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ON THE CONVERGENCE OF SOBOLEV GRADIENT FLOW FOR THE

GROSS-PITAEVSKII EIGENVALUE PROBLEM

ZIANG CHEN, JIANFENG LU, YULONG LU, AND XIANGXIONG ZHANG

Abstract. We study the convergences of three projected Sobolev gradient flows to the

ground state of the Gross-Pitaevskii eigenvalue problem. They are constructed as the gra-

dient flows of the Gross-Pitaevskii energy functional with respect to the H
1

0
-metric and

two other equivalent metrics on H1

0
, including the iterate-independent a0-metric and the

iterate-dependent au-metric. We first prove the energy dissipation property and the global

convergence to a critical point of the Gross-Pitaevskii energy for the discrete-time H
1 and

a0-gradient flow. We also prove local exponential convergence of all three schemes to the

ground state.

1. Introduction

This paper concerns the following nonlinear Schrödinger eigenvalue problem, also known as

the Gross-Pitaevskii [4, 14, 17, 25] eigenvalue problem:

(1.1)







−∆u+ V u+ β|u|2u = λu, in Ω,

u = 0, on ∂Ω,

where Ω is a bounded Lipschitz domain on R
d (d = 1, 2, 3), V : Ω → R is a non-negative

potential energy, and β ≥ 0. The Gross-Pitaevskii eigenvalue problem has been widely used

in the quantum physics community to represent the Bose-Einstein condensation [6, 11, 16, 24].

The wavefunction associated with a stationary state of the system can be described by an

eigenfunction u to (1.1), with the eigenvalue λ being the chemical potential.

Many numerical methods have been proposed to compute the ground state of the problem

(1.1), i.e., the L2-normalized eigenfunction corresponding to the smallest eigenvalue. Among

them, one of the most popular classes of methods is the discrete normalized gradient flow [5]

which applies the backward Euler time-discretization for the continuous L2-gradient flow of

the constrained energy. Several alternative gradient flows have been designed based on the

idea of tuning the geometry of the gradient flows, including the projected Sobolev gradient flow

[12,13,18,20,23,31] and the J-method [1,22]. Apart from the gradient-flow-based methods, self-

consistent field iteration [7,9,28] is another class of methods that solves the nonlinear eigenvalue

problem by iteratively solving a series of linearized eigenvalue problems. There have been other

works investigating numerical methods for the Gross-Pitaevskii equation, such as the analysis of

finite-dimensional approximation [32], error estimate [8], two-grid method [10], and multigrid

method [29, 30], just to name a few. Finally, let us also mention some analytical studies of
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the Gross-Pitaevskii equation/eigenvalue problem, e.g., the formal analytical solutions [27], the

stability [21], and the posteriori analysis [15].

In this work, we focus on the projected Sobolev gradient flow approach to computing the

ground state of (1.1). More specifically, the ground state of (1.1) is characterized by the

minimizer of the following variational problem:

(1.2) min
u∈H1

0 (Ω)
E(u) :=

∫

Ω

1

2
|∇u|2 +

1

2
V |u|2 +

β

4
|u|4, s.t. ‖u‖L2(Ω) = 1.

Motivated by Riemannian optimization, i.e., optimization subject to a Riemannian manifold

constraint, finding the ground state of (1.1) is equivalent to minimizing the energy functional

E(u) over an infinite dimensional Hilbert manifold M in H1
0 (Ω) defined by

M =
{

u ∈ H1
0 (Ω) : ‖u‖L2(Ω) = 1

}

.

The projected Sobolev gradient flow for solving (1.1) is defined as

(1.3) u′(t) = −∇R
XE(u(t)) = −PTuM,X(∇XE(u(t))),

where ∇R
XE(u(t)) is the Riemannian gradient of E associated with the inner product (·, ·)X

and the manifold M, i.e., the projection of the gradient ∇XE(u(t)) onto the tangent space

TuM. We are mainly interested in three projected Sobolev gradient flows that correspond

to (1.3) with different choices of inner products X : (i) the projected H1-gradient flow [23]

where (z, w)X = (z, w)H1
0 (Ω) = (∇z,∇w)L2(Ω); (ii) the projected a0-gradient flow [12] where

(z, w)X = (z, w)a0(Ω) =
∫

Ω
∇z · ∇w + V zw; and (iii) the projected au-gradient flow [20] where

(z, w)X = (z, w)au(Ω) =

∫

Ω

∇z · ∇w + V zw + β|u|2zw.

The primary goal of the paper is to prove the convergence property of the time-discretization

of the three projected Sobolev gradient flows above.

Prior work and our contribution. The work [23] established the global exponential con-

vergence of the continuous projected H1-gradient flow to a critical point of E. However, the

convergence analysis of its discrete version remained largely open. In fact, as stated in [20], even

the energy decay and the convergence to critical points was unclear for the discrete projected

H1-gradient flow. In addition, the convergence of the discrete projected a0-gradient flow has

not been proved in previous literature, though conjectured to be true from numerical studies.

One major contribution of this work is to prove the energy decay as well as the global conver-

gence to a critical point for the discrete projected H1 and a0-gradient flow. Moreover, for the

same schemes, we also obtained the local exponential convergence rate.

As for the projected au-gradient flow, the work [20] obtained a global exponential convergence

of the continuous flow to the ground state and also proved the global convergence (without a

rate) of its forward Euler discretization. In the recent work [31], the author obtained a local

exponential convergence of the discrete projected au-gradient flow under the assumption that

the discrete iterates are uniformly bounded in L∞(Ω). However, such an assumption is very

difficult to verify in practice. The second contribution of the current paper is to prove the local

exponential convergence of the discrete projected au-gradient flow without such an assumption.
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Let us also mention several previous works on minimizing related energy functionals with

more general spherical constraints. The local convergence for Hartree-Fock and Kohn-Sham

functionals over Grassmann manifold was established in [26]. In [2], the authors generalized the

approach in [31] to show a convergence result for Kohn-Sham functional over Stiefel manifold.

Organization. The rest of this paper will be organized as follows. In Section 2, we review three

discrete projected Sobolev gradient flows. In Section 3 we state the main convergence results

on the three gradient flows. Sections 4-5 are devoted to the proofs of the main convergence

results. The appendix contains some useful lemmas and auxiliary proofs of the main results.

2. Projected Sobolev Gradient Flow

This section reviews the projected Sobolev gradient descent for solving (1.1) or equiva-

lently (1.2), following [20, 31]; we refer to [20, 31] for more details. We remark that discrete

flows/schemes considered in this paper are discrete only in time and there is no spatial dis-

cretization in the scheme. The spatial discretization of the discrete projected Sobolev gradient

flow was given in [20] and references therein.

We would assume that V ∈ L∞(Ω) and without loss of generality, we further assume that

0 ≤ V ≤ Vmax < ∞. Notice that since we consider the dimension d ∈ {1, 2, 3}, the embedding

H1
0 (Ω) ⊂ L4(Ω) holds and the energy E(u) defined in (1.2) is finite for any u ∈ H1

0 (Ω). The

tangent space at the base u ∈ M is given by

TuM =
{

ξ ∈ H1
0 (Ω) : (u, ξ)L2(Ω) = 0

}

.

Recall that the problem (1.2) can be viewed as an optimization problem on the manifold M,

for which it is natural to consider the projected gradient method, i.e., update against the

Riemannian gradient direction in the tangent space and then retract the iterate back to the

manifold. The retraction map is clear in this setting:

R(u) =
u

‖u‖L2(Ω)

∈ M, ∀ u ∈ H1
0 (Ω)\{0}.

However, the Riemannian gradient would depend on the inner product we equip at u ∈ H1
0 (Ω),

which leads to different schemes, including H1-scheme [23], a0-scheme [12], and au-scheme [20],

that are described in the following subsections.

2.1. H1-scheme. Let H1
0 (Ω) be equipped with the inner product (u, v)H1

0 (Ω) := (∇u,∇v)L2(Ω).

For any w ∈ H1
0 (Ω), by Riesz representation theorem, there exists a unique GH1w ∈ H1

0 (Ω)

such that

(z,GH1w)H1
0 (Ω) = (z, w)L2(Ω), ∀ z ∈ H1

0 (Ω).

GH1 : H1
0 (Ω) → H1

0 (Ω) is named as the Green’s operator. In other words, u = GH1w is the

unique solution to −∆u = w in Ω with the boundary condition u = 0 on ∂Ω.

For any u ∈ M and h ∈ TuM, it holds that

(∇H1E(u), h)H1
0 (Ω) = lim

t→0

E(u + th)− E(u)

t
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= lim
t→0

1

t

(
∫

Ω

(

1

2
|∇u+ t∇h|2 +

1

2
V |u+ th|2 +

β

4
|u+ th|4

)

−

∫

Ω

(

1

2
|∇u|2 +

1

2
V |u|2 +

β

4
|u|4
))

= (∇u,∇h)L2(Ω) + (V u+ β|u|2u, h)L2(Ω)

=
(

u+ GH1 (V u+ β|u|2u), h
)

H1
0 (Ω)

,

which implies that the H1-gradient of the energy E(u) can be evaluated as

(2.1) ∇H1E(u) = u+ GH1 (V u+ β|u|2u).

The lemma below computes the projection of any ξ ∈ M on the tangent space TuM.

Lemma 2.1. Given u ∈ M and ξ ∈ H1
0 (Ω), the projection of ξ onto TuM, with respect to the

H1
0 -inner product, is

(2.2) PTuM,H1(ξ) = ξ −
(ξ, u)L2(Ω)

‖GH1u‖
2
H1

0 (Ω)

GH1u.

Proof. Let PTuM(ξ) be defined as in (2.2). First, PTuM(ξ) ∈ TuM since

(PTuM(ξ), u)L2(Ω) = (ξ, u)L2(Ω) −
(ξ, u)L2(Ω)

‖GH1u‖
2
H1

0 (Ω)

(GH1u, u)L2(Ω)

= (ξ, u)L2(Ω) − (ξ, u)L2(Ω) = 0.

In addition, for any η ∈ TuM, it follows from (GH1u, η)H1
0 (Ω) = (u, η)L2(Ω) = 0 that

(PTuM(ξ), η)H1
0 (Ω) = (ξ, η)H1

0 (Ω).

Therefore, PTuM(ξ) is the desired projection. �

Combining (2.1) and (2.2), we obtain the Riemannian gradient of E with respect to H1
0 -inner

product at u ∈ M:

∇R
H1E(u) = PTuM,H1(∇H1E(u)) = PTuM,H1

(

u+ GH1 (V u+ β|u|2u)
)

= u+ GH1 (V u+ β|u|2u)−
1 +

(

GH1 (V u+ β|u|2u), u
)

L2(Ω)

‖GH1u‖
2
H1

0 (Ω)

GH1u.

With the above, the projected H1-gradient descent is given by

(2.3) un+1 = R
(

un − α ∇R
H1E(un)

)

, n = 1, 2 · · · ,

where α is the stepsize.
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2.2. a0-scheme. Another choice of the inner product on H1
0 (Ω) is

(z, w)a0(Ω) =

∫

Ω

∇z · ∇w + V zw,

whose induced norm ‖·‖a0(Ω) is equivalent to ‖·‖H1
0 (Ω) since V ∈ L∞(Ω) and is non-negative.

Similarly, there exists a unique Green’s operator Ga0 : H1
0 (Ω) → H1

0 (Ω) such that

(z,Ga0w)a0(Ω) = (z, w)L2(Ω), ∀z ∈ H1
0 (Ω),

and the a0-gradient of E(u) is

∇a0E(u) = u+ βGa0(|u|
2u).

The project of ξ ∈ H1
0 (Ω) onto TuM, where u ∈ H1

0 (Ω), with respect to the a0-inner product,

also reads similarly:

PTuM,a0(ξ) = ξ −
(ξ, u)L2(Ω)

‖Ga0u‖
2
a0(Ω)

Ga0u,

and hence the a0-scheme iterates as

(2.4) un+1 = R
(

un − α ∇R
a0
E(un)

)

, n = 1, 2 · · · ,

where

∇R
a0
E(u) = PTuM,a0(∇a0E(u)) = PTuM,a0

(

u+ βGa0 (|u|
2u)
)

= u+ βGa0(|u|
2u)−

1 + β
(

Ga0(|u|
2u), u

)

L2(Ω)

‖Ga0u‖
2
a0(Ω)

Ga0u.

2.3. au-scheme. Now we turn to the derivation of another projected gradient flow with respect

to an inner product that varies in the base u ∈ H1
0 (Ω). One intuition is that one can have a

derivative neater than (2.1) when choosing the inner product carefully. More precisely, for a

given u ∈ H1
0 (Ω) we consider the inner product (·, ·)au defined by

(z, w)au(Ω) =

∫

Ω

∇z · ∇w + V zw + β|u|2zw,

with an associated Green’s operator Gau : H1
0 (Ω) → H1

0 (Ω) satisfying

(z,Gauw)au(Ω) = (z, w)L2(Ω), ∀z ∈ H1
0 (Ω).

Then it is straightforward to show that the au-gradient of the energy E is given by

∇auE(u) = u.

Similar to Lemma 2.1, for u ∈ M and ξ ∈ H1
0 (Ω), the projection of ξ onto TuM, with respect

to the au-inner product, is

PTuM,au(ξ) = ξ −
(ξ, u)L2(Ω)

‖Gauu‖
2
au(Ω)

Gauu.

Therefore, the corresponding Riemannian gradient with respect to the au-inner product at

u ∈ M can be computed as:

∇R
au
E(u) = PTuM,au(∇auE(u)) = u−

1

‖Gauu‖
2
au(Ω)

Gauu,
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which leads to the projected au-gradient descent scheme

(2.5) un+1 = R
(

un − α ∇R
aun

E(u)
)

, n = 1, 2 · · · .

3. Main Results

In this section, we state our main results on the convergence of theH1-scheme, the a0-scheme,

and the au-scheme. All convergent results we establish are in sense of strong convergence with

respect to the H1
0 (Ω) norm.

3.1. Global convergence. It is proved in [20] that for au-scheme (2.5) with proper stepsizes,

the energy decays along the iterations, i.e., E(un+1) ≤ E(un), and the sequence {un}
∞
n=0 has

a subsequence that converges in H1
0 (Ω) to a critical point of (1.2). However, as mentioned in

[20], it was an open question whether the iterates {un}
∞
n=0 generated by the H1-scheme (2.3)

or the a0-scheme (2.4) converge to critical points with decaying energy. We give an affirmative

answer to this question in Theorems 3.1, 3.2, 3.3, and 3.4.

Theorem 3.1 (Energy decay for H1-scheme). Suppose that d ∈ {1, 2, 3} and that u0 ∈ M ⊂

H1
0 (Ω). Let {un}

∞
n=0 ⊂ M be the iterates generated by the H1-scheme (2.3) starting at u0.

There exist constants Cu, Cg, and Cα ≤ 1 depending only on Ω, d, β, V , and ‖u0‖H1
0 (Ω), such

that as long as the step size satisfies 0 < αmin ≤ αn ≤ αmax ≤ Cα, ∀ n ≥ 0, the followings hold

for any n ≥ 0:

(i) ‖un‖H1
0 (Ω) ≤ Cu.

(ii)
∥

∥∇R
H1E(un)

∥

∥

H1
0 (Ω)

≤ ‖∇H1E(un)‖H1
0 (Ω) ≤ Cg.

(iii) E(un)− E(un+1) ≥
αmin

2

∥

∥∇R
H1E(un)

∥

∥

2

H1
0 (Ω)

.

Theorem 3.2 (Energy decay for a0-scheme). Suppose that d ∈ {1, 2, 3} and that u0 ∈ M ⊂

H1
0 (Ω). Let {un}

∞
n=0 ⊂ M be the iterates generated by the a0-scheme (2.4) starting at u0.

There exist constants Cu, Cg, and Cα ≤ 1 depending only on Ω, d, β, V , and ‖u0‖H1
0 (Ω), such

that as long as the step size satisfies 0 < αmin ≤ αn ≤ αmax ≤ Cα, ∀ n ≥ 0, the followings hold

for any n ≥ 0:

(i) ‖un‖a0(Ω) ≤ Cu.

(ii)
∥

∥∇R
a0
E(un)

∥

∥

a0(Ω)
≤ ‖∇a0E(un)‖a0(Ω) ≤ Cg.

(iii) E(un)− E(un+1) ≥
αmin

2

∥

∥∇R
a0
E(un)

∥

∥

2

a0(Ω)
.

The boundedness of {un} as in Theorem 3.1 (i) or Theorem 3.2 (i) implies that the sequence

{un} has weak limits in H1
0 (Ω) (‖·‖H1

0 (Ω) and ‖·‖a0(Ω) are equivalent as in Lemma A.1), and

the following theorems show that any weak limit is a critical point of E.

Theorem 3.3 (Global convergence for H1-scheme). Under the same assumptions of Theo-

rem 3.1, for any weak limit u∗ of {un}
∞
n=0 in H1

0 (Ω), u
∗ is a critical point of the problem (1.2),

i.e., ∇R
H1E(u∗) = 0, and {un}

∞
n=0 has a subsequence that converges to u∗ strongly in H1

0 (Ω).

Theorem 3.4 (Global convergence for a0-scheme). Under the same assumptions of Theo-

rem 3.2, for any weak limit u∗ of {un}
∞
n=0 in H1

0 (Ω), u
∗ is a critical point of the problem (1.2),

i.e., ∇R
a0
E(u∗) = 0, and {un}

∞
n=0 has a subsequence that converges to u∗ strongly in H1

0 (Ω).
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For the au-scheme, the energy decay property and the global convergence to critical points

are established in [20]. In addition, [20] provides a stronger global convergence result for au-

scheme: the whole sequence {un}
∞
n=0 converges to the ground state, not just a critical point of

the energy functional. The idea is that the au-scheme is positive preserving, i.e., un ≥ 0 implies

un+1 ≥ 0, and that the ground state is the unique positive eigenfunction of (1.1). However, the

positive preserving property is not guaranteed for the H1-scheme or the a0-scheme, and hence

the arguments in [20] for global convergence to ground state can not be applied directly to the

H1-scheme or the a0-scheme.

3.2. Fast local convergence. In this section, we always denote u∗ ∈ H1
0 (Ω) as the ground

state of the eigenvalue problem (1.1). Consider the linearized problem at u∗:

(3.1)







(

−∆+ V + β|u∗|2
)

u = λu, in Ω,

u = 0, on ∂Ω.

By [31, Theorem 3.1], u∗ is also the ground state of the linearized problem (3.1) and is Hölder

continuous, if Ω is convex Lipschitz or ∂Ω is smooth.

Assumption 3.5 (Positive eigengap for the linearized problem). Let λ0 and λ1 be the smallest

and the second smallest eigenvalue of the problem (3.1), respectively. We assume that λ1 > λ0.

The existence of spectral gap of the linearized problem 3.1 in Assumption 3.5 can be verified

using the Krein-Rutman theorem under very mild assumption on the potential V ; see e.g. [3].

With the assumption above, we are ready to state the local exponential convergence of both

H1-scheme and au-scheme.

Theorem 3.6 (Local convergence for H1-scheme). Suppose that assumptions made in Theo-

rem 3.1 and Assumption 3.5 hold. In addition assume that the stepsizes αn ≤ αmax where αmax

satisfies that

(3.2) 1 + L2
gα

2
max − αmax min

{

1,
λ1 − λ0

4λ0

}

< 1,

where Lg is a constant depending only on Ω, d, β, V , u∗, and ‖u0‖H1
0 (Ω). Then the sequence

{un}
∞
n=0 ⊂ M generated by the H1-scheme (2.3) with initial condition u0 close enough to u∗

converges exponentially in H1
0 (Ω) to the ground state u∗.

Theorem 3.7 (Local convergence for a0-scheme). Suppose that assumptions made in Theo-

rem 3.2 and Assumption 3.5 hold, and that αmax satisfies (3.2) for some constant Lg depending

only on Ω, d, β, V , u∗, and ‖u0‖H1
0 (Ω). Then the sequence {un}

∞
n=0 generated by the a0-scheme

(2.4) with initial condition u0 close enough to u∗ converges exponentially in H1
0 (Ω) to the ground

state u∗.

Theorem 3.8 (Local convergence for au-scheme). Suppose that Assumption 3.5 holds. There

exists constant Cα depending on Ω, d, β, V , and ‖u0‖H1
0 (Ω), and constant Lg depending on Ω,

d, β, V , u∗, and ‖u0‖H1
0 (Ω), such that if 0 < αmin ≤ αn ≤ αmax ≤ Cα with (3.2), then the

sequence {un}
∞
n=0 generated by the au-scheme (2.5) with initial condition u0 close enough to

u∗ converges exponentially in H1
0 (Ω) to the ground state u∗.
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Theorem 3.6 is to the best of our knowledge the first quantitative convergence result on the

H1-scheme (for previous qualitative convergence results, see [20,23]). The result in Theorem 3.8

recovers the same exponential convergence result of [31] but without making extra boundedness

assumption on the iterates in L∞(Ω), which cannot be guaranteed. We remark that the spectral

gap assumption is essential and necessary to obtain exponential convergence even for inverse

iterations of linear eigenvalue problems. On the technical level, the spectral gap guarantees

the locally strong convexity of the energy E with respect to the L2-norm; see Lemma 5.1. We

also refer to [19] for more discussions on the role of spectral gap assumption in convergence of

inverse iterations for nonlinear eigenvalue problems.

Let us remark that all three schemes we analyze in this work are semi-discretized schemes

without spatial discretization. The analysis of fully discretized schemes would be an interesting

future research direction.

4. Proof of Global Convergence

We prove Theorem 3.1 and Theorem 3.3 in this section and omit the proofs of Theorem 3.2

and Theorem 3.4 that follow almost the same lines, with the difference that all H1
0 -inner prod-

ucts and norms are replaced by a0-inner products and norms. Note that ‖·‖a0(Ω) is equivalent

to ‖·‖H1
0 (Ω) (see Lemma A.1).

4.1. Technical lemmas. We will frequently use the following Sobolev embeddings that hold

for d < 4:

‖u‖L4(Ω) ≤ C1 ‖u‖H1
0 (Ω) , ∀ u ∈ H1

0 (Ω),(4.1)

‖u‖H−1(Ω) ≤ C2 ‖u‖L4/3(Ω) , ∀ u ∈ L4/3(Ω).(4.2)

In addition, the Poincaré inequality holds for some C3 > 0:

(4.3) ‖u‖L2(Ω) ≤ C3 ‖u‖H1
0 (Ω) , ∀ u ∈ H1

0 (Ω).

Note that the constants C1, C2, and C3 only depend on Ω and d, and that the embeddings

H1
0 (Ω) ⊂⊂ L4(Ω) and H1

0 (Ω) ⊂⊂ L2(Ω) are both compact.

Lemma 4.1. For any u ∈ H1
0 (Ω), the followings hold:

(i) ‖GH1u‖H1
0 (Ω) ≤ ‖u‖H−1(Ω);

(ii) ‖GH1u‖H1
0 (Ω) ≤ C3 ‖u‖L2(Ω).

Proof. Let g = GH1u. Then

‖g‖
2
H1

0 (Ω) = (g,GH1u)H1
0 (Ω) = (g, u)L2(Ω) ≤ ‖g‖H1

0 (Ω) ‖u‖H−1(Ω) ,

which implies ‖GH1u‖H1
0 (Ω) ≤ ‖u‖H−1(Ω). Combining the above equation with the Poincaré

inequality (4.3), one has

‖g‖L2(Ω) ‖g‖H1
0 (Ω) ≤ C3 ‖g‖

2
H1

0 (Ω) = C3(g, u)L2(Ω) ≤ C3 ‖g‖L2(Ω) ‖u‖L2(Ω) ,

for some constant C3. This implies ‖GH1u‖H1
0 (Ω) ≤ C3 ‖u‖L2(Ω). �
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Lemma 4.2. For any u ∈ M, it holds that
∥

∥∇R
H1E(u)

∥

∥

H1
0 (Ω)

≤ ‖∇H1E(u)‖H1
0 (Ω)

≤ ‖u‖H1
0 (Ω) + C3Vmax + βC3

1C2 ‖u‖
3
H1

0 (Ω) .
(4.4)

Proof. Note that

∇H1E(u) = ∇R
H1E(u) +

(∇H1E(u), u)L2(Ω)

‖GH1u‖
2
H1

0 (Ω)

GH1u,

and that
(

∇R
H1E(u),

(∇H1E(u), u)L2(Ω)

‖GH1u‖2H1
0 (Ω)

GH1u

)

H1
0 (Ω)

=
(∇H1E(u), u)L2(Ω)

‖GH1u‖
2
H1

0 (Ω)

(

∇R
H1E(u), u

)

L2(Ω)
= 0.

So it holds that

‖∇H1E(u)‖
2
H1

0 (Ω) =
∥

∥∇R
H1E(u)

∥

∥

2

H1
0 (Ω)

+

∥

∥

∥

∥

∥

(∇H1E(u), u)L2(Ω)

‖GH1u‖
2
H1

0 (Ω)

GH1u

∥

∥

∥

∥

∥

2

H1
0 (Ω)

,

which implies
∥

∥∇R
H1E(u)

∥

∥

H1
0 (Ω)

≤ ‖∇H1E(u)‖H1
0 (Ω) .

One also has that

‖∇H1E(u)‖H1
0 (Ω) ≤ ‖u‖H1

0 (Ω) + ‖GH1 (V u)‖H1
0 (Ω) + β

∥

∥GH1(|u|2u)
∥

∥

H1
0 (Ω)

≤ ‖u‖H1
0 (Ω) + C3 ‖V u‖L2(Ω) + β

∥

∥u3
∥

∥

H−1(Ω)

≤ ‖u‖H1
0 (Ω) + C3Vmax + βC2

∥

∥u3
∥

∥

L4/3(Ω)

= ‖u‖H1
0 (Ω) + C3Vmax + βC2 ‖u‖

3
L4(Ω)

≤ ‖u‖H1
0 (Ω) + C3Vmax + βC3

1C2 ‖u‖
3
H1

0 (Ω) ,

(4.5)

where we used Lemma 4.1. This proves (4.4). �

Lemma 4.3. For any u ∈ M and ξ ∈ TuM, it holds that

(4.6) ‖R(u+ ξ)− (u+ ξ)‖H1
0 (Ω) ≤

1

2
‖ξ‖

2
L2(Ω) ‖u+ ξ‖H1

0 (Ω) .

Proof. It follows from (u, ξ)L2(Ω) = 0 that ‖u+ ξ‖
2
L2(Ω) = ‖u‖

2
L2(Ω) + ‖ξ‖

2
L2(Ω) = 1 + ‖ξ‖

2
L2(Ω),

which implies that

R(u+ ξ)− (u+ ξ) =

(

1

‖u+ ξ‖L2(Ω)

− 1

)

(u+ ξ) =

(

(

1 + ‖ξ‖
2
L2(Ω)

)− 1
2

− 1

)

(u + ξ).

Set f(x) = (1 + x)−1/2. Then f ′(x) = − 1
2 (1 + x)−3/2 ≥ − 1

2 for all x ≥ 0. Therefore, one can

obtain that

0 ≥
(

1 + ‖ξ‖2L2(Ω)

)− 1
2

− 1 = f
(

‖ξ‖2L2(Ω)

)

− f(0)
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=

∫ ‖ξ‖2
L2(Ω)

0

f ′(x)dx ≥

∫ ‖ξ‖2
L2(Ω)

0

(

−
1

2

)

dx = −
1

2
‖ξ‖2L2(Ω) .

(4.6) then holds by combining the estimations above. �

Lemma 4.4. For any u, v ∈ H1
0 (Ω), it holds that

∣

∣

∣
E(u+ v)− E(u)− (∇H1E(u), v)H1

0 (Ω)

∣

∣

∣
≤

1 + C2
3Vmax

2
‖v‖2H1

0 (Ω)

+
3βC4

1

2
‖u‖2H1

0 (Ω) ‖v‖
2
H1

0 (Ω) + βC4
1 ‖u‖H1

0 (Ω) ‖v‖
3
H1

0 (Ω) +
βC4

1

4
‖v‖4H1

0 (Ω) .

Proof. We have

E(u+ v)− E(u)

=

∫

Ω

(

1

2
|∇u+∇v|2 −

1

2
|∇u|2

)

+

∫

Ω

(

1

2
V |u+ v|2 −

1

2
V |u|2

)

+

∫

Ω

(

β

4
|u+ v|4 −

β

4
|u|4
)

=

∫

Ω

(

∇u · ∇v + V uv + β|u|2uv
)

+
1

2

∫

Ω

(

|∇v|2 + V |v|2
)

+

∫

Ω

(

3β

2
|u|2|v|2 + β|v|2uv +

β

4
|v|4
)

=(∇H1E(u), v)H1
0 (Ω)

+
1

2

∫

Ω

(

|∇v|2 + V |v|2
)

+

∫

Ω

(

3β

2
|u|2|v|2 + β|v|2uv +

β

4
|v|4
)

,

which leads to
∣

∣

∣
E(u+ v)− E(u)− (∇H1E(u), v)H1

0 (Ω)

∣

∣

∣

≤
1

2

∫

Ω

(

|∇v|2 + V |v|2
)

+

∫

Ω

(

3β

2
|u|2|v|2 + β|u||v|3 +

β

4
|v|4
)

≤
1 + C2

3Vmax

2
‖v‖

2
H1

0 (Ω) +
3β

2
‖u‖

2
L4(Ω) ‖v‖

2
L4(Ω)

+ β ‖u‖L4(Ω) ‖v‖
3
L4(Ω) +

β

4
‖v‖

4
L4(Ω)

≤
1 + C2

3Vmax

2
‖v‖

2
H1

0 (Ω) +
3βC4

1

2
‖u‖

2
H1

0 (Ω) ‖v‖
2
H1

0 (Ω)

+ βC4
1 ‖u‖H1

0 (Ω) ‖v‖
3
H1

0 (Ω) +
βC4

1

4
‖v‖

4
H1

0 (Ω) .

�

4.2. Proofs of Theorem 3.1 and Theorem 3.3.

Proof of Theorem 3.1. Set

Cu =

(

(1 + C2
3Vmax) ‖u0‖

2
H1

0 (Ω) +
βC4

1

2
‖u0‖

4
H1

0 (Ω)

)1/2

,
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Cg = Cu + C3Vmax + βC3
1C2C

3
u,

and we will determine the constant Cα ≤ 1 later. Our goal is to prove the three conclusions in

Theorem 3.1, i.e.,

(i) ‖un‖H1
0 (Ω) ≤ Cu, ∀ n ≥ 0.

(ii)
∥

∥∇R
H1E(un)

∥

∥

H1
0 (Ω)

≤ ‖∇H1E(un)‖H1
0 (Ω) ≤ Cg, ∀ n ≥ 0.

(iii) E(un)− E(un+1) ≥
αmin

2

∥

∥∇R
H1E(un)

∥

∥

2

H1
0 (Ω)

, ∀ n ≥ 0.

We prove (i), (ii), and (iii) by induction. It is clear that (i) holds for n = 0. Suppose that (i)

holds for 0, 1, . . . , n and that (ii) and (iii) hold for 0, 1, . . . , n− 1. We aim to show that (ii) and

(iii) hold for n and that (i) holds for n+ 1.

It follows directly from Lemma 4.2 and (i) that (ii) holds for n. We focus on (iii) then.

Denote

gn = ∇R
H1E(un), and ũn = un − αn∇

R
H1E(un).

The iterative scheme is

un+1 = R(ũn) = R (un − αngn) = un − αngn +Rn = ũn +Rn,

where

(4.7) Rn = R (un − αngn)− (un − αngn) .

According to Lemma 4.3, it holds that

‖Rn‖H1
0 (Ω) ≤

α2
n

2
‖gn‖

2
L2(Ω) ‖un − αngn‖H1

0 (Ω)

≤
α2
n

2
(Cu + Cg)C

2
3 ‖gn‖

2
H1

0 (Ω) ≤
(Cu + Cg)C

2
3C

2
g

2
,

(4.8)

where we used αn ≤ Cα ≤ 1. Similar to (4.5) ‖∇H1E(ũn)‖H1
0 (Ω) can be upper bounded as

‖∇H1E(ũn)‖H1
0 (Ω) ≤ ‖ũn‖H1

0 (Ω) + C3Vmax ‖ũn‖L2(Ω) + βC3
1C2 ‖ũn‖

3
H1

0 (Ω)

≤ (1 + C2
3Vmax) ‖ũn‖H1

0 (Ω) + βC3
1C2 ‖ũn‖

3
H1

0 (Ω)

≤ (1 + C2
3Vmax)(Cu + Cg) + βC3

1C2(Cu + Cg)
3,

where we used ‖ũn‖H1
0 (Ω) ≤ ‖un‖H1

0 (Ω)+αn ‖gn‖H1
0 (Ω) ≤ Cu+Cg. Then using Lemma 4.4, one

can estimate that

|E(ũn)− E(ũn +Rn)|

≤
∣

∣

∣
(∇H1E(ũn), Rn)H1

0 (Ω)

∣

∣

∣
+

1 + C2
3Vmax

2
‖Rn‖

2
H1

0 (Ω) +
3βC4

1

2
‖ũn‖

2
H1

0 (Ω) ‖Rn‖
2
H1

0 (Ω)

+ βC4
1 ‖ũn‖H1

0 (Ω) ‖Rn‖
3
H1

0 (Ω) +
βC4

1

4
‖Rn‖

4
H1

0 (Ω)

≤‖Rn‖H1
0 (Ω)

(

‖∇H1E(ũn)‖H1
0 (Ω) +

1 + C2
3Vmax

2
‖Rn‖H1

0 (Ω)

+
3βC4

1

2
‖ũn‖

2
H1

0 (Ω) ‖Rn‖H1
0 (Ω) + βC4

1 ‖ũn‖H1
0 (Ω) ‖Rn‖

2
H1

0 (Ω) +
βC4

1

4
‖Rn‖

3
H1

0 (Ω)

)

≤α2
nCR ‖gn‖

2
H1

0 (Ω) ,
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where CR is a constant depending only on β, Cu, Cg, Vmax, C1, C2, and C3, and that
∣

∣

∣
E(un − αngn)− E(un)− (∇H1E(un),−αngn)H1

0 (Ω)

∣

∣

∣

≤
1 + C2

3Vmax

2
‖αngn‖

2
H1

0 (Ω) +
3βC4

1

2
‖un‖

2
H1

0 (Ω) ‖αngn‖
2
H1

0 (Ω)

+ βC4
1 ‖un‖H1

0 (Ω) ‖αngn‖
3
H1

0 (Ω) +
βC4

1

4
‖αngn‖

4
H1

0 (Ω)

≤α2
n ‖gn‖

2
H1

0 (Ω)

(

1 + C2
3Vmax

2
+

3βC4
1C

2
u

2
+ βC4

1CuCg +
βC4

1C
2
g

4

)

.

Combining the above two inequalities, one has

E(un)− E(un+1)

=E(un)− E(ũn) + E(ũn)− E(ũn +Rn)

≥αn(∇H1E(un), gn)H1
0 (Ω)

−
∣

∣

∣
E(un − αngn)− E(un)− (∇H1E(un),−αngn)H1

0 (Ω)

∣

∣

∣

− |E(ũn)− E(ũn +Rn)|

≥αn ‖gn‖
2
H1

0 (Ω)

− α2
n ‖gn‖

2
H1

0 (Ω)

(

1 + C2
3Vmax

2
+

3βC4
1C

2
u

2
+ βC4

1CuCg +
βC4

1C
2
g

4

)

− α2
nCR ‖gn‖

2
H1

0 (Ω)

≥
αmin

2
‖gn‖

2
H1

0 (Ω) ,

if

αmax

(

CR +
1 + C2

3Vmax

2
+

3βC4
1C

2
u

2
+ βC4

1CuCg +
βC4

1C
2
g

4

)

≤
1

2
,

which can be guaranteed by αmax ≤ Cα, where Cα is a sufficiently small constant. This means

that (iii) holds for n. Then we have that

‖un+1‖
2
H1

0 (Ω) ≤ 2E(un+1) ≤ 2E(un) ≤ · · · ≤ 2E(u0)

≤ ‖u0‖
2
H1

0 (Ω) + Vmax ‖u0‖
2
L2(Ω) +

β

2
‖u0‖

4
L4(Ω)

≤ (1 + C2
3Vmax) ‖u0‖

2
H1

0 (Ω) +
βC4

1

2
‖u0‖

4
H1

0 (Ω) ,

which implies that ‖un+1‖H1
0 (Ω) ≤ Cu, i.e., (i) holds for n+1. The proof is hence completed. �

We need the following theorem for proving Theorem 3.3. Some ideas in the proof of Theo-

rem 4.5 follow the proof of Theorem 4.9 in [20].

Theorem 4.5. Suppose that {vn}
∞
n=0 is a bounded sequence in M ⊂ H1

0 (Ω) with

lim
n→∞

∥

∥∇R
H1E(vn)

∥

∥

H1
0 (Ω)

= 0.
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Let v∗ be any weak limit of {vn}
∞
n=0 in H1

0 (Ω). Then v∗ is a critical point of E and {vn}
∞
n=0

has a subsequence that converges to v∗ strongly in H1
0 (Ω)

Proof. By compact embeddings H1
0 (Ω) ⊂⊂ L2(Ω) and H1

0 (Ω) ⊂⊂ L4(Ω), there exists a sub-

sequence of {vn}
∞
n=0 converging weakly in H1

0 (Ω) and strongly in L2(Ω) and L4(Ω) to some

v∗ ∈ H1
0 (Ω). Without loss of generality, we assume that

vn → v∗, weakly in H1
0 (Ω) and strongly in L2(Ω) and L4(Ω).

Notice that ‖GH1 (vn − v∗)‖H1
0 (Ω) ≤ C3 ‖vn − v∗‖L2(Ω) and that ‖GH1 (V vn − V v∗)‖H1

0 (Ω) ≤

C3 ‖V vn − V v∗‖L2(Ω) ≤ C3Vmax ‖vn − v∗‖L2(Ω) by Lemma 4.1 (ii). We can obtain that

GH1vn → GH1v∗, strongly in H1
0 (Ω) and L2(Ω),

and that

GH1 (V vn) → GH1(V v∗), strongly in H1
0 (Ω) and L2(Ω),

Denote en = vn − v∗. Then lim
n→∞

‖en‖L4(Ω) = 0. Note that

∥

∥v3n − (v∗)3
∥

∥

H−1(Ω)
=
∥

∥(v∗ + en)
3 − (v∗)3

∥

∥

H−1(Ω)

≤3
∥

∥(v∗)2en
∥

∥

H−1(Ω)
+ 3

∥

∥v∗e2n
∥

∥

H−1(Ω)
+
∥

∥e3n
∥

∥

H−1(Ω)

≤3C2

∥

∥(v∗)2en
∥

∥

L4/3(Ω)
+ 3C2

∥

∥v∗e2n
∥

∥

L4/3(Ω)
+ C2

∥

∥e3n
∥

∥

L4/3(Ω)

=3C2

(
∫

Ω

(v∗)8/3e4/3n

)3/4

+ 3C2

(
∫

Ω

(v∗)4/3e8/3n

)3/4

+ C2

(
∫

Ω

e4n

)3/4

≤3C2 ‖v
∗‖2L4(Ω) ‖en‖L4(Ω) + 3C2 ‖v

∗‖L4(Ω) ‖en‖
2
L4(Ω) + C2 ‖en‖

3
L4(Ω)

→0,

where we used (4.2). By Lemma 4.1 (i), we have
∥

∥GH1 (v3n − (v∗)3)
∥

∥

H1
0 (Ω)

≤
∥

∥v3n − (v∗)3
∥

∥

H−1(Ω)

thus

GH1 (|vn|
2vn) → GH1(|v∗|2v∗), strongly in H1

0 (Ω) and L2(Ω).

Then one has that

1 +
(

GH1(V vn + β|vn|
2vn), vn

)

L2(Ω)

‖GH1vn‖
2
H1

0 (Ω)

→
1 +

(

GH1 (V v∗ + β|v∗|2v∗), v∗
)

L2(Ω)

‖GH1v∗‖
2
H1

0 (Ω)

,

and hence that

∇R
H1E(vn)

=vn + GH1 (V vn + β|vn|
2vn)−

1 +
(

GH1 (V vn + β|vn|
2vn), vn

)

L2(Ω)

‖GH1vn‖
2
H1

0 (Ω)

GH1vn

→v∗ + GH1 (V v∗ + β|v∗|2v∗)−
1 +

(

GH1 (V v∗ + β|v∗|2v∗), v∗
)

L2(Ω)

‖GH1v∗‖
2
H1

0 (Ω)

GH1v∗

=∇R
H1E(v∗), weakly in H1

0 (Ω),
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which combined with lim
n→∞

∥

∥∇R
H1E(vn)

∥

∥

H1
0 (Ω)

= 0 yields that ∇R
H1E(v∗) = 0, i.e.,

−∆v∗ + V v∗ + β|v∗|2v∗ =
1 +

(

GH1 (V v∗ + β|v∗|2v∗), v∗
)

L2(Ω)

‖GH1v∗‖
2
H1

0 (Ω)

v∗,

which states that v∗ is a critical point as well as an eigenfunction.

We then prove that vn converges strongly to v∗ in H1
0 (Ω). lim

n→∞

∥

∥∇R
H1E(vn)

∥

∥

H1
0 (Ω)

= 0 and

the boundedness of {vn}
∞
n=0 ⊂ H1

0 (Ω) imply that

(∇R
H1E(vn), vn)H1

0 (Ω) → 0 = (∇R
H1E(v∗), v∗)H1

0 (Ω),

i.e.,

‖vn‖
2
H1

0 (Ω) + (V vn, vn)L2(Ω) + (β|vn|
2vn, vn)L2(Ω)

−
1 +

(

GH1 (V vn + β|vn|
2vn), vn

)

L2(Ω)

‖GH1vn‖
2
H1

0 (Ω)

→‖v∗‖2H1
0 (Ω) + (V v∗, v∗)L2(Ω) + (β|v∗|2v∗, v∗)L2(Ω)

−
1 +

(

GH1 (V v∗ + β|v∗|2v∗), v∗
)

L2(Ω)

‖GH1v∗‖2H1
0 (Ω)

.

Note that the second, third, and fourth terms above converge respectively. One has ‖vn‖H1
0 (Ω) →

‖v∗‖H1
0 (Ω). Then the proof can be completed since the convergence of norm together with the

weak convergence implies the strong convergence. �

Proof of Theorem 3.3. It follows from Theorem 3.1 (iii) that

∞
∑

n=0

∥

∥∇R
H1E(un)

∥

∥

2

H1
0 (Ω)

≤
2

αmin

∞
∑

n=0

(E(un)− E(un+1)) ≤
2E(u0)

αmin
< ∞,

which implies

lim
n→∞

∥

∥∇R
H1E(un)

∥

∥

H1
0 (Ω)

= 0.

Note that {un}
∞
n=0 ⊂ M is bounded in H1

0 (Ω). We can obtain the desired results by applying

Theorem 4.5. �

5. Proof of Local Convergence

We present the proof of Theorem 3.6 in this section. Theorem 3.7 can be proved by following

the same lines (see the remark at the beginning of Section 4) and its proof is hence omitted.

Theorem 3.8 can also be proved with a similar analysis with some different technical lemmas,

which is presented in Appendix B.
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5.1. Technical lemmas.

Lemma 5.1. Suppose that Assumption 3.5 holds. Then for any u ∈ M ⊂ H1
0 (Ω), it holds that

E(u)− E(u∗) ≥
λ0 − λ1

4
‖u− u∗‖

2
L2(Ω) ,

as long as ‖u− u∗‖
2
L2(Ω) ≤ 2.

Proof. We have

E(u)− E(u∗)

=

∫

Ω

(

1

2
|∇u|2 +

1

2
V |u|2 +

β

4
|u|4
)

−

∫

Ω

(

1

2
|∇u∗|2 +

1

2
V |u∗|2 +

β

4
|u∗|4

)

=

∫

Ω

(

1

2
|∇u|2 +

1

2
V |u|2 +

β

2
|u∗|2|u|2

)

−

∫

Ω

(

1

2
|∇u∗|2 +

1

2
V |u∗|2 +

β

2
|u∗|2|u∗|2

)

+

∫

Ω

(

β

4
|u|4 −

β

2
|u∗|2|u|2 +

β

4
|u∗|4

)

≥

∫

Ω

(

1

2
|∇u|2 +

1

2
V |u|2 +

β

2
|u∗|2|u|2

)

−

∫

Ω

(

1

2
|∇u∗|2 +

1

2
V |u∗|2 +

β

2
|u∗|2|u∗|2

)

.

Let u‖ = (u, u∗)L2(Ω)u
∗ be the L2-orthogonal projection of u onto the subspace spanned by u∗,

and let u⊥ = u− u‖. It follows from the orthogonality that
∥

∥u‖

∥

∥

2

L2(Ω)
+ ‖u⊥‖

2
L2(Ω) = ‖u‖

2
L2(Ω) = 1.

Therefore,
∫

Ω

(

1

2
|∇u|2 +

1

2
V |u|2 +

β

2
|u∗|2|u|2

)

−

∫

Ω

(

1

2
|∇u∗|2 +

1

2
V |u∗|2 +

β

2
|u∗|2|u∗|2

)

=
1

2

(

u, (−∆+ V + β|u∗|2)u
)

L2(Ω)
−

1

2

(

u∗, (−∆+ V + β|u∗|2)u∗
)

L2(Ω)

=
1

2

(

u‖, (−∆+ V + β|u∗|2)u‖

)

L2(Ω)
+

1

2

(

u⊥, (−∆+ V + β|u∗|2)u⊥

)

L2(Ω)
−

λ0

2

≥
λ0

2

∥

∥u‖

∥

∥

2

L2(Ω)
+

λ1

2
‖u⊥‖

2
L2(Ω) −

λ0

2

=
λ1 − λ0

2
‖u⊥‖

2
L2(Ω) .

Notice also that

‖u⊥‖
2
L2(Ω) =1−

∥

∥u‖

∥

∥

2

L2(Ω)
= 1−

∣

∣(u, u∗)L2(Ω)

∣

∣

2

=1−
1

4

(

‖u‖2L2(Ω) + ‖u∗‖2L2(Ω) − ‖u− u∗‖2L2(Ω)

)2

=1−
1

4

(

2− ‖u− u∗‖
2
L2(Ω)

)2

= ‖u− u∗‖
2
L2(Ω) −

1

4
‖u− u∗‖

4
L2(Ω) .

So we have

E(un)− E(u∗) ≥
λ1 − λ0

2
‖u− u∗‖2L2(Ω) −

λ1 − λ0

8
‖u− u∗‖4L2(Ω)
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≥
λ1 − λ0

4
‖u− u∗‖

2
L2(Ω) ,

if ‖u− u∗‖
2
L2(Ω) ≤ 2. �

Lemma 5.2. Let Cu be the constant as in Theorem 3.1. Then there exists a constant Lg

depending only on Ω, d, β, V , u∗ and ‖u0‖H1
0 (Ω) such that

∥

∥∇R
H1E(u)

∥

∥

H1
0 (Ω)

≤ Lg ‖u− u∗‖H1
0 (Ω)

holds as long as u ∈ M and u satisfies that ‖u‖H1
0 (Ω) ≤ Cu and ‖u− u∗‖H1

0 (Ω) is sufficiently

small.

Proof. Denote

γ =
1 +

(

GH1(V u+ β|u|2u), u
)

L2(Ω)

‖GH1u‖
2
H1

0 (Ω)

,

and

(5.1) γ∗ =
1 +

(

GH1 (V u∗ + β|u∗|2u∗), u∗
)

L2(Ω)

‖GH1u∗‖2H1
0 (Ω)

.

It holds that
∥

∥∇R
H1E(u)

∥

∥

H1
0 (Ω)

=
∥

∥∇R
H1E(u)−∇R

H1E(u∗)
∥

∥

H1
0 (Ω)

=
∥

∥u+ GH1 (V u+ β|u|2u)− γGH1u− u∗ − GH1 (V u∗ + β|u∗|2u∗)− γ∗GH1u∗
∥

∥

H1
0 (Ω)

≤‖u− u∗‖H1
0 (Ω) + ‖GH1(V u− V u∗)‖H1

0 (Ω) + β
∥

∥GH1 (u3 − (u∗)3)
∥

∥

H1
0 (Ω)

+ |γ − γ∗| · ‖GH1u‖H1
0 (Ω) + γ∗ ‖GH1 (u− u∗)‖H1

0 (Ω)

≤‖u− u∗‖H1
0 (Ω) + C3 ‖V (u− u∗)‖L2(Ω) + β

∥

∥u3 − (u∗)3
∥

∥

H−1(Ω)

+ |γ − γ∗| · C3 ‖u‖L2(Ω) + C3γ
∗ ‖u− u∗‖L2(Ω)

≤(1 + C2
3Vmax + C2

3γ
∗) ‖u− u∗‖H1

0 (Ω) β
∥

∥u3 − (u∗)3
∥

∥

H−1(Ω)
+ C3|γ − γ∗|,

where we used Lemma 4.1 and the Poincaré inequality (4.3). The rest of the proof is to estimate
∥

∥u3 − (u∗)3
∥

∥

H−1(Ω)
and |γ − γ∗|. We have

∥

∥u3 − (u∗)3
∥

∥

H−1(Ω)
≤ C2

∥

∥u3 − (u∗)3
∥

∥

L4/3(Ω)

=C2

∥

∥(u− u∗)(u2 + uu∗ + (u∗)2)
∥

∥

L4/3(Ω)

≤C2

∥

∥(u− u∗)u2
∥

∥

L4/3(Ω)
+ C2 ‖(u − u∗)uu∗‖L4/3(Ω) C2

∥

∥(u− u∗)(u∗)2
∥

∥

L4/3(Ω)

=C2

(
∫

Ω

(u− u∗)
4
3 u

8
3

)
3
4

+ C2

(
∫

Ω

(u− u∗)
4
3u

4
3 (u∗)

4
3

)
3
4

+ C2

(
∫

Ω

(u− u∗)
4
3 (u∗)

8
3

)
3
4

≤C2 ‖u− u∗‖L4(Ω) ‖u‖
2
L4(Ω) + C2 ‖u− u∗‖L4(Ω) ‖u‖L4(Ω) ‖u

∗‖L4(Ω)

+ C2 ‖u− u∗‖L4(Ω) ‖u
∗‖

2
L4(Ω)

≤C3
1C2 ‖u− u∗‖H1

0 (Ω)

(

‖u‖
2
H1

0 (Ω) + ‖u‖H1
0 (Ω) ‖u

∗‖H1
0 (Ω) + ‖u∗‖

2
H1

0 (Ω)

)

≤Lu ‖u− u∗‖H1
0 (Ω) ,



THE GROSS-PITAEVSKII EIGENVALUE PROBLEM 17

where we have used (4.2) and Lu = C3
1C2

(

C2
u + Cu ‖u

∗‖H1
0 (Ω) + ‖u∗‖2H1

0 (Ω)

)

. This finishes the

estimation of
∥

∥u3 − (u∗)3
∥

∥

H−1(Ω)
. Then we bound |γ − γ∗|. Set

A =
(

GH1 (V u+ β|u|2u), u
)

L2(Ω)
, A∗ =

(

GH1 (V u∗ + β|u∗|2u∗), u∗
)

L2(Ω)
,

and

B = ‖GH1u‖
2
H1

0 (Ω) , B∗ = ‖GH1u∗‖
2
H1

0 (Ω) .

One has that

|A−A∗|

=
∣

∣

∣
(GH1(V u), u)L2(Ω) − (GH1 (V u∗), u∗)L2(Ω)

∣

∣

∣

+ β
∣

∣

∣

(

GH1 (|u|2u), u
)

L2(Ω)
−
(

GH1(|u∗|2u∗), u∗
)

L2(Ω)

∣

∣

∣

≤
∣

∣

∣
(GH1(V u), u− u∗)L2(Ω)

∣

∣

∣
+
∣

∣

∣
(GH1 (V u− V u∗), u∗)L2(Ω)

∣

∣

∣

+ β
∣

∣

∣

(

GH1 (u3), u− u∗
)

L2(Ω)

∣

∣

∣
+ β

∣

∣

∣

(

GH1(u3 − (u∗)3), u∗
)

L2(Ω)

∣

∣

∣

≤‖GH1 (V u)‖L2(Ω) ‖u− u∗‖L2(Ω) + ‖GH1 (V u− V u∗)‖L2(Ω) ‖u
∗‖L2(Ω)

+ β
∥

∥GH1 (u3)
∥

∥

L2(Ω)
‖u− u∗‖L2(Ω) + β

∥

∥GH1 (u3 − (u∗)3)
∥

∥

L2(Ω)
‖u∗‖L2(Ω)

≤C2
3 ‖GH1 (V u)‖H1

0 (Ω) ‖u− u∗‖H1
0 (Ω) + C3 ‖GH1 (V u− V u∗)‖H1

0 (Ω)

+ βC2
3

∥

∥GH1 (u3)
∥

∥

H1
0 (Ω)

‖u− u∗‖H1
0 (Ω) + βC3

∥

∥GH1 (u3 − (u∗)3)
∥

∥

H1
0 (Ω)

≤C3
3 ‖V u‖L2(Ω) ‖u− u∗‖H1

0 (Ω) + C2
3 ‖V (u− u∗)‖L2(Ω)

+ βC2
3

∥

∥u3
∥

∥

H−1(Ω)
‖u− u∗‖H1

0 (Ω) + βC3

∥

∥u3 − (u∗)3
∥

∥

H−1(Ω)

≤
(

2C3
3Vmax + βC2

3

∥

∥u3
∥

∥

H−1(Ω)
+ βC3Lu

)

‖u− u∗‖H1
0 (Ω)

=LA ‖u− u∗‖H1
0 (Ω) ,

where we used (4.3), Lemma 4.1 (ii), and

∥

∥u3
∥

∥

H−1(Ω)
≤ C2

∥

∥u3
∥

∥

L4/3(Ω)
= C2 ‖u‖

3
L4(Ω) ≤ C3

1C2 ‖u‖
3
H1

0 (Ω) ≤ C3
uC

3
1C2,

and set

LA = 2C3
3Vmax + βC2

3

∥

∥u3
∥

∥

H−1(Ω)
+ βC3Lu.

Note also that

|B −B∗| =
∣

∣

∣
‖GH1u‖2H1

0 (Ω) − ‖GH1u∗‖2H1
0 (Ω)

∣

∣

∣

≤
∣

∣

∣
(GH1u,GH1(u − u∗))H1

0 (Ω)

∣

∣

∣
+
∣

∣

∣
(GH1(u − u∗),GH1u∗)H1

0 (Ω)

∣

∣

∣

≤‖GH1u‖H1
0 (Ω) ‖GH1 (u− u∗)‖H1

0 (Ω) + ‖GH1 (u− u∗)‖H1
0 (Ω) ‖GH1u∗‖H1

0 (Ω)

≤C2
3 ‖u‖L2(Ω) ‖u− u∗‖L2(Ω) + C2

3 ‖u− u∗‖L2(Ω) ‖u
∗‖L2(Ω)

≤2C3
3 ‖u− u∗‖H1

0 (Ω) = LB ‖u− u∗‖H1
0 (Ω) ,
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where LB = 2C3
3 . Then it holds that

|γ − γ∗| =

∣

∣

∣

∣

1 +A

B
−

1 +A∗

B∗

∣

∣

∣

∣

≤
1

BB∗
(|B −B∗|+B∗|A−A∗|+A∗|B −B∗|)

≤
1

B∗(B∗ − LB ‖u− u∗‖H1
0 (Ω))

(

LB ‖u− u∗‖H1
0 (Ω)

+B∗LA ‖u− u∗‖H1
0 (Ω) +A∗LB ‖u− u∗‖H1

0 (Ω)

)

≤
2(LB +B∗LA +A∗LB)

(B∗)2
‖u− u∗‖H1

0 (Ω) ,

for sufficiently small ‖u− u∗‖H1
0 (Ω), and the proof is hence completed. �

5.2. Proof of Theorem 3.6.

Proof of Theorem 3.6. Let us set

en = u∗ − un, and δn = ‖en‖H1
0 (Ω) .

Let Lg be the constant in Lemma 5.2 and we assume that δn is small enough such that both

Lemma 5.1 and Lemma 5.2 are satisfied. It can be computed that

∥

∥(un − u∗)− αn∇
R
H1E(un)

∥

∥

2

H1
0 (Ω)

= ‖un − u∗‖
2
H1

0 (Ω) − 2αn(un − u∗,∇R
H1E(un))H1

0 (Ω) + α2
n

∥

∥∇R
H1E(un)

∥

∥

2

H1
0 (Ω)

≤(1 + L2
gα

2
n)δ

2
n + 2αn(en,∇

R
H1E(un))H1

0 (Ω)

=(1 + L2
gα

2
n)δ

2
n + 2αn(en,∇H1E(un))H1

0 (Ω)

+ 2αn(en,∇
R
H1E(un)−∇H1E(un))H1

0 (Ω).

(5.2)

It follows from

E(u∗)− E(un) =

∫

Ω

(

1

2
|∇un +∇en|

2 +
1

2
V |un + en|

2 +
β

4
|un + en|

4

)

−

∫

Ω

(

1

2
|∇un|

2 +
1

2
V |un|

2 +
β

4
|un|

4

)

=

∫

Ω

(

∇un · ∇en + V unen + β|un|
2unen

)

+
1

2

∫

Ω

(

|∇en|
2 + V |en|

2 + β|u∗|2|en|
2
)

+

∫

Ω

(

3β

2
|un|

2|en|
2 + βune

3
n +

β

4
|en|

4 −
β

2
|u∗|2|en|

2

)

=(en,∇H1E(un))H1
0 (Ω) +

1

2

∫

Ω

(

|∇en|
2 + V |en|

2 + β|u∗|2|en|
2
)

+

∫

Ω

(

3β

2
|un|

2|en|
2 + βune

3
n +

β

4
|en|

4 −
β

2
|u∗|2|en|

2

)

,
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that

(en,∇H1E(un))H1
0 (Ω) =E(u∗)− E(un)−

1

2

∫

Ω

(

|∇en|
2 + V |en|

2 + β|u∗|2|en|
2
)

−

∫

Ω

(

3β

2
|un|

2|en|
2 + βune

3
n +

β

4
|en|

4 −
β

2
|u∗|2|en|

2

)

.

(5.3)

Define

γn =
1 +

(

GH1(V un + βu3
n), un

)

L2(Ω)

‖GH1un‖
2
H1

0 (Ω)

,

and let γ∗ be defined as in (5.1). Then it holds that

(en,∇
R
H1E(un)−∇H1E(un))H1

0 (Ω) = −γn (en,GH1un)H1
0 (Ω)

=− γn(en, un)L2(Ω) =
γn

2

(

‖un‖
2
L2(Ω) + ‖en‖

2
L2(Ω) − ‖un + en‖

2
L2(Ω)

)

=
γn

2
‖en‖

2
L2(Ω) .

(5.4)

Combining (5.2), (5.3), and (5.4), we can conclude that

∥

∥(un − u∗)− αn∇
R
H1E(un)

∥

∥

2

H1
0 (Ω)

≤(1 + L2
gα

2
n)δ

2
n + 2αn(E(u∗)− E(un)) + αnγn ‖en‖

2
L2(Ω)

− αn

∫

Ω

(

|∇en|
2 + V |en|

2 + β|u∗|2|en|
2
)

− 2αn

∫

Ω

(

3β

2
|un|

2|en|
2 + β|en|

2unen +
β

4
|en|

4 −
β

2
|u∗|2|en|

2

)

.

(5.5)

We have γ∗ = λ0 since

0 = ∇R
H1E(u∗) = GH1 (−∆u∗ + V u∗ + β|u∗|2u∗)− γ∗GH1u∗ = (λ0 − γ∗)GH1u∗.

The minimality of λ0 yields that

(5.6)

∫

Ω

|∇en|
2 + V |en|

2 + β|u∗|2|en|
2 ≥ λ0 ‖en‖

2
L2(Ω) = γ∗ ‖en‖

2
L2(Ω) .

It also holds that

−

∫

Ω

(

3β

2
|un|

2|en|
2 + β|en|

2unen +
β

4
|en|

4 −
β

2
|u∗|2|en|

2

)

≤− β

∫

Ω

(

1

2
(|un|

2 − |u∗|2)|en|
2 + |en|

2unen +
1

4
|en|

4

)

=− β

∫

Ω

(

−
1

2
|en|

4 +
1

4
|en|

4

)

=
β

4
‖en‖

4
L4(Ω) ≤

βC4
1

4
δ4n.

(5.7)

We consider sufficiently small δn such that γn ≤ γ∗ + λ1−λ0

4 , which can be guaranteed by the

proof of Lemma 5.2. It thus follows from (5.5), (5.7), and Lemma 5.1 that

∥

∥(un − u∗)− αn∇
R
H1E(un)

∥

∥

2

H1
0 (Ω)

≤(1 + L2
gα

2
n)δ

2
n − αn

λ1 − λ0

2
‖en‖

2
L2(Ω) + αn

(

γ∗ +
λ1 − λ0

4

)

‖en‖
2
L2(Ω)
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− αn

∫

Ω

(

|∇en|
2 + V |en|

2 + β|u∗|2|en|
2
)

+
αnβC

4
1

2
δ4n

≤(1 + L2
gα

2
n)δ

2
n + αn

(

γ∗ −
λ1 − λ0

4

)

‖en‖
2
L2(Ω)

− αn

∫

Ω

(

|∇en|
2 + V |en|

2 + β|u∗|2|en|
2
)

+
αnβC

4
1

2
δ4n.

If γ∗ − λ1−λ0

4 ≤ 0, then

∥

∥(un − u∗)− αn∇
R
H1E(un)

∥

∥

2

H1
0 (Ω)

≤(1 + L2
gα

2
n)δ

2
n − αn

∫

Ω

(

|∇en|
2 + V |en|

2 + β|u∗|2|en|
2
)

+
αnβC

4
1

2
δ4n

≤(1 + L2
gα

2
n − αn)δ

2
n +

αnβC
4
1

2
δ4n.

If γ∗ − λ1−λ0

4 > 0, then with (5.6), it holds that

∥

∥(un − u∗)− αn∇
R
H1E(un)

∥

∥

2

H1
0 (Ω)

≤(1 + L2
gα

2
n)δ

2
n + αn

(

γ∗ −
λ1 − λ0

4

)

1

γ∗

∫

Ω

(

|∇en|
2 + V |en|

2 + β|u∗|2|en|
2
)

− αn

∫

Ω

(

|∇en|
2 + V |en|

2 + β|u∗|2|en|
2
)

+
αnβC

4
1

2
δ4n

≤(1 + L2
gα

2
n)δ

2
n − αn

λ1 − λ0

4γ∗

∫

Ω

(

|∇en|
2 + V |en|

2 + β|u∗|2|en|
2
)

+
αnβC

4
1

2
δ4n

≤

(

1 + L2
gα

2
n − αn

λ1 − λ0

4λ0

)

δ2n +
αnβC

4
1

2
δ4n.

In both cases we have

∥

∥(un − u∗)− αn∇
R
H1E(un)

∥

∥

2

H1
0 (Ω)

≤

(

1 + L2
gα

2
n − αn min

{

1,
λ1 − λ0

4λ0

}

+
αnβC

4
1

2
δ2n

)

δ2n,

i.e.,

∥

∥(un − u∗)− αn∇
R
H1E(un)

∥

∥

H1
0 (Ω)

≤

(

1 + L2
gα

2
n − αn min

{

1,
λ1 − λ0

4λ0

}

+
αnβC

4
1

2
δ2n

)1/2

δn.

Therefore, with Rn defined in (4.7), it holds that

δn+1 ≤
∥

∥(un − u∗)− αn∇
R
H1E(un)

∥

∥

H1
0 (Ω)

+ ‖Rn‖H1
0 (Ω)

≤

(

1 + L2
gα

2
n − αn min

{

1,
λ1 − λ0

4λ0

}

+
αnβC

4
1

2
δ2n

)1/2

δn

+
α2
n

2
(Cu + αnCg)C

2
3L

2
gδ

2
n,
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where ‖Rn‖H1
0 (Ω) is established using (4.8) and Lemma 5.2. Note that we have assumed (3.2),

that guarantees that

max
α∈[αmin,αmax]

{

1 + L2
gα

2 − αmin

{

1,
λ1 − λ0

4λ0

}}

< 1.

Thus δn sufficiently small, we can conclude that δn+1 ≤ Cδδn, where Cδ ∈ (0, 1) is a constant.

This proves the locally exponentially convergent rate. �
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Appendix A. Equivalent Norms

Lemma A.1 (Equivalence between ‖·‖H1
0 (Ω) and ‖·‖a0(Ω)). For any u ∈ H1

0 (Ω), it holds that

‖u‖H1
0 (Ω) ≤ ‖u‖a0(Ω) ≤ Ca0 ‖u‖H1

0 (Ω) ,

where Ca0 =
(

1 + C2
3Vmax

)1/2
and C3 is the constant in the Poincaré inequality (4.3).

Proof. Use the definition of ‖·‖H1
0 (Ω) and ‖·‖a0(Ω) as well as the Poincaré inequality. �

Lemma A.2 (Equivalence between ‖·‖H1
0 (Ω) and ‖·‖au∗ (Ω)). Let u∗ be the ground state of the

problem (1.1). For any u ∈ H1
0 (Ω), it holds that

‖u‖H1
0 (Ω) ≤ ‖u‖au∗ (Ω) ≤ Cau∗

‖u‖H1
0 (Ω) ,
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where Cau∗
=
(

1 + VmaxC
2
3 + βC2

1 ‖u
∗‖

2
L4(Ω)

)1/2

, where C1 and C3 are the constants in (4.1)

and (4.3), respectively.

Proof. It holds that

‖u‖
2
H1

0 (Ω) ≤ ‖u‖
2
au∗ (Ω) =

∫

Ω

|∇u|2 + V |u|2 + β|u∗|2|u|2

≤ ‖u‖
2
H1

0 (Ω) + Vmax ‖u‖
2
L2(Ω) + β ‖u∗‖

2
L4(Ω) ‖u‖

2
L4(Ω)

≤
(

1 + VmaxC
2
3 + βC2

1 ‖u
∗‖

2
L4(Ω)

)

‖u‖
2
H1

0 (Ω) .

�

Lemma A.3 (Stability of ‖·‖au(Ω) around u∗). Let u∗ be the ground state of the problem (1.1).

For any ǫ > 0, there exists δ(ǫ) > 0, such that

1

1 + ǫ
‖z‖au

≤ ‖z‖au∗

≤ (1 + ǫ) ‖z‖au
, ∀ z ∈ H1(Ω),

holds for any u ∈ H1
0 (Ω) with ‖u− u∗‖H1

0 (Ω) ≤ δ(ǫ).

Proof. We have that
∣

∣

∣
‖z‖

2
au∗

− ‖z‖
2
au

∣

∣

∣
= β

∣

∣

∣

∣

∫

Ω

(|u|2 − |u∗|2) · |z|2
∣

∣

∣

∣

≤ β

∫

Ω

|u− u∗| · |u+ u∗| · |z|2

≤ β ‖u− u∗‖L4(Ω) ‖u+ u∗‖L4(Ω) ‖z‖
2
L4(Ω)

≤ βC4
1 ‖u− u∗‖H1

0 (Ω)

(

2 ‖u∗‖H1
0 (Ω) + ‖u− u∗‖H0

1 (Ω)

)

‖z‖
2
au∗ (Ω) .

Thus, it suffices to set δ(ǫ) as small enough. �

Appendix B. Proof of Theorem 3.8

We display the proof of Theorem 3.8 in this section. According to [20, Lemma 4.7], the

iterates {un}
∞
n=0 generated by the au-scheme yields energy decay and hence ‖un‖H1

0 (Ω) ≤ Cu

as long as αmax ≤ Cα, where Cα and Cu are constants depending only on Ω, d, β, V , and

‖u0‖H1
0 (Ω). We would need a similar result as Lemma 5.2, for which we prove the following

lemma.

Lemma B.1. Let u∗ be the ground state of the problem (1.1). For any u ∈ M with ‖u‖H1
0 (Ω) ≤

Cu, it holds that

‖Gauu− Gau∗
u∗‖au∗ (Ω) ≤ LG ‖u− u∗‖au∗ (Ω) ,

where LG =
(

C2
3 + βC4

1C3

(

Cu + ‖u∗‖H1
0 (Ω)

))

.

Proof. Denote g = Gauu and g∗ = Gau∗
u∗. Then

−∆g + V g + β|u|2g = u, −∆g∗ + V g∗ + β|u∗|2g∗ = u∗,

which lead to

−∆(g − g∗) + V (g − g∗) + β|u∗|2(g − g∗) = (u− u∗) + β(|u∗|2 − |u|2)g.
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Therefore,

‖g − g∗‖
2
au∗ (Ω) =

∫

Ω

(u− u∗)(g − g∗) +

∫

Ω

β(|u∗|2 − |u|2)g(g − g∗)

≤ ‖u− u∗‖L2(Ω) ‖g − g∗‖L2(Ω)

+ β ‖u− u∗‖L4(Ω) ‖u+ u∗‖L4(Ω) ‖g‖L4(Ω) ‖g − g∗‖L4(Ω)

≤ C2
3 ‖u− u∗‖au∗ (Ω) ‖g − g∗‖au∗ (Ω)

+ βC4
1 ‖u− u∗‖H1

0 (Ω) ‖u+ u∗‖H1
0 (Ω) ‖g‖H1

0 (Ω) ‖g − g∗‖H1
0 (Ω) ,

where we used (4.3) and (4.1). This implies that

‖g − g∗‖au∗ (Ω) ≤
(

C2
3 + βC4

1

(

Cu + ‖u∗‖H1
0 (Ω)

)

‖g‖H1
0 (Ω)

)

‖u− u∗‖au∗ (Ω) .

Then we can obtain the desired results by noticing

(B.1) ‖Gauu‖H1
0 (Ω) = ‖g‖H1

0 (Ω) ≤ C3,

from

‖g‖
2
H1

0 (Ω) ≤ ‖g‖
2
au(Ω) = (Gauu, g)au(Ω)

= (u, g)L2(Ω) ≤ ‖u‖L2(Ω) ‖g‖L2(Ω) ≤ C3 ‖g‖H1
0 (Ω) .

�

The next lemma establishes a similar estimate as in Lemma 5.2.

Lemma B.2. There exists some constant Lg depending only on Ω, d, β, V , u∗ and ‖u0‖H1
0 (Ω)

such that
∥

∥∇R
au
E(u)

∥

∥

au∗ (Ω)
≤ Lg ‖u− u∗‖au∗ (Ω) ,

holds for all u ∈ M as long as ‖u‖H1
0 (Ω) ≤ Cu and ‖u− u∗‖au∗ (Ω) is sufficiently small.

Proof. Denote

γ =
1

‖Gauu‖
2
au(Ω)

=
1

(Gauu, u)L2(Ω)

,

and

γ∗ =
1

‖Gau∗
u∗‖

2
au∗ (Ω)

=
1

(Gau∗
u∗, u∗)L2(Ω)

.

By (4.3), (B.1), and Lemma B.1, one has that
∣

∣

∣
(Gauu, u)L2(Ω) − (Gau∗

u∗, u∗)L2(Ω)

∣

∣

∣

≤
∣

∣

∣
(Gauu, u− u∗)L2(Ω)

∣

∣

∣
+
∣

∣

∣
(Gauu− Gau∗

u∗, u∗)L2(Ω)

∣

∣

∣

≤‖Gauu‖L2(Ω) ‖u− u∗‖L2(Ω) + ‖Gauu− Gau∗
u∗‖L2(Ω) ‖u

∗‖L2(Ω)

≤C2
3 ‖Gauu‖H1

0 (Ω) ‖u− u∗‖au∗ (Ω) + C3 ‖Gauu− Gau∗
u∗‖au∗ (Ω)

≤
(

C3
3 + C3LG

)

‖u− u∗‖au∗ (Ω) ,
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and hence that

|γn − γ∗| =

∣

∣

∣
(Gauu, u)L2(Ω) − (Gau∗

u∗, u∗)L2(Ω)

∣

∣

∣

(Gauu, u)L2(Ω) (Gau∗
u∗, u∗)L2(Ω)

≤ Lγ ‖u− u∗‖au∗ (Ω) ,

for some constant Lγ and sufficiently small ‖u− u∗‖au∗ (Ω). Then it holds that
∥

∥∇R
au
E(u)

∥

∥

au∗ (Ω)

=
∥

∥∇R
au
E(u)−∇R

au∗
E(u∗)

∥

∥

au∗ (Ω)
= ‖u− γGauu− u∗ + γ∗Gau∗

u∗‖au∗ (Ω)

≤‖u− u∗‖au∗ (Ω) + |γ − γ∗| · ‖Gauu‖au∗ (Ω) + γ∗ ‖Gauu− Gau∗
u∗‖au∗

≤(1 + LγCau∗
C3 + γ∗LG) ‖u− u∗‖au∗ (Ω) ,

where we used (B.1), Lemma A.2, and Lemma B.1. �

Proof of Theorem 3.8. Denote

en = u∗ − un, δn = ‖en‖au∗ (Ω) , and γn =
1

(

Gaun
un, un

)

L2(Ω)

.

We assume that un is close enough in ‖·‖H1
0 (Ω) to u∗ so that the results in Lemma A.3 and

Lemma B.2 are true with sufficiently small ǫ satisfying

max
α∈[αmin,αmax]

(1 + ǫ)2
(

(1 + ǫ)2(1 + L2
gα

2)− αmin

{

1,
λ1 − λ0

4λ0

})

< 1.

It can be computed that
∥

∥

∥
(un − u∗)− αn∇

R
aun

E(un)
∥

∥

∥

2

aun (Ω)

≤‖un − u∗‖
2
aun (Ω) − 2αn

(

un − u∗,∇R
aun

E(un)
)

aun (Ω)
+ α2

n

∥

∥

∥
∇R

aun
E(un)

∥

∥

∥

2

aun (Ω)

≤(1 + ǫ)2(1 + L2
gα

2
n)δ

2
n + 2αn(en,∇

R
aun

E(un))aun

=(1 + ǫ)2(1 + L2
gα

2
n)δ

2
n + 2αn(en, un)aun (Ω) − 2αnγn

(

en,Gaun
un

)

aun (Ω)
.

By some computations similar to those in the proof of Theorem 3.6, it holds for sufficiently

small δn that

∥

∥

∥
(un − u∗)− αn∇

R
aun

E(un)
∥

∥

∥

2

aun (Ω)

≤

(

(1 + ǫ)2(1 + L2
gα

2
n)− αn min

{

1,
λ1 − λ0

4λ0

}

+
αnβC

4
1

2
δ2n

)

δ2n,

and hence that
∥

∥

∥
(un − u∗)− αn∇

R
aun

E(un)
∥

∥

∥

au∗ (Ω)

≤ (1 + ǫ)

(

(1 + ǫ)2(1 + L2
gα

2
n)− αn min

{

1,
λ1 − λ0

4λ0

}

+
αnβC

4
1

2
δ2n

)1/2

δn.

Note that

un+1 = R
(

un − αn∇
R
aun

E(un)
)

=
(

un − αn∇
R
aun

E(un)
)

+Rn,
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where

Rn =
(

un − αn∇
R
aun

E(un)
)

−R
(

un − αn∇
R
aun

E(un)
)

,

can be estimated similar to Lemma 4.3 that

‖Rn‖au∗ (Ω) ≤
α2
n

2

∥

∥

∥
∇R

aun
E(un)

∥

∥

∥

2

L2(Ω)

∥

∥

∥
un − αn∇

R
aun

E(un)
∥

∥

∥

au∗ (Ω)

≤
α2
n

2
L2
gδ

2
n(Cau∗

Cu + αnLgδn).

Then we can conclude the locally exponential convergence rate via

δn+1 ≤
∥

∥

∥
(un − u∗)− αn∇

R
aun

E(un)
∥

∥

∥

au∗

+ ‖Rn‖au∗

≤(1 + ǫ)

(

(1 + ǫ)2(1 + L2
gα

2
n)− αn min

{

1,
λ2 − λ1

4λ∗

}

+
αnβC

4
1

2
δ2n

)1/2

δn

+
α2
n

2
L2
gδ

2
n(Cau∗

Cu + αnLgδn)

≤Cδδn,

where Cδ ∈ (0, 1) and δn is sufficiently small. �
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