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Abstract Via chirp functions from fractional Fourier transforms, the authors intro-
duce fractional Riesz potentials related to chirp functions, establish their relations
with fractional Fourier transforms, fractional Laplace operators related to chirp func-
tions, and fractional Riesz transforms related to chirp functions, and obtain their
boundedness on rotation invariant spaces related to chirp functions. Finally, the au-
thors give the numerical image simulation of fractional Riesz potentials related to
chirp functions and their applications in image processing. The main novelty of this
article is to propose a new image encryption method for the double phase coding
based on the fractional Riesz potential related to chirp functions. The symbol of frac-
tional Riesz potentials related to chirp functions essentially provides greater degrees
of freedom and greatly makes the information more secure.

1 Introduction

The image processing has always been an important topic of information sciences, which
plays an important role in applied sciences and hence attracts a lot of attention (see, for instance,
[3, 8, 10, 11, 16, 24, 33, 38, 44, 46]).

On the other hand, it is well known that the Fourier transform is one of the most basic important
tools in both pure and applied mathematics. It is also a standard and powerful tool for analyzing
and processing stationary signals, but it is limited in processing and analyzing non-stationary
signals. In what follows, we use S (Rn) to denote the set of all Schwartz functions equipped with
well-known topology determined by a countable family of norms, and also S ′(Rn) the set of all
continous linear functionals on S (Rn) equipped with the weak−∗ topology.

Definition 1.1. For any f ∈ S (Rn), its Fourier transform f̂ or F ( f ) is defined by setting, for any
ξ ∈ Rn,

f̂ (ξ) := F ( f ) :=
∫
Rn

f (x)e−2πix·ξ dx

and the inverse Fourier transform f ∨ of f is defined by setting, for any x ∈ Rn, f ∨(x) := f̂ (−x).
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The fractional Fourier transform (for short, FRFT) is proposed and developed to analyze and
process non-stationary signals. At present, the FRFT has been applied in many fields, such as
partial differential equation (see, for instance, [22]), wavelet analysis (see, for instance, [35]),
complex transmission (see, for instance, [32]), frequency filter (see, for instance, [40]), time-
frequency analysis (see, for instance, [1, 14, 15, 27]), optical signal processing (see, for instance,
[2, 29, 30, 31, 36]), and optical image processing (see, for instance, [7, 23]).

The FRFT originated in Wiener’s work in [45]. In 1980, the FRFT was given by Namias in
[28], which is mainly based on the eigenfunction expansion method. The integral expressions of
the FRFT on S (R) and L2(R) were given by McBride-Kerr in [26] and Kerr in [21], respectively.
In 2021, the behavior of the FRFT on Lp(R) for any p ∈ [1, 2) was established by Chen et al. in
[6].

In recent years, the research of the multidimensional FRFT has attracted more and more atten-
tion. In [18], Kamalakkannan and Roopkumar gave the following definition of the multidimen-
sional FRFT.

Definition 1.2. Let α := (α1, . . . , αn) ∈ Rn and f ∈ L1(Rn). The multidimensional fractional
Fourier transform (for short, multidimensional FRFT) Fα( f ), with order α, of f is defined by
setting, for any u ∈ Rn,

Fα( f )(u) :=
∫
Rn

f (x)Kα(x,u) dx,

where, for any x := (x1, . . . , xn),u := (u1, . . . , un) ∈ Rn,

Kα(x,u) :=
n∏

k=1

Kαk (xk, uk)

and, for any k ∈ {1, . . . , n},

Kαk (xk, uk) :=

c(αk)e2πi{a(αk)[x2
k+u2

k−2b(αk)xkuk]} if αk < πZ,

δ(xk − uk) if αk ∈ 2πZ,
δ(xk + uk) if αk ∈ 2πZ + π,

with a(αk) := cot(αk)
2 := cos(αk)

2 sin(αk) , b(αk) := sec(αk) := 1
cos(αk) , c(αk) :=

√
1 − i cot(αk), and δ being

the Dirac measure at 0.

We refer the reader to [18, 19, 20, 48, 49, 50] for some studies on the multidimensional FRFT.

Remark 1.3. Let α := (α1, . . . , αn) ∈ Rn with αk < πZ for any k ∈ {1, . . . , n}. The chirp function
eα is defined by setting, for any x := (x1, . . . , xn) ∈ Rn,

eα(x) := e2πi
∑n

k=1 a(αk)x2
k ,

where, for any k ∈ {1, . . . , n}, a(αk) := cot(αk)
2 . The chirp function is the most common nonsta-

tionary signal in which the frequency increases (upchirp) or decreases (downchirp) with time. It
is easy to show that the multidimensional FRFT Fα( f ) of f can be expressed into that, for any
u := (u1, . . . , un) ∈ Rn,

(1.1) Fα( f )(u) = c(α)eα(u)F (eα f )(ũ),
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where c(α) := c(α1) · · · c(αn) with {c(αk)}nk=1 the same as in Definition 1.2 and where ũ :=
(u1 csc(α1), . . . , un csc(αn)) with csc(αk) := 1

sin(αk) for any k ∈ {1, . . . , n}. Using (1.1), we can
easily prove that Fα( f ) maps S (Rn) to S (Rn). Obviously, we can rewrite that, for any x :=
(x1, . . . , xn),u := (u1, . . . , un) ∈ Rn,

Kα(x,u) = c(α)eα(x)eα(u)e−2πi
∑n

k=1 xkuk csc(αk).

Thus, the multidimensional FRFT is closely related to chirp functions.

Remark 1.4. When α = (π2 + 2k1π, . . . ,
π
2 + 2knπ) with {k j}

n
j=1 ⊂ Z, the multidimensional FRFT

goes back to the classical Fourier transform.

In this article, via chirp functions from fractional Fourier transforms, the authors introduce
fractional Riesz potentials related to chirp functions, establish their relations with fractional Fourier
transforms, fractional Laplace operators related to chirp functions, and fractional Riesz transforms
related to chirp functions, and obtain their boundedness on rotation invariant spaces related to chirp
functions. Finally, the authors give the numerical image simulation of fractional Riesz potentials
related to chirp functions and their applications in image processing. The main novelty of this
article is to propose a new image encryption method for the double phase coding based on the
fractional Riesz potential related to chirp functions. The symbol of fractional Riesz potentials
related to chirp functions essentially provides greater degrees of freedom and greatly makes the
information more secure.

The remainder of this article is organized as follows.
In Section 2, based on the multidimensional FRFT, we introduce the fractional Riesz po-

tential related to chirp functions and establish the relations among the multidimensional FRFT,
the fractional Riesz potential related to chirp functions, the fractional Riesz transform related to
chirp functions, and the Laplace operator related to chirp functions in S ′(Rn). We show that,
in the rotation invariant space, the boundedness of the fractional Riesz potential is equivalent to
the boundedness of the classical Riesz potential. In addition, through the relation between the
fractional Fourier transform and the Laplace operator related to chirp functions, we introduce the
fractional Laplace operator related to chirp functions, which, together with the fractional Riesz
potential, provides a theoretical basis of the application of image encryption.

An electronic image simulation of the fractional Riesz potential related to chirp functions in
the two-dimensional case is given in Section 3.

In Section 4, we present an image encryption method of double phase coding based on frac-
tional Riesz potentials related to chirp functions, which mainly changes the amplitude in the frac-
tional Fourier domain. Compared with the image encryption method of double phase coding
based on the FRFT, the symbol of fractional Riesz potentials related to chirp functions in the
image encryption method of double phase coding based on fractional Riesz potentials related to
chirp functions essentially provides more degrees of freedom and greatly improves the security of
information.

A conclusion is given in Section 5.
The fractional pseudo-differential operator and the fractional generalized Sobolev space and

other function spaces related to chirp functions as well as their applications will be presented in a
forthcoming article.
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Finally, we make some conventions on notation. Let N := {1, 2, . . .} and Z+ := {0} ∪ N. For
any given multi-index ζ := (ζ1, . . . , ζn) ∈ Zn

+ := (Z+)n, let

|ζ | := ζ1 + · · · + ζn and ∂ζ :=
Å
∂

∂x1

ãζ1

· · ·

Å
∂

∂xn

ãζn

.

We use C to denote a positive constant which is independent of the main parameters involved,
whose value may vary from line to line. The symbol g . h means g ≤ Ch. For a complex number
z with Re z > 0, let the gamma function

Γ(z) :=
∫ ∞

0
tz−1e−t dt.

For any p ∈ (0,∞), the Lebesgue space Lp(Rn) is defined to be the set of all the measurable
functions f on Rn such that

‖ f ‖Lp(Rn) :=
ï∫
Rn
| f (x)|p dx

ò1/p

< ∞.

Moreover, when we prove a theorem or the like, we always use the same symbols in the wanted
proved theorem or the like.

2 Fractional Riesz potentials related to chirp functions

Recall that, for any f ∈ S (R), the Hilbert transform H( f ) of f , is defined by setting, for any
x ∈ R,

H( f )(x) :=
1
π

p.v.
∫
R

f (y)
x − y

dy,

which is the prototype of Calderón–Zygmund operators and plays an irreplaceable role in har-
monic analysis. The Hilbert transform is also a multiplier operator, that is, for any f ∈ S (R) and
x ∈ R,

(2.1) F (H f )(x) = −i sgn (x)F ( f )(x).

It can be seen from (2.1) that the Hilbert transform is a phase-shift converter that multiplies the
positive frequency portion of the original signal by −i; in other words, it maintains the same am-
plitude and shifts the phase by −π/2, while the negative frequency portion is shifted by π/2. Note
that the Riesz transform is a natural generalization of the Hilbert transform in the n-dimensional
case and is also a Calderón–Zygmund operator, with properties analogous to those of the Hilbert
transform on R. For any j ∈ {1, . . . , n} and f ∈ S (Rn) , the Riesz transform R j( f ) of f is defined
by setting, for any x ∈ Rn,

R j( f )(x) := cn p.v.
∫
Rn

x j − y j

|x − y|n+1 f (y) dy,

where cn := Γ( n+1
2 )/π

n+1
2 . The Riesz transform is also a multiplier operator, that is, for any j ∈

{1, . . . , n}, f ∈ S (Rn), and x := (x1, . . . , xn) ∈ Rn,

F (R j f )(x) = −
ix j

|x|
F ( f )(x);
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therefore, the multiplier of the Riesz transform is −ix j/|x|, and hence the Riesz transform is not
only a phase-shift converter, but also an amplitude attenuator.

In [47], Zayed originally introduced the fractional Hilbert transform related to chirp functions
which has been widely used in signal processing (see, for instance, [40, 39, 43]). In [6], Chen et al.
regarded the fractional Hilbert transform as the fractional Fourier multiplier operator. Due to the
development and the wide application of the multidimensional FRFT, motivated by the relations
among the Fourier transform, the Riesz transform, the multidimensional FRFT, and the fractional
Hilbert transform, Fu et al. [9] introduced the following fractional Riesz transform related to chirp
functions.

Definition 2.1. For any j ∈ {1, . . . , n} and α := (α1, . . . , αn) ∈ Rn with αk < πZ for any k ∈
{1, . . . , n}, the jth fractional Riesz transform related to chirp functions, Rαj ( f ), of f ∈ S (Rn) is
defined by setting, for any x ∈ Rn,

Rαj ( f )(x) := cn p.v. e−α(x)
∫
Rn

x j − y j

|x − y|n+1 f (y)eα(y) dy,

where cn := Γ( n+1
2 )/π

n+1
2 and eα is the same as in Remark 1.3.

The fractional Riesz transform related to chirp functions, Rαj , is also a fractional multiplier
operator. That is, for any j ∈ {1, . . . , n}, α := (α1, . . . , αn) ∈ Rn with αk < πZ for any k ∈ {1, . . . , n},
f ∈ S (Rn), and u := (u1, . . . , un) ∈ Rn, one has

Fα

Ä
Rαj f
ä

(u) = −i
ũ j

|ũ|
Fα ( f ) (u),(2.2)

where ũ := (ũ1, . . . , ũn) = (u1 csc(α1), . . . , un csc(αn)).
In [9], Fu et al. also gave the application of the fractional Riesz transform related to chirp

functions in the edge detection. Compared with the classical Riesz transform, the fractional Riesz
transform related to chirp functions can detect the information in any direction by adjusting its
order.

Recall that, for any β ∈ (0, n) and f ∈ S (Rn), the Riesz potential is defined by setting, for any
x ∈ Rn,

(2.3) Iβ( f )(x) :=
1
γ(β)

∫
Rn

f (y)
|x − y|n−β

dy,

with γ(β) := π
n
2 2βΓ(β2 )/Γ( n−β

2 ). The Riesz potential, also known as the fractional integral operator,
is not only a crucial integral operator in Fourier analysis, but also plays a very significant role in
fractional differential equations. In this article, in order to avoid the confusion with the fractional
operator, we always call it the Riesz potential. It is well known that, for any β ∈ (0, n), f ∈ S (Rn),
and x ∈ Rn, by the property of the Fourier transform, one has

F (Iβ f )(x) = (2π)−β|x|−βF ( f )(x)(2.4)

in S ′(Rn).
Inspired by the relation between the Riesz potential and the Fourier transform, as well as the

definitions of both the multidimensional FRFT and the fractional Riesz transform related to chirp
functions, we introduce a new fractional Riesz potential related to chirp functions as follows.
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Definition 2.2. If β ∈ (0, n) and α := (α1, . . . , αn) ∈ Rn with αk < πZ for any k ∈ {1, . . . , n}, the
fractional Riesz potential related to chirp functions, Iαβ , is defined by setting, for any f ∈ S (Rn)
and x ∈ Rn,

Iαβ ( f )(x) :=
1
γ(β)

e−α(x)
∫
Rn

f (y)
|x − y|n−β

eα(y) dy,

where eα is the same as in Remark 1.3 and γ(β) is the same as in (2.3).

Remark 2.3. When α = (π2 + k1π, . . . ,
π
2 + knπ) with {k j}

n
j=1 ⊂ Z, the fractional Riesz potential

related to chirp functions goes back to the classical Riesz potential.

The Riesz potential is closely related to the Laplace operator, the Fourier transform, and the
Riesz transform. Based on this, in Subsection 2.1, we establish the relations among the frac-
tional Riesz potential, the multidimensional FRFT, the fractional Riesz transform related to chirp
functions, and the Laplace operator related to chirp functions. In Subsection 2.2, we obtain the
boundedness in the rotation invariant space of the fractional Riesz potential related to chirp func-
tions.

2.1 Relations among fractional Fourier transforms, fractional Riesz potentials re-
lated to chirp functions, fractional Laplace operators related to chirp functions,
and fractional Riesz transforms related to chirp functions

First, we establish the relation between the multidimensional FRFT and the fractional Riesz
potential related to chirp functions.

Definition 2.4. (see [13]) The Fourier transform û of any tempered distribution u is defined by
setting, for any f ∈ S (Rn), 〈û, f 〉 := 〈u, f̂ 〉.

Definition 2.5. Let α := (α1, . . . , αn) ∈ Rn with αk < πZ for any k ∈ {1, . . . , n}. The multi-
dimensional FRFT û of any tempered distribution u is defined by setting, for any f ∈ S (Rn),
〈Fαu, f 〉 := 〈u,Fα f 〉.

Let α := (α1, . . . , αn) ∈ Rn with αk < πZ for any k ∈ {1, . . . , n}. Using Definition 2.4,
Definition 2.5, (1.1), and properties of the Fourier transform, we can easily conclude that, for any
f ∈ S (Rn) and u ∈ Rn, (1.1) also holds true.

Definition 2.6. (see [13]) Let f , g ∈ L1(Rn). The convolution f ∗ g is defined by setting, for any
x ∈ Rn,

( f ∗ g)(x) :=
∫
Rn

f (y)g(x − y) dy.

Lemma 2.7. (see [13]) For any u ∈ S ′(Rn) and f ∈ S (Rn), F ( f ∗ u) = f̂ û.

Lemma 2.8. (see [37]) For any β ∈ (0, n) and ξ ∈ Rn, the identity

F

Å
1
|x|n−β

ã
(ξ) = γ(β)(2π)−β|ξ|−β



Riesz Potentials and Image Processing 7

holds true in the distribution sense, that is, for any ϕ ∈ S (Rn),∫
Rn

Å
1
|x|n−β

ã
ϕ̂(x) dx = γ(β)

∫
Rn

(2π)−β|x|−βϕ(x) dx,

where γ(β) is the same as in (2.3).

Theorem 2.9. For any β ∈ (0, n), α := (α1, . . . , αn) ∈ Rn with αk < πZ for any k ∈ {1, . . . , n},
f ∈ S (Rn), and u := (u1, . . . , un) ∈ Rn,

Fα

Ä
Iαβ f
ä

(u) = (2π)−β|ũ|−βFα ( f ) (u) in S ′(Rn),

where ũ := (ũ1, . . . , ũn) = (u1 csc(α1), . . . , un csc(αn)). The (2π)−β|ũ|−β is called the symbol of the
fractional Riesz potential related to chirp functions.

Proof. Fix an f ∈ S (Rn). From (1.1) and Definition 2.2, we infer that, for any u ∈ Rn,

Fα

Ä
Iαβ f
ä

(u) = c(α)eα(u)F (eαIαβ f )(ũ)

=
1
γ(β)

c(α)eα(u)F
Å

eα f ∗
Å

1
| · |n−β

ãã
(ũ).

By Lemma 2.7 and Lemma 2.8, we obtain, for any u ∈ Rn,

Fα

Ä
Iαβ f
ä

(u) =
1
γ(β)

c(α)eα(u)F (eα f )(ũ)F
Å

1
| · |n−β

ã
(ũ)

=
1
γ(β)

c(α)eα(u)F (eα f )(ũ)γ(β)(2π)−β|ũ|−β

= (2π)−β|ũ|−βFα ( f ) (u),

which completes the proof of Theorem 2.9. �

Remark 2.10. According to Theorem 2.9, we can easily observe that the fractional Riesz potential
related to chirp functions has the semigroup property, that is, for any α := (α1, . . . , αn) ∈ Rn with
αk < πZ for any k ∈ {1, . . . , n}, β1, β2 ∈ (0, n), and β1 + β2 ∈ (0, n), Iαβ1

Iαβ2
= Iαβ1+β2

.

Lemma 2.11. (FRFT inversion theorem) (see [18]) For any α := (α1, . . . , αn) ∈ Rn, f ∈ S (Rn),
and x ∈ Rn,

f (x) =

∫
Rn
Fα( f )(u)K−α(u, x) du,

where K−α is the same as in Definition 1.2 with α replace by −α.

From Definition 2.5 and Lemma 2.11, it follows that, for any α := (α1, . . . , αn) ∈ Rn with
αk < πZ for any k ∈ {1, . . . , n}, and for any f ∈ S ′(Rn), F−αFα f = f . By Theorem 2.9 and
Lemma 2.11, we conclude that, for any α := (α1, . . . , αn) ∈ Rn with αk < πZ for any k ∈ {1, . . . , n},
β ∈ (0, n), f ∈ S (Rn), and x ∈ Rn, the fractional Riesz potential related to chirp functions can be
rewritten as

(Iαβ f )(x) = F−α
(
(2π)−β|ũ|−β(Fα f )(u)

)
(x)
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in S ′(Rn), where u ∈ Rn and ũ is the same as in Theorem 2.9. In what follows, let

mα
β (u) := (2π)−β|ũ|−β,

which is called the symbol of Iαβ .
It is easy to show that the fractional Riesz potential related to chirp functions, Iαβ f , of any

f ∈ S (Rn) can be decomposed into the composition of the multidimensional FRFT of order α, the
symbol mα

β (u) of the fractional Riesz potential related to chirp functions, and the multidimensional
FRFT of order −α, as shown in the following Fig. 1:

(i) multidimensional FRFT of order α, namely gα(u) := (Fα f )(u) for any u ∈ Rn;

(ii) multiplication by the symbol of the fractional Riesz potential related to chirp functions
mα
β (u), namely

hαβ (u) := mα
β (u)gα(u) for any u ∈ Rn;

(iii) multidimensional FRFT of order −α, namely (Iαβ f )(x) := (F−αhαβ )(x) for any x ∈ Rn.

f (x) Fα
⊗

mα
β (u)

F−α (Iαβ f )(x)
gα(u) hαβ (u)

Figure 1: The decomposition of Iαβ ( f )

Remark 2.12. The symbol mα
β (u) of the fractional Riesz potential related to chirp functions does

not contain i, and hence there is no phase-shift effect. It can only change the amplitude, and hence
the fractional Riesz potential related to chirp functions mα

β (u) is only an amplitude modulator.

In [9], the derivative formula of the multidimensional FRFT was established as follows.

Lemma 2.13. (see [9]) (multidimensional FRFT derivative formula) Let α := (α1, . . . , αn) ∈ Rn

with αk < πZ for any k ∈ {1, . . . , n}, f ∈ L1(Rn), and eα be the same as in Remark 1.3. If
k ∈ {1, . . . , n} and eα f is absolutely continuous on Rn with respect to the kth variable, then, for
any x = (x1, . . . , xn) ∈ Rn,

Fα

Å
e−α(y)

∂[eα(y) f (y)]
∂yk

ã
(x) = 2πixk csc(αk)Fα( f )(x).

Then the relations among the fractional Riesz potential related to chirp functions, the multidi-
mensional FRFT, and the fractional Riesz transform related to chirp functions can be established
as follows.



Riesz Potentials and Image Processing 9

Theorem 2.14. For any α := (α1, . . . , αn) ∈ Rn with αk < πZ for any k ∈ {1, . . . , n}, and for
f ∈ S (Rn), one has

f = Iα1

Ñ
n∑

j=1

Rαj
(
e−α∂ j(eα f )

)é
=

n∑
j=1

Iα1
Ä

Rαj
(
e−α∂ j(eα f )

)ä
in S ′(Rn), where eα is the same as in Remark 1.3, Rαj for any j ∈ {1, . . . , n} is the jth fractional
Riesz transform, and Iα1 is the fractional Riesz potential Iαβ with β = 1.

Proof. From Theorem 2.9, (2.2), and Lemma 2.13, we deduce that, for any x ∈ Rn,

Fα

Ñ
Iα1

Ñ
n∑

j=1

Rαj
(
e−α∂ j(eα f )

)éé
(x)

= (2π)−1|x̃|−1 Fα

Ñ
n∑

j=1

Rαj
(
e−α∂ j(eα f )

)é
(x)

= (2π)−1|x̃|−1
n∑

j=1

−i
x̃ j

|x̃|
Fα
(
e−α∂ j(eα f )

)
(x)

= (2π)−1|x̃|−1
n∑

j=1

−i
x̃ j

|x̃|
2πix̃ jFα( f )(x) = Fα( f )(x).

Then, by taking the multidimensional FRFT of order −α and using Lemma 2.11, we obtain the
desired identity, which completes the proof of Theorem 2.14. �

Remark 2.15. When α = (π2 + k1π, . . . ,
π
2 + knπ) with {k j}

n
j=1 ⊂ Z, in this case, Theorem 2.9 goes

back to (2.4) of [25, pp. 124] and Theorem 2.14 goes back to (3.0.3) of [25, pp. 124] .

From Lemma 2.13, we can easily deduce the following theorem; we omit the details.

Theorem 2.16. Let α := (α1, . . . , αn) ∈ Rn with αk < πZ for any k ∈ {1, . . . , n}, ς ∈ Zn
+, and eα be

the chirp function. For any f ∈ S (Rn) and x := (x1, . . . , xn) ∈ Rn, one has

Fα
(
e−α(y)∂ς[eα(y) f (y)]

)
(x) = (2πix̃)ςFα( f )(x),

where x̃ := (x̃1, . . . , x̃n) := (x1 csc(α1), . . . , xn csc(αn)).

From Lemma 2.13, it follows that, for any α := (α1, . . . , αn) ∈ Rn with αk < πZ for any
k ∈ {1, . . . , n}, f ∈ S (Rn), and x := (x1, . . . , xn) ∈ Rn,

Fα (−e−α∆[eα f ]) (x) = 4π2|x̃|2Fα( f )(x),(2.5)

where x̃ := (x̃1, . . . , x̃n) := (x1 csc(α1), . . . , xn csc(αn)), eα is the same as in Remark 1.3, and ∆ is
the Laplace operator

∑n
j=1

∂2

∂x2
j
.

Motivated by (2.5), we replace the exponent 2 in (2.5) by a positive real number to introduce
fractional Laplace operators related to chirp functions.
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Definition 2.17. Suppose α := (α1, . . . , αn) ∈ Rn with αk < πZ for any k ∈ {1, . . . , n}, eα is the
same as in Remark 1.3, z ∈ R, and z ∈ (0,∞). The fractional Laplace operator related to chirp
functions, ∆z, is defined by setting, for any f ∈ S (Rn) and x := (x1, . . . , xn) ∈ Rn,

Fα

Ä[
−e−α(y)∆z[eα(y) f (y)]

] z
2
ä

(x) := (2π)z|x̃|zFα( f )(x),

where x̃ := (x̃1, . . . , x̃n) = (x1 csc(α1), . . . , xn csc(αn)). The (2π)z|x̃|z is called the symbol of the
fractional Laplace operators related to chirp functions, ∆z.

Obviously, the fractional Laplace operator related to chirp functions, ∆z, can be viewed as the
inverse operator of the fractional Riesz potential related to chirp functions and plays a key role in
the decryption process of the image encryption in Section 4.

2.2 Boundedness of fractional Riesz potentials related to chirp functions

In this subsection, we establish the boundedness of the fractional Riesz potential related to
chirp functions on the rotation invariant space related to chirp functions, which is equivalent to the
boundedness of the classical Riesz potential on the same rotation invariant space related to chirp
functions.

Definition 2.18. Let (X, ‖ · ‖X) be a Banach space. Then X is called the rotation invariant space
related to chirp functions if, for any α := (α1, . . . , αn) ∈ Rn with αk < πZ for any k ∈ {1, . . . , n},
and for any f ∈ X,

‖eα f ‖X = ‖ f ‖X ,

where eα is the same as in Remark 1.3.

Remark 2.19. The well-konwn rotation invariant space includes the Lebesgue space, the Morrey
space, and the Herz space.

Theorem 2.20. If X,Y are two rotation invariant spaces related to chirp functions, β ∈ (0, n), and
α := (α1, . . . , αn) ∈ Rn with αk < πZ for any k ∈ {1, . . . , n}, then Iβ is bounded from X to Y if and
only if Iαβ is bounded from X to Y.

Proof. Let ‖Iβ‖X→Y < ∞. By Definition 2.2 and Definition 2.18, we conclude that, for any f ∈ X,

‖Iαβ ( f )‖Y = ‖Iβ(eα f )‖Y . ‖eα f ‖X = ‖ f ‖X .

Conversely, if ‖Iαβ ‖X→Y < ∞, then we obtain, for any f ∈ X,

‖Iβ( f )‖Y = ‖e−αIβ( f )‖Y = ‖Iαβ (e−α f )‖Y . ‖e−α f ‖X = ‖ f ‖X .

This finishes the proof of Theorem 2.20. �

From Theorem 2.20, we can easily deduce the following corollary; we omit the details.

Corollary 2.21. (Hardy–Littlewood–Sobolev theorem) Let β ∈ (0, n), α := (α1, . . . , αn) ∈ Rn with
αk < πZ for any k ∈ {1, . . . , n}, p ∈ [1, n

β ), and 1
q := 1

p −
n
β .
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(i) If p ∈ (1, n
β ), then there exists a positive constant C such that, for any f ∈ Lp(Rn),

‖Iαβ f ‖Lq(Rn) ≤ C‖ f ‖Lp(Rn);

(ii) There exists a positive constant C such that, for f ∈ L1(Rn) and any λ ∈ (0,∞),

|{x ∈ Rn : |Iαβ f (x)| > λ}| ≤ C
ï

1
λ
‖ f ‖L1(Rn)

ò n
n−β

.

3 Simulation of fractional Riesz potentials related to chirp functions

In this section, we apply the fractional Riesz potential related to chirp functions to an image
with the help of the FRFT discrete algorithm (see, for instance, [4, 5, 41]).

In the following Fig. 2, we give the numerical simulation of I(π/4,π/4)
β . In the continuous case,

the following Fig. 2(a) can be regarded as the function

f (x1, x2) :=
ß

0, ∀ (x1, x2) ∈ [0, 200]2 ∪ [200, 400]2,

255, otherwise

on R2.

(a) (b) (c)

(d) (e) (f)
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(g) (h) (i)

(j) (k) (l)

Figure 2: Numerical simulation of I(π/4,π/4)
β

As is shown in the above Fig. 2, (a) is the original 2-dimensional grayscale image with 400
pixels × 400 pixels; (d), (g), and (k) are the 2-dimensional grayscale images, respectively, after
I(π/4,π/4)
1 f , I(π/4,π/4)

0.5 f , and I(π/4,π/4)
1.5 f . Graphs (b), (e), (h), and (k) of Fig. 2 are the 3-dimensional

color graphs of f , I(π/4,π/4)
1 f , I(π/4,π/4)

0.5 f , and I(π/4,π/4)
1.5 f , respectively. Graphs (c), (f), (i), and (l)

of Fig. 2 are the amplitude images in the fractional Fourier domain of order α = (π/4, π/4) of f ,
I(π/4,π/4)
1 f , I(π/4,π/4)

0.5 f , and I(π/4,π/4)
1.5 f , respectively.

In the following Fig. 3, we give the numerical simulation of I(π/8,3π/8)
β .

(a) (b) (c)
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(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3: Numerical simulation of I(π/8,3π/8)
β

As is shown in the above Fig. 3, (a) is the original 2-dimensional grayscale image with 400
pixels × 400 pixels; (d), (g), and (k) are the 2-dimensional grayscale images, respectively, after
I(π/8,3π/8)
1 f , I(π/8,3π/8)

0.5 f , and I(π/8,3π/8)
1.5 f . Graphs (b), (e), (h), and (k) of Fig. 3 are the 3-dimensional

color graphs of f , I(π/8,3π/8)
1 f , I(π/8,3π/8)

0.5 f , and I(π/8,3π/8)
1.5 f . Graphs (c), (f), (i), and (l) of Fig. 3 are

the amplitude images in the fractional Fourier domain of order α = (π/8, 3π/8) of f , I(π/8,3π/8)
1 f ,

I(π/8,3π/8)
0.5 f , and I(π/8,3π/8)

1.5 f , respectively.
Comparing Fig. 2(i) with Fig. 3(i), Fig. 2(f) with Fig. 3(f), and Fig. 2(l) with Fig. 3(l), we

find that, when α changes and β remains unchanged, the image amplitude changes dramatically.
Comparing (f), (i), and (l) of both Fig. 2 and Fig. 3, we conclude that, when β changes and α
remains unchanged, the picture amplitude also changes dramatically. Graphs (c), (f), (i), and (l) of
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both Fig. 2 and Fig. 3 indicate that the symbol of the fractional Riesz potential can correspondingly
dramatically change the amplitude in the fractional Fourier domain by adjusting parameters α and
β. To sum up, Fig. 2 and Fig. 3 show that the fractional Riesz potential is an amplitude modulator.
This is quite different from the fractional multiplier of the fractional Riesz transform, which is not
only a phase-shift converter but also an amplitude attenuator.

In conclusion, we known that the fractional Hilbert transform related to chirp functions has
a phase-shift effect in the fractional Fourier domain. However, the fractional Riesz transform
related to chirp functions not only has a phase-shift in the fractional Fourier domain, but also can
attenuate amplitude. Moreover, the fractional Riesz potential related to chirp functions can change
the amplitude in the fractional Fourier domain. Since these three transforms behave quite different
due to their different multipliers or symbols, we predict that these three transforms will play quite
different important roles in signal processing.

4 Image encryption with double phase coding based on fractional
Riesz potentials related to chirp functions

With the development of broadband network and multimedia technology, the acquisition,
transmission, and processing of image data spread to all corners of the digital era. Security is-
sues are also becoming increasingly serious. Many image datum need to be transmitted and stored
confidentially, such as photographs taken by satellites, architectural drawings from financial insti-
tutions, and, in the telemedicine system, patient records and medical images.

In [12, 42], Goudail et al. and Unnikrishnan et al. proposed a double phase coding image
encryption method based on the FRFT. Compared with the double phase coding image encryption
method based on the Fourier transform in [17, 34], in addition to the phase mask, the improved
double phase coding encryption key increases the order of the FRFT twice, and hence expands the
key space. When the order is unknown, it will not be normally decrypted. Now, we propose a new
image encryption method based on the fractional Riesz potential related to chirp functions with
double phase coding. That is, we change the amplitude of the FRFT domain through the symbol of
the fractional Riesz potential related to chirp functions, whose symbol, together with the order of
the FRFT, provides greater degrees of freedom, expands the key space, and improves the security
of the protected information. The following Fig. 4 exactly explains this encryption processing.

Figure 4: Encryption processing with double phase coding based on Iαβ

As is shown in Fig. 4, the input function ζ1(x) represents the image to be encrypted after the
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normalization and the pixel value range is [0, 1]. The function after encryption ζ2(x) represents
the encryption image. The random phases p1 and p2 are given, respectively, by p1(x) := e2πin1(x)

and p2(x) := e2πin2(x) for any x ∈ R2, which are called the random phase masks, where n1(x)
and n2(x) are two statistically independent white sequences uniformly distributed on [0, 1]. If
the symbol of the fractional Riesz potential related to chirp functions is not added in the above
encryption processing, this image encryption processing goes back to the image encryption with
double phase coding based on FRFT.

Conversely, we next give the following decryption processing with double phase coding based
on the fractional Riesz potential related to chirp functions.

Figure 5: Decryption processing with double phase coding based on Iαβ

As is shown in Fig. 5, the decryption processing is also the inverse of the encryption process-
ing. From Section 2 we deduce that the symbol of the fractional Laplace operator related to chirp
functions multiplied by the symbol of the fractional Riesz potential related to chirp functions is 1,
that is, the fractional Laplace operator related to chirp functions can be regarded as the inverse op-
eration of the fractional Riesz potential related to chirp functions. The random phase p∗2 is defined
by setting p∗2(x) := e−2πin2(x) for any x ∈ R2, which is the conjugate of the random phase mask p2
in Fig. 4, and the function after decryption ζ3(x) represents the image after decryption.

Now, we study the simulation of both the image encryption and the image decryption. The
following Fig. 6 illustrates the digital simulation of both the encryption and the decryption using
classical pictures.

(a) (b) (c)
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(d) (e) (f)

Figure 6: Simulation of image encryption and image decryption

As is shown in Fig. 6, (a) is the test image with 256 pixels × 256 pixels of image encryption;
(b) is the image after encryption; (c) is the image after decryption with correct key; (d), (e),
and (f) are the images after decryption with wrong key, respectively. The simulation passwords,
parameter, and images of both the image encryption and the image decryption are presented in the
following Table 1.

Password Parameters: α = (α1, α2), β, γ = (θ1, θ2) Image

correct password α = ( 7π
8 ,

5π
8 ), β = 0.75, γ = (π4 ,

3π
8 ) (c) in Fig. 6

error password α = ( 7π
8 ,

5π
8 ), β = 0.75, γ = ( (1+0.05)π

4 , 3π
8 ) (d) in Fig. 6

error password α = ( (7+0.1)π
8 , 5π

8 ), β = 0.75, γ = (π4 ,
3π
8 ) (e) in Fig. 6

error password α = ( 7π
8 ,

5π
8 ), β = 0.85, γ = ( (1+0.05)π

4 , 3π
8 ) (f) in Fig. 6

Table 1: Decryption images corresponding to different keys

As is shown in Fig. 6 and Table 1, even if one knows that the double phase coding image
encryption method based on the fractional Riesz potential related to chirp functions is used, even
if one changes only one parameter of the correct keys in (c) and (d) in Fig. 6, one cannot obtain
the encrypted original image, let alone we have five parameters. In other words, our parameters
and symbols provide more degrees of freedom and make the information more secure.

The following Fig. 7 presents the mean square error (for short, MSE) curves of the decrypted
image and the original image when there are different deviations of the keys for both the double
phase coding image encryption based on the FRFT and the double phase coding image encryption
based on the fractional Riesz potential related to chirp functions, respectively.
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Figure 7: When the key is wrong, the MSE curve of the double phase coded image decryption
based on the FRFT and based on Iαβ compared to the original image, respectively.

The correct passwords for the image encryption with double phase coding based on the FRFT
are α = (7π/8, 5π/8) and γ = (π/4, 3π/8); the correct passwords for the image encryption with
double phase coding based on the fractional Riesz potentials related to chirp functions are α =

(7π/8, 5π/8), γ = (π/4, 3π/8), and β = 0.75. From Fig. 7, we infer that the parameter β of
the double phase coded image encryption based on the fractional Riesz transform related to chirp
functions greatly improves the security compared with the double phase coded image encryption
based on the FRFT, and we also deduce that the key is much more secure when blindly decrypting.

To sum up, the above discussions reveal that the fractional Riesz potential related to chirp
functions can be applied to image encryption, and the encryption effect is powerful.

5 Conclusions

In this article, we introduce fractional Riesz potentials related to chirp functions, establish their
relations with the FRFT, the fractional Laplace operator related to chirp functions, and the frac-
tional Riesz transform related to chirp functions. We apply the fractional Riesz potential related
to chirp functions to the image encryption. Our experiments show that the symbol of fractional
Riesz potential related to chirp functions essentially expands the key space and greatly improves
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the security of images.
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