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Abstract. We prove that the Kuramoto model on a graph can contain infinitely
many non-equivalent stable equilibria. More precisely, we prove that for every d ≥ 1
there is a connected graph such that the set of stable equilibria contains a manifold
of dimension d. In particular, we solve a conjecture of R. Delabays, T. Coletta
and P. Jacquod about the number of equilibria on planar graphs. Our results are
based on the analysis of balanced configurations, which correspond to equilateral
polygon linkages in topology. In order to analyze the stability of manifolds of
equilibria we apply topological bifurcation theory.

1. Introduction.

Consider a connected graph G with vertices 1, . . . , n and to each vertex j
associate a phase θj in the 1-dimensional torus T = R/2πZ. Let N(j) denote the
set of neighbors of j and consider the coupled dynamical system

θ̇j =
∑

k∈N(j)

sin(θk − θj), for all j = 1, . . . , n. (1)

In the paper stable always means Lyapunov stable. For every graph G the
synchronized state, in which all the phases are equal, is a stable equilibrium. It is
known that other stable equilibria are present in cycles [7,46], planar graphs [10],
sparse graphs [40], 3-regular graphs [11]. Two equilibria are equivalent if they
differ by a constant. The number of non-equivalent stable equilibria is typically
understood to be finite, and explicit bounds are known in some cases [10].

On the other hand, it is known that some graphs support infinitely many non-
equivalent unstable equilibria. Indeed, unstable equilibria form a manifold with
singularities in the case of complete graphs [2,6,45].

This leads to the question motivating the paper: is the number of non-equivalent
stable equilibria on a connected graph always finite? Can stable equilibria form a
manifold? Our main result answers these question:
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Figure 1. The eye graph supports infinitely many non-equivalent
stable equilibria. A cyclic colormap is used to represent phases on ver-
tices. The phases of the outer cycle are (2kπ/6)k=1,...,6, starting from
the rightmost vertex and proceeding counterclockwise. The phases of
the inner cycle are (2kπ/6 + β)k=1,...,6 with β = π/2, starting from
the topmost vertex and proceeding counterclockwise. In Section 3 we
prove that a curve of non-equivalent stable equilibria is obtained by
varying β in a neighborhood of π/2.

Theorem 1.1. For every d ≥ 1 there is a connected graph G such that (1)
contains a manifold of stable equilibria of dimension d.

In [10] R. Delabays, T. Coletta and P. Jacquod conjecture an upper bound on
the number of non-equivalent stable equilibria in connected, planar graphs. In this
paper we show that no such bound is possible, and in fact a connected, planar graph
can support infinitely many non-equivalent stable equilibria:

Corollary 1.2. The graph of Figure 1 supports infinitely many non-equivalent
stable equilibria.

In Section 2 we recall a known technique: algebraic geometrization. Up to a
change of coordinates, the set of equilibria of (1) turns into an algebraic set. Every
algebraic set is the finite union of irreducible algebraic sets; in particular, this implies
that infinitely many equilibria can only appear inside a continuum of equilibria.
Moreover, the system has a gradient structure: every solution is either an equilibrium
or a curve joining two algebraic sets of equilibria, in the direction that makes some
energy function decrease. We return to this topological/heteroclinic structure in
Section 5, in which we analyze explicitly two examples of small cardinality.

Section 3 concerns balanced configurations, the main topic of the paper. We
say that a subset of vertices K is balanced if

∑
k∈K eiθk = 0. As we will see, balanced

configurations are able to “effectively disconnects” the network, leading to manifolds
of equilibria of arbitrarily large dimension on connected graphs. The main challenge
we will face is designing graphs for which these manifolds are transversally stable.

It is interesting to notice that balanced configurations appear in several areas of
mathematics, although with different names. First, the quantity

∑n
k=1 e

iθk , known
as order parameter, is widely used as a measure of synchronization in phase
oscillator networks [5, 24, 32, 34]. Second, balanced configurations of are known
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as balanced graph representations in algebraic graph theory [12]. Third, balanced
configurations are in 1-to-1 correspondence with equilateral polygon linkages in
topology [18,19,21,29].

In Section 4 we discuss aligned configurations, those in which any two phases
differ by 0 or π. They are appear in literature with different names [16,23,30,31,
33,35,44]. In this paper we are mainly interested in the interplay between aligned
configurations and balanced configurations. We prove that every equilibrium of a
complete bipartite graph is a combination of these.

Our insights raise a number of questions. We know that the set of equilibria
can be written as a finite union of algebraic varieties. Algebraic varieties are not
necessarily manifolds, due to the presence of singular points. However:

Conjecture 1.3. For every graph the set of equilibria of (1) is a finite union of
manifolds.

Our analysis may extend to Kuramoto networks on weighted graphs, hypergraphs,
or with intrinsic frequencies. A connection between the analysis of balanced configu-
rations on weighted graph and the theory of moduli spaces in topology [20,29,38]
is outlined in Section 3.

Finally, manifolds of stable equilibria may appear on graphs that are close to
the global synchronization constant [27,28,41,47], thus limiting the effectiveness of
linear stability analysis as predicted in [22].

Acknowledgements.

The author would like to thank Christian Bick for many helpful discussions.

2. A System Rich in Structure.

The combinatorial structure of the underlying graph, together with the algebraic
properties of the sine function, give the coupled dynamical system (1) some known,
peculiar properties, which we review in detail in this section.

2.1. Phase-Shift Symmetry and Connectivity. The equations (1) remain
invariant if the same constant is added to each phase. This (dynamical) symmetry is
known as phase shift and defines an action of the group T on the phase space Tn.
The phase space Tn is foliated into (n− 1)-dimensional dynamically invariant tori.
Each leaf supports the same dynamics and the group T acts freely on the leaves.

As a consequence, equilibria are never isolated: every equilibrium is contained in
a 1-dimensional torus of equilibria, its orbit under the group action. We say that
two equilibria are equivalent if they belong to the same orbit.

If a graph is disconnected, distinct components have independent dynamics. If
every connected component is endowed with a stable equilibrium, infinitely many
non-equivalent stable equilibria can be obtained by phase-shifting the phases of one
component. In this way we can obtain a torus of stable equilibria of dimension the
number of connected components. This is a non-interesting solution to the question
motivating the paper. For this reason, we will always require connectivity.
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2.2. Gradient Descent. It is well known that (1) is a gradient dynamical

system [17, 27, 42]. We can write (1) as θ̇ = −∇E(θ) where E : TN → R is the
energy function

E(θ) =
∑

jk∈E(G)

(1− cos(θj − θk)) . (2)

Here E(G) denotes the set of edges and each edge is counted exactly once.

The identity θ̇ = −∇E(θ) tells that a solution always evolves in the direction
where the energy (2) decreases maximally. Equilibria are exactly the critical points of
the energy and the only periodic trajectories. A solution is either an equilibrium or a
curve joining two equilibria, traveled in the direction in which the energy decreases.

The energy function (2) is real analytic. In any real analytic gradient system the
Lyapunov stable equilibria are exactly the local minima of the energy function [1].
It is interesting to notice that in a smooth (but not real analytic) gradient system
this statement can fail in both ways [1].

2.3. Algebraic Geometry. The set of equilibria of (1) is best understood in
the language of algebraic geometry. For basic definitions and results we refer the
reader to [14, 25, 37]. Let us identify the phase space Tn with the subset of R2n

defined by

x2j + y2j = 1, for all j = 1, . . . , n (3)

where xk = cos(θk) and yk = sin(θk). Then the equilibria of the system are the
common solutions of (3) and∑

k∈N(j)

xkyj − xjyk = 0, for all j = 1, . . . , n. (4)

Therefore, the set of equilibria X is an algebraic set. As such, it has a unique
decomposition into irreducible components:

X = X1 ∪ . . . ∪Xm. (5)

Each Xi is an irreducible algebraic set (also known as algebraic variety) and none of
the Xi is contained in the union of the others. Each Xi has a well defined dimension
and tangent space at every point, except for singular points, if any.

The 1-dimensional components in (5) are orbits of equivalent equilibria, topo-
logically they are 1-dimensional tori. Since the decomposition (5) is finite, we
immediately learn something important about the equilibria. Either there are finitely
many non-equivalent equilibria, or there is a component of dimension greater than 1.
In particular, the number of equilibria that are isolated up to phase-shift is finite.

Algebraic geometry does not prevent the existence of infinitely many non-
equivalent equilibria. By contrast, it helps us understanding their geometry. The
methods used in [4,9] to prove the finiteness of the equilibria apply to a (related
but) different system and only work for a generic choice of coupling coefficients.
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2.4. Stability. Every solution of (1) is either an equilibrium or a curve joining
two irreducible components. A complete understanding of the system (1) requires
understanding the components (5) and how they are connected by solutions.

In order to do so, we need to analyze the stability of each component. In this
section we briefly review the analysis of 1-components, which is the case already
known in literature. Components of larger dimension will be analyzed in Section 3.

Since there are no isolated equilibria, throughout the paper stable will always
mean Lyapunov stable.

Let (ajk)j,k denote the adjacency matrix of the graph. Fix any θ = (θj)j=1,...,n.
The component (j, k) of the Jacobian matrix of the system at θ is{

ajk cos(θk − θj) if j 6= k

−
∑

h, h 6=j ajk cos(θh − θj) if j = k.
(6)

For every θ at least one Jacobian eigenvalue is zero; it corresponds to the direction
of phase-shift (1, . . . , 1).

Suppose now that θ is an equilibrium, and that exactly one eigenvalue is 0 and
the others are strictly negative. The zero eigenvalue corresponds to the direction
tangent to the 1-dimensional torus of equilibria

Γ = {(θj + α)j=1,...,n | α ∈ T}.

The zero eigenvalue disappears by restricting dynamics to the leaf containing θ, in
which the equilibrium is isolated. In particular θ is asymptotically stable in its leaf.

By phase shift symmetry, each equilibrium in Γ is asymptotically stable in its leaf.
The leaf locally coincides with the stable manifold of the equilibrium. These manifolds
foliates the space around Γ and intersect Γ orthogonally (since the Jacobian (6) is
symmetric).

3. Balanced Configurations and Manifolds of Equilibria.

This is the main section of the paper. For us, balanced configurations are a tool
to understand manifolds of equilibria. For their role in other branches of mathematics
and science we refer the reader to the introduction.

It is convenient for us to expand the notions of equilibrium and balanced config-
uration to a proper subset of vertices.

Definition 3.1. A configuration is a pair consisting of a set of vertices K ⊆
V(G) and a vector of phases θK = (θk)k∈K. An equilibrium of K is a configuration
satisfying ∑

k∈N(j)∩K

sin(θk − θj) = 0, for all j ∈ K. (7)

A configuration of K is balanced if∑
k∈K

eiθk = 0. (8)

The following lemma collects some elementary properties. The proof is omitted.
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Lemma 3.2. Let (K, θK) be a configuration. The following facts are true:

(i) The equilibria of V(G) according to Definition 3.1 are exactly the equilibria
of the dynamical system (1);

(ii) For every α ∈ T the configuration θK is an equilibrium if and only if the
configuration θK + α = (θk + α)k∈K is an equilibrium;

(iii) For every α ∈ T the configuration θK is balanced if and only if the configu-
ration θK + α = (θk + α)k∈K is balanced;

(iv) Let j be any vertex and suppose that (K, θK) is balanced. Then∑
k∈K

cos(θk − θj) = 0, (9)∑
k∈K

sin(θk − θj) = 0. (10)

Proof. Parts (i), (ii), and (iii) are trivial. In order to obtain (iv), multiply (8)
by e−iθj and take real and imaginary part. This gives (9) and (10) respectively. �

Equation (10) tells us that the net input received by j from a balanced set of
neighbors is zero. This suggests how to obtain manifolds of equilibria of arbitrarily
large dimension.

Lemma 3.3. Suppose that there is a partition of the vertices of G into non-empty
parts J1, . . . ,Jd and a configuration θ = (θj)j=1,...,n such that

(i) every (Jp, θJp) is an equilibrium;
(ii) for every Jp, Jq distinct and for every j ∈ Jp the set of neighbors of j in Jq

is balanced.

Then for every α1, . . . , αd ∈ T the configuration

(θJ1 + α1, . . . , θJd
+ α1) (11)

is an equilibrium of G. In particular, the set of equilibria of G contains a torus of
dimension d.

Proof. Take any vertex j. Suppose that j ∈ Jp. We have

θ̇j =
∑

k∈N(j)∩Jp

sin(θj − θk) +
∑
q 6=p

∑
k∈N(j)∩Jq

sin(θj − θk).

Since θJp is an equilibrium of Jp, the first term is zero. Since N(j) ∩ Jq is balanced
for every q 6= p, by (10) the second term is zero. This shows that θ is an equilibrium
of G. The statement now follows from Lemma 3.2(ii) and Lemma 3.2(iii). �

Let Γ ⊆ Tn be the d-dimensional torus of equilibria (11). In general, not all
the equilibria in Γ have the same stability. As we will see, by varying α1, . . . , αd
some Jacobian eigenvalues can change sign. This phenomenon is a particular case of
topological bifurcation [26]. In the following proof we construct graphs for which a
non-empty open subset of Γ is transversally stable.
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Figure 2. This figure illustrates the graph G5.

Proof of Theorem 1.1. The idea is connecting a family of stable 6-cycle
configurations in a way that they only interact through balanced subsets. Let us
begin with a 6-cycle and phases (2kπ/6 + α)k=1,...,6. Since cos(2π/6) = 1/2 the
Jacobian matrix (6) is 

−1 1
2 0 0 0 1

2
1
2 −1 1

2 0 0 0
0 1

2 −1 1
2 0 0

0 0 1
2 −1 1

2 0
0 0 0 1

2 −1 1
2

1
2 0 0 0 1

2 −1

 . (12)

Notice that it is independent of α. Moreover, notice that the matrix is circulant.
The eigenvalues of circulant matrices are easy to compute [13,43]. In this case the
characteristic polynomial is

p(λ) = λ(λ+ 1/2)2(λ+ 3/2)2(λ+ 2).

Exactly one eigenvalue is zero and the others are strictly negative. As α can vary in T
we obtain a 1-dimensional torus of stable equilibria. The zero eigenvalue corresponds
to the tangent space of this torus.

Notice that, in this configuration, any pair of opposite vertices of the 6-cycle is a
balanced configuration. This suggests how to connect several 6-cycles together.

Consider d disjoint 6-cycles and add an edge between the first and fourth vertex
of the first cycle with the first and fourth vertex of every other cycle. This amounts
to adding 4(d− 1) edges. Let Gd denote the resulting graph. The graph G2 is the
eye graph of Figure 1 of the introduction. The graph G5 is given in Figure 2.
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Let α1, . . . , αd ∈ T and let (2kπ/6 + αi)k=1,...,6 be the phases of the i-th cycle.
The 6-cycles only interact with each other through balanced pair of vertices. By
Lemma 3.3 as α1, . . . , αd vary in T these configurations form a d-dimensional torus
of equilibria Γ.

In order to analyze stability, we look at Jacobian eigenvalues. We want to show
that there is an open set of (α1, . . . , αd) ∈ Td for which exactly d Jacobian eigenvalues
are 0 and the others strictly are negative.

In order to do so, we choose α1 = 0 and α2 = . . . , αd = π/2. Every edge between
two 6-cycles has phase difference π/2, and since cos(π/2) = 0 it follows that the
Jacobian matrix is a block diagonal matrix with d blocks all equal to (12). In
particular the characteristic polynomial is

p(λ)d = λd(λ+ 1/2)2d(λ+ 3/2)2d(λ+ 2)d.

Notice that 0 has multiplicity d and every other eigenvalue is strictly negative.
Since d is the dimension of the tangent space of Γ, it follows that there is a

neighborhood of (0, π/2, . . . , π/2) ∈ Td in which exactly d eigenvalues are zero and
all the others are strictly negative.

Let us summarize what we have. There is a non-empty open subset V of Γ
with the following properties: V is a d-dimensional manifold, every point in V is
an equilibrium, the stable manifold of every such equilibrium has codimension d
and is orthogonal to V . The last statement holds since the Jacobian matrix (6) is
symmetric.

By Shoshitaishvili Theorem [26,39] the stable manifolds form a foliation of the
space near V . It follows that every θ ∈ V is a Lyapunov stable equilibrium. Indeed,
a point near θ lies in either the stable manifold of θ or the stable manifold of a
nearby equilibrium. �

3.1. Stable Tori. In the proof of Theorem 1.1 we obtain a torus of equilibria Γ,
but only a proper subset is stable. Indeed, for d = 2 we can see in Figure 3 that as
the phase difference between the two cycles vary, an eigenvalue crosses zero; stability
is only guaranteed in a neighborhood of π/2. We now provide several graphs in
which the set of stable equilibria contain an entire 2-dimensional torus. Due to the
size of the graphs, the eigenvalues are computed numerically.

Let us denote by H36, H60 and H90 the graphs (C), (E), and (G) of Figure 3,
according to the number of vertices. The vertices have been positioned so as to
highlight the division into two subsets. Each H36, H60, H90 supports a 2-dimensional
torus of stable equilibria. The torus is obtained by phase-shifting the two parts.

Let us describe the configurations in more detail. The graph H36 is obtained
from the eye graph G2 by taking of each 6-cycle 3 copies of itself and glueing
them at the pair of vertices constituting the balanced configuration. One part has
phases (2kπ/6 + α)k=1,...,6, the other part (2kπ/6 + β)k=1,...,6. Due to phase shift
symmetry, stability only depends on the phase difference β−α. As shown in Figure 3,
for every α, β ∈ T all non-zero eigenvalues are strictly negative. As in the proof of
Theorem 1.1, by Shoshitaishvili Theorem it follows that for every α, β ∈ T this is a
stable equilibrium.



KURAMOTO NETWORKS WITH INFINITELY MANY STABLE EQUILIBRIA 9

(a) (b)

(c)
(d)

(e)

(f)

(g)

(h)

Figure 3. On the left, graphs supporting 2-dimensional manifold
of stable equilibria. On the right, eigenvalues as the phase-shift
difference β − α vary.
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Similarly H60 is obtained from G2 by substituting each vertex with a tetrahedron
and connecting the tetrahedra in parallel along the 6-cycles.

By contrast, the graph H90 is a bit different. It is obtained by fully connecting
two 5-cycles with phases (2kπ/5 + α)k=1,...,5 and (2kπ/5 + β)k=1,...,5 respectively.
Notice that each cycle is a balanced configuration. In order to make the configuration
stable, each cycle is copied 8 times and connected in parallel to its copies. It is
interesting to notice that in this case the eigenvalues do not depend on α, β, see (H).

3.2. Symmetry is not Necessary. Although the graphs discussed in this
article are symmetric, symmetry is not necessary for manifolds of stable equilibria.
Instead, it is useful for keeping the discussion as self-contained as possible, as
symmetric graphs can be described more easily in words.

We can enlarge a stable configuration of a graph by connecting by an edge each
vertex to an asymmetric graph whose phases are synchronized with that vertex.
The enlarged configuration is stable. We can choose the auxiliary graphs so that
the enlarged graph is asymmetric. If the original graph supports a d-dimensional
manifolds of stable equilibria, so does the enlarged one.

3.3. The Geometry of Balanced Configurations. We are interested in the
geometry of the set of balanced configurations of n vertices.

Two vertices are balanced if and only if the phases differ by π. Therefore,
balanced configurations of two vertices form a 1-dimensional torus.

There are two balanced configurations with 3 vertices up to phase shift, corre-
sponding to two non-equivalent labeling of the vertices of an equilateral triangle,
thus leading to two disjoint 1-dimensional tori.

Balanced configurations of 4 vertices are given by three non-equivalent relabeling
of the family (α, β, α+ π, β + π)α,β∈T:

B1 = {(α, α+ π, β, β + π) | α, β ∈ T},
B2 = {(α, β, α+ π, β + π) | α, β ∈ T},
B3 = {(α, β, β + π, α+ π) | α, β ∈ T}.

These 2-dimensional tori intersect at aligned configurations. Up to phase shift, the
set of balanced configurations is homeomorphic to three mutually tangent circles.

Until now, every balanced configuration is somewhat symmetric. For n ≥ 5 the
situation is far more complicated, as the symmetry is lost. Using Morse Theory
it has been shown that, up to phase shift, balanced configurations of 5 vertices
form a surface of genus 4 [15,18]. It is interesting that the separation between the
case n ≤ 4 and the case n ≥ 5 in terms of symmetry becomes evident in terms of
dynamics if the sine function is replaced by a generic function [2, Proposition 2].

In topology, balanced configurations appear in a different but equivalent form.
As noticed in [3], we can associate to any balanced configuration an equilateral
polygon. Let (θk)k=1,...,n be a balanced configuration and um =

∑m
k=1 e

iθk . Then the
sequence u1, . . . , un defines an equilateral polygon. Here the term polygon must be
taken somewhat loosely, since we allow vertices to coincide and edges to intersect.
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The space of equilateral polygons is studied, for example, in [19]. Translating
the results of [19] back into our language, we can rephrase Theorem A as follows:

Theorem 3.4 (Y.Kamiyama). Let n ≥ 3. For an odd n the set of balanced
configurations is a smooth manifold of dimension n− 2. For an even n the set of
balanced configurations is a manifold with singular points, the generic dimension
is n− 2 and the singular points are exactly the aligned configurations.

Recall that aligned configurations are those in which any two phases differ by 0
or π. Notice that configuration that are both balanced and aligned are only possible
if n is even. The presence of singular points for an even n is already evident for n = 4,
at the aforementioned tori B1, B2, B3 intersect. We conjecture that for every n ≥ 3
the set of balanced configurations is a branched manifold and can be written as a
union of smooth manifolds.

As already noticed, balanced configurations correspond to equilateral polygons.
In the theory of moduli spaces [20,29,38] non-equilateral polygons are considered,
usually with generic edge lengths. This may be useful in better understanding the
Kuramoto model on weighted graphs.

4. Aligned Configurations and Complete Bipartite Graphs.

In this section we discuss synchronized and aligned equilibria. We are mainly
interested in the case of complete bipartite graphs, where balanced and aligned
configurations characterize all the equilibria. For our purposes, it is convenient to
expand these notions to a proper subset of vertices.

Definition 4.1. A configuration of K is aligned if the points {eiθk}k∈K belong
to a line passing through the origin of C, that is, any two phases differ by 0 or π. If
all the phases are equal we say that K is synchronized.

Unlike balanced configurations, the aligned configuration of V(G) is an equi-
librium for every G. We refer to these configurations as aligned equilibria. There
are 2n−1 non-equivalent aligned equilibria, each corresponding to a 1-dimensional
torus. As we will see in a later section, some of them may be part of larger component.
Notice that there is only one synchronized equilibrium up to phase-shift.

Proposition 4.2. Let G be connected. Then the only stable aligned equilibria
of G are the synchronized equilibria.

Proof. Let θ be an aligned equilibrium. The vertices V(G) can be partitioned
into two subsets J and K such that every vertex in J have phase α and every vertex
in K have phase α+π, for some α ∈ T. Let E(J,K) denote the set of edges between J
and K and |E(J,K)| the cardinality of this set.

Suppose that θ is not a synchronized equilibrium, then J and K are non-empty.
Since G is connected the set E(J,K) is non-empty. Perturb θ as θ̃k = θk + x

for k ∈ K and θ̃j = θj for j ∈ J. We claim that that the energy (2) decreases in the
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direction of the perturbation. Indeed

E(θ)− E(θ̃) =
∑

jk∈E(G)

cos(θ̃j − θ̃k)− cos(θj − θk)

=
∑

jk∈E(J,K)

cos(θ̃j − θ̃k)− cos(θj − θk)

= |E(J,K)| (cos(π + x)− cos(π))

and since |E(J,K)| is positive the difference E(θ)−E(θ̃) is positive for every x small
enough. The equilibrium θ is not a local minimum, and thus it is not stable.

It remains to prove that the synchronized equilibria are stable. This follows
from the fact that, for every graph G, synchronized equilibria are exactly the global
minima of the energy (2). �

4.1. Complete Bipartite Graphs. In order to show how balanced configura-
tions and aligned configurations may interplay, we discuss complete bipartite graphs.
In [8] it is shown that the synchronized configurations are the only stable equilibria
in complete bipartite graph. Here we complete the analysis by classifying all the
possible equilibria, with a focus on their geometric structure. In particular, we see
that balanced configurations lead to manifolds of unstable equilibria of arbitrarily
large dimension.

Proposition 4.3. Let G be complete bipartite with non-empty parts J and K.
The equilibria of G have the following form:

(i) θJ is balanced, θK is balanced;
(ii) θJ is not balanced, θK is balanced and aligned to

∑
j∈J e

iθj ;

(iii) θK is not balanced, θJ is balanced and aligned to
∑

j∈K eiθk ;

(iv) θ is aligned.

Proof. It is easy to see that every configuration of V(G) satisfying any of the
conditions (i) through (iv) is an equilibrium.

Conversely, let θ be an equilibrium. We prove that θ satisfies at least one of the
conditions. We have

=

(∑
k∈K

eiθke−iθj

)
= 0, for all j ∈ J; (13)

=

∑
j∈J

eiθje−iθk

 = 0, for all k ∈ K. (14)

If J and K are both balanced we are in case (i). Suppose that J is not balanced.
Due to the phase-shift symmetry, we can assume that

∑
j∈J e

iθj is real and strictly

positive. From (14) it follows that θk ∈ {0, π} for every k ∈ K. Then from (13) it
follows that either K has an even number of vertices, half with phase 0 and half
with phase π, and we are in case (ii), or θj ∈ {0, π} for every j ∈ J, and we are in
case (iv). Similarly, if K is not balanced we are in case (iii) or in case (iv). �
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Let |J| = n and |K| = m. Suppose that n,m ≥ 3. By Theorem 3.4 the set of
equilibria of the form (i) has dimension (n− 2)(m− 2). The set of equilibria of the
form (ii) has dimension n if m is even and is empty otherwise. Similarly, the set of
equilibria of the form (iii) has dimension m if n is even and is empty otherwise. The
aligned configurations (ii) form a set of dimension 1.

Notice that the cases (i) through (iv) are not disjoint and the conditions (ii)
and (iii) are not closed. Therefore, in order to obtain the decomposition in irreducible
components some more work is needed. In the next section we give an explicit
example.

5. Manifolds Connected by Heteroclinic Orbits
A heteroclinic orbit is a solution joining two equilibria. We know from

Section 2 that every solution of (1) is either an equilibrium or a heteroclinic orbit
connecting two irreducible sets of equilibria. Given a graph, we are led to the
following program:

• computing the irreducible decomposition of the set of equilibria;
• establishing how the components are connected by solutions.

As we will see by two examples, even for small graphs this program may lead to
some intricate topological structures.

5.1. Complete graph with 4 vertices. Consider a complete graphs with
vertices V(G) = {1, 2, 3, 4}. The only equilibria are the balanced configurations
of V(G) and the aligned configurations of V(G). As explained in Section 3 the
balanced configurations of four vertices are arranged into three 2-dimensional tori:

B1 = {(α, α+ π, β, β + π) | α, β ∈ T},
B2 = {(α, β, α+ π, β + π) | α, β ∈ T},
B3 = {(α, β, β + π, α+ π) | α, β ∈ T}.

These tori mutually intersect at aligned balanced configurations. Up to phase-shift
the balanced configurations form three mutually tangent circles. There are only
three aligned balanced configurations up to phase-shift. The energy of the balanced
configurations is E = 8, which is the maximum of the system.

The aligned configurations that are not balanced are

A1 = {(α, α+ π, α+ π, α+ π) | α ∈ T},
A2 = {(α+ π, α, α+ π, α+ π) | α ∈ T},
A3 = {(α+ π, α+ π, α, α+ π) | α ∈ T},
A4 = {(α+ π, α+ π, α+ π, α) | α ∈ T},

with energy E = 6, and the synchronized state

S = {(α, α, α, α) | α ∈ T}

with energy E = 0. By perturbing the phase of one vertex, it is easy to see that the
equilibria in A1, A2, A3, and A4 are not local maxima nor local minima.
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A heteroclinic connection is only possible from a set with higher energy to a set
with lower energy. Numerically, we see that any connection allowed by the energy
actually exists. The existence of an orbit between Ai and S is trivial since S is
the global minimum of the energy. In order to establish the existence of an orbit
between Ai and Bj , we perturbed an equilibrium of Ai and applied the Runge–Kutta
method RK4 with reversed time. We obtain the heteroclinic structure of Figure 4.

B1

B2

B3

A1 A2 A3 A3

S

Figure 4. Topology of the set of equilibria up to phase shift of
the complete graph with 4 vertices. A dotted arrow represents the
existence of a heteroclinic orbit.

5.2. Cycle with 4 vertices. A cycle graph with vertices 1, 2, 3, 4 is a complete
bipartite graph with parts J = {1, 3} and K = {2, 4}. Therefore, we can apply
Proposition 4.3. Equilibria of the form (i), in which each part is balanced, constitute
a 2-dimensional torus

B2 = {(α, β, α+ π, β + π) | α, β ∈ T}
with energy E = 4. Equilibria of the form (ii) and (iii), in which one part is generic
and the other is balanced and aligned give the 2-dimensional tori

C1 = {(β − δ, β, β + δ, β + π) | β, δ ∈ T},
C2 = {(α, α+ δ, α+ π, α− δ) | α, δ ∈ T},

with energy E = 4. Notice that the conditions (ii) and (iii) are not closed, here we
are taking closures. It is easy to see that the equilibria in B2, C1 and C2 are not
local maxima nor local minima.

Notice that B2, C1 and C2 contain two aligned equilibria each. The remaining
aligned equilibria are

A5 = {(α, α+ π, α, α+ π) | α ∈ T},
S = {(α, α, α, α) | α ∈ T},
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with energy E = 8 and E = 0 respectively. Therefore, we obtain the heteroclinic
network of Figure 5.

Notice that B2, C1 and C2 intersect in two 1-dimensional tori. The equilibria in
the intersection have the property that all Jacobian eigenvalues are zero. Equilibria
with this property, known as completely degenerate, correspond to the Eulerian
circuits in the graph [36]. In this case, the intersections correspond to the two ways
of traveling around the cycle.

A5

S

C2C1B2

Figure 5. Topology of the set of equilibria up to phase shift of the
cycle graph with 4 vertices. A dotted arrow represents the existence
of a heteroclinic orbit.
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[34] D. Pazó, Thermodynamic limit of the first-order phase transition in the kuramoto model,
Physical Review E, 72 (2005), p. 046211.

[35] W. Ren and R. W. Beard, Consensus seeking in multiagent systems under dynamically
changing interaction topologies, IEEE Transactions on automatic control, 50 (2005), pp. 655–661.

[36] D. Sclosa, Completely degenerate equilibria of the kuramoto model on networks, arXiv preprint
arXiv:2112.12034, (2021).

[37] I. R. Shafarevich and M. Reid, Basic algebraic geometry, vol. 2, Springer, 1994.
[38] D. Shimamoto and C. Vanderwaart, Spaces of polygons in the plane and morse theory, The

American Mathematical Monthly, 112 (2005), pp. 289–310.
[39] A. N. Shoshitaishvili, Bifurcations of topological type at singular points of parametrized vector

fields, Funktsional’nyi Analiz i ego Prilozheniya, 6 (1972), pp. 97–98.
[40] Y. Sokolov and G. B. Ermentrout, When is sync globally stable in sparse networks of

identical kuramoto oscillators?, Physica A: Statistical Mechanics and its Applications, 533
(2019), p. 122070.

[41] R. Taylor, There is no non-zero stable fixed point for dense networks in the homogeneous
kuramoto model, Journal of Physics A: Mathematical and Theoretical, 45 (2012), p. 055102.

[42] J. Van Hemmen and W. Wreszinski, Lyapunov function for the kuramoto model of nonlinearly
coupled oscillators, Journal of Statistical Physics, 72 (1993), pp. 145–166.

[43] R. S. Varga, Eigenvalues of circulant matrices, Pacific J. Math, 4 (1954), pp. 151–160.
[44] G. Vathakkattil Joseph and V. Pakrashi, Limits on anti-phase synchronization in oscillator

networks, Scientific Reports, 10 (2020), pp. 1–9.
[45] S. Watanabe and J. W. Swift, Stability of periodic solutions in series arrays of josephson

junctions with internal capacitance, Journal of nonlinear science, 7 (1997), pp. 503–536.
[46] D. A. Wiley, S. H. Strogatz, and M. Girvan, The size of the sync basin, Chaos: An

Interdisciplinary Journal of Nonlinear Science, 16 (2006), p. 015103.
[47] R. Yoneda, T. Tatsukawa, and J. N. Teramae, The lower bound of the network connectivity

guaranteeing in-phase synchronization, Chaos, 31 (2021).


	1. Introduction.
	Acknowledgements.
	2. A System Rich in Structure.
	3. Balanced Configurations and Manifolds of Equilibria.
	4. Aligned Configurations and Complete Bipartite Graphs.
	5. Manifolds Connected by Heteroclinic Orbits
	References

