
ONE-DIMENSIONAL SHORT-RANGE NEAREST-NEIGHBOR
INTERACTION AND ITS NONLINEAR DIFFUSION LIMIT

M. FISCHER, L. KANZLER, C. SCHMEISER

Abstract

Repulsion between individuals within a finite radius is encountered in numerous appli-
cations, including cell exclusion, i.e. avoidance of overlapping cells, bird flocks, or mi-
croscopic pedestrian models. We define such individual based particle dynamics in one
spatial dimension with minimal assumptions of the repulsion force f as well as their exter-
nal velocity v and prove their characteristic properties. Moreover, we are able to perform
a rigorous limit from the microscopic to the macroscopic scale, where we could recover
the finite interaction radius as a density threshold. Specific choices for the repulsion force
f lead to well known nonlinear diffusion equations on the macroscopic scale, as e.g. the
porous medium equation. At both scaling levels numerical simulations are presented and
compared to underline the analytical results.

Keywords: agent-based models, repulsive force, cell-exclusion, nonlinear diffusion limit,
porous medium equation
Mathematics subject classification: 82C22, 35R37, 35K55, 92C15

1. Introduction

We consider a chain of particles keeping their order along a straight line and interacting
with their neighbors by distance dependent repulsive forces, which vanish above an equi-
librium distance. Their movement is further influenced by external forces in the form of a
position dependent velocity. For a finite number of such particles the distance between the
first and the last particle will remain finite for all time. Our goal is to derive a macroscopic
continuum model sharing this property, i.e. for an initial particle density with bounded
support there should be a finite upper bound for the length of the support at later times.
Such a model, in the form of a nonlinear diffusion equation with drift, will be derived
from the particle model by a continuum limit. The macroscopic model is diffusive since
we choose a friction dominated (overdamped) microscopic model, being motivated by the
dynamics of bacterial colonies living in viscous environments.

Repulsive effects with a finite radius are often used in microscopic particle systems
and their corresponding kinetic and macroscopic models. In flocking models, such as the
Cucker-Smale- and the Vicsek-model, see [12, 38], they appear as part of an interaction
between attraction and repulsion. Examples occur in the modelling of collective behaviour
within sheep-herds [30], fish schools [10] and bird flocks [9]. In our setting only neighbour-
ing particles interact if their distance does not exceed a given threshold, which causes the
model to combine dynamics of metric interactions, i.e. interactions depending on the dis-
tance defined on the state-space, and topological interactions, i.e. interactions depending
on the relative separation, which is given by the number of intermediate individuals. For
various interacting agent systems, e.g. bird flock dynamics, topological interactions serve
as a very realistic model approach, hence its recent interest [3], or see also [20] in a kinetic
context.
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Repulsion forces between individuals are furhter highly relevant in modelling size ex-
clusion effects. On the microscopic level, this has been studied for pattern formation in
bacterial colonies [14, 15, 39]. In general, such modelling of size exclusion is a macroscopic
alternative to models based on e.g. cellular automata, compare [32], or microscopic asym-
metric exclusion process, see [6], in which size exclusion has no influence on the diffusive
term, typically a linear diffusive-term is derived. The modelled repulsion can also be seen
as a cut-off potential. On a microscopic level this is often used for better computational
speed and e.g. steadier movement of pedestrians as in the optimal-step-model, see [33]. A
further investigation of size-exclusion effects between interacting particles, even grouped
in species, can be found in [4, 5]. Performing the many particle limit under usage of the
matched asymptotic expansion technique leads to a system of nonlinear cross-diffusion
equations for each species. Remarkable is the effect the size-exclusion has on the diffusivi-
ties on the macroscopic scale: while excluded-volume interactions between particles of the
same species favour enhancement of the diffusion rates, its diminishment of is caused by
particles of the other species.

This nonlinear diffusion term can be microscopically interpreted as particles trying to
reach a desired density. Density thresholds similar to velocity thresholds are an important
topic in pedestrian dynamics, see [1, 19], gaining new focus in the context of social dis-
tancing [26], and cannot be calibrated in other macroscopic models, see [19]. Moreover,
nonlinear diffusion equations are widely studied in the form of the well-known porous
medium equation. Similar to this work, in [29] various versions of the porous medium
equation have been derived in the many particle limit, starting from systems of ordinary
differential equations modelling their interaction. While in [29] the macroscopic limit was
achieved in a mean-field sense with varying interaction intensities, our approach relies on
the definition of the discrete density, measuring the inverse of the difference of two neigh-
boring particle positions. For an overview over the theory of porous medium equations we
refer the reader to [36, 37]. While usual porous medium models consider diffusion without
threshold, our approach can be seen as a generalisation of the nonlinear diffusion of a gas
expanding in porous media, where the repulsion of its particles is limited by its force only
having finite range (see Section 3).

Related limits from microscopic particle dynamics on the real line to macroscopic equa-
tions can be found in [13, 17]. In [17] the authors derive a nonlinear diffusive equation
coupled with an aggregation term from the corresponding dynamics of the particle posi-
tions. On the one hand, it is very similar to our work in methods and assumptions on
the nonlinearity. On the other hand, our assumptions of a purely external forcing coupled
with the nonlinear interactions show a different aspect of this problem, together with a
stronger convergence result.

On a macroscopic level nonlinear diffusion equations with degenerate diffusivity lead
to moving boundary problems. It is closely related to the Stefan-problem, see classical
books [27, 31]. Analytically exact solutions are still matter of current research, see [11, 18]
and also numerically challenges occur e.g. also in cancer research, see [35, 21]. On an agent-
based level, cancer growth was investigated in [28]. More recently, in [24], an individual-
based mechanical model describing the dynamics of two contiguous cell populations with
different characteristic behaviours was formulated and its formal continuum model was
presented. The latter leading to the aforementioned free boundary problem with a non-
linear diffusive term, which exhibits travelling wave solutions.

This work is structured as follows. In Section 2 the microscopic model in the form
of an ODE system is formulated and its characteristic properties are derived. Section 3
contains a formal derivation of the macroscopic model and a discussion of its qualitative
properties. This includes the derivation of a Eulerian formulation of the model, which is



REPULSIVE PARTICLES 3

originally written in terms of Lagrangian coordinates. In Section 4 the macroscopic limit
is carried out rigorously, providing also a existence of solutions for the continuum model.
Some of the formal results are illustrated by numerical simulations in Section 5. Finally,
we conclude this article with Section 6.

2. The microscopic model – individual based dynamics

Consider a chain of N + 1 point particles with time dependent positions xi(t) ∈ R,
0 ≤ i ≤ N , such that

x0(t) ≤ x1(t) ≤ · · · ≤ xN (t) .

Neighboring particles i and i+ 1 interact by a distance dependent repulsive force
F (xi+1−xi), written as F (r) = F0f(r/R) in terms of the dimensionless function f , which
satisfies

f : [0,∞) → [0, 1] is Lipschitz and nonincreasing, supp(f) = [0, 1] ,(1)

i.e. there is no interaction between neighbors further apart than the equilibrium distance
R > 0. Additionally, the particles are under the action of a position dependent external
force, written as Fext(x) = F0v(

x
NR ), where v fulfills

v ∈ W 2,∞(R) .(2)

Balancing these forces with friction against a nonmoving environment (with friction coef-
ficient µ > 0) leads to the ODE system

µẋ0 = −F (x1 − x0)− Fext(x0) ,

µẋi = F (xi − xi−1)− F (xi+1 − xi)− Fext(xi) , 1 ≤ i ≤ N − 1 ,

µẋN = F (xN − xN−1)− Fext(xN ) .

(3)

We introduce a nondimensionalization by

x → NRx , t → N2µR

F0
t .

This is a diffusive macroscopic rescaling (by the factors N and, respectively, N2) of the
natural microscopic scaling. The scaled system reads

ẋ0 = −Nf (N(x1 − x0)) + v(x0) ,

ẋi = N (f (N(xi − xi−1))− f (N(xi+1 − xi))) + v(xi) , 1 ≤ i ≤ N − 1 ,

ẋN = Nf (N(xN − xN−1)) + v(xN ) .

(4)

We shall mostly work with a reformulation in terms of the new unknowns

ωi := N(xi − xi−1), 1 ≤ i ≤ N ,(5)

satisfying

ω̇1 = N2 [2f (ω1)− f (ω2)] +N (v(x1)− v(x0)) ,

ω̇i = N2 [2f (ωi)− f (ωi−1)− f (ωi+1)] +N (v(xi)− v(xi−1)) , 2 ≤ i ≤ N − 1 ,

ω̇N = N2 [2f (ωN )− f (ωN−1)] +N (v(xN )− v(xN−1)) ,

(6)

which is coupled to

ẋ0 = −Nf(ω1) + v(x0), xi = x0 +
1

N

i∑
j=1

ωj .(7)

This system will be considered subject to initial conditions

ωi(0) = ωi,0 ≥ 0 , 1 ≤ i ≤ N , x0(0) = x0,0 .(8)
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We start with stating global existence and boundedness of the solution.

Theorem 1. Let f and v satisfy (1) and (2) respectively and let 0 ≤ ωi,0 < ∞ for all
i ∈ 1, . . . , N . Then there exists a unique global solution (ω1, . . . , ωN ) ∈ C1,1 ([0,∞))

N of
(6), (8), which satisfies

ωmine
−γt ≤ ωi(t) ≤ ωmaxe

γt , t ≥ 0 , 1 ≤ i ≤ N ,

where we defined

ωmin := min
1≤j≤N

ωj,0 , ωmax := max

{
1, max

1≤j≤N
ωj,0

}
, γ := ∥v′∥∞ .

Proof. Global existence and uniqueness follow from the Lipschitz continuity of f and v.
In order to show the upper bound of ωi(t), we define Yi(t) := e−γtωi(t) for 2 ≤ i ≤ N − 1
and estimate

Ẏi(t) =− γYi(t) + e−γtN2
[
2f
(
eγtYi(t)

)
− f

(
eγtYi−1(t)

)
− f

(
eγtYi+1(t)

)]
+e−γtN (v(xi)− v(xi−1))

≤e−γtN2
[
2f
(
eγtYi(t)

)
− f

(
eγtYi−1(t)

)
− f

(
eγtYi+1(t)

)]
.

Assume that for a time t0 we have Yi(t0) = ωmax. We remember f ≥ 0 and supp(f) =

[0, 1], stated in (1). Hence, we have f(ω) = 0 for ω ≥ ωmax and we can conclude Ẏi(t0) ≤ 0,
which gives the upper bound ωi(t) ≤ eγtωmax. With analogous arguments we this upper
bound for the boundary values ω1 and ωN can be derived.

In order to show the bound from below we define in a similar manner yi(t) := eγtωi(t),
from which we obtain the estimate

ẏi(t) ≥ N2
[
2f
(
e−γtyi(t)

)
− f

(
e−γtyi−1(t)

)
− f

(
e−γtyi+1(t)

)]
, 2 ≤ i ≤ N − 1 .

We assume that for a time t0 we have yi(t0) = ωmin and yj(t0) ≥ ωmin for 1 ≤ j ≤ N .
Due to the monotonicity of f we see that ẏi(t) ≥ 0 has to hold, which gives the lower
bound ωi(t) ≥ ωmine

−γt. In an analogous way the lower bound for the boundary points
ω1 and ωN can be shown, which completes the proof. □

Theorem 2. Let (x0, . . . , xN ) be a solution of (4), satisfying (5), (8). Then
1) the center of mass

x̄ :=
1

N + 1

N∑
i=0

xi

moves with respect to the average of all particle velocities:

d

dt
x̄(t) =

1

N + 1

N∑
i=0

v(xi(t)) ,(9)

2) the change in time of the variance

Vx(t) :=
1

N

N∑
i=0

(xi − x̄)
2

is given by

d

dt
Vx(t) =

2

N

 N∑
i=1

f(ωi)ωi −
∑

0≤i≤N

(xi − x̄)
∑

1≤j≤N,i̸=j

v(xj)

 ,
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3) the distance between the leftmost and the rightmost particle remains bounded in
bounded time-intervals:

xN (t)− x0(t) ≤ eγtωmax , t ≥ 0 .

Proof. The scalar product of (4) with (φ0(t), . . . , φN (t)) gives, after summation by parts,
N∑
i=0

ẋiφi =

N∑
i=1

f(ωi)N (φi − φi−1) +

N∑
i=0

φiv(xi) .(10)

This immediately implies 1) with φ0 = · · · = φN = 1. The choice φi(t) =
2
N (xi(t) − x̄),

i = 0, . . . , N , gives the time evolution of Vx proving 2). Statement 3) is a consequence of

xN (t)− x0(t) =
1

N

N∑
i=1

ωi(t) ,

and of the upper bound in Theorem 1. □

Remark 3. We would like to point out that for the case where the particles are not exposed
to an external force, i.e. v ≡ 0, the center of mass x̄ is conserved and the variance is non-
decreasing in time:

˙̄x(t) = 0, V̇x(t) =
2

N

N∑
i=1

f(ωi)ωi ≥ 0 , for all t ≥ 0 .

Hence, the particle positions expand around their center of mass, but not too much.

3. The macroscopic model

The continuum model in Lagrangian coordinates: Interpreting the particle index as
a discrete Lagrangian variable, the connection to the continuum is made by the definitions

∆s :=
1

N
, si := i∆s , 0 ≤ i ≤ N ,

a discretization of the Lagrangian coordinate s ∈ [0, 1]. Assuming the existence of a
function ω(s, t), such that ωi(t) ≈ ω(si, t) as N → ∞, the formal limit of the second
equation in (6) gives

∂tω = −∂2
sf(ω) + ∂sv(x) , 0 < s < 1 ,(11)

a nonlinear diffusion equation with the diffusivity −f ′(ω) ≥ 0, which is bounded by the
Lipschitz continuity of f . The limits of the first and third equation in (6) lead to

f(ω(0, t)) = f(ω(1, t)) = 0 ,(12)

equivalent to

ω ≥ 1 , s = 0, 1 .(13)

This looks like incomplete information on the boundary. However, it is sufficient in view
of the degenerate diffusivity. If, on the one hand, ω > 1 next to the boundary, then the
diffusivity vanishes there, the solution does not change with t, and the boundary condition
is satisfied. If, on the other hand ω(0+, t) ≤ 1 (or, respectively, ω(1−, t) ≤ 1) then the
solution needs to take the boundary value 1.

Similarly, the continuum limit of the particle positions x(s, t) in (4), satisfying ∂sx = ω,
solves the Neumann type problem

∂tx = −∂sf(∂sx) + v(x) , 0 < s < 1 ,(14)
∂sx ≥ 1 , s = 0, 1 .
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Eulerian coordinates – the particle density: Our next goal is to write the equation
(11) in terms of the Eulerian coordinate x instead of the Lagrangian coordinate s. This pro-
duces a moving boundary problem posed on the x-interval [X0(t), X1(t)] := [x(0, t), x(1, t)].
The coordinate transformation can be written as

x = X0(t) +

∫ s

0

ω(σ, t)dσ ,(15)

implying

∂s → ω∂x, ∂t → ∂t − ω∂xf(ω)∂x + v∂x ,

where (11) and (14) have been used. Consequently the Eulerian version of (11) reads

∂tω = −ω2∂2
xf(ω)− v(x)∂xω + v′(x)ω , X0 < x < X1 .

This is equivalent to the conservation law

∂tρ = ∂x

(
∂xf

(
1

ρ

)
− vρ

)
,(16)

for the macroscopic particle density ρ := 1/ω, which is complemented by the boundary
conditions

ρ ≤ 1 , x = X0, X1 ,

and by the dynamics of the moving boundaries, determined from (14):

Ẋ0,1 =

[
−1

ρ
∂xf

(
1

ρ

)
+ v

] ∣∣∣
x=X0,1

.(17)

Jump discontinuities: As a consequence of the degeneracy of the diffusivity D(ρ) :=
−ρ−2f ′(1/ρ) for ρ ≤ 1, the nonlinear diffusion equation (16) supports jumps between
values ρ(x∗−, t) = 1 and ρ(x∗+, t) < 1. The velocity of the jump location x∗(t) is given
by the Rankine-Hugoniot condition

ẋ∗ =
−∂xf(1/ρ)|x=x∗−

1− ρ|x=x∗+
+ v(x∗) .(18)

With the obvious changes also the case ρ(x∗−, t) < 1 and ρ(x∗+, t) = 1 can be considered.
Such jumps typically separate regions where ρ ≥ 1 from regions where ρ < 1. In the
case ρ(X0,1(t), t) = 1, the moving boundary equation (17) can be seen as a special case of
(18), with ρ continued by zero outside of [X0, X1]. Otherwise, when ρ(X0,1(t), t) < 1, the
boundary does not move. Moreover, note that if v ≡ 0 and with the additional natural
assumption ∂xρ(x∗(t)−, t) ≤ 0, the formula above implies ẋ∗ ≥ 0, i.e. the jump moves
towards the region of lower density.

Special cases for v ≡ 0. : We below mentioned special cases will be considered in the
case of no external force on the particles, i.e. v ≡ 0.

First we note that the statements above do not cover the situation of initial data with
a smooth transition between ρ > 1 and ρ < 1. Consider v ≡ 0 and an initial datum
ρ0(x) = 1 − cx, c > 0, and the choice f(ω) = (1 − ω)+. We expect that a discontinuity
develops with location x∗(t) starting at x∗(0) = 0. Approximating the denominator on
the right hand side of (18) by its value at t = 0, we obtain

ẋ∗ ≈ 1

x∗
,

and therefore x⋆(t) ≈
√
2t for small t. This behavior with infinite initial velocity also

occurs in the Stefan-problem, see e.g. [2, Chapter 1, Example 1]. It can also be seen on a
microscopic level in Figure 1a for x0 and xN .



REPULSIVE PARTICLES 7

Another special case, again for v ≡ 0, is initial data with ρ0 > 1 in a bounded interval,
ρ0 = 1 outside of it, and f(ω) = (1/ω − 1)m+ , m ∈ R. For m ≥ 1 the shifted density ρ− 1
solves the porous medium equation with initial data with bounded support, a problem
very well studied (see e.g. [37]). In particular, in that case supp(ρ − 1) will grow, and
the long-time behavior of the solution is given by an explicitly computable self-similar
Barenblatt profile. For m ∈ [0, 1) we are in the case where ρ − 1 solves the fast diffusion
equation, which also is well investigated, see e.g. [8]. For m < 0 this phenomenon is known
as super-fast diffussion. For a survey of results regarding these types of nonlinear diffusion
we refer the reader to [36]. If the initial data are such that the flux ∂xf(1/ρ) initially
vanishes at the boundary of the support, then a waiting time phenomenon occurs, where
the edges of the support start moving at a positive time. Indeed, for initial data where the
right-most point is given by x∗(0), such that ρ(x∗(0)−) > 1 and ρ(x∗(0)+) = 1, we can
calculate under consideration f (1/ρ) = (ρ − 1)m+ similar to (18) the velocity of the jump
location

ẋ∗(t) = m
(
ρ(x∗(t)−, t)− 1

)m−2

∂xρ(x, t)|x=x∗(t)− .

One can see clearly that the smaller the exponent m and the closer the left-sided limit
ρ0(x∗(0)−) is to the value 1, the flatter has to be the initial density ρ0 left of the boundary
point x∗(0) in order to observe the aforementioned waiting time phenomenon.

Less clear is the situation with initial data of the form ρ0(x) = 1 − cx, c > 0 and a
general nonlinearity f . We conjecture that, on the one hand, a discontinuity develops with
infinite initial speed as above, whenever x = o(∂xf(1/ρ)) as x → 0−, and on the other
hand, the discontinuity only appears after a waiting time for ∂xf(1/ρ) = o(x) as x → 0−.
However, we are not aware of any rigorous results on these questions.

Decay to equilibrium: The dynamics of (16) dissipates the L2-norm. After continuation
of ρ by zero outside of [X0, X1], we obtain

d

dt

∫
R
ρ2dx = 2

∫
R

1

ρ2
f ′
(
1

ρ

)
(∂xρ)

2dx−
∫
R
ρ2v′(x)dx ,

which is non-positiv, if v is non-decreasing. Moreover, if we again consider the special case
v ≡ 0, we observe that the dissipation vanishes for ρ < 1 or ρ independent from x. During
the evolution we expect to see intervals I+(t), where ρ ≥ 1, separated from intervals I−(t),
where ρ < 1, by moving jump discontinuities, where ρ = 1 are the boundary conditions
for the intervals I+. Therefore we expect that equilibria have intervals I+,∞, where ρ ≡ 1,
separated by intervals I−,∞, where ρ < 1 and otherwise arbitrary. The number of I+,∞-
intervals might be smaller than that of I+(0)-intervals, since these intervals might merge
by collisions of the moving jump discontinuities. As soon as this coarsening process is over,
the limit I+,∞ = [a, b] of each interval I+(t) can be predicted. Let [c, d] be big enough to
contain [a, b] with ρ(c, t) = ρ0(c), ρ(d, t) = ρ0(d) < 1. Then a and b can be computed from
the conservation of mass and of the center of mass:∫ d

c

ρ0dx = b− a+

∫
[c,d]\[a,b]

ρ0dx =⇒ b− a−
∫ b

a

ρ0dx = 0 ,(19) ∫ d

c

xρ0dx =
b2 − a2

2
+

∫
[c,d]\[a,b]

xρ0dx =⇒ b2 − a2

2
−
∫ b

a

xρ0dx = 0 .(20)

4. The rigorous macroscopic limit

The macroscopic limit will be carried out in the individual based model in terms of
the unknowns ωi, as in (6). However, since the velocity of x0 may be unbounded as
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∆s = 1/N → 0 (see (7)), we represent the variables xi in terms of their average x̄,
satisfying (9). Therefore we consider the initial value problem

ω̇1 =
2f (ω1)− f (ω2)

∆s2
+

v(x1)− v(x0)

∆s
,

ω̇i = −f (ωi−1)− 2f (ωi) + f (ωi+1)

∆s2
+

v(xi)− v(xi−1)

∆s
, i = 2, . . . , N − 1

ω̇N =
2f (ωN )− f (ωN−1)

∆s2
+

v(xN )− v(xN−1)

∆s
,

ωi(0) = ωi,0 , i = 1, . . . , N ,

(21)

coupled to

dx̄

dt
=

∆s

1 + ∆s

N∑
j=0

v(xj) , x̄(0) =
∆s

1 + ∆s

N∑
j=0

xj,0 ,(22)

with

xi = x̄− ∆s

1 + ∆s

N∑
j=1

(1− (j − 1)∆s)ωj +∆s

i∑
j=1

ωj , 0 ≤ i ≤ N .(23)

The last relation is obtained by averaging the expression for xi in (7), which allows to
express x0 in terms of x̄. For the initial data we still assume

0 ≤ ωmin := inf
i∈Z

ωi,0 , sup
i∈Z

ωi,0 =: ωmax < ∞ .(24)

This problem is equivalent to (6), (7), and therefore the results of Theorem 1 remain valid,
i.e. the existence and uniqueness of a global solution of (21)–(23), satisfying

ωmine
−γt ≤ ωi(t) ≤ ωmaxe

γt , t ≥ 0 , i ∈ Z ,

where we recall the notation γ := ∥v′∥∞. The connection to the continuum is made by
the definition of the piecewise constant interpolants

(25) ω∆s(s, t) := ωi(t) , x∆s(s, t) := xi(t) for (i− 1)∆s ≤ s < i∆s , t ≥ 0 .

With these definitions, (22), (23) imply

dx̄

dt
=

∫ 1

0

v(x∆s(s, t))ds+O(∆s) , x̄(0) =

∫ 1

0

x∆s(s, 0)ds+O(∆s) ,

x∆s(s, t) = x̄(t)−
∫ 1

0

(1− s′)ω∆s(s
′, t)ds′ +

∫ s

0

ω∆s(s
′, t)ds′ +O(∆s) .

(26)

For passing to the macroscopic limit in the nonlinearities f and v, some regularity of ω
and x will be needed. Since the observations of the preceding section show that jump
discontinuities of ω have to be expected, bounded variation is the best regularity we can
hope for.

Lemma 4. Let (ω1, . . . , ωN , x̄, x0, . . . , xN ) be a solution of (21)–(23), with initial data
satisfying (24) and TV (ω∆s(·, 0)) bounded idependently from ∆s. Then

ω∆s, x∆s ∈ L∞
loc([0,∞);BV ([0, 1])) uniformly as ∆s → 0 ,

where ω∆s is defined in (25).
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Proof. The result for x∆s(·, t) is an immediate consequence of its monotonicity and of
Theorem 2, 3). The bound on the total variation of ω∆s will be obtained by calculating
its time derivative:

d

dt
TV (ω∆s(·, t)) =

d

dt

N−1∑
i=1

|ωi+1 − ωi|

= −
N−1∑
i=1

(sgn (ωi+1 − ωi)− sgn (ωi − ωi−1))
2f(ωi)− f(ωi−1)− f(ωi+1)

∆s2

+

N−1∑
i=1

sgn (ωi+1 − ωi)
v(xi+1)− 2v(xi) + v(xi−1)

∆s2

= Σ1 +Σ2 ,

where we used summation by parts for the formulation of the term Σ1. By separately
checking the cases that the signs are equal or different we observe

Σ1 ≤ 0 .

For dealing with the second term Σ2, we note that

v(xi+1)− 2v(xi) + v(xi−1)

∆s2
= v′(xi) (ωi+1 − ωi) +

∆s

2

(
v′′(x̃i)ω

2
i+1 + v′′(x̂i)ω

2
i

)
,

where the remainder term contains mean values x̃i ∈ (xi, xi+1) and x̂i ∈ (xi−1, xi). The
boundedness of ω∆s and Assumption (2) imply

Σ2 ≤ γ TV (ω∆s) + c(t) ,

for c(t) > independent from ∆s. Combining our results, we arrive at

d

dt
TV (ω∆s(·, t)) ≤γ TV (ω∆s(·, t)) + c(t) ,

which gives a bound on TV (ω∆s(·, t)) on every finite time interval by the Gronwall in-
equality. □

These total variation bounds can be used to also get some regularity in time.

Lemma 5. With the assumptions of Lemma 4, ∂tω∆s, ∂tx∆s ∈ L∞
loc([0,∞);W−1,∞((0, 1)))

uniformly as ∆s → 0.

Proof. For a test function φ ∈ W 1,∞
0 ((0, 1)) we define

(27) φi :=
1

∆s

∫ i∆s

(i−1)∆s

φds , Ji(t) :=
f(ωi(t))− f(ωi−1(t))

∆s
,

and compute ∫ 1

0

∂tω∆sφds =

N∑
i=1

ω̇iφi∆s

=−
N∑
i=1

Ji+1 − Ji
∆s

φi∆s+

N∑
i=1

v(xi)− v(xi−1)

∆s
φi∆s

=

N∑
i=1

Ji
φi − φi−1

∆s
∆s+

N∑
i=1

v′(x̃i)ωiφi∆s ,
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This leads to the estimate∣∣∣∣∫ 1

0

∂tω∆s(s, t)φ(s) ds

∣∣∣∣ ≤ ∥φ′∥L∞((0,1))

N∑
i=1

|f(ωi(t))− f(ωi−1(t))|+ γ∥φ∥L∞((0,1))
∑N

i=1 ωi∆s

≤ ∥φ′∥L∞((0,1))Lf TV (ω∆s(·, t)) + γ∥φ∥L∞((0,1))ωmaxe
γt , t ≥ 0 ,

where we have used the Lipschitz constant Lf of f , Lemma 4, and Theorem 1.
For the time derivative of x∆s we proceed similarly:∣∣∣∣∫ 1

0

∂tx∆sφds

∣∣∣∣ =
∣∣∣∣∣

N∑
i=1

ẋiφi∆s

∣∣∣∣∣
≤

N∑
i=1

f(ωi)

∣∣∣∣φi − φi−1

∆s

∣∣∣∣∆s+

N∑
i=1

|v(xi)φi|∆s

= ≤ f(0)∥φ′∥L∞((0,1)) + vmax∥φ∥L∞((0,1)) .

□

Since, for 1 ≤ q < ∞, BV ([0, 1]) ⊂ Lq((0, 1)) ⊂ W−1,∞((0, 1)), where the first inclusion
is compact [25, Corollary 3.49], we conclude from Lemmas 4 and 5 and from [34] that
{ω∆s,∆s > 0} and {x∆s,∆s > 0} are relatively compact in Lp

loc ([0,∞)× [0, 1]) for every
p < ∞. This finally leads to the following convergence result:

Theorem 6. Let ω∆s(·, 0) ∈ BV ([0, 1]) and let (24), (1), and (2) hold. Let ω∆s be defined
by (25) in terms of the solution of (21)–(23). Then lim∆s→0 ω∆s = ω and lim∆s→0 x∆s =
x in Lp

loc([0,∞)× [0, 1]) for any 1 ≤ p < ∞, restricting to appropriate subsequences. The
limit ω ∈ L∞((0,∞) × (0, 1)) is a weak solution of the initial value problem for (11),
satisfying the boundary conditions (12) weakly with respect to time. The function x is
determined from

dx̄

dt
=

∫ 1

0

v(x)ds , x̄(0) =

∫ 1

0

x(s, 0)ds ,

x(s, t) = x̄(t)−
∫ 1

0

(1− s′)ω(s′, t)ds′ +

∫ s

0

ω(s′, t)ds′ .(28)

Proof. For a test function φ ∈ C∞
0 ([0,∞) × (0, 1)) we test (21) against φi(t) (defined in

(27)), noting that φ1 = φN = 0 for ∆s small enough. After an integration by parts with
respect to t ≥ 0 and summation by parts with respect to i we obtain∫ 1

0

ω∆s(s, 0)φ(s, 0)ds+

∫ ∞

0

∫ 1

0

ω∆s∂tφds dt

=

∫ ∞

0

N−1∑
i=2

f(ωi)
φi+1 − 2φi + φi−1

∆s2
∆s dt +

∫ ∞

0

N−1∑
i=2

v(xi)
φ(xi+1)− φ(xi)

∆s
∆s dt(29)

=

∫ ∞

0

∫ 1

0

f(ω∆s)∂
2
sφds dt +

∫ ∞

0

∫ 1

0

v(x∆s)∂sφds dt+O(∆s) ,

where the last equation follows from

φi+1 − 2φi + φi−1

∆s2
=

1

∆s

∫ i∆s

(i−1)∆s

∂2
sφds+O(∆s) ,

and from
φi+1 − φi

∆s
=

1

∆s

∫ i∆s

(i−1)∆s

∂sφds+O(∆s) .
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Restricting to appropriate subsequences we have ω∆s → ω in Lp
loc ([0,∞)× [0, 1]) as ∆s →

0, and we may pass to the limit in (29):

∫ 1

0

ω0(s)φ(s, 0)ds+

∫ ∞

0

∫ 1

0

ω∂tφds dt =

∫ ∞

0

∫ 1

0

f(ω)∂2
sφds dt +

∫ ∞

0

∫ 1

0

v(x)∂sφds ,

(30)

where ω0(s) is the limit of the initial data ω∆s(0), which exists due to the assumption
ω∆s(0) ∈ BV (R). This is the weak formulation of the initial value problem for (11).
Since x0 and xN are bounded, we can pass to the limit in the weak formulations of

f(ω1) = ∆s(v(x0)− ẋ0) , f(ωN ) = ∆s(v(xN )− ẋN ) ,

(see (4)) to obtain the boundary conditions (12). Finally, (28) is obtained by passing to
the limit in (26). □

Remark 7. For the case v ≡ 0 an existence theory for the continuous problem written in
terms of x(s, t) (see (14)) can also be carried out by interpreting the problem as gradient
flow for the energy functional

E[x] := −
∫ 1

0

∫ ∂sx

0

f(p)dp ds .

The basic theory (see e.g. [16]), however, only gives x ∈ C([0,∞);L2((0, 1))) and not
much information on ω = ∂sx.

5. Numerical simulations

5.1. Microscopic model: We illustrate the previous statements with numerical exper-
iments in x and ω. We solve the systems (4) and (6) for the following two choices of
nonlinearities

f1(·) := (1− ·)+ , f2(·) := (1− ·)2+
with an implicit Euler algorithm to conserve the characteristic properties. We discretize
as follows,

xn+1
i =xn

i +
∆t

∆s

[
−f

(
xn+1
i+1 − xn+1

i

∆s

)
+ f

(
xn+1
i − xn+1

i−1

∆s

)]
+∆t v(xn+1

i ), i ∈ {1, . . . , N − 1},
(31)

including the boundary values x0, xN , based on classical ideas as in [7]. System (6) can
be calculated in every timestep from the results of (31) to avoid coupling.

For v ≡ 0 and f = f1 we simulate N = 20 agents and chose a time-stepping of
∆t = 0.1∆s2, in which a typical parabolic CFL-condition in incorporated. The non-
linearity in f is solved with a fixed-point approach over n = 40 iterations as proposed in
[22]. The results can be found in Figure 1.

The Min-Max-principle in Theorem 1, visualized in Figure 1d, already shows for N = 20
the relation with a parabolic system which has in general a smoothing effect, as can be
seen in Figure 1b. However, this effect does not occur if the points xi are too far apart,
which is visualized in Figure 1c. Indeed, in that case groups of particles remain unmoved,
since their metric distance is above the given interaction threshold.

Figure 2 corresponds to simulations for f = f1 and non-trivial v, where the two sim-
ulated choices of v can be seen in Figure 2a. In Figure 2b the agents are accelerating
if their position is around x = 1, caused by the enhanced value of v1 . However, the
distance (depending on ∆s and N) to the relative leading agent does not decrease due to
the repulsion. For v2 (orange in Figure 2a) the agents congregate around position x = 1,
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-0.6 -0.4 -0.2 0.2 0.4 0.6 0.8
x

0.1

0.2

0.3

0.4

0.5

t

(a) The trajectories xi over time where the
initial values are chosen so that xi − xi+1 <
∆s for all i. All agents are in interac-
tion with their neighbours and the ensemble
spreads.

0.0 0.2 0.4 0.6 0.8 1.0
s

0.2

0.4

0.6

0.8

1.0

ω

t=0

t=0.1

t=1.5

(b) The simulation associated with Figure
1a in ω, we see a smoothing effect with long
term behavior ωi → 1.

0.0 0.2 0.4 0.6 0.8 1.0
s

0.6

0.8

1.0

1.2

ω

t=0

t=0.1

t=1.5

(c) Simulations in ω. The smoothing ef-
fect stops before all ωi reach the value 1.
This behaviour is expected, since initially
the threshold 1 is exceeded by a critical
amount of ωi, hence some plateaus will not
interact since the points in between already
reached the value 1.

0.00 0.02 0.04 0.06 0.08 0.10

t

0.8

0.9

1.0

1.1

1.2

1.3

ω

ωmax

ωmin

(d) The Min-Max-principle in Theorem 1
visualized for the dynamics associated to
Figure 1c. Each black line corresponds to
the time-evolution of a ωi.

Figure 1. Time evolution of the discrete systems in ω and x for v ≡ 0,
f = f1 and different initial values.

before the repulsion acts due to the resulting higher densities, which can be seen in Figure
2c.

0.5 1.0 1.5 2.0
x

-1.0

-0.5

0.5

1.0

1.5
v1,2

(a) Velocities v1 (blue) and
v2 (orange).

0.5 1.0 1.5 2.0 2.5
x

0.5

1.0

1.5

2.0

2.5

3.0

t

(b) The microscopic dynam-
ics for v1 (blue).

0.5 1.0 1.5 2.0
x

0.5

1.0

1.5

2.0

2.5

3.0

t

(c) The microscopic dynam-
ics for v2 (orange).

Figure 2. Time evolution of the discrete system in x for v ̸= 0.
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5.2. Macroscopic model. We investigate problem (16) on an open domain R with ρ0 > 0

and discretize it as ρ(i∆x, j∆t) = ρji explicit in time via

ρj+1
i = ρji +

∆t

∆x2

[
f
(
1/ρji+1

)
− 2f

(
1/ρji

)
+ f

(
1/ρji−1

)]
+

∆t

∆x

(
ρji+1v

j
i+1 − ρjiv

j
i

)
(32)

In the case f = f1 we discretized the Laplacian by the usual finite difference approximation
and used a first-order upwind scheme depending on the sign of v.

We choose ∆x = 0.001 for a sharp visualisation of the shock and again ∆t
∆x2 = 0.1

in compliance with typical CFL-conditions, following classical literature, see [23]. All
initial-data chosen for the following simulations are typical sums of bump-functions of the
form

ρ0(x) :=

{
h exp

(
b2

(x−m)2−b2

)
, x ∈ [−b+m, b+m]

0 , x /∈ (−b+m, b+m)
(33)

and constants.

t=0

t=0.01

t=0.02

t=0.06

-0.4 -0.2 0.2 0.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(a) Combination of drift with v ≡ 1 and
diffusion with f = f1 on the macroscopic
scale.

x*(0)

x*(0.01)

x*(0.0025)

-0.4 -0.2 0.2 0.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(b) Smooth initial data and a shock evolv-
ing with time, which is created by f = f1,
for v = 0. The position of the shock x⋆

at two different time-points was calculated
from (18).

S2 S1

0.5

1.0

1.5

2.0

ρ

A2=∫ρ2dx A1=∫ρ1dx

a b
t=0

t=0.031

tend

(c) Two plateaus moving towards each
other until they collide. The dynamics come
to an end as soon the equilibrium size [a, b]
of the interval is reached.

t=0

t=0.005

t=0.015

t=0.03

-0.4 -0.2 0.0 0.2 0.4

1.0

1.2

1.4

1.6

(d) Waiting-time phenomenon occurring for
f = f2 and initial data given by a fourth
degree polynomial close to zero, which be-
comes flat outside. The points, where the
initial data has the threshold-value 1 are
marked with dashed lines.

Figure 3. We visualize the combination of drift and diffusion as well as
analytically described phenomena such as the shock velocity, the collision
of two plateaus and its resulting steady state, and the waiting-time phe-
nomenon.
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In Figure 3a we see the combination of the diffusive effect and a drift to the left of
system (16) for the choices f = f1 and v ≡ 1. The diffusive effect acts stronger than the
external forcing v.

Figure 3b corresponds to simulations with f = f1 and v ≡ 0 were the initial data
were chosen such that they continuously pass through the threshold-value 1. The position
of the jump x∗, which is formed for positive time, was calculated by (18). We used for
the discretization of (18) an explicit Euler algorithm for solving the ODE. Knowing x∗
is monotone increasing and considering the left- and right-handed limits, we used in the
numerator a downwind- and for the denominator an upwind-approach. We see that the
discretisation (32) creates the correct shock-speed. Additionally continuous initial data
lead to satisfying results since as mentioned, the discontinuity only occurs for t = 0 and
x∗ is Lipschitz for t > 0.

Figure 3c corresponds to the discussion regarding decay to equilibria for the case v ≡ 0
and f = f1, which can be found at the end of Section 3. We visualized a simulation for
showing two colliding plateaus ρ1,2 (with ρ0 = ρ1+ρ2), which are spreading in space, since
each of their densities exceeds the threshold value 1, until they merge. The shocks move
towards each other until the collision at time t = 0.031 happens. The dynamics stop, once
the final interval-length [a, b] is reached, where the boundaries a and b are calculated by
(19)-(20).

In Figure 3d we visualized the in Section 3 mentioned waiting-time phenomenon, which
occurs in porous medium equations. We chose f = f2, no external forcing v ≡ 0 and initial
data

ρ0(x) :=

{
−12800|x|6 + 15360|x|5 − 7200|x|4 + 1600|x|3 − 150|x|2 + 13

8 for x ∈
[
− 1

4 ,
1
4

]
1 else,

Therefore, ∂xf(1/ρ) initially vanishes at the boundary of the support of ρ − 1, which is
given by x = ± 1

4 and is marked with a dashed line.

5.3. Comparison of the Microscopic and the Macroscopic Model. We conclude
the numerical simulations with an experiment, which compares the microscopic and the
macroscopic dynamics in order to show consistency between the two scales. We start with
a continuous initial density ρ0 + 0.5 as in Equation (33) (with h = 3, b = 0.3 and m = 0).
We calculate the corresponding discrete values xi via (15). In Figure 4 we see the solutions
of the corresponding microscopic dynamics (6), solved numerically by (32), and the one
of the corresponding macroscopic dynamics (16), solved via (31), which are plotted beside
each other.

t=0

t=0.01

t=0.03

-0.4 -0.2 0.0 0.2 0.4

(a) Microscopic simulation for N = 40
agents.

t=0

t=0.01

t=0.03

-0.4 -0.2 0.0 0.2 0.4

(b) Macroscopic simulation.

Figure 4. Comparison of the diffusive dynamics on both scales, we see
a strong alignment already for N = 40 agents.
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6. Conclusion

t=0

t=0.02

t=0.06

-0.4 -0.2 0.2 0.4

0.5

1.0

1.5

2.0

logistig growth with α=5., ρ⋆=1.5

Figure 5. Simulation of equation (34).

In this work we modelled particles interacting in a certain radius and driven by an
external force. We introduce the scaled distance ω, which can also be seen as a derivative in
Lagrangian coordinates s. From this interpretation, it was possible to define a microscopic
density ρ by inverting ω.

For the microscopic systems (4) and (6) we could establish an existence and uniqueness
result, together with a maximum-principle (Theorem 1). This result as well as observations
of the particle’s positions (Theorem 2) are underlined with simulations in Section 5.1.
Properties of (6) for x and ω can be transferred to the density ρ.

On a macroscopic level our main focus was on (16), a conservation law for which we
could derive jump conditions for discontinuous initial data, which can be related to the
moving boundary of a Stefan problem. Moreover, we discussed specific choices for the
repulsive force f , which lead to well known nonlinear diffusion equations as the porous
medium equation or the fast diffusion equation. A rigorous limit from (6) to (??) could be
established in Theorem 6. Due to the non-linearity f , passing to the limit is non-trivial. In
order to conclude by finding a weakly convergent sequence for system (6), we used bounds
on the total variation with respect to the spatial variable of the solution and a compact
interpolation theorem [34].

While this work has focused solely on diffusion in one spatial dimension, there are several
natural extensions of the model that arise from practical considerations: for instance,
source/sink terms, as well as aniosotropic effects that could arise in higher dimension.
One motivating biological example that incorporate these effects is Bacteria growth:

∂tρ = ∂2
xf

(
1

ρ

)
+ αρ(ρ∗ − ρ),(34)

where αρ(ρ∗ − ρ) models the growth or death of bacteria depending on the carrying
capacity ρ∗ > 0. In Figure 5 corresponding simulations for f = f1, α = 0.5 and ρ∗ = 1.5
can be found. We leave the physical study of this and related models also in higher spatial
dimensions as well as their rigorous derivation to future work.
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