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Abstract

In this paper, we develop a general mathematical framework for perfect and approximate hydrody-
namic cloaking and shielding of electro-osmotic flow, which is governed by a coupled PDE system via the
field-effect electro-osmosis. We first establish the representation formula of the solution of the coupled
system using the layer potential techniques. Based on Fourier series, the perfect hydrodynamic cloaking
and shielding conditions are derived for the control region with the cross-sectional shape being annulus or
confocal ellipses. Then we further propose an optimization scheme for the design of approximate cloaks
and shields within general geometries. The well-posedness of the optimization problem is proved. In
particular, the condition that can ensure the occurrence of approximate cloaks and shields for general
geometries are also established. Our theoretical findings are validated and supplemented by a variety of
numerical results. The results in this paper also provide a mathematical foundation for more complex
hydrodynamic cloaking and shielding.

1 Introduction

During the past 16 years, there has been rapid progress in rendering objects invisible by cloaking them with
metamaterials in physics and mathematics subjects. One influential methodology to design metamaterials
is the transformation-based approach. Since the pioneering works [16, 32, 22], many studies about cloaking
based on the transformation theory appear in succession in various scientific areas, including acoustic waves
[4, 14, 20, 25], conductive heat flux [13, 27], electromagnetic waves[7, 15, 17], stresses in an elastic medium
[24, 33, 23], dc electric currents [37], and quantum mechanical matter waves [38]. Effectively, these cloaks
are shells composed of metamaterials with a tailor-made distribution of the effective material parameters,
determined by the invariance of governing equations under a transformation of the spatial coordinates.
However, the requirement for inhomogeneous and anisotropic parameters makes it difficult to fabricate
devices designed by transformation optics. Consequently, the feasibility of fabricating cloaks using composite
natural materials has attracted great interest. For this purpose, scattering-cancellation technology has been
developed and successfully used in electromagnetism [1] and other fields [11]. Generally speaking, this method
can realize a similar function to transformation optics, while it only needs bilayer or monolayer structures
and homogeneous isotropic bulk materials. In addition to the bulk materials, the metasurface cloak has
also received much attention with the advantages of low weight and thinness. Instead of employing a shell,
the metasurface cloak uses an ultrathin frequency-selective surface which is designed so that the induced
currents along the surface cancel the scattering from the object to a cloak [2, 9, 10, 28]. Such a strategy is
particularly relevant at microwave frequencies at which frequency-selective surfaces are readily available and
easy to fabricate [26, 34].

In fluid, hydrodynamic cloaking has been a subject of intense research all the time. There are reports
in the physics literature. The first systematic analysis of hydrodynamic cloaking is due to Urzhumov and
Smith [35], based on transformation theory. Later, they further extended the analysis to the case of a
two-dimensional flow around a cylinder in a medium with mixed positive and negative permeability [36].
For the high Reynolds numbers, it was demonstrated how to confine the water waves in a certain area for
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cloaking regions [40, 39]. More recently, another hydrodynamic model has been used to control fluid motion,
i.e., the creeping flow or Stokes flow (Reynolds number Re � 1 ) inside two parallel plates, and a series of
experimental works have been reported [29, 30, 31, 8]. The gap between two plates is much smaller than
the characteristic length of the other two spatial dimensions, so the model is also called the Hele-Shaw
flow or Hele-Shaw cell [18]. By using these microfluidic structures, Park et al [29, 30] have demonstrated by
simulation that such anisotropic fluid media can be mimicked within the cloak, thereby producing the desired
hydrodynamic cloaking effect. We should mention that a transformed fluid medium is not yet physically
realizable; proof of concepts is so far by numerical simulation. The implementation of such a transformation-
based fluid-flow cloak relied on 10 layers of metamaterial microstructures, as well as a fluid background filled
with microcylinders to avoid impedance mismatch. Hence, there has been a growing interest in realizing
metamaterial-less hydrodynamic cloaks.

In particular, in [8] Boyko et al present a new theoretical approach and an experimental demonstration
of hydrodynamic cloaking and shielding in a Hele-Shaw cell that does not rely on metamaterials. In analogy
to optics, “hydrodynamic cloaking” refers to a state wherein the (flow) field external to some region around
an object is unaffected by the presence of the object. “Hydrodynamic cloaking” refers to the elimination
of hydrodynamic forces on the object. The mechanism is based on the fact that flow fields on small scales
are completely governed by momentum sources at boundaries and can be linearly superposed. An effective
way to create such momentum sources is electro-osmotic flow (EOF)—an electrokinetic phenomenon that
generates flow due to the interaction of an applied electric field with the native or induced net charge at liquid-
solid interfaces [19]. The fluid pressure in the Hele-Shaw cell also satisfies a Laplacian-type equation, which
has the analytical solutions for circular cylinder objects in the polar coordinate. With analytical solutions,
Boyko et al first achieve both cloaking and shielding conditions for circular cylinder objects. Further, they
establish approximate cloaking and shielding for the more complex shape of a slight deform from a perfectly
cylindrical shape using shape perturbation theory.

In this paper, we greatly extend the results of Boyko et al [8] and establish a more general mathematical
framework. For details, the contributions of this work are fourfold:

• Based on the physics literature [8], we give the rigorous mathematical definition of hydrodynamic
shielding and cloaking.

• The representation formula of solution of the coupled system is obtained firstly, which gives a quanti-
tative description of the hydrodynamic model.

• By using the uniform approach–layer potential theory, we establish sharp conditions that can ensure the
occurrence of the hydrodynamic cloaking and shielding for annulus (radial case) and confocal ellipses
(non-radial case). Especially, for the confocal ellipses case which is not considered in [8], we introduce
additional elliptic coordinates technique to overcome the difficulty caused by non-radial geometry.

• For more general geometry, we further propose an optimization method to design the hydrodynamic
shielding and cloaking, and prove the well-posedness of optimization problem. More important, the
condition that can ensure the occurrence of approximate cloaks and shields for arbitrary-geometry are
also established. A large amount of numerical experiments, which contains smooth objects, non-smooth
objects and multiple objects, indicates that the optimized zeta potential can achieve the hydrodynamic
shielding and cloaking effectively.

The paper is organized in the following way. We begin with the mathematical setting of the problem
and statement of the main results in Section 2. In Section 3, we first present some preliminary knowledge
on boundary layer potentials and then establish the representation formula of solution of the governing
equations. Section 4 is devoted to the study of the perfect and approximate cloaking and shielding conditions
by the analytical method and the optimization method, respectively. In Section 5, we conduct numerical
experiments to corroborate our theoretical findings. The paper is concluded in Section 6 with some relevant
discussions.
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2 Mathematical setting of the problem and statement of the main
results

To begin, we consider the creeping flow of a viscous fluid of density ρ, viscosity µ, and dielectric permittivity ε
within a narrow gap h̃ between two parallel plates of length L̃ and width W̃ forming a Hele-Shaw configuration
in R3, as shown in Figure 2.1(a). We employ a Cartesian coordinate system x̃ = (x̃1, x̃2, x̃3) ∈ R3, where the
x̃1 and x̃2 axes lie at the lower plane and the x̃3 axis is perpendicular thereto. Let ζ̃L = ζ̃L(x̃) and ζ̃U = ζ̃U (x̃)
be an arbitrary zeta-potential distribution in the lower and upper plates. Let ṽ = (ũ(x̃, t̃), w̃(x̃, t̃)) and
p̃ = p̃(x̃) denote the velocity field and the pressure, respectively, of the fluid. Here ũ(x̃, t̃) is the in-plane
velocity field. When an electrostatic in-plane electric field Ẽ is applied parallel to the plates, the fluid motion
is then governed by the continuity and momentum equations

∇̃ · ṽ = 0, ρ
(∂ṽ
∂t̃

+ ṽ · ∇̃ṽ
)

= −∇̃p̃+ µ∆̃ṽ,

with the Helmholtz–Smoluchowski slip boundary conditions

ũ|x̃3=0 = −εζ̃
LẼ

µ
, ũ|x̃3=h̃ = −εζ̃

U Ẽ

µ
.

These equations contain three independent dimensional parameters, the density ρ, the viscosity µ and the
dielectric permittivity ε, which are both constant and assumed to be known. For convenience in what follows,
we mark the dimensional variables that appear in these equations with a tilde, for instance, ũ, p̃, and so on.
In addition, we also denote the dimensional gradient and Laplace operator as ∇̃ and ∆̃.

By making use of the Helmholtz–Smoluchowski slip condition, we have implicitly assumed that surface
conduction is negligible and thus consider asymptotically small Dukhin numbers. Under this assumption,
the fluid in the bulk is electrically neutral and the electric field Ẽ is solenoidal, i.e., ∇̃ · Ẽ = 0. The electric
field can be expressed through an electrostatic potential ϕ̃, Ẽ = −∇̃ϕ̃, that is governed by the Laplace
equation ∆ϕ̃ = 0, which satisfies the insulation boundary conditions on the walls, ∂ϕ̃

∂x̃3
|x̃3=0,h̃ = 0.

In microscale flows, fluidic inertia is commonly negligible compared to viscous stresses. Further, the gap
is narrow. Therefore, we restrict our analysis to shallow geometries (h̃ � L̃, W̃ ) and neglect fluidic inertia,
represented by a small reduced Reynolds number. Applying the lubrication approximation, we average over
the depth of the cell and reduce the analysis to a two-dimensional problem in R2. The governing equations
for the depth-averaged velocity ũaver, the pressure p̃, and the electrostatic potential ϕ̃ in x̃1–x̃2 plane are
(see [8] )

ũaver = − h̃2

12µ
∇̃p̃+ ũslip, ∆̃p̃ =

12ε

h̃2
∇̃ϕ̃ · ∇̃ζ̃mean and ∆̃ϕ̃ = 0, (2.1)

where ũaver is the average value of ũ over x̃3 by integration, ũslip = ε̃〈ζ̃〉
µ̃ ∇̃ϕ̃ is the depth-averaged Helmholtz-

Smoluchowski slip velocity, ζmean is the arithmetic mean value of the zeta potential on the lower and upper
plates, i.e., ζmean = (ζ̃L + ζ̃U )/2. In the later analysis, we assume the zeta potential on the lower and upper
plates is same. Scaling by the characteristic dimensions, we introduce the following dimensionless equations:

uaver = − 1

12
∇p− ζmean∇ϕ, ∆p = −12∇ϕ · ∇ζmean and ∆ϕ = 0, (2.2)

where uaver, p, ϕ and ζmean are non-dimensional normalized variables.
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(a) (b)

Figure 2.1: Schematic illustration of the Hele-Shaw configuration. (a) the three-dimensional electro-osmosis
model. (b) the reduced two-dimensional problem.

In addition to these equations and the geometry of the flow domain, we also require the boundary
conditions that apply at the boundaries of the domain to completely characterize the flow. These boundary
conditions include the form and magnitudes of the velocity on the left inlet and right outlet to the domain. In
this paper, we mainly consider a pillar-shaped object with arbitrary cross-sectional shape confined between
the walls of a Hele-Shaw cell and subjected to a pressure-driven flow with an externally imposed mean
velocity ũext and electric field Ẽ along the x̃1–axis, as shown in Figure 2.1. The reduced two-dimensional
problem is shown in Figure 2.1(b). To cloak and shield the object hydrodynamically, we are concerned
with the scattering by the object surrounded by a region, i.e., with exterior boundary value problems for
the Laplace equation. We solve the problem assuming an unbounded domain, enabled by the fact that the
boundaries of the chamber are located far from the cloaking and shielding region.

To mathematically state the problem, let Ω be a bounded domain in R2 and let D (object) be a domain
whose closure is contained in Ω. Throughout this paper, we assume that Ω and D are of class C1,α for
some 0 < α < 1. Let H(x) and P (x) be the harmonic function in R2, denoting the background electrostatic
potential and pressure field. For a given constant parameter ζ0 ∈ R, the zeta potential distribution in R2 \D
is given by

ζmean =

ζ0 in Ω \D,

0 in R2 \ Ω.

We may consider the configuration as an insulation and no-penetration core coated by the shell (control
region) Ω \D with zeta potential ζ0. From the equations (2.2) and the assumption of unbounded domain,
the governing equations for non-uniform electro-osmotic flow via a Hele-Shaw configuration is modeled as
follows: 

∆ϕ = 0 in R2 \D,

∂ϕ

∂ν
= 0 on ∂D,

ϕ = H(x) +O(|x|−1) as |x| → +∞,

∆p = 0 in R2 \D,

∂p

∂ν
= 0 on ∂D,

p|+ = p|− on ∂Ω,

∂p

∂ν

∣∣∣
+
− ∂p

∂ν

∣∣∣
−

= 12ζ0
∂ϕ

∂ν
on ∂Ω,

p = P (x) +O(|x|−1) as |x| → +∞,

(2.3)
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where ∂
∂ν denote the outward normal derivative and we use the notation ∂p

∂ν

∣∣
± indicating

∂p

∂ν

∣∣∣∣
±

(x) := lim
t→0+

〈∇p(x± tν(x)), ν(x)〉, x ∈ ∂Ω,

where ν is the outward unit normal vector to ∂Ω.
We are now in a position to introduce the definition of cloaking and shielding which play a central role

in this paper.

Definition 2.1. The triples {D,Ω; ζ0} is said to be a perfect hydrodynamic cloaking if

uaver = −∇P/12 in R2 \ Ω, (2.4)

where uaver is the dimensionless version of ũaver defined in (2.1). If the notation ” = ” is replaced by ” ≈ ”,
then it is called a near/approximate hydrodynamic cloaking.

Let the depth-averaged hydrodynamic force acting on the object be given by

F =

∫
∂D

σ · νds(y), (2.5)

where σ = −pI is the normalized stress tensor.

Definition 2.2. The triples {D,Ω; ζ0} is said to be a perfect hydrodynamic shielding if

F = 0 on ∂D. (2.6)

If the notation ” = ” is replaced by ” ≈ ”, then it is called a near/approximate hydrodynamic shielding.

Outside the cloaking region, the pressure is related to the velocity field through 〈u〉 = −∇p/12 subjected
to the boundary condition p(x) = P (x) as |x| → ∞, and therefore, according to the Definition 2.1, the
condition (2.4) can be expressed in terms of the pressure as

p(x) = P (x), x ∈ R2 \ Ω. (2.7)

Similarly, from (2.5) it follows that the depth-averaged hydrodynamic force F vanishes provided

p(x) = 0, x ∈ Ω \D. (2.8)

According to Definition 2.2, hydrodynamic shielding occurs. In this paper, we assume D and Ω are known,
and want to find appropriate zeta potential ζ0 to achieve the hydrodynamic shielding and cloaking effectively.

Our main results in this paper are given in the following theorems. The proofs are given in Section 4.1
4.2 and 4.3, respectively.

Theorem 2.1. Let the domains D and Ω be concentric disks of radii ri and re, where re > ri. Let
H(x) = rneinθ and P (x) = 12rneinθ for n ≥ 1. If

ζ0 =
2r2n
i r2n

e

r4n
e − r4n

i

, (2.9)

then the perfect hydrodynamic cloaking condition (2.4) is satisfied. And if

ζ0 =
2r2n
e

r2n
e − r2n

i

, (2.10)

then the perfect hydrodynamic shielding condition (2.6) is satisfied.

Remark 2.1. In [8], the authors consider the special case where the background electrostatic potential and
pressure field are given by H(x) = r cos(θ) and P (x) = 12r cos(θ). In fact, the special case is included in
Theorem 2.1 when n = 1. Compared with the linear background fields in [8], we extend the background
electrostatic potential and pressure field to a more general harmonic function in Theorem 2.1.
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Theorem 2.2. Let the domains D and Ω be confocal ellipses of elliptic radii ξi and ξe, where ξe > ξi.

• Let H(x) = cosh(nξ) cos(nη) and P (x) = 12 cosh(nξ) cos(nη) for n ≥ 1. If

ζ0 =
sinh(nξi)(

sinh(nξe)− en(ξi−ξe) sinh(nξi)
)

cosh(n(ξe − ξi))
, (2.11)

then the perfect hydrodynamic cloaking condition (2.4) is satisfied. If

ζ0 =
enξe

sinh(nξe)− en(ξi−ξe) sinh(nξi)
, (2.12)

then the perfect hydrodynamic shielding condition (2.6) is satisfied.

• Let H(x) = sinh(nξ) sin(nη) and P (x) = 12 sinh(nξ) sin(nη) for n ≥ 1. If

ζ0 =
cosh(nξi)(

cosh(nξe)− en(ξi−ξe) cosh(nξi)
)

cosh(n(ξe − ξi))
, (2.13)

then the perfect hydrodynamic cloaking condition (2.4) is satisfied. If

ζ0 =
enξe

cosh(nξe)− en(ξi−ξe) cosh(nξi)
, (2.14)

then the perfect hydrodynamic shielding condition (2.6) is satisfied.

Remark 2.2. If we change simultaneously the sign of the background field H(x) and P (x), then the cloaking
and shielding structures will not be changed. However, if we only change the sign of one of them, then we
need to change the sign of ζ0 such that the cloaking and shielding occur. Further, we notice that

sinh(nξe)− en(ξi−ξe) sinh(nξi) = cosh(nξe)− en(ξi−ξe) cosh(nξi),

which means the shielding structure is not changed in these cases. In Section 5, the observation is verified
numerically when n = 1.

For the arbitrary-geometry for D and Ω, by using the optimization approach, we shall establish a sufficient
condition for the occurrence of approximate hydrodynamic cloaking (or shielding) in the following theorem.

Theorem 2.3. Let p be the solution to (2.3) with p|+ = P on ∂Ω (or p|− = 0 on ∂Ω), and the optimization
functional F(ζ0,opt), G(ζ0,opt) are defined by (4.41), (4.44) respectively. If there exists an optimal zeta
potential ζ0,opt such that F(ζ0,opt) < ε2 (or G(ζ0,opt) < ε2) where ε� 1, then the approximate hydrodynamic
cloaking (or shielding) occurs, that is, |p− P | < ε in R2 \ Ω (or |p| < ε in Ω \D).

Remark 2.3. It’s worth noting that, for general geometry, the perfect hydrodynamic cloaking and shielding
are usually difficult to achieve. It is more closely related to the corresponding overdetermined boundary
value problem (see Section 4.3 for details).

3 Layer potentials formulation

In this section, we first collect some preliminary knowledge on boundary layer potentials and then establish
the representation formula of solution of the governing equations. Let Γi := ∂D and Γe := ∂Ω. For Γ = Γi
or Γe, let us now introduce the single-layer potential by

SΓ[ϑ](x) :=

∫
Γ

G(x, y)ϑ(y)ds(y), x ∈ R2,

where ϑ ∈ L2(Γ) is the density function, and the Green function G(x, y) to the Laplace in R2 is given by

G(x, y) =
1

2π
ln |x− y|.
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Then the following jump relation holds :

∂SΓ[ϑ]

∂ν

∣∣∣∣
±

(x) =
(
± 1

2
I +K∗Γ

)
[ϑ](x), x ∈ Γ, (3.15)

where K∗Γ denote Neumann-Poincaré (NP) operator defined by

K∗Γ[ϑ](x) =

∫
Γ

∂G(x, y)

∂ν(x)
ϑ(y)ds(y).

To establish the representation formula of the solution, we make use of the following lemma.

Lemma 3.1. [3] The operator 1
2I +K∗Γi

: L2
0(Γi)→ L2

0(Γi) is invertible. Here L2
0 := {f ∈ L2(Γi);

∫
Γi
fds =

0}.

By the layer potential theory, we can obtain the following theorem using Lemma 3.1.

Theorem 3.2. Let ϕ, p ∈ C2(R2\D)
⋂
C(R2\D) be the classical solution to (2.3). Then ϕ can be represented

as
ϕ = H(x) + SΓi

[φ](x), x ∈ R2 \D, (3.16)

where density function φ ∈ L2
0(Γi) satisfies(1

2
I +K∗Γi

)
[φ] = −∂H

∂ν

∣∣∣
Γi

. (3.17)

And p can be represented using the single-layer potentials SΓi
and SΓe

as follows:

p = P (x) + SΓi
[ψi](x) + SΓe

[ψe](x), x ∈ R2 \D, (3.18)

where the pair (ψi, ψe) ∈ L2
0(Γi)× L2

0(Γe) satisfy
(1

2
I +K∗Γi

)
[ψi] +

∂SΓe
[ψe]

∂νi
= −∂P

∂νi
on Γi,

ψe = 12ζ0
∂ϕ

∂νe
on Γe.

(3.19)

Furthermore, there exists a constant C = C(ζ0, D,Ω) such that

‖ψi‖L2(Γi) + ‖ψe‖L2(Γe) ≤ C
(
‖∇P‖L2(Γi) + ‖∇ϕ‖L2(Γe)

)
. (3.20)

Proof. Using the jump formula (3.15) for the normal derivative of the single layer potential, the boundary
condition on the boundary Γi satisfied by (3.16) reads (3.17). Thus by Lemma 3.1, the density function φ
exists uniquely. Similarly, the boundary and transmission conditions along the boundary Γi and interface
Γe satisfied by (3.18) read (3.19). The density function ψe was already expressed by the normal derivative
of the electrostatic potential. Hence the density function ψe exists uniquely. By Lemma 3.1, the density
function ψi also exists uniquely. The estimate (3.20) is a consequence of the solvability and the closed graph
theorem. The proof is complete.

The following corollary is a direct consequence of Theorem 3.2, and thus its proof is skipped.

Corollary 3.3. Let ϕ and p be the classical solution to (2.3). Then there exists a positive constant C =
C(ζ0, D,Ω) such that

‖ϕ‖H1
loc(R2\D) ≤ C‖H‖H1(R2\D),

and

‖p‖H1
loc(R2\D) ≤ C

(
‖P‖H1(R2\D) + ‖H‖H1(R2\D)

)
.

According to Theorem 3.2 and Corollary 3.3, we obtain the representation formula and quantitative
estimation of solution of the electro-osmosis model. It will be used to deduce the hydrodynamic cloaking
and shielding conditions in the following sections.
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4 Hydrodynamic cloaking and shielding

This section is devoted to the proofs of Theorems 2.1 and 2.2, which determine the conditions for hydrody-
namic cloaking and shielding. We first consider the microscale hydrodynamic cloaking via electro-osmosis
when the domains D and Ω are concentric disks and confocal ellipses in Subsections 4.1 and 4.2, respectively.
We calculate the explicit form of the solution to (2.3) for this two special cases. In Subsection 4.3, we then
consider hydrodynamic cloaking and shielding for general shapes via an optimization method.

4.1 Perfect hydrodynamic cloaking and shielding on the annulus

Throughout this subsection, we set D := {|x| < ri} and Ω := {|x| < re}, where re > ri. For each integer n
and a = i, e, one can easily see that (cf. [5])

SΓ[einθ](x) =


− ra

2n

( r
ra

)n
einθ, |x| = r < ra,

− ra
2n

(ra
r

)n
einθ, |x| = r > ra,

(4.21)

and
K∗Γ[einθ](x) = 0, ∀ n 6= 0. (4.22)

We begin with the proof of Theorem 2.1.

Proof of Theorem 2.1. Let H(x) = rneinθ for n ≥ 1. From Theorem 3.2, we have

ϕ = H(x) + SΓi
[φ](x), x ∈ R2 \D,

where (1

2
I +K∗Γi

)
[φ] = −∂H

∂r

∣∣∣
r=ri

.

By straightforward calculations and using (4.22), we can obtain

φ = −2nrn−1
i einθ. (4.23)

Substituting (4.23) into (3.16) and using (4.21), we have the solution to (2.3)

ϕ =
(
rn +

r2n
i

rn

)
einθ. (4.24)

Let P (x) = 12rneinθ for n ≥ 1. By (3.19), (4.21), (4.22), and (4.24), if[
ψi

ψe

]
=

[
ψni

ψne

]
einθ,

then we have 
ψi = 12n

rn−1
i

r2n
e

(
(r2n
e − r2n

i )ζ0 − 2r2n
e

)
einθ,

ψe = 12nζ0

(
rn−1
e − r2n

i

rn+1
e

)
einθ.

(4.25)

Substituting (4.25) into (3.18) and using (4.21), we can find that the solution to (2.3) is

p =


− 6

r2n
e

(
(r2n
e − r2n

i )ζ0 − 2r2n
e

)(
rn +

r2n
i

rn

)
einθ, ri < r < re,

12rneinθ − 6

r2n
e

(
(r4n
e − r4n

i )ζ0 − 2r2n
i r2n

e

) 1

rn
einθ, r > re.

(4.26)
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From the second equation in (4.26), it follows that the outer flow and pressure satisfy the cloaking
conditions (2.7) and (2.4) provided

ζ0 =
2r2n
i r2n

e

r4n
e − r4n

i

.

From the first equation in (4.26), it follows that the inner pressure vanishes for ri < r < re provided

ζ0 =
2r2n
e

r2n
e − r2n

i

.

Hence the depth-averaged hydrodynamic force F vanishes. The proof is complete.

4.2 Perfect hydrodynamic cloaking and shielding on the confocal ellipses

To consider the perfect hydrodynamic cloaking and shielding on the confocal ellipses we introduce the elliptic
coordinates (ξ, η) so that x = (x1, x2) in Cartesian coordinates are defined by

x1 = l cosh ξ · cos η, x2 = l sinh ξ · sin η, ξ ≥ 0, 0 ≤ η ≤ 2π,

where 2l is the focal distance. Suppose that ∂D = Γi and ∂Ω = Γe are given by

Γi = {(ξ, η) : ξ = ξi} and Γe = {(ξ, η) : ξ = ξe},

where the number ξi and ξe are called the elliptic radius Γi and Γe, respectively.
Let Γ = {(ξ, η) : ξ = ξa} for a = i, e. One can see easily that the length element ds and the outward

normal derivative ∂
∂ν on Γ are given in terms of the elliptic coordinates by

ds = γdη and
∂

∂ν
= γ−1 ∂

∂ξ
,

where

γ = γ(ξa, η) = l

√
sinh2 ξa + sin2 η.

To proceed, it is convenient to use the following notations: for a = i, e and n = 1, 2, . . . ,

βc,an := γ(ξa, η)−1 cos(nη) and βs,an := γ(ξa, η)−1 sin(nη).

For a nonnegative integer n and a = i, e, it is proved in [12, 6] that

SΓ[βc,an ](x) =


−cosh(nξ)

nenξa
cos(nη), ξ < ξa,

−cosh(nξa)

nenξ
cos(nη), ξ > ξa,

(4.27)

and

SΓ[βs,an ](x) =


− sinh(nξ)

nenξa
sin(nη), ξ < ξa,

− sinh(nξa)

nenξ
sin(nη), ξ > ξa.

Moreover, we also have

K∗Γ[βc,an ] =
1

2e2nξa
βc,an and K∗Γ[βs,an ] = − 1

2e2nξa
βs,an . (4.28)

We are ready to present the proof of Theorem 2.2.
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Proof of Theorem 2.2. Let H(x) = cosh(nξ) cos(nη) for n ≥ 1. From the Theorem 3.2 in Section 3 and
(4.28), if φ = φnβ

c,i
n , we have (1

2
+

1

2e2nξi

)
φ = −n sinh(nξi) β

c,i
n . (4.29)

It is readily seen that the solution to (4.29) is given by

φ = −nenξi tanh(nξi) β
c,i
n . (4.30)

Substituting (4.30) into (3.16) and using (4.27), we have the solution to (2.3)

ϕ =
(

cosh(nξ) + enξi sinh(nξi) e−nξ
)

cos(nη). (4.31)

Let P (x) = 12 cosh(nξ) cos(nη) for n ≥ 1. From (3.19) and (4.31) we first have

ψe = 12nζ0
(

sinh(nξe)− en(ξi−ξe) sinh(nξi)
)
βc,en . (4.32)

If ψi = ψni β
c,i
n , then the first equation in (3.19) is equivalent to(1

2
+

1

2e2nξi

)
ψi = 12n

((
sinh(nξe)− en(ξi−ξe) sinh(nξi)

) sinh(nξi)

enξe
ζ0 − sinh(nξi)

)
βc,in .

By the simple calculation, we can obtain

ψi = 12n
((

sinh(nξe)− en(ξi−ξe) sinh(nξi)
)
en(ξi−ξe) tanh(nξi) ζ0 − enξi tanh(nξi)

)
βc,in . (4.33)

Substituting (4.32) and (4.33) into (3.16) and using (4.27), we can obtain the solution to (2.3)

p =


− 12

enξe

((
sinh(nξe) − en(ξi−ξe) sinh(nξi)

)
ζ0 − enξe

)(
cosh(nξ) + enξi sinh(nξi) e−nξ

)
cos(nη), ξi < ξ < ξe,

(
12 cosh(nξ) − 12

(
ζ0
(

sinh(nξe) − en(ξi−ξe) sinh(nξi)
)

cosh(n(ξe − ξi) − sinh(nξi))
)enξi

enξ

)
cos(nη), ξ > ξe.

(4.34)

If H(x) = sinh(nξ) sin(nη) and P = 12 sinh(nξ) sin(nη) for n ≥ 1, in a similar way we can find the solution
to (2.3)

ϕ =
(

sinh(nξ) + enξi cosh(nξi) e−nξ
)

sin(nη),

and the solution to (2.3)

p =


− 12

enξe

((
cosh(nξe) − en(ξi−ξe) cosh(nξi)

)
ζ0 − enξe

)(
sinh(nξ) + enξi cosh(nξi) e−nξ

)
sin(nη), ξi < ξ < ξe,

(
12 sinh(nξ) − 12

(
ζ0
(

cosh(nξe) − en(ξi−ξe) cosh(nξi)
)

cosh(ξe − ξi) − cosh(nξi)
)enξi

enξ

)
sin(nη), ξ > ξe.

(4.35)

The cloaking and shielding conditions immediately follow from the equations (4.34) and (4.35).
The proof is complete.

4.3 Approximate hydrodynamic cloaking using optimization method

In this subsection, we discuss a general framework for hydrodynamic cloaking and shielding. According
to Definition 2.1 and equation (2.7) and in order to ensure the cloaking occurs, we only need to solve the
following overdetermined boundary value problem with {D,Ω; ζ0}:

∆p = 0 in Ω \D,

∂p

∂ν
= 0 on ∂D,

p = P on ∂Ω,

∂P

∂ν
− ∂p

∂ν
= 12ζ0

∂ϕ

∂ν
on ∂Ω.

(4.36)
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and ϕ satisfies: 
∆ϕ = 0 in R2 \D,

∂ϕ

∂ν
= 0 on ∂D,

ϕ = H(x) +O(|x|−1) as |x| → +∞.

(4.37)

In fact, from the uniqueness of exterior Dirichlet problem for the Laplace equation with p|∂Ω = P , we
obtain p = P , in R2 \ Ω, i.e., the perfect hydrodynamic cloaking occurs.

Similarly, according to Definition 2.2 and equation (2.8), and in order to ensure the shielding occurs, the
following overdetermined exterior boundary value problem is needed to solve:

∆p = 0 in R2 \ Ω,

p = 0 on ∂Ω,

∂p

∂ν
= 12ζ0

∂ϕ

∂ν
on ∂Ω,

p = P (x) +O(|x|−1) as |x| → +∞.

(4.38)

In Sections 4.1 and 4.2, we know that perfect hydrodynamic cloaking and shielding occur in two spe-
cial cases by using explicit expressions. One can easily verify that these cloaking and shielding structures
{D,Ω; ζ0} satisfy equations (4.36) and (4.38), respectively. However, for the arbitrary shape, we can not
demonstrate the cloaking and shielding structures {D,Ω; ζ0} exists since the analytical solutions do not exist
for the general shape. In particular, the overdetermined problem (4.36) and (4.38) with general domain have
no solution. Fortunately, the numerical experiments show that the approximate hydrodynamic cloaking and
shielding exist for the general shape.

To find the approximate hydrodynamic cloaking structure {D,Ω; ζ0} for general shape, we first solve the
electrostatic potential equation in (2.3) and then the following interior mixed boundary value problem

∆p = 0 in Ω \D,

∂p

∂ν
= 0 on ∂D,

p = P on ∂Ω.

(4.39)

Hence we can obtain ζ0 that satisfies the cloaking condition (2.7) by solving the following equation

∂P

∂ν
− ∂p

∂ν
= 12ζ0

∂ϕ

∂ν
on ∂Ω. (4.40)

In order to solve equation (4.39), one can use the standard Nyström method or finite element method. It
is worth noting that the solution to (4.40) does not exist for the general shape. Hence we need to choose
optimal ζ0 by optimization method. Define a cost functional to be

F(ζ0) =
∥∥∥∂P
∂ν
− ∂p

∂ν
− 12ζ0

∂ϕ

∂ν

∥∥∥2

L2(∂Ω)
, ζ0 ∈ [a, b] ⊂ R. (4.41)

Then the optimal zeta potential is defined by

ζ0,opt := arg min
ζ0∈[a,b]

F(ζ0). (4.42)

That is, to design the approximate hydrodynamic cloaking, we can solve the PDE-constrained optimization
problem (4.39), (4.37) and (4.42).
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Similarly, for shielding, we first solve electrostatic potential equation in (2.3) and the following exterior
Dirichlet boundary value problem

∆p = 0 in R2 \ Ω,

p = 0 on ∂Ω,

p = P (x) +O(|x|−1) as |x| → +∞.

(4.43)

Let the cost functional be

G(ζ0) =
∥∥∥∂p
∂ν
− 12ζ0

∂ϕ

∂ν

∥∥∥2

L2(∂Ω)
, ζ0 ∈ [c, d], (4.44)

then the optimal zeta potential is defined by

ζ0,opt := arg min
ζ0∈[c,d]

G(ζ0). (4.45)

The existence, uniqueness and stability of a minimizer for the constrained optimization problem (4.41)
and (4.44) are given in the following theorems. We only give the proof of the optimal problem (4.41). The
proof of (4.44) is similar to that of the optimization problem (4.41) and therefore is skipped.

Theorem 4.1. There exists a unique optimal zeta potential ζ0,opt ∈ [a, b], which minimizes the cost functional
F(ζ0) with the PDE-constraint (4.39) and (4.37) (or G(ζ0) with the PDE-constraint (4.37) and (4.43)) over
all ζ0 ∈ [a, b].

Proof. For any ζ
(1)
0 , ζ

(2)
0 ∈ [a, b], by the L2-estimation of solution for (4.39), we have

|F
(
ζ

(1)
0

)
−F

(
ζ

(1)
0

)
|

≤ 24
∣∣ζ(1)

0 − ζ(2)
0

∣∣ · ∥∥∥∂(P − p)
∂ν

∥∥∥
L2(∂Ω)

·
∥∥∥∂ϕ
∂ν

∥∥∥
L2(∂Ω)

+ 122
∣∣ζ(1)

0 − ζ(2)
0

∣∣ · ∣∣ζ(1)
0 + ζ

(2)
0

∣∣ · ∥∥∥∂ϕ
∂ν

∥∥∥2

L2(∂Ω)

≤ C
∣∣ζ(1)

0 − ζ(2)
0

∣∣.
Hence F(ζ0) is Lipschitz continuous in [a, b]. Furthermore, supposing λ1, λ2 ∈ (0, 1) and λ1 + λ2 = 1, we
obtain

F
(
λ1ζ

(1)
0 + λ2ζ

(2)
0

)
=
∥∥∥∂P
∂ν
− ∂p

∂ν
− 12

(
λ1ζ

(1)
0 + λ2ζ

(2)
0

)∂ϕ
∂ν

∥∥∥2

L2(∂Ω)

< λ1

∥∥∥∂P
∂ν
− ∂p

∂ν
− 12ζ

(1)
0

∂ϕ

∂ν

∥∥∥2

L2(∂Ω)
+ λ2

∥∥∥∂P
∂ν
− ∂p

∂ν
− 12ζ

(2)
0

∂ϕ

∂ν

∥∥∥2

L2(∂Ω)

= λ1F
(
ζ

(1)
0

)
+ λ2F

(
ζ

(2)
0

)
.

Then F(ζ0) is strictly convex in [a, b]. Therefore the cost functional (4.41) has a unique minimizer.
The proof is complete.

Theorem 4.2. Let {pk} and {ϕk} be sequences such that ∂pk
∂ν → p and ∂ϕk

∂ν → ϕ, as k →∞ in L2(∂Ω) and

let {ζ(k)
0,opt} be a minimizer of (4.41) (or (4.44)) with ϕ and p replaced by ϕk and pk. Then the optimal zeta

potential is stable with respect to the electrostatic potential ϕ and pressure p, i.e., ζ
(k)
0,opt → ζ0,opt.

Proof. From the definition of ζ
(k)
0,opt, we find∥∥∥∂P

∂ν
− ∂pk

∂ν
− 12ζ

(k)
0,opt

∂ϕk
∂ν

∥∥∥2

L2(∂Ω)
≤
∥∥∥∂P
∂ν
− ∂pk

∂ν
− 12ζ0

∂ϕk
∂ν

∥∥∥2

L2(∂Ω)
, ∀ ζ0 ∈ [a, b]. (4.46)
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Since ζ
(k)
0,opt ∈ [a, b], there exists a subsequence, still denoted {ζ(k)

0,opt}, which implies ζ
(k)
0,opt → ζ

(0)
0,opt and

ζ0,opt ∈ [a, b]. Based on the continuity of L2-norm, by (4.46) it follows that∥∥∥∥∂P∂ν − ∂p

∂ν
− 12ζ

(0)
0,opt

∂ϕ

∂ν

∥∥∥∥2

L2(∂Ω)

= lim
k→∞

∥∥∥∥∂P∂ν − ∂pk
∂ν
− 12ζ

(k)
0,opt

∂ϕk
∂ν

∥∥∥∥2

L2(∂Ω)

≤ lim
k→∞

∥∥∥∥∂P∂ν − ∂pk
∂ν
− 12ζ0

∂ϕk
∂ν

∥∥∥∥2

L2(∂Ω)

=

∥∥∥∥∂P∂ν − ∂p

∂ν
− 12ζ0

∂ϕ

∂ν

∥∥∥∥2

L2(∂Ω)

,

for all ζ0 ∈ [a, b]. This deduces that ζ
(0)
0,opt is a minimizer of F(ζ0). By the uniqueness of the minimizer, we

have ζ
(0)
0,opt = ζ0,opt. The proof is complete.

Remark 4.1. In fact, from the continuous dependence on the background fields H and P of the solutions of
(4.39) and (4.37), we can also deduce the stability of the minimizer with respect to the background fields.

Next, we give the proof of Theorem 2.3.

Proof of Theorem 2.3. We first prove the case of cloaking. From the boundary condition ∂p
∂ν

∣∣∣
+
− ∂p

∂ν

∣∣∣
−

=

12ζ0
∂ϕ
∂ν on ∂Ω defined in equation (2.3), we have

∂P

∂ν
− ∂p

∂ν

∣∣∣
+

=
∂P

∂ν
− ∂p

∂ν

∣∣∣
−
− 12ζ0

∂ϕ

∂ν
on ∂Ω. (4.47)

Applying the L2(∂Ω) norm to both sides of the equation (4.47) gives∥∥∥∂P
∂ν
− ∂p

∂ν

∣∣∣
+

∥∥∥
L2(∂Ω)

=
∥∥∥∂P
∂ν
− ∂p

∂ν

∣∣∣
−
− 12ζ0

∂ϕ

∂ν

∥∥∥
L2(∂Ω)

.

Setting ζ0 = ζ0,opt and using the condition F(ζ0,opt) < ε2, we obtain
∥∥∥∂P∂ν − ∂p

∂ν

∣∣∣
+

∥∥∥
L2(∂Ω)

< ε. Applying

Green’s formula [21] to P and p in R2 \ Ω, we have

P (x) = P∞ +

∫
∂Ω

G(x, y)
∂P

∂ν
(y)ds(y)−

∫
∂Ω

∂G(x, y)

∂ν(y)
P (y)ds(y), x ∈ R2 \ Ω, (4.48)

p(x) = p∞ +

∫
∂Ω

G(x, y)
∂p

∂ν
(y)ds(y)−

∫
∂Ω

∂G(x, y)

∂ν(y)
p(y)ds(y), x ∈ R2 \ Ω. (4.49)

where the mean value properties at infinity

P∞ =
1

2πr

∫
|y|=r

P (y)ds(y) and p∞ =
1

2πr

∫
|y|=r

p(y)ds(y)

for sufficiently large r are satisfied.
In the case of cloaking, we require p|+ = P on ∂Ω. Moreover, from (4.48), (4.49) and the boundary

condition
∥∥∥∂P∂ν − ∂p

∂ν

∣∣∣
+

∥∥∥
L2(∂Ω)

< ε, the following inequalities hold:

|p(x)− P (x)| ≤ |p∞ − P∞|+
∣∣∣ ∫
∂Ω

G(x, y)
(∂p
∂ν

(y)− ∂P

∂ν
(y)
)

ds(y)−
∫
∂Ω

∂G(x, y)

∂ν(y)

(
p(y)− P (y)

)
ds(y)

∣∣∣
≤ 1

2πr

∫
|y|=r

|p(y)− P (y)|ds(y) +
(∫

∂Ω

G2(x, y)ds(y)
) 1

2 ·
(∫

∂Ω

(∂p
∂ν

(y)− ∂P

∂ν
(y)
)2

ds(y)
) 1

2

≤ C
∥∥∥∂P
∂ν
− ∂p

∂ν

∣∣∣
+

∥∥∥
L2(∂Ω)

< ε, x ∈ R2 \ Ω.
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We next prove the case of shielding. Setting ζ0 = ζ0,opt and using the condition G(ζ0,opt) < ε2 and the

boundary condition ∂p
∂ν

∣∣∣
+
− ∂p

∂ν

∣∣∣
−

= 12ζ0
∂ϕ
∂ν on ∂Ω, we obtain

∥∥∥ ∂p∂ν ∣∣∣−∥∥∥L2(∂Ω)
< ε. Applying Green’s formula

[21] to p in Ω \D, we have

p(x) =

∫
∂Ω

∂G(x, y)

∂ν(y)
p(y)ds(y)−

∫
∂Ω

G(x, y)
∂p

∂ν
(y)ds(y), x ∈ Ω \D. (4.50)

In the case of shielding, we require p|− = 0 on ∂Ω. Moreover, from (4.50) and the boundary condition∥∥∥ ∂p∂ν ∣∣∣−∥∥∥L2(∂Ω)
< ε, the following inequalities hold:

|p(x)| =
∣∣∣ ∫
∂Ω

∂G(x, y)

∂ν(y)
p(y)ds(y)−

∫
∂Ω

G(x, y)
∂p

∂ν
(y)ds(y)

∣∣∣
=
∣∣∣ ∫
∂Ω

G(x, y)
∂p

∂ν
(y)ds(y)

∣∣∣
≤
(∫

∂Ω

G2(x, y)ds(y)
) 1

2 ·
(∫

∂Ω

(∂p
∂ν

(y)
)2

ds(y)
) 1

2

≤ C
∥∥∥∂p
∂ν

∣∣∣
−

∥∥∥
L2(∂Ω)

< ε, x ∈ Ω \D.

The proof is complete.

In the proof of Theorem 2.3, we find the following corollary.

Corollary 4.3. Let p be the solution to (2.3) with p|+ = P on ∂Ω. Then there exists a positive constant C
such that

|p(x)− P (x)| ≤ C
∥∥∥∂P
∂ν
− ∂p

∂ν

∣∣∣
−
− 12ζ0

∂ϕ

∂ν

∥∥∥
L2(∂Ω)

, x ∈ R2 \ Ω.

Let p be the solution to (2.3) with p|− = 0 on ∂Ω. Then there exists a positive constant C such that

|p(x)| ≤ C
∥∥∥∂p
∂ν

∣∣∣
+
− 12ζ0

∂ϕ

∂ν

∥∥∥
L2(∂Ω)

, x ∈ Ω \D.

Corollary 4.3 shows that the error is minimized when the cost function F(ζ0) (or G(ζ0)) is minimized. It
will be further corroborated by our numerical experiments in Section 5 in what follows.

5 Numerical experiments

In this section, we validate the theoretical results based on a two-dimensional model by performing three-
dimensional finite-element simulations, which shows nice agreement. We perform the finite-element numerical
simulations using the commercial software COMSOL Multiphysics.

Before showing the numerical results, we give the values of the physical and geometrical parameters used
in the finite-element simulations, which are summarized in the following table.

Physical property Notation Value Units

Gap between the plates h̃ 15 µm

Length of computational domain L̃ 2 mm

Width of computational domain W̃ 2 mm
Density of fluid ρ 103 Kg/m3

Viscosity of fluid µ 10−3 Pa · s
Permittivity of fluid ε 7.08× 10−10 F/m

Electric field far from object Ẽ 3× 102 V/m
External velocity ũext 51 µm/s

Table 1: Values of the physical and geometrical parameters used in the finite-element simulations.
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We first perform finite-element simulations of the flow around a circular cylinder of radius 100 µm in
a Hele-Shaw cell. The radius of the cloaking and shielding region is 200 µm. We derive the important
quantity, that is, the characteristic value of ζ̃0. Scaling (4.26) by the characteristic dimensions, we know
that the pressure distribution is [8]

p̃ =


6µ

h̃2r̃2
e

(
(r̃2
e − r̃2

i )ũEOF − 2r̃2
e ũext

)(
r̃ +

r̃2
i

r̃

)
cos θ, r̃i < r̃ < r̃e,

−12µũext

h̃2
r̃ cos θ +

6µ

h̃2r̃2
e

(
(r̃4
e − r̃4

i )ũEOF − 2r̃2
i r̃

2
e ũext

)1

r̃
cos θ, r̃ > r̃e.

(5.51)

Where ũEOF = −εζ̃0Ẽ/µ, r̃i = 100 µm and r̃e = 200 µm. From (5.51), we can obtain shielding and cloaking
conditions

ũEOF =
2r̃2
e

r̃2
e − r̃2

i

ũext and ũEOF =
2r̃2
i r̃

2
e

r̃4
e − r̃4

i

ũext.

Furthermore, in terms of ζ̃0, we have shielding and cloaking conditions

ζ̃0 = − µ

εẼ

2r̃2
e

r̃2
e − r̃2

i

ũext and ζ̃0 = − µ

εẼ

2r̃2
i r̃

2
e

r̃4
e − r̃4

i

ũext. (5.52)

The equations in (5.52) are equivalent to

ζ̃0 = − 2r2
e

r2
e − r2

i

µ

εẼ
ũext and ζ̃0 = − 2r2

i r
2
e

r4
e − r4

i

µ

εẼ
ũext. (5.53)

Comparing the dimensionless shielding and cloaking conditions (2.9, 2.10) and (5.53), we find that the
difference is a factor. In fact, the factor is precisely the characteristic value of ζ̃0.

Figure 5.2 presents a comparison of the finite-element simulation results corresponding to pressure-driven
flow (a), shielding (b), and cloaking (c) conditions. Figures 5.2(a)–5.2(c) present the resulting pressure
distribution (colormap) and streamlines (white lines), showing excellent shielding and cloaking in the finite-
element simulations for the cylinder object. Under shielding conditions (2.10), the pressure inside the region
surrounding the cylinder becomes uniform, and the force on the object vanishes. Under cloaking conditions
(2.9), the streamlines outside of the control region are straight, unmodified relative to the uniform far field,
and undisturbed by the object.

(a) (b) (c)

Figure 5.2: Comparison of finite-element simulation results on the annulus. Numerical (a,b,c) results for the
pressure distribution (colormap) and streamlines (white lines), corresponding to pressure-driven flow (a),
shielding (b), and cloaking (c) conditions. Here in the case of shielding, the zeta potential is ζ̃0 = −0.64 V,
and in the case of cloaking the zeta potential is ζ̃0 = −0.128 V.

We perform finite-element simulations of the flow around an elliptic cylinder in a Hele-Shaw cell. We
consider an elliptic cylinder of boundary ξ̃i wrapped by a region of interior and exterior boundaries ξ̃i and

15



ξ̃e, choosing ξ̃i = 50 µm and ξ̃e = 100 µm. It is remarked that the inner and outer ellipses are of the same
focus. We first consider a uniform electric filed and velocity externally applied in the x̃1 direction. The zeta
potentials ζ̃0 of cloaking and shielding region depend on the equations (2.11, 2.12) and the characteristic value
of ζ̃0. Figures 5.3(a)–5.3(c) present the resulting pressure distribution (colormap) and streamlines (white
lines) with the background electric field and velocity in the x̃1 direction. Analogously, when the background
electric field and velocity are externally applied in the x̃2 direction, under conditions (2.13) and (2.14) we
can obtain numerical results illustrated in Figures 5.3(d)–5.3(f). These results also show excellent agreement
like the circular cylinder case. The performance of the proposed cloaking and shielding conditions have
been numerically confirmed. Moreover, it also is verified that the confocal ellipses have the same shielding
condition, comparing Figure 5.3(b) and Figure 5.3(e).

(a) (b) (c)

(d) (e) (f)

Figure 5.3: Comparison of finite-element simulation results on the confocal ellipses with background
field in the x̃1 (Top: a,b,c) and x̃2 direction (Bottom: d,e,f). The zeta potentials are ζ̃0 =
−0.7593 V(b),−0.1291 V(c),−0.7593 V(e) and −0.2793 V(f), respectively.

In Figure 5.4, we consider thin cloaking region for annulus and confocal ellipses with r̃i = 100 µm,
r̃e = 110 µm, ξ̃i = 50 µm and ξ̃e = 70 µm. These results show that thin region can also have excellent
cloaking. However, these regions are not so thin that meta-surfaces occur because the cloaking conditions
are singular.
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(a) (b) (c)

Figure 5.4: Comparison of finite-element simulation results with thin cloaking region. The zeta potentials
are ζ̃0 = −1.2515 V(a),−0.3693 V(b) and −0.7992 V(c), respectively.

(a) (b) (c)

(d) (e) (f)

Figure 5.5: Comparison of finite-element simulation results for some objects with regular
boundaries. Numerical results for the pressure distribution (colormap) and streamlines (white
lines) corresponding to cloaking (a-c) and shielding (d-f). The zeta potentials are ζ̃0,opt =
−0.1288 V(a),−0.0864 V(b),−0.0751 V(c),−0.6456 V(d),−0.5832 V(e) and −0.5664 V(f), respectively. The
cloaking regions are circles with a radius of 200 µm.

For a benchmarking experiment, we consider the flow of a cylinder with a flower-shaped cross-section
with boundary described by the parametric representation

x(t) = 1− 0.1 cos 5t, 0 ≤ t ≤ 2π.

Extending our analysis to more complex shapes, we also considered the case of a non-convex kite-shaped
object parameterized by

x(t) = (0.6 cos t+ 0.39 cos 2t+ 0.01, 0.9 sin t), 0 ≤ t ≤ 2π,
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and a peanut-shaped object parameterized by

x(t) =
√

cos2 t+ 0.25 sin2 t, 0 ≤ t ≤ 2π.

When these objects are surrounded by an appropriate circle, we observe that good cloaking and shielding
occur in Figure 5.5.

Without loss of generality, we confine our presentation to objects with boundary curve ∂D with some
corners. We consider some special shapes, for instance, triangles, squares and pentagons inscribed in the
circle of radius 100 µm. Here the cloaking and shielding region is a circle of radius 200 µm. Figure 5.6
shows good cloaking and shielding. These zeta potentials used in finite-element numerical simulations are
calculated by the optimization method in Subsection 4.3. They are scaled by the characteristic value of ζ̃0.

(a) (b) (c)

(d) (e) (f)

Figure 5.6: Comparison of finite-element simulation results for some objects with corners.
Numerical (a-f) results for the pressure distribution (colormap) and streamlines (white lines)
corresponding to cloaking (a-c) and shielding (d-f). The zeta potentials are ζ̃0,opt =
−0.0636 V(a),−0.0912 V(b),−0.0984 V(c),−0.5568 V(d),−0.5904 V(e) and −0.5997 V(f), respectively.

We extend numerical simulations by investigating the possibility of cloaking multiple objects placed in
close proximity to each other. Figures 5.7, 5.8 and 5.9 show good cloaking for multiple circular, elliptical
objects and the combination of them. Here excellent cloaking remains exist. However, the shielding does
not exist for multiple objects.
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(a) (b) (c)

Figure 5.7: Cloaking for multiple circular cylinder objects. Here r̃i = 100 µm, r̃e = 200 µm and ζ̃0 =
−0.128 V.

(a) (b) (c)

Figure 5.8: Cloaking for multiple elliptic cylinder objects. Here ξ̃i = 50 µm, ξ̃e = 100 µm and ζ̃0 = −0.1291 V.

(a) (b) (c)

Figure 5.9: Cloaking for the combination of circular and elliptic cylinder objects. The parameters are the
same as that of Figures 5.7 and 5.8.

6 Conclusion

In this paper, we consider the hydrodynamic cloaking and shielding of objects in microscale flows. We
established a systematic and comprehensive mathematical framework that allows us to derive the shielding
and cloaking conditions via electroosmosis for complex geometries. In addition to the theoretical results,
extensive numerical experiments were conducted to corroborate the theoretical findings. We would like
to emphasize that the above approach is metamaterial-less, namely without using any “exotic” materials.
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The corresponding “cloaks” and “shields” presented here have simpler structures than their metamaterial
equivalents. Moreover, these structures are easy to control by adapting the gate electrode in physics. The
idea can be extended in several directions: (i) to investigate the enhancement of approximate hydrodynamic
cloaking and shielding based on the perfect hydrodynamic cloaking and shielding on the annuls and confocal
ellipses using the perturbation theory; (ii) to study the case when the electric filed is cloaked simultaneously;
(iii) to consider the bigger scale flow. These new developments will be reported in our forthcoming works.
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