and
part 2-i), 2-ii) are straightforward calculations. On the other hand,

(58)

h
(

1
ρ

)
=

Λ

ρ2
−

n∑
j=1

1− cos
(
π
n + 2πj

n

)
(2− 2 cos

(
π
n + 2πj

n

)
)

=
1

4

n−1∑
j=1

1

sin
(
πj
n

) − n∑
j=1

1− cos
(
π
n + 2πj

n

)
(2− 2 cos

(
π
n + 2πj

n

)
)
.

Let’s define h1(n) =
1

4

n−1∑
j=1

1

sin
(
πj
n

) and h2(n) =

n∑
j=1

1− cos
(
π
n + 2πj

n

)
(2− 2 cos

(
π
n + 2πj

n

)
)
. Then,

h
(

1
ρ

)
= h1(n)− h2(n) = 2h1(n)− (h2(n) + h1(n))

= 2(h1(n)− h1(2n)) < 0,

because h1(n) is increasing function with respect to n according to Lemma 7.2. �
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