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A note on small weight codewords of projective
geometric codes and on the smallest sets of even type

Sam Adriaensen∗

April 16, 2024

Abstract

In this paper, we study the codes Ck(n, q) arising from the incidence of points
and k-spaces in PG(n, q) over the field Fp, with q = ph, p prime. We classify all
codewords of minimum weight of the dual code Ck(n, q)⊥ in case q ∈ {4, 8}. This
is equivalent to classifying the smallest sets of even type in PG(n, q) for q ∈ {4, 8}.
We also provide shorter proofs for some already known results, namely of the best
known lower bound on the minimum weight of Ck(n, q)⊥ for general values of q,
and of the classification of all codewords of Cn−1(n, q) of weight up to 2qn−1.

Keywords. Projective geometry, Coding Theory, Minimum weight, Sets of even type

MSC. 51E20, 05B25, 94B05

1 Introduction

In this paper, we study codes arising from the incidence relation of points and subspaces
of a fixed dimension k in projective space PG(n, q), with q = ph, p prime, and h a positive
integer. Let P denote the set of points of PG(n, q). Then the code Ck(n, q) is defined as
the subspace of the vector space FP

p of functions P → Fp, spanned by the characteristic
functions of the k-spaces.

The study of these codes was initiated over 50 years ago, see e.g. Goethals and Delsarte
[15]. Since then, there has been a great interest in small weight codewords both in Ck(n, q)
and its dual code Ck(n, q)⊥. The most challenging problem is determining the minimum
weight of the dual codes, and classifying all codewords of minimum weight. Lavrauw,
Storme, and Van de Voorde [21] reduced this problem to the case k = 1. So far, the
minimum weight of C1(n, q)⊥ has only been determined exactly when q is prime, when q
is even, and for some small values of n and q. Furthermore, in general, we only have a
classification of minimum weight codewords of C1(n, q)⊥ in case q is prime.

If q is even, then codewords of C1(n, q)⊥ of weight w are equivalent to sets of points
of size w in PG(n, q) that intersect every line in an even number of points. Such sets are
called sets of even type. Calkin, Key, and de Resmini [12] used a BCH bound by Delsarte
[14] to prove that the minimum weight of C1(n, q)⊥, or equivalently the minimum size of
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a set of even type in PG(n, q), is qn−2(q + 2). The only known examples of sets of even
type of this size are cylinders with an (n − 3)-dimensional vertex over hyperovals. It is
known that these are the only examples in case q = 2 [4, Proposition 3] or q = 4 and
n ∈ {3, 4} [17], [23, Table 4.9]. The main result of this paper is the following.

Theorem 1.1. If q ∈ {4, 8}, the only sets of even type in PG(n, q) of size qn−2(q + 2)
are cylinders over regular hyperovals.

As discussed above, this extends the classification of the minimum weight codewords
of Ck(n, q)⊥ for q = 2 to the cases q ∈ {4, 8}.

The rest of this paper is concerned with providing simpler proofs for known results
in the study of these codes. We give a short proof of the best-known general lower
bound on the minimum weight of Ck(n, q)⊥, which was originally proven by Bagchi and
Inamdar [4]. We remark that this proof was previously discovered by Aart Blokhuis, but
never published [28]. Recently, similar ideas have been used in [13] to obtain a small
improvement on the bound by Bagchi and Inamdar for the codes C1(2, p2), p prime.

The classification of codewords of small weight of Ck(n, q) has also received a great
deal of attention. Building on the work of Lavrauw, Storme, Sziklai, and Van de Voorde
[20, 19], Polverino and Zullo [24] proved the following result.

Result 1.2 ([24]). Suppose that c ∈ Cn−1(n, q) is a non-zero codeword of weight w ≤
2qn−1. Then either

• w = qn−1
q−1

and c is the scalar multiple of the characteristic function of a hyperplane,
or

• w = 2qn−1 and c is the scalar multiple of the difference of two characteristic func-
tions of hyperplanes.

In this paper, we provide a significantly shorter, self-contained proof of this result.
This proof uses a generalisation of a lemma by Blokhuis, Brouwer, and Wilbrink [8],
which was discovered by Olga Polverino and Ferdinando Zullo, but never published.

We remark that for large values of q, the above classification of codewords of Cn−1(n, q)
has been extended to codewords of weight up to roughly 4qn−1 in [2] and codewords of
weight up to roughly 1

2
n−2(1−δh,2)

√
qqn−1 for q = ph with h > 1 in [6], building on results

by Szőnyi and Weiner [26]. The classification was generalised to the codes Ck(n, q) in [1]
for codewords of weight up to roughly 3qk.

Structure of the paper

Section 2 contains definitions and notation followed throughout the article. In Section 3
we first provide a simple proof of the bound by Bagchi and Inamdar (without their
characterisation in case of equality) on the minimum weight of dual codes of incidence
structures. Afterwards, we prove Theorem 1.1, and provide some intermediary results
that could be helpful in classifying the smallest sets of even type for larger values of
q. Section 4 contains the new proof of Result 1.2. Finally, Section 5 contains some
concluding remarks.
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2 Preliminaries

Throughout this article, p will denote a prime number and q = ph for some positive
integer h. The finite field of order q will be denoted as Fq. The n-dimensional projective
space over Fq will be denoted as PG(n, q). We use the notation

θn =
qn+1 − 1

q − 1
= qn + qn−1 + . . .+ q + 1

for the number of points in PG(n, q).

We will describe linear codes arising from incidence structures in their general form.
An incidence structure is a pair (P ,B), with B a (multi)set of subsets of P . The elements
of P and B are called points and blocks respectively. For every block B ∈ B, we define
its characteristic function as

χB : P → {0, 1} : P 7→

{
1 if P ∈ B,

0 otherwise.

Given a field F, we can consider these characteristic functions as functions P → F, since
F contains a 0 and a 1. We will denote the F-vector space of all functions P → F as FP .
We will denote the constant functions mapping everything to 0 and 1 respectively by 0
and 1.

Definition 2.1. Let D = (P ,B) be an incidence structure, and F a field. The code of D
over F is defined as the subspace of FP spanned by the characteristic vectors of the blocks
of D.

Alternatively, these codes can be defined as follows. Choose an ordering for the points
and blocks of D, i.e. suppose that P = {P1, . . . , Pm} and B = {B1, . . . , Bn}. Then we
can define the incidence matrix of D as the n×m-matrix M = (mi,j) with

mi,j =

{
1 if Pj ∈ Bi,

0 otherwise.

We can define the code of D over F as the rowspace of the incidence matrix M . Remark
that changing the order of the elements of B has no impact on the code, and reordering
the elements of P permutes the coordinate positions of the code, which gives rise to
an equivalent code. Hence, the ordering of the points and blocks makes no meaningful
difference in the definition of the code.

If c is a function in FP , its support is supp(c) = {P ∈ P || c(P ) ̸= 0} and its weight is
wt(c) = |supp(c)|. Theminimum weight of a subspace C ≤ FP is d(C) = minc∈C\{0}wt(c).

The standard scalar product on FP is the non-degenerate symmetric bilinear form
given by

v · w =
∑
P∈P

v(P )w(P ).

If C is a subspace of FP , its orthogonal complement is the subspace

C⊥ =
{
c ∈ FP || (∀v ∈ C)(c · v = 0)

}
.

Subspaces of FP are also called codes, and in that case, we call C⊥ the dual code of C.
Note that if C is the code of an incidence structure D = (P ,B) over F, then

C⊥ =
{
c ∈ FP || (∀B ∈ B)(c · χB = 0)

}
.
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Definition 2.2. Suppose that q = ph, p prime. Let D be the incidence structure of points
and k-spaces in PG(n, q). Then Ck(n, q) will denote the code of D over Fp.

For a survey on results concerning Ck(n, q) and its dual, we refer the reader to [22].
This survey dates from 2010, so since its publication, there have been advances in the
study of these codes, see e.g. the papers mentioned in the introduction.

Remark 2.3. One could wonder why we only study the codes of points and k-spaces in
PG(n, q) over Fp, and not over another finite field Fq′. This is well-motivated. Since
the code is generated by functions taking only the values 0 and 1, the dimension and
minimum weight of the code over Fq′ only depend on the characteristic of Fq′, so it makes
sense to study these codes over the smallest field of given characteristic. Moreover, if the
characteristic of Fq′ is not p, the dual code of points and k-spaces of PG(n, q) over Fq′ is
either {0} or ⟨1⟩ [22, Theorem 2.5].

We conclude with one more notational convention. For two sets A and B, we denote
the symmetric difference of A and B as A△B = (A ∪B) \ (A ∩B).

3 Minimum weight of the dual code

In this section, we will investigate the minimum weight codewords of Ck(n, q)⊥. We
first present a result by Lavrauw, Storme, and Van de Voorde that reduces the study of
minimum weight codewords of Ck(n, q)⊥ to the case k = 1.

Suppose that π is a subspace of PG(n, q), and let Pπ and P denote the sets of points
of π and PG(n, q) respectively. Then we can consider FPπ

p as a subspace of FP
p . Formally,

for each c ∈ FPπ
p , we can define ι(c) ∈ FP

p as

ι(c) : P → Fp : P 7→

{
c(P ) if P ∈ π,

0 otherwise.

Then ι is a linear embedding of FPπ into FP . Let Ck(π) denote the code Ck(dimπ, q)
defined on the points of π. Then we can regard Ck(π) and Ck(π)⊥ as subspaces of FP

p .
This allows us to rephrase the result by Lavrauw, Storme, and Van de Voorde in the
following way.

Result 3.1 ([21, Theorem 11]). A codeword c ∈ Ck(n, q)⊥ is of minimum weight if and
only if there exists an (n − k + 1)-space π of PG(n, q) such that c is a minimum weight
codeword of C1(π)⊥.

3.1 Lower bound on the minimum weight of the dual code

The best general bound on the minimum weight of C1(n, q)⊥ known to the author follows
from a theorem by Bagchi and Inamdar.

Result 3.2 ([4, Theorem 3]). Let D = (P ,B) be an incidence structure, where every pair
of points lies in at most λ blocks, and every point lies in at least n+ λ blocks. Consider
the code C of D over a prime field Fp. Take a non-zero codeword c ∈ C⊥.

1. Then wt(c) ≥ 2
(

n+λ
λ

− n
λp

)
.
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2. If equality holds in (1), then there exists a scalar α ∈ F∗
p such that

• the image of c is {0,±α} and there are equally many points with coefficient α
as points with coefficient −α.

• any block intersects c in either p points with the same coefficient α or −α, in
two points with coefficients α and −α, or in the empty set.

• any two points of supp(c) lie in exactly λ blocks.

While their proof is rather long, we present a short proof for point (1).

Proof of Result 3.2 1. Each element α of Fp corresponds naturally to an integer in {0, . . . , p− 1},
which we will denote by ν(α). Consider for each c ∈ C⊥ the multiset M(c), where the
elements of M(c) are points of P , and each point P has multiplicity ν(c(P )) in M(c).
Now take a minimum-weight codeword c ∈ C⊥. By rescaling c we may assume that
c(P ) = 1 for some point P ∈ P . By assumption, there are at least n+ λ blocks through
P . Since c ∈ C⊥, they must all contain at least p− 1 other points of M(c) (counted with
multiplicity). Every other point is counted at most λ times. This yields

|M(c)| ≥ 1 +
n+ λ

λ
(p− 1) =

n+ λ

λ
p− n

λ
.

Now we distinguish two cases. First, suppose that there is no point Q ∈ P with c(Q) =
−1. Then every block through P contains at least 2 more points of supp(c), and wt(c) ≥
2n+λ

λ
+ 1.

Now suppose that there does exist a point Q ∈ P with c(Q) = −1. Then (−c)(Q) = 1,
and we can apply the same reasoning as before to prove that

|M(−c)| ≥ n+ λ

λ
p− n

λ
.

Note that |M(c)| + |M(−c)| = pwt(c), because every point R of supp(c) with c(R) =
α ̸= 0 contributes ν(α) to |M(c)| and ν(−α) = p− ν(α) to |M(−c)|. This yields

wt(c) =
|M(c)|+ |M(−c)|

p
≥ 2

p

(
n+ λ

λ
p− n

λ

)
.

We can draw some weaker conclusions in case of equality. In that case, if c is a
minimum weight codeword then every point of supp(c) lies on exactly n + λ blocks and
any pair of points of supp(c) lies on exactly λ blocks. Furthermore, if c(P ) = α ̸= 0, then
every block through P intersectsM(α−1c) in exactly p points (counted with multiplicity).
Result 3.2 (2) would follow if one can prove that c only takes values 0 and ±α for some
α /∈ F∗

p. However, it is not obvious how to derive this property from the arguments
presented above for general values of p.

Corollary 3.3 ([4, Theorem 3]).

d(C1(n, q)⊥) ≥ 2

(
θn−1

(
1− 1

p

)
+

1

p

)
.

Remark 3.4. It was privately communicated to the author by Zsuzsa Weiner [28] that
Aart Blokhuis independently discovered the same proof as above, but never published this.
Recently, similar arguments have been used by De Boeck and Van de Voorde [13] to
increase the lower bound on the minimum weight of C1(2, p2)⊥, p ≥ 5 prime, from 2q −
2p+ 2 to 2q − 2p+ 5.
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3.2 Minimum weight of the dual code for q even

For general n, the minimum weight of C1(n, q)⊥ is only known when q is prime or even.
Moreover, for general n, minimum weight codewords are only characterised for q prime.
In this subsection, we will investigate codewords of minimum weight of C1(n, q)⊥ for q
even. We will characterise these codewords for q ∈ {4, 8}, and state the intermediary
results as generally as possible, in the hope they might someday be helpful to obtain a
characterisation for higher values of q.

Throughout this section, assume that q is even. In this case a codeword c only
takes values in F2. Let P denote the set of points of PG(n, q). Then there is a 1-1
correspondence between the functions c ∈ FP

2 of weight w, and sets of points of PG(n, q)
of size w. This correspondence is given by going from a function to its support, and
from a set of points to its characteristic function. Moreover, c ∈ C1(n, q)⊥ if and only if
supp(c) is a set which intersects every line of PG(n, q) in an even number of points. Call
such a set a set of even type. Characterising minimum weight codewords of C1(n, q)⊥ is
equivalent to characterising the smallest sets of even type in PG(n, q). The minimum
weight of C1(n, q)⊥, hence the minimum size of sets of even type in PG(n, q), is known.
It was derived by Calkin, Key, and de Resmini [12] from a BCH bound established by
Delsarte [14].

Result 3.5 ([12, 14]). Let q be even, n ≥ 2. The smallest sets of even type in PG(n, q)
have size (q + 2)qn−2.

We will call sets of even type of size qn−2(q + 2) in PG(n, q) minimum sets of even
type. The previous result tells us that the minimum sets of even type in PG(2, q) have
size q+2. This is a well-known result in finite geometry. Such sets are called hyperovals,
and they intersect every line of PG(2, q) in 0 or 2 points. They have been classified for
q ≤ 64 [27]. Segre [25] proved already in the fifties that if q ≤ 8, all hyperovals are
regular, i.e. projectively equivalent to{

(s2, st, t2) || (s, t) ∈ PG(1, q)
}
∪ {(0, 1, 0)} .

To prove that the bound in Result 3.5 is tight, Calkin, Key, and de Resmini provided
the following construction of minimum sets of even type in PG(n, q).

Construction 3.6 ([12, Corollary 1]). Let π and τ be skew subspaces in
PG(n, q) of dimensions 2 and n − 3 respectively. Let O be a hyperoval in π. Then
the set (⋃

P∈O

⟨P, τ⟩

)
\ τ.

is a minimum set of even type in PG(n, q).

We adopt the terminology from [3].

Definition 3.7. Sets that can be constructed as in Construction 3.6 will be called hyper-
cylinders. The subspace τ in Construction 3.6 will be called the vertex of the hypercylin-
der.
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We note that if q = 2, a hypercylinder is the complement of a hyperplane. If q ≥ 4
this is not true, and the vertex of the hypercylinder is the intersection of all hyperplanes
disjoint to the hypercylinder, hence the vertex is uniquely determined by the hypercylin-
der.

It is a natural question to ask whether the only minimum sets of even type in PG(n, q)
are the hypercylinders. This is known to be true if q = 2 [4, Proposition 3]. We will
prove that it is also true for q = 4, 8. As a first step, we reduce the problem to the case
n = 3. We will use the following result.

Result 3.8 ([3, Theorem 5.6]). Suppose that S is a minimum set of even type in PG(n, q),
n ≥ 4. Assume that at least one plane intersects S in a hyperoval and any solid through
such a plane intersects S in a hypercylinder. Then S is a hypercylinder.

Proposition 3.9. Let q be even. Assume that the only minimum sets of even type in
PG(3, q) are hypercylinders. Then for any n ≥ 3, the only minimum sets of even type in
PG(n, q) are hypercylinders.

Proof. We prove this proposition using Result 3.8. Let S be a minimum set of even type
in PG(n, q), n > 3. First, we prove that there exists a plane intersecting S in a hyperoval.
Take a point P ∈ S. Then there exists some line ℓ through P with |ℓ∩ S| = 2, otherwise
every line through P contains at least 3 more points of S implying (q + 2)qn−2 = |S| ≥
1 + 3θn−1, a contradiction. Likewise there exists some plane π through ℓ containing only
q+2 points of S, otherwise every plane through ℓ contains at least q+4 points of S and
(q + 2)qn−2 ≥ 2 + θn−2(q + 2), again a contradiction.

Now suppose that π is a plane intersecting S in a hyperoval. Then every solid through
π intersects S in at least (q + 2)q points, since S ∩ σ is an even set in σ. If some solid
intersects S in more than (q + 2)q points, then

|S| > (q + 2) + θn−3(q(q + 2)− (q + 2)) = (q + 2)qn−2,

which contradicts S being a minimum set of even type. By our hypothesis, this implies
that every solid through π intersects S in a hypercylinder. Thus, the conditions of
Result 3.8 are satisfied.

Thus, we will focus our attention on minimum sets of even type in PG(3, q). Sets of
even type, or rather their complements, in PG(3, 4) have been thoroughly examined, see
e.g. [17]. In particular, it follows from their classification that the only minimum sets
of even type in PG(3, 4) are hypercylinders, see [17, Table 3]. Hence the same holds in
PG(n, 4) for all n. We note that for n = 4, this was already proven in the PhD thesis
of Packer [23, Table 4.9]. Moreover, [23, Table 4.11] contains the weight distribution of
C1(4, 4)⊥.

Calkin, Key and de Resmini [12, Proposition 3] proved that if S a minimum set of even
type in PG(3, q) that intersects every line in 0, 2, or q points, then S is a hypercylinder.
Our first goal is to relax this condition.

A set B of points in PG(2, q) is called a blocking set if no line of PG(2, q) is disjoint
to B. Blocking sets are well-studied objects, see e.g. [9]. Sets of even type and blocking
sets are linked in the following way.

Lemma 3.10. Let S be a set of even type in PG(3, q), let π be a plane in PG(3, q), and
let ℓ be a line in π. Then (π ∩ S)△ℓ is a blocking set in π.
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Proof. Take a line ℓ′ in π. Then

χ(π∩S)△ℓ · χℓ′ = (χπ∩S + χℓ) · χℓ′ = χS · χℓ′ + χℓ · χℓ′ = 0 + 1 = 1.

Hence, (π ∩ S)△ℓ intersects ℓ′ in an odd number of points, which in particular means
that (π ∩ S)△ℓ and ℓ′ are not disjoint.

Suppose that B is a blocking set of PG(2, q) and ℓ is a line not completely contained
in B. Take a point P ∈ ℓ \ B. There are q more lines through P , all containing a point
of B. Hence, |B \ ℓ| ≥ q. If equality holds, we say that ℓ is a Rédei line of B, and B is
said to be of Rédei type. The above observation also implies the well-known fact ( see
[10]) that a blocking set in PG(2, q) contains at least q + 1 points, with equality if and
only if the blocking set is a line.

Definition 3.11. Let S be a minimum set of even type in PG(3, q). A plane π is called
a Rédei plane with respect to S if there exists a line ℓ ⊂ π such that |S ∩ π \ ℓ| = q, or
equivalently (S ∩ π)△ℓ is a Rédei blocking set. We call ℓ a Rédei line of π with respect
to S.

Lemma 3.12. Let S be a minimum set of even type in PG(3, q), and let π be a plane.
Then |S ∩ π| ≤ 2q. If equality holds, then for every plane ρ ̸= π, the line π ∩ ρ is either
skew to S or a Rédei line of ρ with respect to S.

Proof. Suppose that π∩S ̸= ∅. Take a line ℓ in π containing some points of S. Then the
q planes ρ ̸= π through ℓ intersect S in a non-empty set of even type. Hence, (ρ ∩ S)△ℓ
is a blocking set by Lemma 3.10, and thus contains at least q points outside of ℓ, with
equality if and only if ℓ is a Rédei line of ρ. Therefore

q(q + 2) = |S| ≥ |S ∩ π|+ q · q.

This implies that |S ∩ π| ≤ 2q, and in case of equality, ℓ is a Rédei line in all the other
planes through it.

Proposition 3.13. Suppose that q is even, and that S is a minimum set of even type in
PG(3, q). If there is a q-secant line to S, then S is a hypercylinder.

Proof. Suppose that ℓ is a q-secant line to S. Let P denote the unique point of ℓ\S. Take
a plane π through ℓ. Since (π ∩ S)△ℓ is a blocking set, π contains at least q more points
of S. It has to be exactly q points, otherwise |S ∩ π| > 2q, contradicting Lemma 3.12.
Thus, (π ∩ S)△ℓ is a blocking set of size q + 1, hence a line. This means that π ∩ S
is the symmetric difference of two lines through P . Therefore, S is the union of q + 2
lines through P , without P . Take a plane ρ not containing P . Then ρ intersects each of
these q + 2 lines in a different point. Therefore, S ∩ ρ contains q + 2 points, hence it is a
hyperoval. It now follows directly that S is a hypercylinder with vertex P .

Given a minimum set of even type S, call a line ℓ a large secant if |ℓ ∩ S| > q
2
. We

will exploit the theory of Rédei blocking sets to prove that if S is not a hypercylinder,
it has at most one large secant, and a large secant implies the existence of a non-trivial
subfield of Fq. We will make use of the celebrated theorem by Ball, Blokhuis, Brouwer,
Storme, and Szőnyi.
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Result 3.14 ([7, 5]). Let B be a Rédei blocking set of PG(2, q) of size q + m, q = ph,
p prime. Let s = pe be maximal such that every line intersects B in 1 (mod s) points.
Then one of the following holds:

1. s = 1 and q+3
2

≤ m ≤ q + 1,

2. Fs is a proper subfield of Fq, and
q
s
+ 1 ≤ m ≤ q−1

s−1
,

3. s = q, and B is a line.

Lemma 3.15. Suppose that S is a minimum set of even type in PG(3, q), and S is not
a hypercylinder.

1. If a large secant ℓ exists, there exists some subfield Fs of Fq, with s ̸= 2, q, such that
q + 1− q−1

s−1
≤ |ℓ ∩ S| ≤ q − q

s
.

2. There is at most one large secant line to S.

Proof. 1. Suppose that ℓ is a large secant, and |ℓ ∩ S| = m. Then there exists a Rédei
plane π through ℓ, otherwise, all planes through ℓ contain at least q + 2 points of S \ ℓ
and

q(q + 2) = |S| ≥ m+ (q + 1)(q + 2), (1)

a contradiction. Let B be the Rédei blocking set (π ∩ S)△ℓ. Then k := |ℓ ∩ B| =
(q+1)−m ≤ q

2
−1. By Result 3.14, there exists some subfield Fs such that q

s
+1 ≤ k ≤ q−1

s−1

or s = q and B is a line. But if B were a line, then ℓ would be a q-secant, and by
Proposition 3.13, S would be a hypercylinder. Thus, q + 1 − q−1

s−1
≤ m ≤ q − q

s
. Since

m > q
2
, s ̸= 2. In particular, this implies that m ≥ q + 1− q−1

4−1
= 2q+4

3
.

2. Suppose that there are two large secants ℓ1 and ℓ2. Write mi = |S ∩ ℓi|. We
distinguish two cases.
Case 1. ℓ1 and ℓ2 intersect in a point P .

Consider the plane π spanned by ℓ1 and ℓ2. Take a point Q ∈ ℓ2 \ (S ∪ {P}). There
are at least m1 − 1 lines through Q, different from ℓ2 that intersect ℓ1 in a point of S.
Each of these lines must contain an extra point of S, not contained on ℓ1 or ℓ2. Then

|S ∩ π| ≥ m2 + 2(m1 − 1) ≥ 3
2q + 4

3
− 2 > 2q,

which contradicts Lemma 3.12.
Case 2. ℓ1 and ℓ2 don’t intersect.

Take a point P ∈ ℓ1∩S. If no line through P in ⟨P, ℓ2⟩ is a 2-secant, then all these lines
contain at least 3 extra points of S, implying |S ∩ ⟨P, ℓ2⟩ | ≥ 1 + 3(q + 1), contradicting
Lemma 3.12. So let ℓ be a 2-secant through P and some point of ℓ2. Note that the point
ℓ∩ ℓ2 need not be in S. Then for i = 1, 2, the plane ⟨ℓ, ℓi⟩ contains at least mi + q points
of S. All other planes contain at least q extra points of S. Thus, looking at the planes
through ℓ,

q(q + 2) = |S| ≥ 2 + 2

(
2q + 4

3
+ q − 2

)
+ (q − 1)q = (q + 2)q +

q + 2

3
,

a contradiction.
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Unfortunately, the above proposition does not seem to be strong enough a tool to
prove that the only minimum sets of even type in PG(3, q) are hypercylinders for general
values of q. However, if q = 8, the above lemma proves that a minimum set of even
type cannot have 6-secant lines, and we will show below that this suffices to prove that
hypercylinders are the only minimum sets of even type. We remark that the exclusion of
6-secant lines can be obtained using less heavy machinery. Indeed, if a 6-secant ℓ would
exist, it would lie in a Rédei plane (cf. Equation (1)). This would imply the existence of
a blocking set in PG(2, q) not containing a line, of size ((8+1)−6)+8 = 11 < 8+

√
8+1.

By a celebrated result of Bruen [11], this is not possible.

Proposition 3.16. The only minimum sets of even type in PG(3, 8) are hypercylinders.

Proof. Suppose to the contrary that S is a set of even type of size 8 · (8 + 2) = 80, not
a hypercylinder. Since F8 has no proper subfield but F2, Lemma 3.15 implies that S has
no large secants. Therefore, every line intersects S in 0, 2, or 4 points.

Take a point P ∈ S. Let x denote the number of 4-secant lines through P . Then

80 = |S| = 1 + (θ2 − x)1 + 3x = 74 + 2x,

hence x = 3.
For every point P in S there are two options:

1. The three 4-secant lines through P lie in a plane π. In this case, there are 6 more
lines in π through P , all of which have to be 2-secant lines to S. Therefore

|π ∩ S| = 1 + 3 · (4− 1) + 6 · (2− 1) = 16.

Since each point of π ∩ S lies only on 2- and 4-secant lines, its three 4-secant lines
must be contained in π. Moreover, there is no plane through P containing exactly
two 4-secant lines through P , hence P does not lie on a 14-secant plane.

2. The three 4-secant lines through P do not lie in a plane. In this case there are three
planes through P which contain two 4-secant lines and are 14-secant.

Let mi denote the number of i-secant planes. Since every point lies in at most one 16-
secant plane, the number of such points equals 16m16. Now we do a double count on
the incident point-plane tuples (P, π) with P ∈ S and π a 14-secant plane. This number
equals

14m14 = (80− 16m16)3 = 16(5−m16)3.

If m14 ̸= 0, then 14 divides 16(5 − m16)3, which is impossible, since all factors of the
latter are coprime with 7. Thus, m16 = 5 and m14 = 0.

Hence, every point of S lies on a unique 16-secant plane. Denote these planes as
ρ1, . . . , ρ5. We say that a point P ∈ S is of type i if P ∈ ρi.

Take a point P1 of type 1 and a point P2 of type 2. Consider the line ⟨P1, P2⟩. Since
it contains points of different types, it can not lie on 16-secant planes. On the other
hand, it contains points of S, so it can not lie on 0-secant planes. Therefore, ⟨P1, P2⟩
only lies on 10- and 12-secant planes. A plane π through ⟨P1, P2⟩ is 12-secant if and only
if it contains a unique 4-secant through P1 if and only if intersects ρ1 in a 4-secant line.
Similarly, π is a 12-secant plane, if and only if π intersects ρ2 in a 4-secant line through
P2. Thus, the 4-secants through P1 intersect the line ℓ = ρ1 ∩ ρ2 in the same points as
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the 4-secants through P2. Let R1, R2, R3 denote the points of intersection of ℓ with the
4-secant lines through P1. If we fix one of the points in {P1, P2} and vary the other, we
see that all 4-secants in ρ1 and ρ2 intersect ℓ in R1, R2, or R3.

Now we prove that these three points are the only points in ρ1 \ S on more than one
4-secant line of ρ1. Indeed, there are 16·3

4
= 12 4-secant lines in ρ1, since any of the 16

points of ρ1 ∩S lies on 3 such lines, and any such line contains 4 points of ρ1 ∩S. Hence,
the size of

V = {(ℓ1, ℓ2, Q) || ℓ1, ℓ2 distinct 4-secant lines in ρ1, Q = ℓ1 ∩ ℓ2}

equals 12·11. On the other hand every point of S lies on three 4-secants of ρ1, so accounts
for 3 · 2 = 6 triples of V , and the points Ri lie on four 4-secants of ρ1, so account for
4 · 3 = 12 triples in V . In total this accounts for 16 · 6 + 3 · 12 = 12 · 11 elements of V ,
hence all elements of V .

We can repeat the above argument with P2 replaced by a point Pi ∈ ρi with i ∈
{3, 4, 5}. Then we find three points R′

1, R
′
2, R

′
3 of ρ1 ∩ ρi such that every 4-secant line of

ρ1 and ρi intersects ρ1∩ρi in one of these points. Since they are points of ρ1 \S one more
than one 4-secant of ρ1, {R1, R2, R3} = {R′

1, R
′
2, R

′
3}. We conclude that all 16-secant

planes go through ℓ, and all 4-secant lines intersect ℓ in R1, R2, or R3.
Thus, ℓ lies on five 16-secant planes, and the other planes through ℓ must be 0-secant.

None of these planes contain 2-secant lines through R1. In particular, this implies that R1

does not lie on any 10-secant planes, since such a plane π intersects S in a hyperoval, and
contains 2-secant lines through every point of π. Let x denote the number of 12-secant
planes through R1. By performing a double count on

{(P, π) || P ∈ S, π a plane, P,R1 ∈ π} ,

we see that
x · 12 + 5 · 16 = |S|9 = 80 · 9.

But then x is not integer, a contradiction that concludes the proof.

As we mentioned before, the only minimum sets of even type in PG(3, 4) are the
hypercylinders, and the only hyperovals in PG(2, q), q ∈ {4, 8}, are regular. This together
with the above proposition and Proposition 3.9 proves Theorem 1.1, stating that the only
minimum sets of even type in PG(3, q), with q ∈ {4, 8}, are hypercylinders over regular
hyperovals. Using Result 3.1, this classifies the minimum weight codewords of the codes
Ck(n, q)⊥ for q ∈ {4, 8}, and we can determine how many of such codewords exist.

We need some basic facts about hyperovals, which can e.g. be found in [16, Table
7.2 & §8]. A regular hyperoval consists of an irreducible conic together with its nucleus.
There are q5 − q2 irreducible conics in PG(2, q). Any 5 points in PG(2, q), no 3 of which
are collinear, lie on a unique irreducible conic.

First consider the case q = 4. Let O be a hyperoval in PG(2, 4). If you delete any
point from O, you are left with 5 points, hence they constitute an irreducible conic.
Therefore, the total number of hyperovals in PG(2, 4) equals 45−42

6
= 168.

If q = 8, then distinct irreducible conics give rise to distinct hyperovals. Otherwise,
they would intersect in q > 4 points, which yields a contradiction. Therefore, there are
85 − 82 = 32 704 hyperovals in PG(2, 8).
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Lastly, we use the fact that the number of k-spaces in PG(n, q) is given by the Gaussian
coefficient, see e.g. [16, Theorem 3.1].[

n+ 1

k + 1

]
q

=
k∏

i=0

qn+1−i − 1

qk+1−i − 1
.

Corollary 3.17. Suppose that q ∈ {4, 8}. The minimum weight of Ck(n, q)⊥ is qn−2(q+2),
and the minimum weight codewords of Ck(n, q)⊥ are exactly the characteristic functions
of the hypercylinders embedded in an (n− k + 1)-space. Define the number

δ(q) =

{
168 if q = 4,

32 704 if q = 8.

The number of minimum weight codewords of Ck(n, q)⊥ is given by[
n+ 1

k − 1

]
q

[
n− k + 2

3

]
q

δ(q),

and all minimum weight codewords are equivalent under the action of the automorphism
group of the code.

Proof. By Result 3.1 and Theorem 1.1, a minimum weight codeword of Ck(n, q)⊥ is the
characteristic function of a hypercylinder embedded in an (n − k + 1)-space. Since this
hypercylinder spans the (n−k+1)-space, the total number of minimum weight codewords
equals the number of (n−k+1)-spaces, i.e.

[
n+1

n−k+2

]
q
=
[
n+1
k−1

]
q
, multiplied by the number of

hypercylinders in PG(n−k+1, q). As we mentioned above, the vertex of a hypercylinder
is uniquely determined by the hypercylinder whenever q > 2, so there are

[
n−k+2

(n−k+2)−3

]
q
=[

n−k+2
3

]
q
choices for a vertex, which all give rise to distinct hypercylinders. Once the vertex

is fixed, the hypercylinder is constructed by choosing a hyperoval in a plane disjoint to
the vertex. The choice of the plane is irrelevant, all planes disjoint to the vertex yield
the same hypercylinders. Thus, the number of hypercylinders in PG(n− k+ 1, q) with a
fixed vertex equals the number δ(q) of hyperovals in PG(2, q). This proves the formula
for the number of minimum weight codewords.

Lastly, every collineation of PG(n, q) gives rise to an automorphism of Ck(n, q)⊥.
Since all hyperovals in PG(2, q) are projectively equivalent, it easily follows that all hy-
percylinders embedded in an (n − k + 1)-space are projectively equivalent. Thus, their
characteristic vectors are in the same orbit of the automorphism group of Ck(n, q)⊥.

4 Small weight codewords in the code of points and

hyperplanes

In this section, we will give a short and self-contained proof of Result 1.2. The main
tool is Lemma 4.2. This lemma generalises a powerful lemma by Blokhuis, Brouwer, and
Wilbrink [8, Proposition] that works for C1(2, q). This generalisation was presented to
the author by Olga Polverino and Ferdinando Zullo, although they never published it.

Definition 4.1. For a set of points S in PG(n, q) and a point P (which can be in or
outside of S), the feet of P with respect to S are the points R ∈ S such that

⟨P,R⟩ ∩ S \ {P} = {R} .
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Lemma 4.2. Suppose that c ∈ Cn−1(n, q), q > 2, and P is a point of PG(n, q). Then the
feet of P with respect to supp(c) span a subspace that does not contain P .

Proof. Suppose that P is contained in the subspace spanned by its feet. Let R0, . . . , Rk be
a set of feet of P of smallest possible size such that P ∈ ⟨R0, . . . , Rk⟩. By the minimality,
P,R0, . . . , Rk constitute a frame of ⟨R0, . . . , Rk⟩, and there exist linearly independent
vectors e0, . . . , ek ∈ Fn+1

q such that

P = ⟨e0⟩ , R1 = ⟨e1⟩ , . . . , Rk = ⟨ek⟩ , R0 = ⟨e0 + e1 + . . .+ ek⟩ .

Let C ′ denote the span of Cn−1(n, q) over Fq. Then Cn−1(n, q) ⊆ C ′, so c ∈ C ′. We will
now construct a vector in C ′⊥. Let P denote the set of points of PG(n, q) and consider

v : P → Fq : Q 7→


α if Q = ⟨αe0 + ei⟩ with 1 ≤ i ≤ k,

−α if Q = ⟨αe0 + e1 + . . .+ ek⟩ ,
0 otherwise.

For i = 0, . . . , k denote ℓi = ⟨P,Ri⟩. Then supp(v) =
(⋃k

i=0 ℓi

)
\{P,R′

0, R1 . . . , Rk}, with
R′

0 = ⟨e1 + . . .+ ek⟩. Let us check that v ∈ C ′⊥. Choose a hyperplane π. If P ∈ π, then
every line ℓi either intersects π in P or is contained in π. Since v(P ) = 0 and

∑
Q∈ℓi v(Q) =∑

α∈Fq
α = 0 (because q > 2), v · χπ = 0. If P /∈ π, then for i = 1, . . . , k, π intersects ℓi

in some point ⟨αie0 + ei⟩, and it must intersect ℓ0 in ⟨(α1 + . . .+ αk)e0 + e1 + . . .+ ek⟩.
Therefore,

v · χπ = α1 + . . .+ αk − (α1 + . . .+ αk) = 0.

Hence, indeed v ∈ C ′⊥.

Since for each line ℓi, supp(c)∩ℓi\{P} = {Ri} and supp(v) =
(⋃k

i=0 ℓi

)
\{P,R′

0, R1 . . . , Rk},
supp(c)∩ supp(v) = {R0}. Thus, v · c = v(R0)c(R0) = −c(R0) ̸= 0. This contradicts that
c ∈ C ′ and v ∈ C ′⊥. Therefore, we may conclude that P is not contained in the subspace
spanned by its feet with respect to supp(c).

We will use one more simple lemma, and include a proof for the sake of completeness.

Lemma 4.3 ([20, Lemma 2]). Suppose that c ∈ Cn−1(n, q). Then there exists a scalar
β ∈ Fp such that for each subspace ρ of dimension at least 1, c · χρ = β.

Proof. Since c ∈ Cn−1(n, q), c =
∑

i αiχπi
for some scalars αi ∈ Fp and hyperplanes πi.

Define β =
∑

i αi. Take a subspace ρ of dimension at least 1. For every hyperplane πi,
dim ρ ∩ πi ≥ 0. This implies that |ρ ∩ πi| ≡ 1 (mod p) and χρ · χπi

= 1. Hence,

c · χρ =

(∑
i

αiχπi

)
· χρ =

∑
i

αi(χπi
· χρ) =

∑
i

αi = β.

The following proof also uses the notion of an arc in PG(2, q). This is a set of points
in PG(2, q), no three on a line. It is well-known that an arc contains at most q+2 points,
and that there are always lines which are disjoint to the arc, see e.g. [16, §8.1].

Theorem 4.4. Let q > 2. Suppose that c ∈ Cn−1(n, q) and 0 < wt(c) ≤ 2qn−1. Then
either
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• wt(c) = θn−1 and c = αχπ,

• wt(c) = 2qn−1 and c = α(χπ − χρ),

with α ∈ F∗
p, and π, ρ hyperplanes of PG(n, q).

Proof. Take a codeword c ∈ Cn−1(n, q), and let β be as in Lemma 4.3.
Case 1: β ̸= 0.

Define
m = max {|supp(c) ∩ π| || π a hyperplane of PG(n, q)}

as the maximum number of points of supp(c) in a hyperplane. We will show that m =
θn−1. Suppose to the contrary that m < θn−1. Take an m-secant hyperplane π and a
point P ∈ π \ supp(c). Note that every line contains a point of supp(c) since β ̸= 0. Let
x denote the number of tangent lines through P not contained in π. Since there are qn−1

lines through P outside of π,

2qn−1 ≥ wt(c) ≥ m+ x · 1 + (qn−1 − x) · 2 = 2qn−1 +m− x. (2)

This implies that x ≥ m. On the other hand, by Lemma 4.2, there exists some hyperplane
τ ̸∋ P containing the x feet of P with respect to supp(c). Therefore, x ≤ m. Hence,
x = m, and we have equality in Equation (2). Furthermore, τ must intersect supp(c)
exactly in the m feet of P , and equality in Equation (2) can only hold if none of the feet
of P are contained in π. Hence, π ∩ τ ∩ supp(c) = ∅. If n ≥ 3, then dim(π ∩ τ) ≥ 1,
so χπ∩τ · c = β ̸= 0, a contradiction. If n = 2, then m > 2, otherwise supp(c) is an
arc and there are lines missing supp(c) which would imply that β = 0. By equality in
Equation (2), P lies on a unique m-secant line, m tangent lines, and q − m 2-secant
lines. Moreover, this holds for any point outside of supp(c), lying on an m-secant line.
But then π ∩ τ would be a point outside of supp(c) lying on at least 2 m-secant lines, a
contradiction. So in both cases, m < θn−1 leads to a contradiction.

Thus, supp(c) contains a hyperplane π. Take a point P ∈ π. Then c(P ) = β.
Otherwise, every line through P outside of π contains at least one other point of supp(c)
and wt(c) ≥ θn−1 + qn−1 > 2qn−1. Furthermore, if supp(c) contains a point P /∈ π,
then every line ℓ through P contains another point of supp(c) \ π. Otherwise, χℓ · c =
c(P ) + β ̸= β, a contradiction. But then wt(c) ≥ 1 + 2θn−1, a contradiction. Hence,
supp(c) = π which implies that c = βχπ.
Case 2: β = 0.

Let A = {c(P ) || P ∈ supp(c)} denote the set of non-zero coefficients that c takes.
For every α ∈ A define

mα = max {|supp(c) ∩ π| || π a hyperplane of PG(n, q), (∃P ∈ π)(c(P ) = α)} .

Now suppose that α ∈ A, and mα ≥ m−α (where we set m−α = 0 if −α /∈ A). Take an
mα-secant hyperplane π containing a point P with c(P ) = α. Let x denote the number
of 2-secant lines through P not contained in π. Since β = 0, there are no tangent lines
to supp(c), hence

2qn−1 ≥ wt(c) ≥ mα + x · 1 + (qn−1 − x) · 2 = 2qn−1 +mα − x. (3)

Thus, x ≥ mα. On the other hand, the x feet of P lie in some hyperplane τ ̸∋ P . Since
every foot of P has coefficient −α in c, by definition x ≤ m−α. Furthermore, we assumed
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that m−α ≤ mα. Hence mα ≤ x ≤ m−α ≤ mα. Therefore, x = mα = m−α. This implies
that equality holds in Equation (3). Therefore, the points of τ ∩ supp(c) are exactly the
mα feet of P , π∩ τ ∩ supp(c) = ∅, and the lines ℓ with P ∈ ℓ ̸⊆ π consist of mα 2-secants,
and qn−1 −mα 3-secants.

If q is even, then there are no 3-secant lines ℓ to supp(c), because otherwise β = χℓ ·c =
1, contradicting our assumption that β = 0. In this case, we find m1 = qn−1. Then π
and τ are qn−1-secant hyperplanes and their intersection is empty, hence supp(c) = π△ρ
and c = χπ − χρ.

So for the rest of the proof assume that q is odd. Since no 3-secant line through P
can contain a point with coefficient −α, all points with coefficient −α are contained in
π ∪ τ . Since we proved that mα = m−α, we can repeat the previous argument where
we replace P by some point R of τ with coefficient −α. Then we find some mα-secant
hyperplane π′ such that all points with coefficient α are contained in τ ∪ π′. We proved
that all points of τ ∩ supp(c) have coefficient −α, hence π′ is an mα-secant hyperplane
that intersects supp(c) exactly in the points with coefficient α. In conclusion, for every
scalar α ∈ A, there exists an mα-secant hyperplane, which we’ll denote by πα, such that
πα ∩ supp(c) = {P ∈ supp(c) || c(P ) = α}.

Next, we prove that A = {±α} for some scalar α. Take a scalar α ∈ A, then we
know that −α ∈ A. Suppose that A also contains a scalar γ ̸= ±α. Take a point P with
c(P ) = γ. Then P /∈ πα ∪ π−α, so every line through P and a point of πα ∩ supp(c) is a
3-secant. Therefore, it contains a point with coefficient −α−γ. Hence, mα+γ = m−α−γ ≥
mα for every α, γ ∈ A. It follows that A = F∗

p and mα is equal for all α in A. But then
2qn−1 = wt(c) = |A|mα = (p− 1)mα. Since p− 1 is coprime with qn−1, p− 1 must divide
2. This implies that p = 3, in which case A = F∗

3 = {±1}.
Hence, A = {±α}, and 2qn−1 = wt(c) = 2mα. This implies that mα = qn−1. Since

πα ∩ π−α ∩ supp(c) = ∅, the only option is that

c(P ) =


α if P ∈ πα \ π−α,

−α if P ∈ π−α \ πα,

0 otherwise.

I.e. c = α(χπα − χπ−α).

This proves Result 1.2 in case q > 2. For the sake of completeness, we also include a
proof for q = 2.

Lemma 4.5. The only codewords in Cn−1(n, 2) are 0, 1, and the codewords of the form
χπ and χπ − χρ, with π and ρ hyperplanes.

Proof. It suffices to prove that if we take a codeword c of one of the forms described
in the lemma, then for any hyperplane π, c + χπ is also of one of these forms. This
clearly holds if c = 0 or c = χρ for a hyperplane ρ. Note that if ρ and σ are hyperplanes
χρ − χσ = χρ△σ and ρ△σ is the complement of the unique hyperplane τ distinct from ρ
and σ through ρ∩σ. Hence, χρ−χσ = 1−χτ . It immediately follows that if c = χρ−χσ

or c = 1, then c+ χπ has the form of one of the codewords described in the lemma.

5 Conclusion

In this paper, we studied small weight codewords of Ck(n, q) and Ck(n, q)⊥. Many ques-
tions remain, especially regarding the dual codes.
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Problem 5.1. Determine for q = 2h > 8 whether or not there are minimum even sets
in PG(3, q) different from the hypercylinders.

We note that Theorem 1.1 cannot hold for q > 8 without removing the adjective
“regular”, since every Desarguesian projective plane of even order q > 8 contains non-
regular hyperovals, and they have been classified for q ≤ 64 [27].

Problem 5.2. For q odd and non-prime, determine the minimum weight of
C1(2, q)⊥, and characterise the minimum weight codewords.

For general q, as far as the author knows, the best known lower bound on the minimum
weight is given by 2(q − q

p
+ 1) (see Corollary 3.3), and the best known upper bound is

given 2q− q−1
p−1

+1 [18]. As we stated before, the lower bound has recently been improved

to 2q − 2 q
p
+ 5 in case q = p2 ≥ 52 [13].

Problem 5.2 also remains open in PG(n, q) with n > 2.

Problem 5.3. Do all minimum weight codewords of C1(n, q)⊥ arise from minimum weight
codewords of C1(2, q)⊥?

A general construction, of which hypercylinders are an instance, to construct small
weight codewords of C1(n, q)⊥ from small weight codewords in C1(2, q)⊥ is given by [4,
Lemma 6] or [1, Construction 7.12]. For q prime, all minimum weight codewords are
instances of this construction [4, Proposition 2], and now we know that the same holds
for q ∈ {4, 8}.
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