
ARE SKETCH-AND-PRECONDITION LEAST SQUARES SOLVERS
NUMERICALLY STABLE?

MAIKE MEIER∗, YUJI NAKATSUKASA† , ALEX TOWNSEND‡ , AND MARCUS WEBB§

Abstract. Sketch-and-precondition techniques are efficient and popular for solving large least
squares (LS) problems of the form Ax = b with A ∈ Rm×n and m ≫ n. This is where A is
“sketched” to a smaller matrix SA with S ∈ R⌈cn⌉×m for some constant c > 1 before an iterative
LS solver computes the solution to Ax = b with a right preconditioner P , where P is constructed
from SA. Prominent sketch-and-precondition LS solvers are Blendenpik and LSRN. We show that
the sketch-and-precondition technique in its most commonly used form is not numerically stable for
ill-conditioned LS problems. For provable and practical backward stability and optimal residuals,
we suggest using an unpreconditioned iterative LS solver on (AP)z = b with x = Pz. Provided
the condition number of A is smaller than the reciprocal of the unit round-off, we show that this
modification ensures that the computed solution has a backward error comparable to the iterative
LS solver applied to a well-conditioned matrix. Using smoothed analysis, we model floating-point
rounding errors to argue that our modification is expected to compute a backward stable solution
even for arbitrarily ill-conditioned LS problems. Additionally, we provide experimental evidence
that using the sketch-and-solve solution as a starting vector in sketch-and-precondition algorithms
(as suggested by Rokhlin and Tygert in 2008) should be highly preferred over the zero vector. The
initialization often results in much more accurate solutions—albeit not always backward stable ones.

Key words. Least squares, numerical stability, sketching, preconditioner

AMS subject classifications. 65F10, 65F20

1. Introduction. Randomized numerical linear algebra is a growing subfield
of matrix computations that has produced major advances in low-rank approxima-
tion [19], iterative methods [28], and projections [4]. Sketch-and-precondition tech-
niques are a class of randomized algorithms for solving overdetermined least squares
(LS) problems of the form

(1.1) min
x∈Rn

∥Ax− b∥2, A ∈ Rm×n, b ∈ Rm×1,

where m > n. One first sketches A to a smaller matrix SA with a random sketch
matrix S ∈ R⌈cn⌉×m for some constant c > 1, then a right preconditioner, P , is
constructed from SA. Finally, one solves Ax = b using an iterative LS solver with the
right preconditioner P . There are many details of sketch-and-precondition based on
how to sketch and construct P as well as which iterative LS solver to employ. One
of the most prominent sketch-and-precondition techniques is known as Blendenpik [1]
(see Algorithm 1.1). In exact arithmetic, Blendenpik has a complexity of O(mn logm)
operations, which is better than the O(mn2) QR-based direct solver. Consequently,
for large LS problems, Blendenpik can be substantially faster than the LS solver
implemented in LAPACK [1]. However, are sketch-and-precondition techniques—
such as Blendenpik—numerically stable?

Surprisingly, we find that sketch-and-precondition techniques such as Blenden-
pik [1] and LSRN [21] are numerically unstable in their standard form (see Fig-
ure 1.1). For moderately ill-conditioned problems (1 ≪ κ2(A) ≪ u−1, where κ2(A) =
σmax(A)/σmin(A) is the condition number of A and u is the unit round-off), sketch-

∗Mathematical Institute, University of Oxford. (meier@maths.ox.ac.uk)
†Mathematical Institute, University of Oxford. (nakatsukasa@maths.ox.ac.uk)
‡Department of Mathematics, Cornell University. (townsend@cornell.edu)
§Department of Mathematics, University of Manchester. (marcus.webb@manchester.ac.uk)

1

ar
X

iv
:2

30
2.

07
20

2v
2

 [
m

at
h.

N
A

]
 1

0
N

ov
 2

02
3

Algorithm 1.1 A sketch-and-precondition LS solver for (1.1) known as Blendenpik.
Here, HHQR refers to the Householder QR algorithm.

1: Draw a random sketching matrix S ∈ Rs×m, where m ≫ s > n
2: Compute B = SA
3: Compute the triangular factor R of a QR factorization of B using HHQR
4: Solve Ax = b with LSQR and right preconditioner P = R−1

and-precondition iterations stagnate in terms of residual and backward error, poten-
tially before optimal levels are reached. The main focus of this work is deriving a
provable method to resolve these numerical instabilities. We suggest a modification
to the sketch-and-precondition framework to obtain a new algorithm, which we coin
sketch-and-apply. We show using classical stability analysis and experimentally that
sketch-and-apply attains backward stable solutions under modest conditions. How-
ever, sketch-and-apply requires O(mn2) operations, the same complexity as the clas-
sical least square solver based on QR. This work thus highlights the significant open
problem: is there a fast (randomized) least-squares solver with guaranteed backward
stability?

Throughout the paper, we assume that A ∈ Rm×n and SA ∈ Rs×n (for some s
such that m > s > n) are of full rank so that (1.1) has a unique solution.

1.1. Sketch-and-precondition algorithms with a sketch-and-solve ini-
tialization. Sketch-and-precondition algorithms use sketching to construct a precon-
ditioner to be used in an iterative LS method. Given an embedding matrix S ∈ Rs×m,
n < s ≪ m, and the resulting sketch SA, one would usually compute a QR decom-
position of the sketch and use the inverse of the R-factor as a right preconditioner
in LSQR. This is the basis of the Blendenpik algorithm [1]. Another popular sketch-
and-precondition technique is LSRN [21], which uses the singular value decomposition
(SVD) of SA instead of the QR decomposition. The computational cost of Blendenpik
is O(mn log n) to compute the sketch, O(n3) for the QR decomposition, and O(mn)
cost per iteration in the iterative solver.

The most commonly used iterative solver for (1.1) is LSQR [24], which is compet-
itive when A is large, sparse, and well-conditioned. The number of iterations required
to reach a desired accuracy typically depends on the condition number of A [2, Ch.
7.4]. As a result, a preconditioner is necessary when A is ill-conditioned to ensure a
reasonable speed of convergence. With careful sketching, the condition number of AP
with P = R−1 from Algorithm 1.1 (SA = QR) is small with high probability in exact
arithmetic [25, Lem. 1] (see Lemma 2.1). In finite precision arithmetic, the condition
number of the computed AP remains modest in size, provided that κ2(A)u ≪ 1, where
κ2(A) = σmax(A)/σmin(A) is the condition number of A and u is the unit round-off
(see Theorem 3.4). However, as we will see, although AP is well-conditioned, the
application of P can cause numerical errors. The crux of the numerical instability
in sketch-and-precondition is the repeated application of P = R−1, which is about
as ill-conditioned as A. Indeed, it is recommended in the Blendenpik paper that
LSQR is avoided when κ2(R) > 1/(5u) [1]. However, we find that for moderately

ill-conditioned systems (such as κ2(A) ≈
√
u−1), numerical errors affect the accuracy

of the solutions commensurately (see subsection 1.4).
Sketch-and-precondition in its standard form (see Algorithm 1.1) has x0 = 0 as

the initial guess in LSQR. However, as suggested in Rokhlin and Tygert’s paper [25],
a more natural guess is readily available; the solution to the sketched LS problem,

2

i.e.,

(1.2) x0 = argmin
x∈Rn

∥SAx− Sb∥2.

This can be computed directly with the QR decomposition of SA; the resulting
algorithm is displayed in pseudocode in Algorithm 1.2. Although originally pro-
posed in [25] as part of the sketch-and-precondition framework, most implementations
(e.g. [1, 21]) do not mention this choice of initial guess as part of their algorithms.1

Algorithm 1.2 A sketch-and-precondition LS solver for (1.1) with a sketch-and-solve
solution as initial guess. Here, HHQR refers to the Householder QR algorithm.

1: Draw a random sketching matrix S ∈ Rs×m, where m ≫ s > n
2: Compute B = SA and c = Sb
3: Compute both Q and R of the QR factorization of B using HHQR
4: Compute initial guess x0 = R−1QT c
5: Solve Ax = b with LSQR and right preconditioner P = R−1 and initial guess x0

The sketch-and-solve solution typically attains an accuracy within a small multi-
ple of the optimal accuracy (see subsection 2.1.1). Although the attainable accuracy
of sketch-and-precondition algorithms with a random initial guess will stagnate be-
fore a desired accuracy when dealing with ill-conditioned problems (see Figure 1.1(b)),
our experiments show Algorithm 1.2 attains optimal residuals in most cases, and is
significantly better than the standard, trivial initial guess x0 = 0. Furthermore, as
the QR decomposition (or SVD) of the sketch SA is necessary for any sketch-and-
precondition solver, this initial guess is obtained practically for free. We urge prac-
titioners to adopt this as standard practice for these types of algorithms. It should
be noted, however, that there are instances where the solution found by sketch-and-
precondition with sketch-and-solve initialization does not attain backward stable so-
lutions (see Figure 1.1(a)). To further resolve the numerical instabilities, we introduce
the sketch-and-apply algorithm.

1.2. Sketch-and-apply. The sketch-and-apply algorithm is a modification of
the sketch-and-precondition algorithm for which we can ensure that the computed
residual is close to optimal and the backward error is approximately machine precision
regardless of the initial guess. We also prove backward stability.

The modification of sketch-and-precondition is simple. Instead of using P = R−1

as a preconditioner, we explicitly apply P by computing AP and then employ an un-
preconditioned iterative LS solver on (AP)z = b with x = Pz. We therefore call this
a sketch-and-apply technique. Of course, in exact arithmetic sketch-and-precondition
and sketch-and-apply compute the same solution; however, for ill-conditioned LS prob-
lems in floating-point arithmetic, we find a significant difference. To our knowledge,
this is the first algorithm for LS problems based on randomized sketching that is
demonstrated to be backward stable (with a mild assumption to be made precise
in Theorem 3.5).

By computing AP explicitly, we remove all ill-conditioning from the iterative
solver and instead use an unpreconditioned solver on a well-conditioned system. This
results in accurate and backward stable solutions. In particular, we prove that if

1In the C implementation of Blendenpik [1], sketch-and-solve initialization is available as an
option, but the user needs to append ‘improve start point’ to the parameters.

3

κ2(A) ≪ u−1, our sketch-and-apply technique computes a backward stable solution
provided that LSQR on a well-conditioned matrix computes a backward stable solu-
tion (see Theorem 3.5).

Algorithm 1.3 A sketch-and-apply LS solver for (1.1). Here, HHQR refers to the
Householder QR algorithm. One can include a sketch-and-solve initial guess by com-
puting the QR decomposition QR = SA and z0 = QTSb, and setting z0 as an initial
guess in step 5.

1: Draw a random sketching matrix S ∈ Rs×m, where m ≫ s > n
2: Compute B = SA
3: Compute the triangular factor R of a QR factorization of B using HHQR
4: Compute Y = AR−1 with forward substitution
5: Solve Y z = b with LSQR and no preconditioner
6: Compute x = R−1z with back substitution

Unfortunately, while sketch-and-precondition techniques cost O(mn logm) opera-
tions, sketch-and-apply costsO(mn2) operations asAP must be computed. Therefore,
sketch-and-apply techniques have the same computational complexity as the classical
QR-based LS solver. We note, however, that LSRN, another popular sketch-and-
precondition algorithm, also uses O(mn2) operations but is still competitive as the
expensive computation is in matrix multiplication, which is highly parallelizable. The
same applies to sketch-and-apply.

When κ2(A) ≳ u−1, our analysis does not guarantee that Algorithm 1.3 leads to
an accurate solution. However, in practice, we often get accurate final LS residuals. To
explain why this is the case, we model floating-point rounding errors using smoothed
analysis. That is, we consider “smoothing” A to A + σG/

√
m, where the entries

of G are independent and identically distributed (i.i.d.) standard Gaussian random
variables and σ is a scaling factor that we select as σ = 10∥A∥2u. The idea is that A+
σG/

√
m is significantly better conditioned than A itself, assuming that A is extremely

ill-conditioned. In fact, for sufficiently small σ, one can show that κ2(A+σG/
√
m) ≲

1/σ with high probability [5] (see Corollary 2.2). The additive perturbation of σG/
√
m

to A ensures that sketch-and-apply techniques can also compute solutions with good
backward error, even when A is extremely ill-conditioned (see Algorithm 1.4). For
extremely ill-conditioned LS problems, one could explicitly add an additive random
perturbation or hope that floating point rounding errors deliver the same effect, as it
often does in practice.

Algorithm 1.4 A smoothed sketch-and-apply LS solver for (1.1) when κ2(A) ≳ u−1.

1: Draw a random standard Gaussian matrix G ∈ Rm×n with i.i.d. entries
2: Compute Ã = A+ σG/

√
m for σ = 10∥A∥2u

3: Perform Algorithm 1.3 on Ã

Throughout the paper, we assume that A ∈ Rm×n and SA ∈ Rs×n, m > s > n,
are of full rank, so that (1.1) has a unique solution.

1.3. Sketch-and-solve initialization versus sketch-and-apply. Figure 1.1(b),
as well as various other figures throughout this work, shows the enormous practical
significance of using the sketch-and-solve solution as an initial guess. In the version of
this paper first submitted to the journal, we discussed the instability of sketch-and-

4

precondition and presented sketch-and-apply as the fix. A careful reviewer suggested
that we initialize sketch-and-precondition with the sketch-and-solve solution. The im-
provement in stability and speed of convergence of the sketch-and-precondition when
using the sketch-and-solve initialization (Algorithm 1.2) should be one of the main
take-aways of this work from a practical viewpoint. However, it should be noted that
sketch-and-precondition with sketch-and-solve initialization is not completely freed
from the numerical instabilities present in standard sketch-and-precondition (see Fig-
ure 1.1(a)). As a result, sketch-and-apply has significance when it is important to
retrieve backward stable solutions.

The remainder of this work focuses on analyzing the sketch-and-apply algorithm.
As far as the authors are aware, this is one of the first rigorous stability analyses for
a randomized algorithm. As a result, it is also one of the first randomized algorithms
proven to be backward stable.

1.4. The numerical instabilities of sketch-and-precondition. We now demon-
strate the numerical instabilities that occur with sketch-and-precondition techniques.2

We construct LS problems at random by setting A = UΣV T , where U ∈ Rm×n

and V ∈ Rn×n are random orthogonal matrices from the Haar distribution and
Σ = diag(σ1, . . . , σn), where σ1, . . . , σn are logarithmically spaced between 1 and
σn = 10−10. We set m = 10000 and n = 100. The right-hand side of the LS problem
is generated as b = Ax∗+e, where x∗ is a random vector with i.i.d. standard Gaussian
entries and e represents a noise vector. The noise is chosen to be orthogonal to the
column space of A so that x∗ is the exact solution to Ax = b. For this reason, the com-
puted residual is bounded from below by ∥e∥2 = ∥Ax∗ − b∥2. We consider two values
of ∥e∥2: (a) ∥e∥2 = 10−2 (see Figure 1.1(a)) and (b) ∥e∥2 = 10−12 (see Figure 1.1(b)).

To solve the LS problems, we use (1) standard sketch-and-precondition Blenden-
pik (SAP, see Algorithm 1.1), (2) sketch-and-precondition Blendenpik with a sketch-
and-solve initial guess (SAP-SAS, see Algorithm 1.2), (3) standard sketch-and-apply
Blendenpik (SAA, see Algorithm 1.3), and (4) sketch-and-apply Blendenpik with a
sketch-and-solve initial guess (SAA-SAS, see the caption of Algorithm 1.3). The only
difference between the sketch-and-precondition and sketch-and-apply algorithms is
how they employ the preconditioner; the actual preconditioner is identical. We use a
sketching matrix S ∈ R4n×m, known as a subsampled randomized cosine transform
(see subsection 2.2.2). The tolerance is set to 10−14 and the maximum number of
iterations to 50.

Figure 1.1 compares the performance of the algorithms in terms of the relative
residual ∥Ax − b∥2/∥b∥2 (left column), the normwise backward error ηF (x) (middle
column, see (1.3)), and the relative normal residual ∥AT (Ax−b)∥2/(∥A∥F ∥Ax−b∥2).
A stable algorithm should compute a final solution with a relative residual close to
the noise level given by ∥e∥2 and a backward error of order u, where the backward
error is given by [30]

(1.3) ηF (x) := min{∥[∆A,∆b]∥F : ∥(A+∆A)x− (b+∆b)∥2 = min}.

We compute it using [30] (see also [15, Thm. 20.5])

ηF (x) = min
{
ϕ, σmin

([
A ϕ(Im − rr†)

])}
, ϕ =

∥r∥2√
1 + ∥x∥22

, r = b−Ax,

2Experiments are performed in MATLAB 2022b using 64-bit arithmetic on a single core of a
MacBook Pro equipped with a 2.3 GHz Dual-Core Intel Core i5 processor and 16 GB 2133 MHz
LPDDR3 of system memory.

5

∥e∥2 = 10−2

∥e∥2 = 10−12

Fig. 1.1: Sketch-and-precondition Blendenpik (SAP) and sketch-and-apply Blenden-
pik (SAA), with and without sketch-and-solve initialization (SAS), applied to two
noisy and randomly generated LS problems. The noise level is ∥Ax∗ − b∥2 = ∥e∥2 =
10−2 in the top row (a) and ∥Ax∗ − b∥2 = ∥e∥2 = 10−12 in the bottom row (b). The
matrix A is 10000×100 with condition number κ2(A) = 1010. We display the residual,
the backward error, and the relative normal residual for each LSQR iteration.

where σmin(B) indicates the smallest singular value of B.
Consider first Figure 1.1(a): an inconsistent, moderately ill-conditioned problem.

We see that all algorithms attain the optimal residual. However, considering the
backward error, both sketch-and-precondition varieties fail to converge to a backward
stable solution. The same behavior can be observed for the relative normal residual.
In general we find that for inconsistent problems, i.e., problems with large optimal
residual, sketch-and-precondition with or without initialization converges to a solution
with good residual. However, for moderately ill-conditioned problems, these solutions
are often not backward stable.

Figure 1.1(b) shows the more obvious instabilities of sketch-and-precondition
without initialization: the maximal attainable residual is not optimal. Consider the fi-
nal residuals in Figure 1.1(b). The sketch-and-precondition solution stagnates around
10−8, whereas all other algorithms attain 10−12. This instability is also visible in
the backward error and relative residual, where we sketch-and-precondition without
initialization is not backward stable.

Perhaps most notable about Figure 1.1(b) is the success of sketch-and-solve ini-
tialization. The initial guess has an accuracy of the same order as the optimal solution
in terms of residual (reflecting standard theory [19]), and the following iterates usu-
ally quickly converge to the optimal residual. It appears that starting close to a good

6

0 10 20 30 40 50

10
-15

10
-10

10
-5

10
0

0 10 20 30 40 50

10
-15

10
-10

10
-5

10
0

Fig. 1.2: A comparison of the convergence of the relative residual and backward errors
for unpreconditioned LSQR, preconditioned LSQR with P = R−1

A from the QR factor-
ization of A = QARA, sketch-and-precondition (SAP) Blendenpik with and without
sketch-and-solve (SAS) initialization, sketch-and-apply (SAA) Blendenpik with and
without sketch-and-solve (SAS) initialization. The tolerance is set to machine preci-
sion.

guess resolves much of the numerical instabilities of sketch-and-precondition Blenden-
pik. The initialization results in a backward stable solution. However, it must be
noted that some floating point errors persist, as the backward errors for the inconsis-
tent problems are not optimal (see Figure 1.1(a)).

Sketch-and-apply Blendenpik, with or without initialization, attains accurate so-
lutions with a backward error of order u in all cases. This supports our theoretical
findings that sketch-and-apply is a backward stable algorithm (see section 3). Again,
LSQR converges faster when initialization is used, and we always recommend doing
this.

In all of the experiments, the tolerance tol in LSQR is set to be very small to
allow us to investigate the maximal attainable accuracy. This checks both the relative
normal residual ∥AT r∥2/(∥A∥F ∥r∥2) ≤ tol and the residual ∥Ax − b∥2/∥b∥2 ≤ tol.
For highly inconsistent problems, our small choice of tol can result in many iterations
before LSQR is stopped. It should be noted however, that the initialized algorithms
reach the levels they will stagnate on much sooner. The LSQR tolerance is thus a
delicate aspect, and significant research has been devoted to the subject [7, 14, 26].

The numerical instabilities in standard sketch-and-precondition Blendenpik could
be due to multiple sources. To demonstrate that it is the way that the preconditioner
is employed, and not how it is formed, we try one more randomly generated LS
problem with A ∈ R20000×100, κ2(A) = 1012, and a noise level of ∥e∥2 = 10−14.
We solve the LS problem with unpreconditioned LSQR and preconditioned LSQR,
where the preconditioner is obtained by computing the QR factorization of A. This
approach is not practical because it requires the QR factorization of A, but is done to
demonstrate the quality of the preconditioners is not at fault. We find in Figure 1.2
that the sketch-and-solve initialization approach computes accurate backward-stable
solutions when combined with either sketch-and-precondition or sketch-and-apply.
For the various algorithms employing x0 = 0 as an initial guess, sketch-and-apply

7

Blendenpik is the only approach that computes a solution with a residual close to
optimal and a backward error close to machine precision. We also note that the
qualitative behavior shown in Figures 1.1 and 1.2 is unaffected by different types
of sketch matrices or sketch dimensions. These choices influence κ2(AP) and κ2(P)
slightly, which can somewhat affect the convergence behavior in terms of speed and
maximal attainable accuracy. However, we do not observe qualitative differences
provided that κ2(AP) = O(1).

While we have not spotted the precise source of instability in the standard pre-
conditioned LSQR routines, we believe it lies in the fact that each application of the
preconditioner P—which involves solving an ill-conditioned linear system Rx = b—
incurs a relative error proportional to uκ2(R). Such errors are present every time we
apply P or PT . Moreover, each application behaves somewhat differently, in that in
the ith iterate we have (R+∆Ri)x̂i = bi + δbi where ∆Ri, δbi are small but different
for each i. In other words, one can view the preconditioner as having an uκ2(R)
nonlinear effect. The fact that the convergence of iterative methods can get impaired
by nonlinear preconditioners has been observed in [31].

1.5. Paper structure. In section 2, we introduce some background material
on sketch-and-precondition LS solvers, sketching, numerical stability analysis, and
smoothed analysis. In section 3, we consider sketch-and-apply Blendenpik (see Algo-
rithm 1.3) in finite precision. In section 4, we consider extremely ill-conditioned LS
problems and look at the numerical stability of smoothed sketch-and-apply Blenden-
pik (see Algorithm 1.4). We introduce a master algorithm and display numerical
experiments in section 5. Finally, in section 6, we conclude by noting the practical
significance of the sketch-and-solve initialization, and discuss the wider implications
of the observed instabilities of standard sketch-and-precondition.

While in this paper we focus on LS problems, we expect much of the stability
results to carry over to solving underdetermined linear systems using sketching, as
done in LSRN [21].

2. Background material. We now introduce some background material for
sketch-and-precondition techniques (see subsection 2.1), random sketching matrices
(see subsection 2.2), numerical stability analysis (see subsection 2.3), and smoothed
analysis (see subsection 2.4).

2.1. Sketch-and-precondition least squares solvers. The idea behind the
sketch-and-precondition technique is that a reasonable preconditioner for the LS prob-
lem in (1.1) can be constructed from a sketch of A. In Blendenpik, the matrix A is
sketched to a small tall-skinny matrix SA and the preconditioner is taken to be the
inverse of the upper triangular factor from a QR factorization of SA, i.e., P = R−1.
In exact arithmetic, the condition number of AP is equal to SQA, where QA is an
orthonormal basis for the column space of A.

Lemma 2.1. Let A ∈ Rm×n have linearly independent columns, S ∈ Rs×m with
s ≥ n have linearly independent rows, and B = SA. If A = QARA and B = QR are
economized QR factorizations of A and B, respectively, then

κ2(AP) = κ2(SQA).

where P = R−1.

Proof. The proof follows the same argument by Meng, Saunders, and Mahoney
in [21, Lemma 4.2] and Rokhlin and Tygert in [25, Thm. 1] Note AP = QARAR

−1

8

so that κ2(AP) = κ2(RAR
−1). Now, since B = SA = QR = S(QARA), we have that

(SQA)RAR
−1 = Q is orthonormal. Hence, κ2(RAR

−1) = κ2(SQA).

Lemma 2.1 shows that the main idea behind sketch-and-precondition techniques
is excellent in exact arithmetic. In particular, the value of κ2(AP) is independent of
κ2(A). In particular, one expects rapid convergence of iterative LS solvers using the
preconditioner P . While this is correct in exact arithmetic, we have seen that rounding
errors cause significant problems for ill-conditioned LS problems (see subsection 1.4).
Regardless, in exact arithmetic, we are left with the task of designing a sketching
matrix so that κ2(SQA) is close to 1 with high probability.

2.1.1. Sketch-and-solve initialization. Rokhlin and Tygert [25] included a
sketch-and-solve initial guess in the description of their original sketch-and-precondition
algorithm. This initial guess is the solution to min ∥S(Ax − b)∥2 computed with a
direct solver. It can be computed using the QR decomposition of SA, which is nec-
essary in any case. The accuracy of sketch-and-solve solutions are well-studied and
bounds are generally of the form [19]

∥Ax0 − b∥2 ≤ 1 + ϵ

1− ϵ
∥Ax∗ − b∥2 for s ∼ n log(n)/ϵ2,

where x0 is the sketch-and-solve solution (see (1.2)), x∗ is the optimal solution to (1.1),
and s is the sketch dimension (S ∈ Rs×m). Note that ϵ is the subspace embedding
constant of [A, b], the concatenation of A and b, and is usually modestly small, say
ϵ = 0.5. In the language used in Lemma 2.1, 1+ϵ

1−ϵ = κ2(SQ[A,b]), whose value can
be bounded using identical arguments to those for κ2(SQA), which will be discussed
below. It follows that for a sufficiently large sketch dimension, the accuracy (in terms
of residual) of the sketch-and-solve solution is of the same order as that of the optimal
solution.

2.2. Sketching matrices. Given Lemma 2.1, it is paramount to understand
how to construct a sketching matrix S so that SQA is well-conditioned. Matrices that
achieve this are called sketching matrices. We generally desire m ≫ s > n so that
SA has full column rank and computing a preconditioner from SA is computationally
efficient.

There are various ways to construct sketching matrices; almost all are randomly
generated. We consider two important types here: (1) Gaussian matrices [21, 29, 32],
and (2) subsampled randomized trigonometric transforms (SRTTs) [1, 19, 25, 27].
Other sketching techniques include random sampling [18], sparse embeddings [8], and
hashing matrices [6].

2.2.1. Gaussian sketching matrices. A Gaussian sketching matrix of size s×
m is a matrix with i.i.d. Gaussian entries of mean 0 and variance 1/s. If one selects s ≥
⌈cn⌉ with c > 1, then one can show that κ2(SQA) is a small constant depending on c
with high probability [19]. The drawback of Gaussian matrices is the cost of computing
SA. In particular, SA costs O(mn2) operations as s = O(n). However, Gaussian
sketching matrices are often used in theoretical analysis due to the availability of
excellent probability theory and concentration of measure arguments [13, 19].

2.2.2. Subsampled randomized trigonometric transforms. An SRTT has
the form S = SFD, where D is a square diagonal matrix with ±1 entries at random,
F is an orthogonal trigonometric transform (e.g., Fourier, cosine, or Hadamard), and
S is an s×m scaled sampling matrix with one non-zero entry per row. For an SRTT,

9

if s ≥ ⌈cn log n⌉ with some constant c > 1, then SQA is well-conditioned with high
probability [27]. In practice, the log n factor in s can often be dropped [19]. Moreover,
the matrix-matrix product SA can be computed in O(mn log s) operations, although
the usual computational cost is O(mn logm) associated with computing S(F (DA)),
as fast implementations for the SRTT are not readily available. We use subsampled
randomized cosine transforms as the sketching matrices in our numerical experiments.

2.3. Numerical stability analysis. Basic arithmetic operations (e.g., +, −, ·,
and /) on a computer are performed with rounding errors due to the finite precision of
numbers in floating-point representation. The stability of a numerical algorithm refers
to the property to compute solutions with a small backward error [15] in the presence
of rounding errors. We are particularly interested in proving that sketch-and-apply
Blendenpik computes backward stable solutions. The backward error for LS problems
is defined in (1.3). A backward stable algorithm computes solutions with a backward
error of the same order as the precision.

We assume that computations are performed with a precision of u ≪ 1 and
that numbers and arithmetic operations are exact up to this precision. We now
consider three example algorithms: (1) The standard algorithm for matrix-matrix
multiplication, (2) Householder QR, and (3) Triangular solve with substitution. We
need these results to understand sketch-and-apply LS solvers.

2.3.1. Matrix-matrix multiplication. Consider matrix-matrix multiplication
of two matrices A ∈ Rm×n and B ∈ Rn×p. It is shown that the standard algorithm
for computing AB satisfies [15, Chapt. 3]

(2.1) |AB − fl(AB)| ≤ nu

1− nu
|A||B| = γn|A||B|, γn =

nu

1− nu
,

where fl(AB) means that AB is computed with precision u and |A| denotes the entry-
wise absolute value of A. The inequality in (2.1) is understood as holding for each
entry. It can be shown that (2.1) leads to the bound

(2.2) ∥AB − fl(AB)∥2 ≤ γn min(
√
m,

√
n)min(

√
n,

√
p)∥A∥2∥B∥2,

where ∥ · ∥2 is the spectral norm. The inequality in (2.2) is a forward error in the
sense that it shows that fl(AB) is close to AB.

2.3.2. Householder QR factorization. Next, we consider the Householder
QR of a matrix A ∈ Rm×n, where m ≥ n. We denote the triangular factor computed
by the Householder QR algorithm as R̂ ∈ Rn×n, and we are interested in the accuracy
of R̂. By [15, Thm. 19.4], there exists a matrix Q ∈ Rm×n with orthonormal columns
such that

A+ E = QR̂, ∥ej∥2 ≤ γ̃mn∥aj∥2, 1 ≤ j ≤ n,

where ej and aj denote the jth columns of E andA respectively, and γ̃mn = cmnu/(1−
cmnu) for a small integer constant c. A direct consequence is that

(2.3) ∥E∥F ≤ γ̃mn∥A∥F ,

where ∥ · ∥F is the matrix Frobenius norm. The inequality in (2.3) has the interpre-
tation that the QR factorization computed by Householder QR is exact for a slightly
perturbed matrix A.

10

2.3.3. Triangular system solving with substitution. Finally, we consider
the error arising from solving a triangular system with substitution. Let R ∈ Rn×n

be a nonsingular upper-triangular matrix. It is known that the computed solution, x̂,
of the linear system RTx = b satisfies [15, Sec. 8.2]

(2.4) ∥x− x̂∥2 ≤
√
nγnκ2(R)

1−
√
nγnκ2(R)

∥x∥2,

where γn is defined in (2.1). The inequality in (2.4) tells us that we expect the relative
forward error of the computed solution to be on the order of κ2(R).

When we do any sketch-and-apply technique, we need to compute AP , where
P = R−1. We compute AP by solving RTxi = ai for 1 ≤ i ≤ m, where aTi denotes
the ith row of A and xT

i is the ith row of AP . If we denote the computed solution to
RTxi = ai by x̂i, then from (2.4) we find that

m∑
i=1

∥xi − x̂i∥22 ≤
[√

nγnκ2(R)

1−
√
nγnκ2(R)

]2 m∑
i=1

∥xi∥22.

We conclude that for P = R−1 we have

(2.5) ∥AP − ÂP∥F ≤
√
nγnκ2(P)

1−
√
nγnκ2(P)

∥AP∥F ,

where ÂP denotes the computed matrix-matrix product. Roughly speaking, ÂP
is close to AP when κ2(P) is modest. We additionally bound the backward error
resulting from solving Rx = b with back substitution. The computed solution x̂
satisfies [15, Theorem 8.5]

(2.6) (R̂+∆R̂)x̂ = b, ∥∆R̂∥2 ≤ γn
√
n∥R̂∥2.

2.4. Smoothed analysis of condition numbers. Due to rounding errors,
most matrices with κ2(A) > u−1 are perturbed to a matrix with condition number
less than u−1 once represented on a computer. To explain this, we can model the
rounding errors by an additive Gaussian perturbation to A. This type of technique
fits into the field of smoothed analysis and has been studied in [16]. More precisely,
we suppose that A ∈ Rm×n and that we would like to bound the condition number
of A + σG, where σ is a small number and G is a standard Gaussian matrix with
i.i.d. entries. We have the following statement, which is a corollary of [5, Thm. 1.1].

Corollary 2.2. Let A ∈ Rm×n with m ≥ 3n and r ≥ 104. If A is perturbed to
Â = A + σG/

√
m with σ = 8.25∥A∥2/r, where G is standard Gaussian matrix with

i.i.d. entries, then

P
[
κ2(Â) ≥ r

]
< 2n−m.

Proof. The result immediately follows by setting z = (r(1 − λ))/e and σ =
8.25/(r

√
m) in Theorem 1.1 of [5]. This takes into account that Theorem 1.1 of [5]

considers the case when m < n. The extra ∥A∥2 factor of σ in the statement of the
corollary ensures that our final result continues to hold when ∥A∥2 ̸= 1.

Corollary 2.2 shows us that a small additive Gaussian perturbation to a matrix A
ensures that the condition number is small with high probability. It partially explains
why matrices represented in floating-point arithmetic rarely have a condition number
> u−1. In section 4, we use Corollary 2.2 to explain why sketch-and-apply techniques
continue to deliver accurate LS solutions, even when we have κ2(A) > u−1.

11

3. On the numerical stability of sketch-and-apply Blendenpik. By the
properties of sketching matrices and Lemma 2.1, we know that if one computes P
and AP in exact arithmetic, then κ2(AP) is bounded by a constant independent
of κ2(A) with high probability. In finite precision, one typically needs to be more
careful. In this section, we show that when κ2(A) ≪ u−1, the condition number of
the computed matrix AP can also be bounded by a constant with high probability
(see Theorem 3.4). Unfortunately, such a bound does not extend to the case when
κ2(A) > u−1 (see section 4).

There are three main steps to compute AP . In finite precision, the computed
matrices satisfy the following:

1. B̂ = SA+ E1,
2. Q̃R̂ = B̂ + E2,
3. Ŷ = AR̂−1 +∆Y ,

where hats denote that we are accounting for rounding errors. The matrix-matrix
multiplication error E1 can be bounded using (2.2). We have a bound on the error
arising from the Householder QR algorithm E2 in (2.3). Note that Q̃ has orthonormal
columns but is not equal to Q, where Q is the orthonormal factor of the exact QR
factorization of B = SA. Finally, the error term ∆Y in the step resulting from solving
the triangular matrix system can be bounded using (2.5). After all these errors, we
want to derive a bound on κ2(Ŷ), as Ŷ is the computed preconditioned matrix in
finite precision.

3.1. Bounding κ2(Ŷ) in terms of numerical errors. First, let E = E1+E2

be the sum of the additive errors from the matrix-matrix multiplication and the QR
factorization, such that Q̃R̂ = QR + E. We show in Lemma 3.1 that the quantity
ε1 := ∥E∥2∥R−1∥2 controls the numerical error in the first two steps.

Lemma 3.1. Let A = QARA and SA = QR be economized QR factorizations of
A and B = SA, respectively. Let B̂ be the computed SA and R̂ be the computed upper
triangular factor from the Householder QR algorithm of B̂, both computed in finite
precision. Let Q̃ be a matrix with orthonormal columns such that E = Q̃R̂ − QR is
the numerical error associated with R̂. Define ε1 := ∥E∥2∥R−1∥2. Assuming that
ε1 < 1, we find that R̂ is invertible and AR̂−1 is full rank. Furthermore,

κ2(R̂) ≤ κ2(R) + ε1
1− ε1

≤ κ2(SQA)κ2(A) + ε1
1− ε1

,

and

κ2(AR̂−1) ≤ κ2(SQA)
1 + ε1
1− ε1

.

Proof. We have

(3.1) ∥R̂∥2 = ∥Q̃R̂∥2 = ∥QR+ E∥2 ≤ ∥R∥2 + ∥E∥2,

and

(3.2) σmin(R̂) = σmin(QR+ E) ≥ σmin(R)− ∥E∥2.

We see that σmin(R̂) > 0 provided that ε1 < 1. We can combine (3.1) and (3.2)
together to obtain an upper bound on κ2(R̂). To bound κ2(AR̂−1), we use the fact
that3 AR̂−1Q̃T = AR−1(Q+ ER−1)† to find that for any v ∈ Rm, we have

(3.3) ∥vTAR−1∥2(1 + ε1)
−1 ≤ ∥vTAR̂−1∥2 ≤ ∥vTAR−1∥2(1− ε1)

−1.

3The ‘†’ superscript on a matrix denotes the matrix pseudo-inverse.

12

The bound follows as κ2(AR−1) = κ2(SQA) (see Lemma 2.1).

Lemma 3.1 shows us, assuming ε1 is sufficiently small, that κ2(R̂) cannot be larger
than about κ2(SQA)κ2(A), and κ2(AR̂−1) cannot be much larger than κ2(SQA).

As the following lemma shows, the error incurred by solving the triangular system
depends on the quantities in Lemma 3.1.

Lemma 3.2. Let R̂−1 be the upper triangular matrix defined in Lemma 3.1 and
let Ŷ be the matrix obtained by computing AR̂−1 with forward substitution in finite
precision. Define ∆Y = Ŷ − AR̂−1 and ε2 = ∥∆Y ∥2∥(AR̂−1)†∥2. Assuming that
ε2 < 1, we find that Ŷ is full rank and

κ2(Ŷ) ≤ κ2(AR̂−1) + ε2
1− ε2

.

Proof. This follows immediately from the relationship Ŷ = AR̂−1 + ∆Y and
similar reasoning to the proof of Lemma 3.1.

In exact arithmetic, clearly κ2(Y) = κ2(AR−1). The numerical error incurred due to
the triangular solve is controlled by ∥∆Y ∥, which depends on κ2(R̂) and κ2(AR̂−1).
We show that the error is small under the assumption that κ2(A)u ≪ 1. As a
result, the condition number of Ŷ will be bounded by a small constant related to
the conditioning of S and SQA. Thus, the computed AP has a reasonable condition
number provided that the numerical errors ε1 and ε2 are small.

3.2. Bounding the numerical errors. We now bound the errors ε1 and ε2.

Lemma 3.3. Assume the same setup as in Lemma 3.1 and Lemma 3.2, where
ε1 = ∥E∥2∥R−1∥2 and ε2 = ∥∆Y ∥2∥(AR̂−1)†∥2, and all quantities in finite precision
are computed with unit round-off u. Furthermore, define

(3.4) C1 :=
√
snγm +

√
nγ̃sn(1 +

√
snγm), k(S) := ∥S∥2∥(SQA)

†∥2.

If κ2(A) < 1/(C1k(S)), then we have

ε1 ≤ C1k(S)κ2(A),

and

ε2 ≤ nγnκ2(SQA)(κ2(A)κ2(SQA) + ε1)(1 + ε1)

(1− ε1 −
√
nγn(κ2(A)κ2(SQA) + ε1)) (1− ε1)

.

Proof. We first note that E = E1 + E2, where E1 = B̂ − SA is the error arising
from matrix-matrix multiplication and E2 = Q̃R̂ − B̂ is the error arising from the
Householder QR algorithm. We can bound these terms using (2.2) and (2.3) to find

∥E∥2 ≤ ∥E1∥2 +
√
nγ̃sn∥SA+ E1∥2

≤
√
nγ̃sn∥S∥2∥A∥2 + (1 +

√
nγ̃sn)

√
snγm∥S∥2∥A∥2 = C1∥S∥2∥A∥2.

This is then combined with

σmin(R) = σmin(QR) = σmin(SQARA) ≥ σmin(SQA)σmin(A).

As for ∥∆Y ∥2, by (2.5) we have

∥∆Y ∥2 ≤ ∥∆Y ∥F ≤
√
nγnκ2(R̂)

1−
√
nγnκ2(R̂)

∥AR̂−1∥F ≤ ϕ(R̂)∥AR̂−1∥2,

13

where

(3.5) ϕ(R̂) :=
nγnκ2(R̂)

1−
√
nγnκ2(R̂)

≤ nγn(κ2(A)κ2(SQA) + ε1)

1− ε1 −
√
nγn(κ2(A)κ2(SQA) + ε1)

.

We have ε2 ≤ ϕ(R̂)κ2(AR̂−1), which can be bounded using the result on κ2(AR̂−1)
in Lemma 3.1.

The condition that κ2(A) < 1/(C1k(S)) is closely related to the assumption κ2(A) ≪
u−1 (see subsection 3.3 for further discussion), which ensures that ε1 < κ2(A)u ≪ 1.
The bound ε2 ≤ ϕ(R̂)κ2(AR̂−1), where ϕ(R̂) is defined in (3.5), tells us that the
dominant term in the bound for ε2 is n2κ2(SQA)κ2(A)u, when ε1 < 1.

3.3. Bounding κ2(Ŷ). We now combine Lemmas 3.1 to 3.3 to obtain a bound
on the condition number of Ŷ , which is the computed version of AR−1. We find that
κ2(Ŷ) ≤ 4κ2(SQA) + 1 provided that κ2(A) is sufficiently small.

Theorem 3.4. Let A ∈ Rm×n have linearly independent columns, S ∈ Rs×n have
linearly independent rows, and m > s > n. Let A = QARA and SA = QR be the
economized QR factorizations of A and B = SA, respectively. Assume that

(3.6) κ2(SQA) < 49, n2u < 1/201,
m

n
+

√
n > 200,

and that κ2(A) is sufficiently small so that

(3.7) κ2(A) <
1

3C1k(S)
,

where C1 = O((
√
snm+ sn3/2)u) and k(S) are defined in (3.4). Compute the precon-

ditioned matrix Ŷ as detailed in Lemma 3.1 and Lemma 3.2.4 Then,

κ2(Ŷ) ≤ 4κ2(SQA) + 1.

Proof. Throughout the proof, we assume the notation introduced in Lemmas 3.1
to 3.3. By assumption (3.7) we immediately see that ε1 < 1/3, defined in Lemma 3.1,
and hence R̂ and AR̂−1 are full rank. It follows that κ2(AR̂−1) ≤ 2κ2(SQA). Fur-
thermore, also by Lemma 3.1, we find

(3.8) κ2(R̂) ≤ κ2(R) + ε1
1− ε1

≤ 1

2
(3κ2(SQA)κ2(A) + 1) <

1

2

(
1

C1
+ 1

)
.

By using the fact that m > s > n, we can show that C1 > (m+n3/2)γn, which can be
substituted into (3.8). One can use the bound on κ2(R̂) to then bound ϕ(R̂), defined
in (3.5), as

ϕ(R̂) =
nγnκ2(R̂)

1−
√
nγnκ2(R̂)

<

1
2n

(
1

m+n3/2 + γn

)
1− 1

2

√
n
(

1
m+n3/2 + γn

) =

√
nc(m,n)

1− c(m,n)
,

where

c(m,n) =
1

2

√
n

(
1

m+ n3/2
+ γn

)
.

4That is, compute the matrix-matrix product SA, compute its R factor by the Householder QR
algorithm, and finally compute the preconditioned matrix by solving AR−1 with forward substitution.

14

The assumptions in (3.6) imply that c(m,n) < (4
√
nκ2(SQA) + 1)−1, where we used

that n2u < 1/201, i.e. nγn < 1/200. Now we have that ϕ(R̂) < (4κ2(SQA))
−1 and so

ε2 ≤ ϕ(R̂)κ2(AR̂−1) ≤ κ2(SQA)ϕ(R̂)
1 + ε1
1− ε1

<
1

2
.

By Lemma 3.2, Ŷ is full rank and its condition number is bounded by

κ2(Ŷ) ≤ κ2(AR̂−1) + ε2
1− ε2

< 4κ2(SQA) + 1.

It is worth discussing the assumptions of Theorem 3.4. Consider the assumption
in (3.7). The k(S) term (see (3.4)) is a small constant depending on the particulars of
the embedding matrix. The constant C1 (see (3.4)) can be bounded by the product of
a low-degree polynomial in m, n, and s and the unit-round-off u, say C1 ≤ p(m,n, s)u.
We specifically have C1 = O(

√
sn(m +

√
sn)u), as γm = O(mu) and γ̃sn = O(snu).

In classical stability analysis, this polynomial term p(m,n, s) can be more or less
ignored. As a result, a condition of the form κ2(A) < (p(m,n, s)u)−1 is often loosely
restated as κ2(A) ≪ u−1.

The rationale behind ignoring these m, n, and s terms is that classic stability
analysis, as we performed in this section, provides us with worst-case bounds on
numerical errors. These are generally pessimistic [15]; composing n operations would
only result in an error of order nu if each rounding error is of the same sign and
of maximum magnitude [16]. We could improve these bounds by using probabilistic
backward error analysis, which would give us results proportional to

√
nu instead of

nu [16, 17]. However, it must be noted that even probabilistic stability analysis would
theoretically result in a large factor multiplied by u.

The other assumptions of Theorem 3.4, in (3.6), are reasonable in practice. The
condition number of SQA is generally observed to be bounded by a modest number,
such as 5 or 10, with high probability. Furthermore, we assume that the problem di-
mensions are small compared to the unit round-off. Most importantly, Theorem 3.4
informs us that, provided that κ2(A) ≪ u−1, the condition number of the precondi-
tioned matrix is independent of κ2(A) (with high probability).

3.4. The backward error of sketch-and-apply Blendenpik. Until now, we
have only considered the condition number of the preconditioned matrix AP . The
analysis in this section related rounding errors incurred in the final steps — solving
(AR−1)z = b with LSQR and computing x = R−1z with back substitution — to
the backward error of sketch-and-apply. It is not immediate that the last step in the
algorithm preserves the numerical stability of the algorithm. After all, solving linear
systems with R in LSQR iterations is one potential reason for the numerical instability
of sketch-and-precondition Blendenpik. Nonetheless, we show that sketch-and-apply
Blendenpik performs as well as LSQR on very well-conditioned matrices and that the
numerical error in the last step is O(u) instead of O(uκ2(A)) (see Theorem 3.5).

Throughout this analysis, we will not consider a sketch-and-solve initialization
and consider stability properties from any starting point.

We show that the backward error in sketch-and-apply Blendenpik is of the same
order as the backward error from unpreconditioned LSQR with fl(AR−1), under the
assumptions of Theorem 3.4.

Theorem 3.5. Assume the embedding matrix S ∈ Rs×m and A ∈ Rm×n satisfy
assumptions (3.6) and (3.7) in Theorem 3.4. Apply Algorithm 1.3 and assume that

15

LSQR terminates at an iterate ẑ that satisfies the backward error5

(3.9) ẑ = (Ŷ +∆Ŷ)†(b+ δb).

Then, the computed solution x̂ to Ax = b has the backward error (A+∆A)x̂ = b+ δb
satisfying

∥∆A∥2 < ∥S∥2∥A∥2
(
6.04nγn∥(SQA)

†∥2 + 2.01∥∆Ŷ ∥2
)
.

Proof. The final step of Algorithm 1.3 involves solving the triangular system
R̂x = ẑ. We know from (2.6) that the computed solution x̂ satisfies

(R̂+∆R̂)x̂ = ẑ, ∥∆R̂∥2 ≤ γn
√
n∥R̂∥2.

We now have

x̂ = (R̂+∆R̂)−1ẑ = (R̂+∆R̂)−1(Ŷ +∆Ŷ)†(b+ δb) = (A+∆A)†(b+ δb),

where ∆A = (Ŷ R̂−A)+∆Ŷ R̂+ Ŷ∆R̂+∆Ŷ∆R̂. For the Ŷ R̂−A term we have that
each row satisfies

ŷTi R̂− aTi = −ŷTi ∆iR̂, |∆iR̂| ≤ γn|R̂|,

so that ∥Ŷ R̂−A∥2 ≤ nγn∥R̂∥2∥Ŷ ∥2. It follows that

∥∆A∥2 ≤ ∥R̂∥2
(
(n+

√
n)γn∥Ŷ ∥2 + (1 +

√
nγn)∥∆Ŷ ∥2

)
,

where ∥R̂∥2 ≤ (1 + C1)∥S∥2∥A∥2 < 2∥S∥2∥A∥2, and

∥Ŷ ∥2 ≤ ∥AR̂−1∥2 + ∥∆Y ∥2 ≤
(
1 + ϕ(R̂)

) ∥(SQA)
†∥2

1− ε1
< 1.51∥(SQA)

†∥2,

where the last inequality follows from the assumptions (3.6) and (3.7). We obtain

∥∆A∥ ≤ 2∥S∥2∥A∥2
(
3.02nγn∥(SQA)

†∥2 + 1.005∥∆Ŷ ∥2
)
,

where we used that n+
√
n ≤ 2n and

√
nγn ≤ nγn ≤ 1/200 by (3.6).

The moral of Theorem 3.5 is that sketch-and-apply Blendenpik is backward stable
as long as LSQR on Ŷ is backward stable, that is, ∥∆Ŷ ∥2 and ∥δb∥2/∥b∥2 are both
O(u) in (3.9). Under the conditions of Theorem 3.5, the matrix Ŷ is well-conditioned
with high probability. The backward stability of LSQR on a well-conditioned ma-
trix is not an undisputedly clear fact. Practical evidence is abundant and several
studies [3, 10, 11, 12, 22] have addressed the convergence of the conjugate gradient
(CG) method (LSQR is a stable implementation of CG applied to the normal equa-
tion), we are unaware of a precise result that proves CG (or LSQR) applied to a
well-conditioned system is backward stable. Such stability analysis would depend on
the precise implementation of the algorithm (see section 6).

Remarkably, the final step of the algorithm does not influence the accuracy of the
solution, i.e., solving Rx = y with back substitution. This is despite the fact that
R is ill-conditioned when A is. The mechanism with which stability is established is
similar to the backward stability of an algorithm based on repeated CholeskyQR [33].

5Note that the backward error term ∆Ŷ is not the same as the numerical error ∆Y resulting
from solving the triangular system Y = AR̂−1 in finite precision.

16

4. On the numerical stability of smoothed sketch-and-apply Blenden-
pik. We now analyze smoothed sketch-and-apply Blendenpik (see Algorithm 1.4).
When κ2(A) ≪ 1/u, Theorem 3.4 states that sketch-and-apply computes a precondi-
tioned matrix with a condition number independent of κ2(A) with high probability.
Moreover, we can reliably estimate κ2(A) by κ2(SA). We do not have a guarantee on
the stability of sketch-and-apply Blendenpik if κ2(A) ≳ 1/u. It is in this context that
we consider smoothing.

One could consider Algorithm 1.4 from two points of view. Firstly, a practitioner
may add an O(u∥A∥2) Gaussian perturbation to a severely ill-conditioned problem.
As a result, the perturbed problem can be accurately solved with sketch-and-apply.
Secondly, floating point errors arising from the representation of any matrix in finite
precision could be modeled as a Gaussian perturbation and then smoothing partially
explains the success of sketch-and-apply to highly ill-conditioned LS problems.

4.1. Bounding κ2(Ŷ). Similar to the stability analysis in section 3, we have
the following steps in finite precision after we have smoothed A:

1. Ã = A+ σG/
√
m,

2. B̂ = SÃ+ E1,
3. Q̃R̂ = B̂ + E2,
4. Ŷ = ÃR̂−1 +∆Y ,

where the hats denote that we are accounting for rounding errors and the scaling
parameter σ controls how much A is perturbed. Assuming σ is sufficiently large to
ensure that Ã satisfies (3.7), we then show that the stability analysis from section 3
carries over to Ã.

The following theorem tells us how large σ needs to be.

Theorem 4.1. Let A ∈ Rm×n with m ≥ 3n, S ∈ Rs×n have linearly independent
rows, and let m > s > n. Set

(4.1) Ã = A+ σG/
√
m, σ = 52∥A∥2k(S)sm

√
nu,

where G ∈ Rm×n is a standard Gaussian matrix with i.i.d. entries, k(S) is defined
in (3.4) and u is the unit round-off. Let Ã = QÃRÃ and SÃ = QR be economized

QR factorizations of Ã and B = SÃ, respectively. Lastly, assume that6

(4.2) κ2(SQÃ) < 49,
m

n
+
√
n > 200, smu < 1/67.

Now compute first the product SÃ, then the upper triangular factor R by the House-
holder QR algorithm on SÃ, and finally compute Ŷ = ÃR−1 with forward substitution.
Assume all computations are performed in finite precision. Then,

P
(
κ2(Ŷ) > 4κ2(SQÃ) + 1

)
< 2n−m.

Proof. We start by showing that σ in (4.1) is sufficiently large to ensure that Ã
satisfies (3.7) in Theorem 3.4. To this end, note the assumptions in (4.2) imply that
mu < 1/64 and csnu < 1/64 so that we have γm < 1.02mu and γ̃sn < 1.02csnu <
1.02smu. We can then bound C1 defined in (3.4) as

C1 < 1.02× 65sm(1 +
√
n)u/64 < 2.1sm

√
nu.

6We also assume that cn < m for the same integer c defined in γ̃sn to simplify the notation.

17

As a result

P
(
κ2(Ã) >

1

3C1k(S)

)
< P

(
κ2(Ã) >

8.25

52k(S)sm
√
nu

)
< 2n−m.

The final result on κ2(Ŷ) follows by applying Theorem 3.4 to Ã, which is possible
since the last assumption in (4.2) is stronger than nu < 1/201.

Theorem 4.1 shows that the magnitude of the perturbation σG/
√
m needs to be

approximately O(sm
√
nu) to ensure the condition number of Ã is sufficiently small,

that is, κ2(A) < 1/u. The low-degree polynomial term sm
√
n arises from (3.7), which

includes the constant C1 = O(
√
sn(m +

√
sn)u). As discussed in subsection 3.4,

these are often pessimistic bounds. Probabilistic error analysis provides a theoretical
justification to select σ proportional to

√
smn1/4u. This may still be a relatively large

perturbation if the dimensions of the problem are enormous, enlarging the backward
error to an unacceptable level (see subsection 4.2).

4.2. The backward error of smoothed sketch-and-apply Blendenpik.
In subsection 4.1, we showed that a small additive random perturbation to a small-
skinny matrix ensures that the condition number of the perturbed matrix is sufficiently
small. This allows us to conclude that κ2(Ŷ) is small with high probability. We now
show that smoothed sketch-and-apply Blendenpik (see Algorithm 1.4) computes a
backward error similar to Theorem 3.5 with an additional term from the additive
perturbation.

Theorem 4.2. Assume the same setup as in Theorem 4.1. Apply Algorithm 1.3
to Ãx = b and assume LSQR terminates at an iterate ẑ that satisfies the backward
error

ẑ = (Ŷ +∆Ŷ)†(b+ δb).

Then, the computed solution x̂ to Ax = b has the backward error (A+∆A)x̂ = b+ δb
satisfying

(4.3) ∥∆A∥2 ≤ ∥A∥2
[
∥S∥2

(
1 + 197k(S)sm

√
nu

)
(
6.04nγn∥(SQÃ)

†∥2 + 2.01∥∆Ŷ ∥2
)
+ 197k(S)sm

√
nu

]
with probability at least 1− 2n−m − 10−3.

Proof. We combine Theorem 3.5 and Theorem 4.1 to obtain the result. Addition-
ally, we use the following classic result in the analysis of Gaussian matrices [9]:

P
(
∥G∥2/

√
m > 1 +

√
n

m
+

t√
m

)
≤ e−t2/2,

applied with t = 3.8. This shows ∥Ã∥2 ≤ ∥A∥2 + σ∥G∥2/
√
m ≤ ∥A∥2 + 3.78σ with

probability at least 10−3, where σ = 52∥A∥2k(S)sm
√
nu.

Theorem 4.2 allows us to conclude that under mild assumptions, smoothed sketch-
and-apply Blendenpik results in a backward error of the same order as the backward
error of unpreconditioned LSQR on Ŷ z = b. Under the conditions of the theorem, Ŷ

18

is indeed a well-conditioned matrix and LSQR is expected to obtain backward stable
solutions. We removed the assumptions on κ2(A).

Theorem 4.2 suggests that the perturbation needs to be of size O(sm
√
nu). This

would be impermissible for many problems, especially if the dimensions are large.
We recommend a perturbation of magnitude approximately 10∥A∥2u. Although we
lack the theoretical evidence for this choice, it works in our experiments (see subsec-
tion 5.2).

Smoothing an LS problem should be done with much caution. There are many
contexts where κ2(A) > u−1, yet perturbing the problem is unnecessary. For instance,
if the ill-conditioning is caused by poor column scaling, sketch-and-apply will still
compute accurate solutions without smoothing (see section 6). In this sense, κ2(A)
is not an effective predictor of whether smoothing will be beneficial. We suggest one
should smooth only if sketch-and-apply does not converge (see Algorithm 5.1).

5. Master sketch-and-apply algorithm and numerical experiments. We
now present the implementation of the sketch-and-apply algorithms (see Algorithm 5.1)
in a similar fashion to the overall solver in Blendenpik [1]. We perform the standard
initial steps, i.e., drawing an embedding matrix S, computing the sketch SA, and com-
puting the QR factorization QR = SA using the Householder QR algorithm. Next,
we compute the preconditioned matrix Y = AR−1 explicitly with forward substitu-
tion and use (unpreconditioned) LSQR to solve Y z = b. We include sketch-and-solve
initialization in this algorithm to speed up convergence. This step consists of comput-
ing z0 = QTSb. If LSQR converges to the desired tolerance, we compute x = R−1z
with back substitution. In this case, we assume our algorithm computed a backward
stable solution.

In the case where LSQR does not converge, we perturb/smooth A. We com-
pute Ã = A + σG/

√
m for a Gaussian matrix G with σ = 10∥A∥2u and perform

the sketch-and-apply steps including a sketch-and-solve initial guess on Ãx = b. We
recommend doing this because there are examples, although rare, where sketch-and-
apply Blendenpik converges to an accurate solution only after smoothing (see subsec-
tion 5.2). The spectral norm of A can be estimated, for instance, with the sketch SA
or using the power method.

It should be noted that without smoothing, LSQR iteration can converge to a
solution with a sub-optimal residual (see Figure 5.3 (right)). However, it is infeasible
to compute the backward error when m is large as it requires computing the smallest
singular value of an m×(m+n) matrix (although it is possible to reduce the cost [14]).
If the residual obtained from sketch-and-apply is less accurate than desired, one could
estimate the condition number of A via the condition number of R. If the condition
number estimate of R is of the same order of magnitude as u−1, then the problem
is severely ill-conditioned and one could try smoothing to potentially improve the
accuracy of the computed solution. Smoothing can improve the convergence rate of
LSQR, even if sketch-and-apply obtains a backward stable solution without smoothing
(see Figure 5.2). Nonetheless one should be careful with smoothing because exam-
ples exist where κ2(A) is large but smoothing remains unnecessary (see Figure 5.2).
Exactly when and when not to smooth remains unclear.

5.1. Numerical experiments with sketch-and-apply Blendenpik. Now
we examine the performance of sketch-and-precondition Blendenpik with sketch-and-
solve initialization, sketch-and-apply Blendenpik with and without sketch-and-solve
initialization, and the QR-based direct solver. The experiment considers ill-conditioned
LS problems that are randomly generated (see subsection 1.4 for details on how A

19

Algorithm 5.1 Master algorithm for sketch-and-apply to solve (1.1). Here, HHQR
refers to the Householder QR algorithm.

1: Draw a random sketching matrix S ∈ Rs×m, where m ≫ s > n
2: Compute B = SA and c = Sb
3: Compute both Q and R of the QR factorization of B using HHQR
4: Compute Y = AR−1 with forward substitution
5: Compute initial guess z0 = QT c
6: Solve Y z = b with LSQR and no preconditioner and initial guess z0
7: if LSQR converges to the desired tolerance then
8: Compute x = R−1z with back substitution
9: else

10: Draw a random standard Gaussian matrix G ∈ Rm×n with i.i.d. entries
11: Compute Ã = A+ σG/

√
m for σ = 10∥A∥2u

12: Compute B = SÃ
13: Compute both Q and R of the QR factorization of B using HHQR
14: Compute Y = ÃR−1 with forward substitution
15: Compute initial guess z0 = QT c
16: Solve Y z = b with LSQR and no preconditioner and initial guess z0
17: Compute x = R−1z with back substitution
18: end if

and b are formed) and can be stored in local cache. The QR solver is implemented
with the qr and backslash \ (with R) commands in MATLAB. The execution times
are shown in Figure 5.1.

We find that on this scale, sketch-and-apply Blendenpik, especially with SAS,
is competitive relative to QR in terms of computational time. A sketch-and-solve
initialization improves the computing time as fewer iterations are needed. Sketch-
and-precondition with SAS is the computationally most efficient, and will in almost
all cases converge to a solution with optimal residual and backward error. For most
practical applications, this should remain the preferred option.

We furthermore note that sketch-and-apply (and sketch-and-precondition) algo-
rithms could outperform the direct QR method by a larger factor if it is expensive
to communicate with the matrix A. This context occurs, for example, when A is too
large to be stored in local cache and is instead stored on disk. Provided we obtain
a good sketch of A, the number of iterations in LSQR before convergence will be
modest, requiring limited streaming. The QR method, however, requires n views for
an m× n matrix.

5.2. Numerical experiments with smoothed sketch-and-apply Blenden-
pik. Sketch-and-precondition Blendenpik with initialization, sketch-and-apply Blenden-
pik, its smoothed version, and Householder QR can compute accurate solutions to LS
problems, even when κ2(A) > 1/u (see Figure 5.2, the problems are generated as
explained in subsection 1.4). Therefore, smoothing is only sometimes required for
extremely ill-conditioned least squares problems. However, even when smoothing is
unnecessary, there is some potential benefit to smoothing because the perturbed LS
problem can lead to rapid LSQR convergence. Of course, there is a trade-off here
as one converges rapidly to an accurate solution of the perturbed problem, and the
computed solution may be less accurate for the original LS problem of interest.

However, there are also examples for which smoothing provides a more accurate

20

10
4

10
5

10
6

0.5

1

1.5

2

2.5

3

10
3

0.5

1

1.5

2

2.5

3

3.5

Fig. 5.1: The relative execution time to solve large LS problems using sketch-and-
precondition Blendenpik with sketch-and-solve initialization (SAS), sketch-and-apply
Blendenpik, sketch-and-apply Blendenpik with SAS, and Householder QR. For each
problem κ(A) = 1010 and the noise level ∥e∥2 = 10−10. The tolerance is set to 10−12

and the maximum number of iterations to 100 (this is never reached). Left: Timings
for n = 4000 and 212 ≤ m ≤ 220. Right: Timings for m = 106 and 27 ≤ n ≤ 212.

0 10 20 30 40 50
10

-15

10
-10

10
-5

10
0

0 10 20 30 40 50 60 70
10

-15

10
-10

10
-5

10
0

Fig. 5.2: Smoothing is not always needed for LS problems with κ2(A) > 1/u. These
matrices are formed by drawing singular vectors from the Haar distribution and letting
the singular values decay exponentially from 1 to 1/κ2(A). For comparison, we show
the residual error computed by Householder QR. These problems are so ill-conditioned
that the backward error is not an informative measure, i.e., most computed solutions
(e.g., with very few LSQR iterations) give a backward error O(u).

solution to the original problem of minx ∥Ax− b∥, not minx ∥Ãx− b∥ (see Figure 5.3).
For example, we take an LS problem involving a 1000×100 Kahan matrix with θ = 1.1
from the MATLAB gallery collection and another one involving a column-scaled
1000 × 10 Vandermonde matrix involving equally spaced points between −1 and 1.
The Kahan and Vandermonde matrices are designed so that their condition numbers
are > 1/u. Without smoothing, even the QR-based algorithm fails to compute an
accurate solution along with all the other methods. This is because the problem is

21

so ill-conditioned that even a backward stable solution can behave wildly. However,
after smoothing, sketch-and-apply Blendenpik computes an accurate solution to the
original LS problems. It should be noted that one could also smooth before solving
the problems with QR to obtain more accurate solutions.

0 2 4 6 8 10
10

-20

10
0

10
20

10
40

10
60

10
80

10
100

10
120

0 10 20 30 40 50 60

10
-15

10
-10

10
-5

10
0

Fig. 5.3: Smoothing can solve extremely ill-conditioned LS problems, even when
sketch-and-apply Blendenpik and Householder QR cannot. For the Vandermonde
matrix, we can only obtain accurate solutions using a smoothed algorithm (note the
y-axis). The problem with the Kahan matrix can only be solved optimally with
certain sketch-and-apply variations; the initialized sketch-and-precondition algorithm
and standard sketch-and-apply attain sub-optimal residuals. Again, these problems
are too ill-conditioned for the backward error to be informative.

5.3. Sparse matrices. We briefly discuss the performance of the various algo-
rithms in question on sparse matrices. Firstly, it should be noted that any sketch-and-
apply variant will not respect the sparsity: the matrix Y = AR−1 is generally dense.
As a result, convergence will be slower and computational cost will be unnecessarily
high. Remarkably, Figure 5.4 shows that standard sketch-and-precondition can be
numerically stable for sparse matrices with few non-zero entries. It appears that if
nnz(A) is sufficiently small, the rounding errors compound less and the algorithm finds
accurate solutions. A precise explanation is left for future work. Unsurprisingly, all
algorithms with sketch-and-solve initialization converge rapidly to accurate solutions.

6. Discussion. We have shown that sketch-and-precondition algorithms, such
as Blendenpik [1], are numerically unstable in their standard form for solving LS
problems. We have stabilized the algorithm by explicitly computing the precondi-
tioned matrix AP and using an unpreconditioned iterative solver on AP . We coined
this modification sketch-and-apply. We furthermore displayed that using sketch-and-
solve initialization greatly improves convergence properties as well as the maximal
attainable accuracy of sketch-and-precondition.

6.1. The effectiveness of sketch-and-solve initialization. Although a large
part of this work was dedicated to investigating the (provable) numerical stability of
sketch-and-apply and its smoothed version, one of the main messages—especially
for practitioners—should be the remarkable effectiveness of the sketch-and-solve ini-
tial guess. Apart from extremely ill-conditioned cases (see Figure 5.3), sketch-and-

22

0 10 20 30 40 50

10
-15

10
-10

10
-5

10
0

0 10 20 30 40 50

10
-15

10
-10

10
-5

10
0

Fig. 5.4: Sketch-and-apply algorithms cannot take advantage of sparsity of A. Note
that sketch-and-precondition without sketch-and-solve initialization can lead to accu-
rate solutions for sparse matrices with few non-zero entries (left figure). This behavior
depends nontrivially on the sparsity etc; in the right figure, we observe the numerical
instabilities we have seen throughout this work.

precondition with a sketch-and-solve initial guess attains accurate solutions in terms
of residual, albeit not always backward stable. We urge practitioners to always
choose Algorithm 1.2 over Algorithm 1.1, as the additional cost is minimal but it
results in a better rate of convergence and better maximal attainable accuracy.

6.2. The numerical stability of data-driven preconditioners. The numer-
ical instabilities observed in sketch-and-precondition Blendenpik raise larger questions
on the stability of iterative methods with data-driven preconditioners for LS prob-
lems. Here, we refer to a data-driven preconditioner as a preconditioner constructed
directly from A, without knowing where A came from (such as the discretization of a
continuous problem). Figure 1.2 shows that even using RA (where A = QARA) as a
preconditioner—the perfect data-driven preconditioner—does not lead to a backward
stable solution. We suspect this is due to the numerical errors incurred each time
the ill-conditioned preconditioner is applied in an iterative solver. Is it possible for a
data-driven preconditioner to avoid compounding these rounding errors?

6.3. The numerical stability of iterative least squares solvers. As to the
numerical stability of sketch-and-apply, we were not able to state that the backward
error ∥∆A∥2 is O(u∥A∥2) (see Theorems 3.5 and 4.2). Instead, we have shown that
∥∆A∥2/∥A∥2 is of the same order as the backward error ∥∆Ŷ ∥ incurred when Ŷ z = b
is solved with unpreconditioned LSQR, where Ŷ is well-conditioned. It has proven
challenging to understand the literature on the numerical stability of CG-like itera-
tive solvers such as LSQR. Various works seem to strongly hint at backward stability
under assumptions on the condition number, but use computational results to comple-
ment the claim, see [3, 11]. The numerical stability depends strongly on the specific
implementation used in a way that we are yet to understand fully. We note that a
recent result by Musco, Musco and Sidford [23, Thm. 2.1], when specialized to well-
conditioned positive definite linear systems, implies that ϵ forward error is achieved
by using O(log 1

ϵ) bits, with Lanczos with modified Gram-Schmidt orthogonalization.
For well-conditioned linear systems, taking ϵ = u this would imply the solution has
an O(u) backward error, hence backward stable.

23

6.4. Variants of sketch-and-precondition. We have assumed specific choices
for how the randomized preconditioner is constructed. In LSRN [21], for instance,
the preconditioner is chosen to be P = V Σ−1, where SA = UΣV T is the SVD of
the sketch. Numerical experiments show us that SVD-based sketch-and-precondition
methods incur similar numerical instabilities as the QR-based variant. The sketch-
and-apply technique can also be used with LSRN ideas where the preconditioned
matrix is computed as Y = AV Σ−1. We suspect one can also prove similar results
to our sketch-and-apply Blendenpik analysis for sketch-and-apply LSRN. Versions of
Lemmas 3.1 and 3.2 hold almost identically for LSRN, with R replaced by ΣV . The
key difference is the numerical errors ε1 and ε2, which we have not investigated. Since
computing the SVD is typically more expensive than a QR factorization, we recom-
mend sketch-and-apply Blendenpik. One notable exception is when solving a sequence
of Tikhonov regularized LS problems for various regularization parameters [20, 21].

6.5. Ill-conditioning caused by poor column scaling. If the ill-conditioning
in an LS problem is caused by poor column scaling in A, we strongly recommend
using QR-based sketch-and-apply techniques. The reason is that computing AR−1

is invariant to column scaling, while the SVD is not. In fact, the assumption that
κ2(A) ≪ u−1 in section 3 can be replaced by

min
D

{κ2(AD) : D = diag(bki), ki ∈ Z, i = 1, . . . , n} ≪ u−1,

where b is the machine base (usually b = 2). Of course, one can also pre-process an
LS problem by scaling the columns of A by powers of the machine base so that each
column has a norm that is close to 1.

Acknowledgments. We thank Erin Carson and Zdeněk Strakoš for their valu-
able comments regarding the numerical stability of LSQR. We thank Françoise Tisseur
for her input on Blendenpik in finite precision arithmetic. We are indebted to Ilse
Ipsen and Michael Mahoney for their presentation and subsequent discussions on LS
problems, which occurred during the “Complexity of Matrix Computations” semi-
nar on 1st September 2021. We thank the referees and the editor for their valuable
comments. We are especially indebted to the referee who suggested trying sketch-
and-precondition with the sketch-and-solve initial guess.

REFERENCES

[1] H. Avron, P. Maymounkov, and S. Toledo. Blendenpik: Supercharging LAPACK’s least-squares
solver. SIAM J. Sci. Comput., 32(3):1217–1236, 1 2010.

[2] Å. Björck. Numerical Methods for Least Squares Problems. SIAM, 1996.
[3] Å. Björck, T. Elfving, and Z. Strakoš. Stability of conjugate gradient and Lanczos methods for

linear least squares problems. SIAM J. Mat. Anal. Appl., 19(3):720–736, 1998.
[4] C. Boutsidis and P. Drineas. Random projections for the nonnegative least-squares problem.

Lin. Alg. Appl., 431(5-7):760–771, 2009.
[5] P. Bürgisser and F. Cucker. Smoothed analysis of Moore–Penrose inversion. SIAM J. Mat.

Anal. Appl., 31(5):2769–2783, 2010.
[6] C. Cartis, J. Fiala, and Z. Shao. Hashing embeddings of optimal dimension, with applications

to linear least squares. arXiv:2105.11815, 2021.
[7] X.-W. Chang, C. C. Paige, and D. Titley-Péloquin. Stopping criteria for the iterative solution

of linear least squares problems. SIAM J. Mat. Anal. Appl., 31(2):831–852, 2009.
[8] K. L. Clarkson and D. P. Woodruff. Low-rank approximation and regression in input sparsity

time. J. ACM, 63(6):1–45, 2017.
[9] K. R. Davidson and S. J. Szarek. Local operator theory, random matrices and Banach spaces.

Handbook of the geometry of Banach spaces, 1(317-366):131, 2001.

24

[10] A. Greenbaum. Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences.
Lin. Alg. Appl., 113:7–63, 1989.

[11] A. Greenbaum. Estimating the attainable accuracy of recursively computed residual methods.
SIAM J. Mat. Anal. Appl., 18(3):535–551, 1997.

[12] A. Greenbaum and Z. Strakos. Predicting the behavior of finite precision Lanczos and conjugate
gradient computations. SIAM J. Mat. Anal. Appl., 13(1):121–137, 1992.

[13] N. Halko, P.-G. Martinsson, and J.A. Tropp. Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions. SIAM Rev., 53(2):217–
288, 2011.

[14] E. Hallman. Estimating the backward error for the least-squares problem with multiple right-
hand sides. Lin. Alg. Appl., 605:227–238, 2020.

[15] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, 2002.
[16] N. J. Higham and T. Mary. A new approach to probabilistic rounding error analysis. SIAM J.

Sci. Comput., 41(5):A2815–A2835, 2019.
[17] N. J. Higham and T. Mary. Sharper probabilistic backward error analysis for basic linear

algebra kernels with random data. SIAM J. Sci. Comput., 42(5):A3427–A3446, 2020.
[18] I. C. F. Ipsen and T. Wentworth. The effect of coherence on sampling from matrices with

orthonormal columns, and preconditioned least squares problems. SIAM J. Matrix Anal.
Appl., 35(4):1490–1520, 2014.

[19] P.-G. Martinsson and J. A. Tropp. Randomized numerical linear algebra: Foundations and
algorithms. Acta Numer., 29:403–572, 2020.

[20] M. Meier and Y. Nakatsukasa. Randomized algorithms for Tikhonov regularization in linear
least squares. arXiv:2203.07329, 2022.

[21] X. Meng, M. A. Saunders, and M. W. Mahoney. LSRN: A parallel iterative solver for strongly
over- or underdetermined systems. SIAM J. Sci. Comput., 36(2), 2014.

[22] G. Meurant and Z. Strakoš. The Lanczos and conjugate gradient algorithms in finite precision
arithmetic. Acta Numer., 15:471–542, 2006.

[23] C. Musco, C. Musco, and A. Sidford. Stability of the lanczos method for matrix function
approximation. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1605–1624. SIAM, 2018.

[24] C. C. Paige and M. A. Saunders. LSQR: An algorithm for sparse linear equations and sparse
least squares. ACM Trans. Math. Soft., 8(1):43–71, 1982.

[25] V. Rokhlin and M. Tygert. A fast randomized algorithm for overdetermined linear least-squares
regression. Proc. Nat. Acad. Sci., 105(36):13212–13217, 2008.

[26] G.-W. Stewart. Stability of the lanczos method for matrix function approximation. In Research,
Development, and LINPACK, Mathematical Software III, pages pp. 1–14. Academic Press,
1977.

[27] J. A. Tropp. Improved analysis of the subsampled randomized Hadamard transform. Adv.
Adapt. Data Anal., 3(01n02):115–126, 2011.

[28] J. A. Tropp. Randomized block Krylov methods for approximating extreme eigenvalues. Numer.
Math., 150(1):217–255, 2022.

[29] R. Vershynin. Introduction to the non-asymptotic analysis of random matrices.
arXiv:1011.3027, 2010.

[30] B. Waldén, R. Karlson, and J.-G. Sun. Optimal backward perturbation bounds for the linear
least squares problem. Numer. Lin. Alg. Appl., 2(3):271–286, 1995.

[31] A. J. Wathen and T. Rees. Chebyshev semi-iteration in preconditioning for problems including
the mass matrix. Electron. Trans. Numer. Anal, 34:125–135, 2008.

[32] D. P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends®
in Theoretical Computer Science, 10(1–2):1–157, 2014.

[33] Y. Yamamoto, Y. Nakatsukasa, Y. Yanagisawa, and T. Fukaya. Roundoff error analysis of the
Cholesky QR2 algorithm. Electron. Trans. Numer. Anal, 44:306–326, 2015.

25

	Introduction
	Sketch-and-precondition algorithms with a sketch-and-solve initialization
	Sketch-and-apply
	Sketch-and-solve initialization versus sketch-and-apply
	The numerical instabilities of sketch-and-precondition
	Paper structure

	Background material
	Sketch-and-precondition least squares solvers
	Sketch-and-solve initialization

	Sketching matrices
	Gaussian sketching matrices
	Subsampled randomized trigonometric transforms

	Numerical stability analysis
	Matrix-matrix multiplication
	Householder QR factorization
	Triangular system solving with substitution

	Smoothed analysis of condition numbers

	On the numerical stability of sketch-and-apply Blendenpik
	Bounding bold0mu mumu subsection2() in terms of numerical errors
	Bounding the numerical errors
	Bounding bold0mu mumu 2()
	The backward error of sketch-and-apply Blendenpik

	On the numerical stability of smoothed sketch-and-apply Blendenpik
	Bounding bold0mu mumu 2()
	The backward error of smoothed sketch-and-apply Blendenpik

	Master sketch-and-apply algorithm and numerical experiments
	Numerical experiments with sketch-and-apply Blendenpik
	Numerical experiments with smoothed sketch-and-apply Blendenpik
	Sparse matrices

	Discussion
	The effectiveness of sketch-and-solve initialization
	The numerical stability of data-driven preconditioners
	The numerical stability of iterative least squares solvers
	Variants of sketch-and-precondition
	Ill-conditioning caused by poor column scaling

	References

